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The dielectric constant is a property of matter, which describes the 

macroscopic response of an insulating material to an applied electric field. 

When the dielectric is placed in an electric field, molecular dipole moments 

are induced inside the dielectric and consequently the material becomes 

polarized. 

In this thesis the macroscopic and microscopic phenomenon of 

polarization as well as the influence of electromagnetic waves on dielectrics 

are discussed. The relations among the microscopic polarizability, dielectric 

constant and index of refraction are also discussed. Finally, a theoretical 

model for the effect of an electric field on an interacting system of discrete 

dipoles is presented. 
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Chapter 1 

Introduction 

The response of matter to external electric fields is of interest in many 

areas of study. In astrophysics, for example, the existence of small 

interstellar dust grains has been inferred from astronomical observations. 

Understanding the response of these hypothetical dust grains to interstellar 

electromagnetic fields is critical to investigating their role in the universe. 

This response is described theoretically by modeling the grains as 

polarizable spheres. Such polarizable spheres are also used in theoretical 

descriptions of many other phenomena. For example, related models are 

also used in atmospheric physics. 

Several references describe the interaction of small particles with 

electromagnetic fields. Van de Hulst l discusses general theoretical models 

of the interaction, with an emphasis on electromagnetic theory and 

mathematical solutions. This reference discusses the importance of 

polarizability and the dipole moment in the discussion of scattering and the 

efficiency factor for scattering. The first term of the efficiency factor is the 

radiation from an electric dipole. This book was originally published in 

1957 so although the mathematical solutions have not changed, the 

applications and methods of calculation have changed. 

Bohren and Huffman2
, published in 1983, updates much material from 

van de Hulst l
. It also gives more practical information. This book discusses 

the importance of the dielectric constant and its use in optics. One topic, 

which is particularly important for the present work, is that it extends the 

discussion of dielectric constant to anisotropic materials where the use of the 



dielectric tensor is essential. This book uses the dielectric tensor to relate 

the electric field E to the displacement jj. It indicates that the dielectric 

constant is often symmetric with the principal dielectric constant being the 

diagonal of the matrix. In this case the displacement 15 and the electric 

field E are parallel. In one example, it uses the dielectric constant to 

discuss the oscillations of the atoms in crystals. 

Evans3 discusses astrophysical applications. The specific part of this 

book that is related to this thesis is the employment of the dielectric constant 

and the polarizability to describe the electrical properties of the dust grains. 

It also relates the refractive index to the dielectric constant. It states that the 

absorption of electromagnetic radiation can be described by an absorption 

coefficient. This coefficient can be used to define a complex refractive 

index, which requires the knowledge of the dielectric constant 

Stephens4 uses the concept of electric dipole and the dielectric 

constant in an indirect way for remote sensing applications. An electric 

dipole is a particular charge distribution where two equal but oppositely 

charged particles are separated by a distance s. The oscillating dipole 

produces electromagnetic radiation, which scatters while interacting with 

particles. This phenomenon is the basis for remote sensing techniques. 

Another phenomenon in which scattering occurs is observed in variations of 

the refractive index in the atmosphere. The dielectric constant of materials is 

temperature dependent. Thus, as the dielectric constant changes with 

variation in temperature, so does the refractive index of that material since it 

is related to the dielectric constant. This change in dielectric constant and 

refractive index results in the scattering of electromagnetic radiation. In this 

application, one is interested in the effect of the atmosphere on 
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electromagnetic waves as they travel from source to detector. For example, 

UHF and VHF radars receive echoes caused by scattering from atmospheric 

regions with variable refractive index resulting from variations in 

temperature and humidity 

Gueguen and Palciauskas5 introduce electromagnetic measurements 

for geophysical exploration. By electromagnetic measurement techniques, it 

is possible to probe the earth over seventeen orders of magnitude in 

frequency, from 10-6 Hz to the highest microwave frequencies 1011 Hz. At 

high frequencies, where the wavelength is short, microwave radiometry can 

detect distances over fractions of a meter, while at low frequencies, where 

the wavelength is large, deep magnetic sounding can detect distances of 

more than a hundred kilometers. With low frequencies the conductivity of 

the rocks can be measured, while with high frequencies the dielectric 

properties are measured. This is why this book utilizes the measurement and 

the computation of the dielectric constant as a tool for probing the rocks or 

the other materials under the earth. It also states that the dielectric constant 

of rocks is dependent on the frequency of the time-varying electric field and 

the dielectric constant of water saturated rocks is higher than that of dry 

rocks. 

The application of dielectric theory to interstellar dust grains has been 

significant in several Master's thesis or projects at Emporia State University 

(Shi6
, Ding7

, Robertson8
). Shi calculated the photoelectric yield of small 

graphite and silicate grains. Ding extended these calculations to a larger 

range of sizes. Finally, Robertson incorporated the calculations of Shi and 

Ding into a model of the heating of the interstellar gas by the emission of 

photoelectrons. 

3 



The general aim of this study is to analyze the microscopic 

polarizability and its influence on the dielectric constant. This will begin 

with the discussion of the macroscopic dielectric properties of electrical 

insulators. It may appear that since insulators do not conduct electricity they 

are not responsive to electric fields. However, Faraday}} discovered that this 

was not so. He found that the capacitance of a capacitor increased by a 

factor K when an insulator is put between the plates. The factor K is a 

property of the insulator called the dielectric constant. Therefore, insulators 

are often referred to as dielectrics. 

Macroscopic dielectric phenomena can be understood more clearly by 

discussing what happens inside the individual atoms and molecules of the 

dielectric material. Consider an isolated atom in the absence of an electric 

field. The negative electronic charges are distributed symmetrically around 

the positively charged nucleus. In this case, the atom has a zero dipole 

moment. When the electric field is present, a force is exerted on the charges. 

The positive charges move in the direction of the field and the negative 

charges move to the opposite side. These charges are no longer in the 

previous spherically symmetric form and therefore, the center of charge of 

the negatively charged electrons and the positively charged nucleus don't 

coincide. This means that the atom has a nonzero dipole moment jJ. Thus 

the atom has become polarized and this is referred to as induced 

polarization. In general, materials which are highly polarizable also have 

large dielectric constants. 

Another possibility is that some molecules have their positive and 

negative charges distributed in such a way that they have dipole moments 

even in the absence of an electric field. These molecules are called polar 

molecules, and the dipole moment is referred to as a permanent dipole 
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moment. The total charge, which is also referred to as the monopole 

moment, is zero. An example of this type of dipole moment is the water 

molecule where the hydrogen's electronic charge moves away from the 

li# 
nucleus and clusters around the oxygen. When there are many water 

molecules in the liquid or gas state, these dipole moments are randomly 

oriented so that in the absence of an electric field they sum to zero. When an 

electric field is present, the field exerts forces on the dipoles and causes 

them to rotate until they are aligned with the direction of the field, thus 

polarizing the material. Ionic polarization is produced from the 

displacement and deformation of a charged ion with respect to another ion. 

The dipoles of some solid materials are aligned to some extent, even in the 

absence of an electric field. These materials are called electrets and are said 

to be permanently polarized. 

Ferroelectric crystals are another possibility that exhibit dipole 

moments even in the absence of an electric field. Their polarization 

properties are highly temperature-dependent. In some crystals the 

ferroelectric dipole is not changed by a high intensity electric field but is 

very sensitive to changes in the temperature. These crystals are called 

pyroelectric. Lithium niobate, LiNb03, is a pyroelectric at room 

temperature. It can be polarized by an electric field applied, provided the 

temperature is over 1400 K. Above this transition temperature, 

ferroelectricity disappears and it is said to be in the paraelectric state and the 

dielectric constant drops rapidly. 

Polarization is related to the relative capacitivity or relative 

permitivity, E, which is a measure of the degree to which the electric field 

influences the material. Pennitivity is defined by, &= &0(1 + X), where X is 
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the susceptibility of the material. The susceptibility is a measure of how 

easily the material can be polarized and relates the polarization to the 

applied electric field by the equation, P=X GO E where P is the polarizatoin 

and E represents the electric field. Polarization is also directly proportional 

to the molecular dipole moment p. In some materials, rotation of the 

permanent molecular dipole moment may take place in such a way that it 

can contribute to the total polarization P. However, in others, rotation is 

hindered so that the permanent molecular dipole does not contribute to P. 
Examples of these materials are nitromethane, CH3N02, and hydrogen 

chloride, HCl. 

The moment of a molecule of nitromethane in the liquid state is large 

which causes the relative permitivity of this material to be large, about 

11.1xlO·3o Coulomb m. The relative permitivity of this material in the liquid 

state increases as the temperature decreases because the molecules can rotate 

easily in the liquid state. However, the pennitivity of nitromethane drops 

sharply at the freezing point of the liquid, 244 K. In the solid state the 

molecules of nitromethane are not free to move thus they do not contribute 

to polarization. The low value of relative permitivity, G, is due to only 

induced and ionic moments as E in solids doesn't changed with temperature. 

This phenomenon is not true for all solids, for instance, it does not 

work the same way with HCl. The permitivity of HCI in the liquid state is 

relatively high, and its temperature dependence indicates the occurrence of 

rotation. At the freezing point of HCI, 165 K, the permitivity slightly 

increases but the molecules in the solid keep orienting themselves in the 

direction of the field. The permitivity of HCI keeps increasing until the 

temperature reaches 100 K and then it starts decreasing sharply as the 
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molecules can no longer rotate and thus the polarization ceases. Below 100 

K, the polarization is partly induced and partly ionic. 

According to Kittel12 
, in piezoelectric materials, stress as well as 

electric field changes the polarization. For small stress, the polarization is 

linearly proportional to the stress. The application of electric field causes 

strain in these materials. All ferroelectric materials are piezoelectric 

materials but the converse is not true. The best piezoelectric material is 

quartz, which is not ferroelectric. 

Polarization is also frequency dependent. At low and moderate 

frequencies polarization occurs due to both electronic and molecular dipole. 

However, at high frequencies the molecular polarization ceases because the 

molecular moment of inertia is too large to allow the molecule to quickly 

switch directions and align itself to the alternating electric field. On the 

other hand, electrons, which are light and having a small moment of inertia, 

can align themselves with the alternating field and result in electronic 

polarization. 

The purpose of this thesis is two-fold. First, we survey the general 

theoretical relationship between microscopic polarization and the 

macroscopic dielectric constant. Extensive use was made of readily 

available general references. Feynman's Lectures in Physics, WangsnesslO
, 

and Bohren and Huffman2 have been particularly useful. Other references 

are noted in the body of the thesis. Secondly the mutual interactions of 

systems of polarizable particles subjected to an applied external field are 

discussed. This topic is introduced in the form of solutions and extensions 

to problems from Feynman9 
. 

The organization of the thesis is as follows. Chapter I introduces the 

subject and describes polarization phenomena in general terms. Chapter 2 
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has three sections. In the first section the dielectric constant and polarization 

are discussed on a macroscopic scale. The next section discusses the 

polarization on a microscopic scale. In this section the dielectric constant of 

gases, liquids, and solids are discussed as well. The third section is about 

wave propagation in dielectrics. In this section, Maxwell's equations in a 

dielectric, the index of refraction, wave speed, and the frequency-dependent 

dielectric constant are discussed. The concept of the index of a mixture is 

also mentioned. Chapter 3 describes the problem of the effective 

polarizability of two dipoles, which is the principal focus of this thesis. This 

section focuses on different methods for the determination of the effective 

polarizability of two dipoles subjected to an external electric field. The 

methods considered are simultaneous equation, iteration method, and 

polarizability tensor. The conclusions of this study are the subject of 

Chapter 4. 
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Chapter 2
 

Dielectric Theory
 

1. Macroscopic Properties 

The principal references for most of the concepts in this section are 

Feynman9 and Wangsness lO 
. This work elaborates on some details omitted 

in both references. We have solved some of the problems in Feynman9 and 

Wangsness lO and used them as the basis for some relevant discussions. 

When we reach to the solved problems we will point that out. 

In conductors free charges move in response to applied electric fields. 

The free charges redistribute themselves until the total electric field inside 

the conductor vanishes. In dielectrics (also known as insulators) the case is 

different. One may think that since dielectrics don't conduct electricity 

electric fields should not have any effect. However, using a simple 

electroscope and parallel plate capacitor, Faraday!! discovered that this was 

not true. He found that by inserting a dielectric between the two plates of a 

capacitor the capacitance of a capacitor increased by a factor K. The factor K 

is a property of the dielectric, and it is called the dielectric constant. 

Now let's see what happens when a dielectric is placed between the 

plates of the capacitor. Given a charged capacitor with the positive charges 

on the top plate and the negative charges on the bottom plate, when a 

dielectric is placed between the two plates the potential difference across the 

capacitor falls, which results in an increase of capacitance for the same 
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charge. Suppose A is the area of the plates and d is the spacing between the 

plates, then 

and 

A 
C = Go d' (1) 

Q=CV, (2) 

where 0 is the charge on the plates, V is the voltage between the plates and 

C is the capacitance of the capacitor. In order to show why the voltage 

drops another phenomenon, called polarization is introduced. In the absence 

of an applied electric field, the positively charged nucleus of each atom of 

the dielectric is surrounded by negatively charged electrons. In this case the 

positive and negative charge distributions have a common center of charge, 

analogous to the center of mass, which results in the absence of a dipole 

moment as in Figure 1. However, in the presence of a low or a moderate 

electric field the electrons move to one side and the nucleus to the other side, 

result in different centers of charge for the oppositely charged particles. 

This phenomenon induces a dipole moment as in Figure 2. If we assume jJ 

to be the dipole moment, q to be the charge, and r the separation distance 

between the opposite charges then we will have 

jJ =qr . (3) 

If there are N atoms per unit volume, the dipole moments per unit volume 

are 

j5 = NjJ =Nqr , (4) 
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where P is the polarization vector and it is linearly related to the electric 

field, provided the electric field is not very high. In this chapter the electric 

field is assumed to be low and that j5 is linearly proportional to E. 
The relationship between this model and the capacitor will be 

discussed shortly. Assume a sheet of material polarized. Considering the 

polarization of this material is uniform, which means the positively charged 

protons and negatively charged electrons are distributed in such away that 

the positive charges per volume and the negative charges per volume are 

equal. This implies that there is no net charge per volume, or in other words, 

the volume charge density is zero. Consider what happens to a dielectric 

being inserted between the two plates of a capacitor. Assuming the 

polarization of the capacitor is uniform. In this case, of course, the volume 

charge density is zero. However, at one surface the electrons will be moved 

in a distance d and at the other, they will be moved out, leaving some 

positive charges out a distance d which induces surface charge density or 

polarization charge as in Figure 3. If A is the area of the plate, N is the 

number of charges per unit volume and d the displacement then the total 

charge, Q, on the surface of the plates is 

Q= NqAd. (5) 

The surface charge density, 0"pol' is 

O"po[ = Nqd . (6) 

The surface charge density equals the magnitude of polarization inside the 

material because P = Nqd. Therefore, 
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Upol = P. (7) 

The surface charge is positive on one surface and negative on the other.
 

Not only does the dielectric but also the plates of the capacitor get polarized.
 

If the capacitor is discharged, then the dielectric will no longer be polarized.
 

The plates of the capacitor also have surface charge density, The
U free' 

subscript, free, indicates the free electrons on the plates of conductor, where 

the electrons can move freely. Thus, the net electric field is the total surface 

charge density divided by 80' Note that the surface charge density of the 

dielectric and the plates oppose one another. It also should be noted that the 

electric field, Eo, in the absence of the dielectric is greater than the electric 

field, E, when dielectric is present. Then 

E = UJree - Upol (8) 
80 

This equation can also be written as follows 

E = UFee- P (9) 
80 

This equation does not reveal anything about the net electric field 

unless the polarization is known. As already mentioned, polarization is 

linearly related to electric field. Therefore, 
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p = x GOE, (10)
 

where X is a constant and is called the electric susceptibility. Now using 

Equation (10), Equation (9) becomes 

(}free 1 
(11 )E=-;:(1+X) 

This formula implies that in the presence of dielectric, the electric field is 

decreased by a factor 1/(1 + X). Equation (10) can't be applied to all 

materials, but it does apply to most materials. 

Since the electric field between the plates is uniform, the voltage will 

be, 

(}free d 
(12)V =Ed = Go (1 + X) 

Now using Equations (2), (12) and the fact that the total charge on the 

capacitor is () free d the equation of capacitance defined in Equation (1) 

becomes, 

c = Go A(1 + X) = K Go A (13)
d d' 

This equation shows that when a dielectric is inserted between the plates of a 

capacitor the capacitance increases by the factor 

K=I+X, (14) 

where K is the dielectric constant which is a property of the material. 
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Next consider the case where polarization is not homogeneous on a 

material. In this case the existence of volume charge density is expected, 

because how much charge moves in one volume element may not be the 

same as how much charge leaves the other. 

To calculate how much charge is gained or lost, it is necessary to find 

how much charge moves across the imaginary surface. The total charge 

moving across the imaginary surface is the product of the imaginary surface 

area, A, and the normal component of polarization, P. If the polarization is 

tangential then no charge moves across the imaginary surface. Let n be the 

normal unit vector, then Equation (7) should, in general, be written as 

Upol = p. n. (15) 

Equation (15) represents the charge that moves across the imaginary 

surface but not the net charge on the dielectric. This is because the dielectric 

contributes equally and oppositely on the two sides of the surface. The 

charge displacement may result in volume charge density. The charges 

displaced out of a volume by polarization could be calculated by taking the 

integral of the normal component of polarization over the surface bounding 

the volume, see Figure 4. 

~ Qpolr - fj5 . nda . (16) 
s 

This charge displaced out by polarization can also be written in terms of 

volume charge density as 

~QpOI = f ppopr . (17) 
v 
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Combining Equations (16) and (17) yields 

f PpoPr = - fp .fJda . (18) 
v s 

Using Gauss' theorem yields 

fp. fJda = f \7. Pdr (19) 
s v 

Therefore 

f p poPr = - f \7 .Pdr. (20) 
v v 

It is trivial that the integrands of both integrals are equal, therefore 

Ppol = -\7. P. (21) 

This result implies that if the polarization is nonuniform then the 

divergence of polarization induces the volume charge density in the material. 

Relating the above results to electromagnetic theory will give useful 

results, which will be used in the subsequent sections. 

\7.£= P (22) 
GO 

Assume P is the total volume charge density, which is the summation of, 

P pol and PI'" then 

\7.£= Prree+ ppo/ _ PIree-\7·p (23) 
Go GO 

15 



n ~ P 
v .(E+-)= P;;-ee (24) 

&0 &0' 

and 

V· (&oE + P) = Pjree . (25) 

Now another vector field D(r) is defined as 

~ ~ ~ 

D=&oE+P, (26) 

with 

v .D = P;;-ee' (27) 

The vector D is called the electric displacement or the displacement, 

or, the jj field. The significance of the jj field is that its divergence only 

depends on the free charge density. The unit of the jj field is the same as 

the polarization. It is measured in Coulombs per square meter. 

Now by using boundary conditions, and the divergence and curl of a 

general field F, some of the properties of the field can be determined. 

Assume there are two different mediums with a boundary common between 

them. At a region close to the boundary the field changes continuously, 

maybe quickly but not abruptly. This region, where the field changes, is 

called transition layer. Assume the thickness of this region is h. When the 

transition layer shrinks to zero the field becomes discontinuous. In the 

beginning, the divergence and the curl of the field is used in a continuous 

region and then where h ~ O. 

Assume dr is a volume element and use the divergence theorem to 

get 
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~ F . dCi =Jv .Fdr. (28) 
s v 

This could be applied to a small cylinder with height h and a cross sectional 

area !1a inside the transition layer. Assuming n is the normal unit vector to 

the cross sectional area, n2 = n, nl = -n and W is the field times the area of 

the wall of the cylinder, then 

~ F . dCi =F 2' !1Ci + F I • !1Ci + W , (29) 
s 

and 

n· (F2 - F I )!1a +W =JV· Fdr = (hV· F)!1a. (30) 
v 

Assuming the transition layer shrinks to zero, W=0 since W is related to h. 

Therefore, 

n· (F2 - FJ = lim (hV· F), (31 ) 
h-->O 

and 

F2n - FIn = lim (hV. F), (32)
h--)O 

where it is assumed that v· Fincreases as h ~ 0, so that hV . Fremains 

finite. 

The curl of a general field can be used to find the tangential 

component of the field. Assume that i is the tangential unit vector to the 
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- - - - - -

path C, nis the normal unit vector to the path C and n' is the normal unit 

vector to the area bounded by the path. These three unit vectors are 

perpendicular to one another. We can relate these unit vectors as follows: 

n'= nxii = n'xn n = i x n' (33) 

Also in this case consider a continuous region and then transfer to the 

discontinuous region where the transition layer shrinks to zero. Assume that 

i2 = i and il = -i. In the following equations W is the contribution to the 

integral from the ends of the path. 

fF .d§ = f(V x F) .da , (34) 
c s 

and 

fF·d§=F2·LAs+FI·i IAs+W, (35) 
c 

Strictly speaking F2' FI and V x F are average values, and because h 

and As' are very small, these vectors can be considered to be constant. 

Therefore, 

fF . d§ =('1 x F) .n'hAs = i . (F2 - F,)As + W . (36) 
c 

It is known that for vectors, A, B, C 

A· (B x C) = (A x B)· C. (37) 
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Assume h ~ 0 then W =0 as it is related to h. Now divide both sides of the 

Equation (36) by As'. Next using the middle property of Equation (33) and 

Equation (37) then Equation (36) becomes 

n'-[n x (F2- FI ) -lim (h'V x F)] = O. (38)
h-->O 

The only way for Equation (38) to always be true is for the term in the 

brackets to be zero. Therefore, Equation (38) becomes, 

nx (F2 - FI ) = lim [(h'V x F)] (39)
h-->O 

To make Equation (39) more easily interpretable define F in terms of its 

tangential and normal components 

F=Fn+Ft=Fnn+Ft. (40) 

Consequent!y, 

nx F = F,/t x n+ nx F, = nx Fr' (41) 
~it. 

This result indicates that only the tangential component of F is involved. 

Therefore, Equation (39) becomes, 

nx (F2/- Fit) = lim (h'V x F). (42)
h-->O 

Other useful vector properties are 

19 



AxB = -(Bx A) 
(43)

A
2A· A= 

and 

Ax(BxC)=B(A·C)-C\A.B) (44) 

Using Equations (43), (44) and (40), yields 

(n x F) x n= -n x (n x F) = -[n(n .F) - F(n· n)]. (45) 

Consequently, 

(nxF)xn=-Fnn+F=F-Fnn=F,. (46) 

Crossing Equation (42) into nand using Equation (46), 

P2t - Plt = lim [heY' x P) x n]. (47) 
h->O 

If this difference is not zero then the tangential component of the field is 

discontinuous. However, if this difference is zero then the tangential 

component of the field is unchanged and continuous. 

When the transition layer is shrunk to zero, the total charge remains 

conserved and can be determined by the surface charge density, (j, as 

follows: 

tJ.q = cr1a = (lim hp)tJ.a , (48) 
h->O 

and 
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0" = lim (hp) . (49) 
h-->O 

Using Equations (32), (22) and (49) some of the properties of the electric 

field can be shown, such as 

" _ _ _ 0" 
n '(E 2 - E 1) = E 2n ­ E 1n = -. 

GO 
(50) 

Using the vector property that the curl of the gradient of any function is zero 

and assuming V to be the potential difference, another property of electric 

field is 

v x E = V x VV = O. (51) 

Therefore, the tangential component of electric field is unchanged and 

continuous as it is related to the curl of the electric field. Therefore 

E2t - Ell = O. (52) 

Now some of the properties of the D field can be determined. Using 

Equations (27), (32) and (49) 

n· (D 2 - D\) = D2n - D1n = O"free, (53) 

where 0" free is the surface density of free charge. This result indicates that 

the D field is discontinuous when free surface charge density is present, 

whereas the electric field is discontinuous when a surface charge density of 

any kind is present. 
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- - - -

Now find the curl of the D field by taking the curl of Equation (26) 

and applying Equation (51), 

VxD=VxP. (54) 

This result shows that the jj field can have sources in bound charges as well 

as free charges. The tangential component of the jj field can be found by 

using Equations (26), and (52) 

D2t - D 1/ = P2/- Pit· (55) 
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2. Microscopic Properties
 

Gases 

In this section most of the discussion is based on Feynman9 and 

Wangsness lO 
. However, Kittel 12, Jackson13 

, Hecht14 and Wert and 

ThoIIison15 were also used. The microscopic discussions are adapted from 

Feynman9 and Hecht14 
, and the macroscopic discussions are adapted from 

Wangsness lO
, Jackson13

, Hecht14
, and Wert and Thomson15

. 

In this section, the nature of dielectrics and why they are dielectric are 

discussed. In the last section it was mentioned that the properties of 

electrical systems with dielectrics could be understood by applying an 

electric field to a dielectric. When an electric field is applied to the 

dielectric it induces dipole moments in the atoms. If the electric field 

induces an average dipole moment per unit volume P, then the dielectric 

constant K is given by 

P 
K-l=E' (56) 

&0 

The application of this equation has already been discussed; now the 

mechanism by which polarization occurs when an electric field is present in 

the material is discussed. Although complications can't be avoid 

completely, they can be reduced by beginning with gases. There are two 

types of gases. The molecules of some gases like oxygen have no inherent 

dipole moment. This is due to the symmetric pair of atoms in each 

molecule, which creates the same center of charge for both positive charges 

and negative charges as shown in Figure 5. Such a molecule is called a 
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nonpolar molecule. It does become a polar molecule when it is subject to an 

electric field. On the other hand, a molecule of water vapor has an average 

positive charge on hydrogen atoms and an average negative charge on 

oxygen atom. Since the center of charge of the positively charged atoms, 

hydrogen, and negatively charged atoms, oxygen, do not coincide the total 

charge distribution has a dipole moment as shown in Figure 6. 

In the case of the simplest monatomic nonpolar gas like helium the 

electrons and the protons are displaced relative to each other when the 

electric field is present. Thus, the dipole moment is induced and 

consequently polarization is induced. This type of polarization is called 

electronic polarization. 

When an atom is subject to an oscillating field the position of the 

electron obeys the equation 

d
2

X 2 

m dt 2 + m(()oX = qE. (57) 

The first term is the electron mass times its acceleration, the second is the 

restoring force, while the right hand side is the external force due to the 

electric field. For a frequency-varying field, Equation (57) has the solution 

qE 
(58)x = (2 2) ,m (()o - (() 

where (()o is the natural frequency and (() is the optical frequency. It has a 

resonance at (() =(()o. At this frequency the optical frequency is absorbed. 

However, in this section consider the case where the field is constant and 
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changing with neither time nor frequency. Thus, first term is cancelled and 

the solution will be 

qE 
2'X= - (59) 

mOJo 

Thus, the magnitude of the dipole moment of a single atom is 

q2 E 
qx - 2' (60)P = - mOJo 

From Equation (60) it is obvious that the dipole moment of an atom is 

linearly proportional to the applied electric field. Equation (60) can be 

written as follows 

p=a80 E. (61) 

The constant a is called polarizability and it measures how easily the dipole 

of moment is induced in an atom by electric field. It is measured in m3 
• 

Equations (60) and (61) indicate that 

q2 41r e2 

a = 2 2 , (62) 
80 m OJo mOJo 

where the middle expression of Equation (62) is in Gaussian units, the 

expression to the right is in SI units and e is the charge of the electron. 

If there are N atoms in a unit volume then the pOlarization, the dipole 

moment per unit volume, is given by 
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P=Np=Na&oE. (63) 

Combining Equations (56) and (63) yields, 

p
J("-I=-=Na. (64) 

&oE 

From Equation (62), 

2 

]("-1 = 4;r N e (65)
mOJ~ 

Equation (64) indicates that the dielectric constant is dependent on the 

density of the gases. 

Equation (65) is a rough approximation as it ignores complications 

due to quantum mechanics. This fonnula works quite accurately for a gas 

with one frequency. This classical formula gives a reasonable estimate for 

the dielectric constant. 

Now consider the case where the molecule is a polar molecule, which 

carries a permanent dipole moment such as water molecule. When an 

electric field is not present the dipole moments are randomly oriented; thus, 

the net polarization is zero as in Figure 7. When an electric field is applied, 

two things may happen. First, the electric field pushes the negative and 

positive charges to opposite sides and a dipole moment per unit volume is 

induced exactly the same as the electronic polarization. Second, the electric 

field also induces an extra dipole moment per unit volume because the 

electric field lines up the pennanent dipole moment of the polar molecules. 

However, at normal temperature and low electric field, the collision of 
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molecules due to thermal motion keeps them from lining up. Therefore, the 

electric field can not align all the permanent dipole moment. Yet, there is 

some net alignment and consequently some polarization, see Figure 8. The 

polarization can be calculated by the method of statistical mechanics. 

Methods from statistical mechanics can be used to discuss the energy 

a dipole, Po, in an electric field, E. Assume the energy of the positive 

charge is q V(l) and that of the negative charge is -q V(2). Thus, the energy 

of the dipole is 

U =qV(l)- qV(2) =qd· VV, (66) 

or 

U =- Po . E =- PoE cos( ()) , (67) 

where () is the angle between the permanent moment Po and E. The energy 

is lower when the dipoles are lined up with the electric field. 

How many dipoles line up with the field is calculated by usmg 

statistical mechanics. From thermodynamics it is known that the relative 

number of molecules with a given potential energy is proportional to 

e /kT , 
Vi 

(68) 

where U(x,y,z) is the potential energy as a function of position, T is the 

temperature and k is the Boltzmann constant. The same argument states that 

Equation (67) is the potential energy as a function of angle, (). The number 

of molecules at () per unit solid angle is proportional to e-ulKT 
• 
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Assuming N(O) is the number of molecule per unit solid angle at 0 

and using Equation (67) for potential energy one obtains 

N(O) = NoePoECOS«(})lkT. (69) 

For ordinary temperatures and fields, the exponent is small which permits 

the approximation ofEquation (69) by expanding the exponential. Thus, 

N(O) =[1 + PoE cos 0) (70)kT . 

No is found by integrating Equation (69) over all angles. The result 

should be the total number of molecules per unit volume, n. Therefore, 

N = '[N(O)dn= '[N.(I + Pob~~SO }n, (71) 

N=4;rNo. (72) 

Therefore, 

N 
(73)N o = 4;r· 

It is obvious from Equation (70) that more molecules are accumulated along 

the field when cos(O) =1 than when cos(0) =-1. This ensures the existence 

of a dipole moment per unit volume, a polarization P. To calculate the 

polarization j5, the vector sum of the polarization of the molecules is 
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required. Since the direction of the polarization? is in the same as the 

direction of the field, thus just sum the components in that direction. The 

components normal to this direction will sum to zero. Therefore, 

P = L PocosB;. (74)
unit 
volume 

This can be evaluated by integrating over the angular distribution. The solid 

angle at B is 2Jr sin (kjB, thus 

p = jN( B) Po cos(B)2Jr sine B)dB . (75) 
o 

Substituting from Equation (70) yields, 

NJ PoE 
p =- - (1 + -k cos B) Po cos(B)d(cos B) . (76)

2 0 T 

This integration could easily be solved to give, 

N 2 

p= PoE (77)
3kT . 

Equation (77) shows that the polarization is linearly proportional to the 

electric field, so there will be normal dielectric behavior. It also shows that 

polarization is inversely proportional to the temperature, because the higher 

the temperature the more misalignment by collisions. The inverse 
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proportionality of polarization to temperature (P oc 1/T) is called Curie's 

law. The aligning force depends on the permanent moment Po and so does 

the mean moment produced by lining up. Therefore, the induced moment is 

proportional to p~. This is why in Equation (77) the polarization is linearly 

proportional to the square of the permanent moment. However, polarization 

P can't be evaluated because Po is unknown. 

Using the result of polarization from Equation (77) in Equation (56) 

yields, 

P N Po
2 

K - 1= _.. - = 3 kT (78)
coE co 

This equation indicates that K -1 is linearly proportional to the density, N 

. and inversely proportional to the temperature T. 

Liquids 

Liquids are denser materials than gas which makes the subject more 

interesting and at the same time more complicated. Assume some nonpolar 

liquid like liquid helium or liquid argon. These liquids may not have a 

molecular polarization. However, they can still have electronic polarization 

since electrons are very light and can adjust themselves to optical 

frequencies. Polarization in dense materials is high, so that the polarization 

of atoms will influence the electric field on an individual atom. The 

question may arise as to what electric field acts on an atom. 

Assume liquid is put between the plates of a capacitor. When the 

plates are charged there will be electric field in the liquid. Yet, there is 

electric field due to the charges of atoms as well. Consequently, the total 
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electric field is the sum of the external electric field and the electric field due 

to the charges of an individual atom. This electric field is no longer constant 

but changes very rapidly. It differs from one point to another. It is high 

inside the atom especially closer to the nucleus, and small between the 

atoms. The potential difference between the plates of the capacitor can be 

evaluated by taking the line integral of this field. Ignoring the small 

variation of the field then the field is just V/d. It should be considered that 

this is the average field over a space containing many atoms. 

However, this is not that simple because different-shaped holes in a 

polarized dielectric produce different fields. For instance, if we cut a slot in 

a dielectric parallel to the field as shown in Figure 9, then V x E= 0 which 

yields the line integral ofE around the curve to be zero. This means that the 

field inside cancels the field outside. Therefore, the field inside at the center 

of the slot, E; is the same as the average field found in the dielectric, E. 

Now assume that the slot is cut perpendicular to the field in a 

previously polarized dielectric as illustrated in Figure 10. In this case the 

field inside the slot, E; is not the same as the average field, E. The field 

inside the slot is the sum of the average field in dielectric and the field due to 

polarization. Therefore, 

P 
E=E+- (79)1 , 

Co 

co£'=coE+P. (80) 
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From Equation (26) D = &0 E + P; thus, it can be inferred that & E = D; 

which is equal to D in the dielectric. The average field E can be measured 

by measuring the electric field E; inside the slot cut parallel to the field. 

Also the jj field can be found by measuring the field Ei inside the slot cut 

normal to the field. 

For most non-complicated liquids it can be expected that an atom is 

surrounded by other atoms and is influenced by them. The electric field on 

an atom is due to its charges and the charges of other atoms surrounding this 

atom. Now imagine that the atom is spherical in shape, then when the 

sphere is cut from the polarized dielectric the hole will be spherical. Thus, 

the field in that in the dielectric is the sum of the field in the hole, local field, 

ELand the field of the polarized sphere E pol' Therefore, 

E=EL+E pol • (81 ) 

From this equation the field inside the hole can be determined which is 

E L= E - E pol • (82) 

Now the field in the polarized sphere E pol can be found. Consider a 

sphere of radius a with constant polarization P. Assume electric field E is 

in the z direction and the origin is at the center of the sphere; thus E= Ez . 
The subscripts 0 and i are used for outside and inside respectively. A 

boundary condition is used to find the electric field outside the sphere and 

inside the sphere. At large distances, the field is uniform, so one boundary 

condition is 
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V(r,B) >-Eoz=-EorcosB. (83)HOO 

The surface of the sphere is the surface of discontinuity between the 

dielectric and the vacuum. At this region the normal component of 15 and 

tangential components of £ are continuous. Therefore, 

n· (C2£2 - CI £1) = O'jree =0 

(84) 

£2/ - Ell = 0 

Since Er and Eo are the normal and tangential components of £, so write 

Equation (84) can be written in terms of the derivatives ofV. Thus, have 

(-cOavo) = (_c?Xi)
ar r~a ar reO 

(85) 

(
_J_ avo1 = (_! a~i) 

reOr ae J=o r ae 

There is another boundary condition, which is at r = O. At this point assume 

that there is no charge located there, as this is the only option which results 

in finite electric potential. Therefore, 

V is finite for r = O. (86) 
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Now the solution to Laplace's equation is used to find the potential outside 

the dielectric. Thus, the potential becomes 

B I J00 ( IV(r,B)= ~ Air + rl+r PI(cosB), (87) 

The first few Legendre polynomials are 

Po(cos B) = 1 PI (cos B) = cos B 

(88) 

1 
P 2 (cosB)= 2 (3cos

2 
B-1) 

From these Legendre polynomials we can infer that 1=1. Therefore, 

Vo=(- Aor+ ~; Jcose. (89) 

Where Ao and Bo are constants. We can also write the same equation for Vi 

assuming Ai and Bi are constants 

Bil 
Vi = -( Air+7)cosB. (90) 

Combining Equations (83) and (89) Ao = Eo and Equation (89) 

becomes 
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Vo (91 ) =(- Eor+ ~; ]case. 

It is obvious from Equation (90) that B; =0, otherwise ! ~ 00 as r ~ 0 
r 

which is not allowable according to Equation (86). Therefore, Equation (90) 

reduces to the following equation 

Vi = - Aircos (). (92) 

Substituting (91) and (92) into (85) and using 6 = K 60 we get the following 

two equations 

2Bo Bo 

EO+- =K Ai - Eo a + -2 = - Ai a . (93)
3 aa 

Solving these two equations we get Ai = 3 E)(K + 2) and 

Bo = [(K -l)/(K + 2)]d Eo, so the outer and inner potentials become 

V = _ Eorcos () +( K -lId Eocos ()o (94)
K + 2) r 2

, 

3Eo )
Vi = - ( K + 2 r cos () . (95) 

Before finding the field inside the sphere, introduce a useful vector property 

and the del operator (\7) in spherical coordinates, 
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Z=rcos e - e 
~ 

sin e , (96) 

and 

B ~1 B ~ 1 B 
V = r Br + e -;. Be + ¢ rsin e B¢ . (97) 

The field inside the sphere is E; =-V V; =E; Z, and using Equations (97) and 

(96) and Eo = EoZ yields 

Ei =-V V; =( 3Eo J~cose - OSine}, (98)
K+2 

_.=(3EoZ)=( 3 )_ (99)E, 2 2 Eo·K+ K+ 

This equation indicates that IE;I < IEol since K > 1. However, the field inside 

the sphere is parallel to the external field but smaller than it. Consequently 

polarization is constant and can be evaluated from Equations (10), (14) and 

(99) as, 

- (K-1\, (100)p= K+2y&oEo. 

The magnitude of the dipole moment can be found by multiplying P by the 

volume of the sphere 

(K-1)
 (101)p=4n- K+2 d&oEo. 
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Thus Equation (94) can be written as follows 

v0 = - Eo r cos () + P cos () 0(102)4n- r 3 • 

Now substituting Equation (100) in Equation (99) and subtracting Eo from 

both sides yields, 

p- ~-- (103)o£i=E - 3 &0' 

This equation is the general equation for a spherical dielectric in a field. 

Assume that this sphere is a tiny part of the dielectric, which is cut and 

isolated from it and no longer experiences the external field. The field 

inside the sphere is just due to the superposition of the field produced by the 

polarized molecules within the sphere. Consequently the field inside this 

sphere reduces to 

- p 
- (104)E;=-3&0' 

It should be noted that for points inside a polarized dielectric sphere, the 

direction of the electric field due to the polarization of the molecules is 

opposite of the polarization vector, see Figure 11. This is why the negative 

sign appears in Equation (104). Now substituting Equation (104) in 

Equation (82) produces 

P 
(105)E L = E + 3&0 . 
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This result may be used for a spherical cavity as a local, microscopic field 

experienced by an atom inside the liquid. Since in a liquid dielectric the 

atoms are randomly distributed. For crystals in which the atoms are 

arranged in an orderly pattern, this result is not generally true. 

Using Equation (105) in Equation (63), 

P = Na oo(E +~), 
3&0 

(106) 

or 

Na 
p = 1- (Na /3) &oE . (107) 

Using Equation (56) in Equation (107) yields, 

Na 
(108)K-1= 1-(Na/3)' 

This gives the dielectric constant in terms of a , the atomic polarizability, 

which is called the Clausius-Mossotti equation. 

Due to the small density in a gas, Na is very small and the term 

Na / 3 in the denominator of Equation (108) is negligible compared to 1. In 

this way the previous result in Equation (64) is obtained, which IS 

K-1=Na. 

Solids 

Many phenomena that were well understood from gases are more 

complicated in the liquid and especially the solid state. Since distances of 
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separation are in the atomic range, the interaction between atoms can not be 

neglected. These interactions can be evaluated only by approximation. 

Consequently, the study of polarization of atoms and molecules in solids are 

more complicated than the same study for gases. 

Some solids like crystalline substances have permanent polarization. 

The unit cells of such crystals have identical permanent polarizations 

pointing in the same direction. Some complicated crystals have permanent 

dipoles but because their surfaces gain free charges from air they are 

discharged and seem to be nonpolarized. 

Another class of dielectrics that is of interest is the ferroelectrics, 

which exhibit the phenomenon of self-polarization. They are so called 

because of they are electrically analogous to ferromagnetics, not because 

they are related to iron. In such crystals, the dipoles align themselves by 

mutual interaction. This aligning tendency transfers from one atom to 

another so that the whole crystal may show polarization in a given direction. 

However, the polarization of such crystals is temperature dependent. In such 

crystals the polarization exists at low temperature up to certain temperature 

called the Curie temperature, Tc . Above the Curie temperature, the 

polarization of a ferroelectric substance may break down. 

To find the polarization of a solid, the local field in each unit cell must 

first be found. The contribution due to polarization must be included. Yet, 

the use of a spherical hole is not possible for the determination of the local 

field, because a crystal is not homogenous like a liquid. To determine the 

local field for a crystal the factor 1/3 in Equation (l04) will be slightly 

different. For a simple cubic crystal it could be assumed to be just 1/3. 

In Equation (l08) if N a is greater than 3 then K will be negative 

which is not correct. If a is increased the polarization gets larger and so 
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does the local field. If this feedback is taken to its logical conclusion, the 

polarization increases without limit. Of course the polarization actually 

remains finite as for high fields the proportionality between the field and the 

polarization breaks down and Equation (108) is no longer correct. 

Therefore, the polarization and the field increase until na = 3. 

Let us now consider barium titanate, BaTi 03 which can be assumed to 

be a simple cubic crystal and the unit cell of which is shown in Figure 12. In 

addition to electronic polarization, it has ionic polarization due to the 

titanium ions, which can move a little bit within the lattice. Consequently, 

the crystal is left with a permanent dipole. An interesting thing about 

barium titanate is that if N a is decreased slightly the aligned dipoles 

become unstuck. Since N decreases as the temperature increases due to 

thermal expansion we can vary N a by varying the temperature. Below the 

Curie temperature Tc the dipoles are barely stuck that the polarization can 

be shifted and be locked in a different direction by applying an external 

field. 

This matter can be analyzed in more detail. The Curie temperature is 

called T c the temperature at which N a is 3. As the temperature increases, 

N goes down slightly because of the expansion of the lattice. Since the 

expansion is small, 

Na =3- [J(T-Te ), (109) 

where [J is a small constant about 10-5 or 10-6 per °C. Substituting this 

result in Equation (108) yields, 
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3-P(T-Tc) 
(110)K-l= P(T-Tc)/3 . 

Under the assumption that T ~ Tc, P(T - Tc) is very small compared with 

3 and can be neglected in the numerator and Equation (110) can be 

approximated by 

9 
(111 )K-l= P(T-Tc) 

This result is true only if T > Tc , it indicates that for a temperature slightly 

larger than the Curie temperature the dielectric constant increases 

enormously because Na gets close to 3. The dielectric constant may reach 

to 50,000 or 100,000 which indicates the sensitivity of the system to the 

temperature. This law is called the Curie-Weiss law. 

For a cubic crystal like barium titanate the field for each atom in the 

chain as shown in Figure 13 can be found. Then the field for the whole 

chain can be found. Between the oxygen and titanate ions there are other 

chains of oxygen or titanium or others. These are ignored since they are 

weak due to the large spacing between the ions. The separation between 

ions of oxygen and titanium is a, which is half of the lattice constant. For 

simplicity assume that all ions on the main chain are identical. 

What will happen when T ~ Tc? Assume the dipole moment of each 

atom is p. First the field at one of the atoms from the dipoles in only one 

vertical chain is evaluated. The field at the distance r from a point dipole 

can be found by taking the derivative of the potential difference. The 

potential difference in terms of dipole moment can be written as, 
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p. r pcosB
V= 2= 2'

4Jr Gar 4Jr GOr 

The electric field is calculated from, 

(112) 

- dV 1 dV " E=-VV=--r---B (113)
dr r dB . 

Therefore, 

- p ( ,,)E = 3 2cos Br + sin Be . (114)
4Jr GO r 

and 

E= _ p 3(3cosBr-cosBr+sinBe).. (115)
Jr Gar 

From vector analysis z = cos Br- sin BB" , therefore 

E= P 3(3 cos Br - z), (116)
Jr Gar 

and 

E= _ 1 3(3pr-pz)= 4 1 J3(p.r)r-pz].. (117) 
JrGOr JrGOr 

Assume that p is in the z direction then the electric field is, 

E= _ 1 3(3pr- pz)= 4 1 J3(p.r)r- pl. (118) 
JrGOr JrGOr 

42 



Assuming jJ and r are in the same direction then the field at the distance r 

from a dipole in a direction along its axis is 

1 2p 
-3E (119)

4Jr co r 

The result in equation (118) is the solution to Wangsness problem 13 in 

chapter 8. 

For a particular atom, the field above and below that atom for the whole 

chain, see Figure 13, is given by 

2p 1 ( 2 2 2 ) 
Echain =. r3 2 + 8 + 27 + 64 +..... , (120) 

Using the Quattro Pro spreadsheet16
, it was found that the summation in 

parenthesis converges to 2.406, therefore 

0.383 E. 
(121)Echain = a3 co 

Assuming that the induced moment jJ of each atom of the chain is 

proportional to the field on it as in Equation (61), and using Equations (61) 

and (121) yields 
3 a 

(122)a = 0.383 
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This result is true for barium titanate when it reaches the Curie 

temperature. The spacing for barium titanate is 2 x 10-8 em, thus 

-24 3 3 a = 2.18 x 10 em. For oxygen a=30.2xl0-24 em and for barium 

a = 2.4 x 10-24 em3 If the average taken, which is aav = 16.3 x 10-24 em3 
, a• 

reasonable value is obtained. This is the electronic polarizability, the ionic 

polarizability should also be found and added to this result. 

Feynman9 offers a good question, problem (11.4), where a line of 

oxygen atoms with polarizabilitYao, regularly spaced with a distance a 

between each atom and a titanium atom with polarizabilitYaT halfway in 

between successive oxygen atoms is given as shown in Figure 14 such that 

the system is ferroelectric. The electric field for both oxygen and titanium 

can be found as follow 

2po ( 2 2 2 2 ) 
Eo = 47Z" 50 (a)3 + (2a)3 + (3a)3 + .... + (Na)3 + 

(123) 
2Pr (2 2 2 J 

47Z" 50 (al2Y + (3a l 2Y + .... + ((2N - I)a/2! + 

The quantity inside the parenthesis is multiplied by 2 for the symmetry 

above and below the specific atom. 

Po 1 8Pr 100 00 

Eo = L N3 + L(2N ly' (124)
7Z" 50a

3 
N=! 7Z" 5 0 a 

3 
N=l ­

By using the Quattro Pro spreadsheet16 it was found that, 
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1 CfJ 1f_ = 1.202 and ];(?N_,\3 =1.0518. (125) 
N=l N 3 

Therefore, 

0.383 Po 2.678 PTEo = 3 +--
GOa GOa 

(126)
0.383 PT 2.678 Po

ET = 3 +---
GOa GOa 

From Equation (61) the following identities can be obtained, 

Po = aOGoEo 
(127)

PT= aTGoET 

Substituting Equation (127) in Equations (126) and rearranging the 

following results are obtained, 

0.38 J (2.678 JEo(1- d a 0 = ET a3 aT, (128) 

and 

2.678 J (0.38 J
Eo ( a3 a 0 = ET 1- d aT· (129) 

ao aTDividing Equation (128) by (139), assummg xO=-3 and XT ==-3 and 
a a 

rearranging the equation yields 
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1- 0.383xr 
Xo = 0.383 + 7.03 Xr 

(130)
1- 0.383xo 

Xr= 0.383+7.03x · o 

The graph of which is shown in Figure (15).
 

The effective polarizability for barium titanate is
 

aeif = d(xo + Xr). (131) 
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3. Wave Propagation 

In this section the principal references are Wangsness10, Jackson13 , 

Feynman17
, Bohren and Huffman2

, and Hechtl4
. Bohren and Huffman2 

offered two good questions that were solved and were used as the basis for a 

relevant discussion. 

Unlike the mechanical waves, electromagnetic waves can travel 

through free space without the need of any medium. They are so called 

because they are electric and magnetic fields that can travel in space. The 

electric and the magnetic fields are perpendicular to one another and that is 

why they are transverse waves. The main sources of the electromagnetic 

waves are oscillating and accelerating charges. When a charge starts to 

accelerate the electric field in the vicinity of the charge is changed. The 

time-varying electric field induces a time dependent magnetic field. The 

time dependent magnetic field generates a time dependent electric field, and 

this field again induces a magnetic field. This process continues and the 

electromagnetic wave is propagated in space. This is why electromagnetic 

waves can travel great distances through space and be detected. 

The fundamental nature of different electromagnetic fields can be 

explained by Maxwell's equations. The electric and the magnetic properties 

of solids can also be described in detail by Maxwell's equations. Maxwell's 
. 10

equatIOns are 

\7 ·D= Pjree, (132) 

- aB
\7xE+-=O (133)at ' 
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- -

- -

- -

\j·B=O , (134) 

aD 
nv x H--J-. t- Jree +-a' (135) 

where B, H, and J free are magnetic induction, magnetic field and 

displacement current density due to free charges respectively. Equation 

(132) is exactly the same as the Equation (27). The electric displacement or 

jj field has already been defined in Equation (26), and the magnetic field 

fj can be defined as, 

- B ­H=--M , (136)
flo 

where flo is the permeability, and M is the magnetization, average magnetic 

dipole moment per unit volume. Equations (132)-(135) are not sufficient in 

themselves. It must be specified how J , 13, P, and jj are related to Eand 

fj. These "constitutive relations" are, 

Jjree = aE, (137) 

B=flH, (138) 

P = 50 X E, (139) 

D=5E , (140) 
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where u is the conductivity and f.1 is the permeability. The coefficients (J", 

X and f.1 depend on the medium. Now assume that the fields are complex 

fields, hence, 

- - -imtF = Fee (141) 

Then Equation (132) can be solved 

'1· D = P/ree => V '(5'E)= P/ree' (142) 

V .(5' Eee- iaJt)= P/ree' (143) 

Differentiating both sides with respect to time and using the continuity 

relation gives, 

aP/ree = -V. l/ree, (144)at 

from which the following result can be obtained. 

- iOJ'1 . (5 Ee'e-'aJt) - V . l/ree' (145) 

Substituting Equation (137) in Equation (145) and rearranging yields, 

( , uJ ­'1· 5 + i OJ E e = 0 . (146) 

Assume 
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, a 
li=li+i-, (147)

OJ 

then
 

V· (li E)= o. (148)
 

Maxwell's second equation, Equation (133), can be modified as, 

_. a _ . v x E -nol + - B -IQJ( = 0 
c
e 

c
e (149)at , 

and 

VxEc-iOJi3c=O. (150) 

Substituting Equation (138) into Equation (150), using Equation (141) and 

rearranging yields, 

v x Ec = iOJj.j He. (151) 

Maxwell's third equation, Equation (134), can easily be evaluated. 

Substituting Equation (138) in Equation (134) and using Equation (141) 

yields, 

V·Hc=O. (152) 

The fourth equation of Maxwell, Equation (135) becomes, 

n - -imt - --j(J)f • - -iwt 
Y x Hce = J;reee -lOJDce . (153) 
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Substituting Equations (137), (10) and (26) in Equation (153) and 

rearranging yields, 

_ (, 0") _ 
VXHe=-i~& +i OJ Ee· (154) 

The choice of e-imt for the time-variation of the field is merely a convention. 

What will happen if the conjugate of the Equation (141) is used? 

- - i(j)tF = Fee . (155) 

Now the same procedure as before should be used to get the modified 

Maxwell's equations 

V· D = Pfree => V· (&'E) = Pfree' 

Substituting Equations (137), (155) and (144) in 

differentiating it with respect to time yields, 

\,.(e-i:)K 
Define & as 

0" 
&=&-[-. 

OJ 

Therefore, 

V .(& EJ = O. 

(156) 

"Iii 

i"1 
" 

'Iii 
II ~, 

"11 
~ll 
11 ~I 

Equation (156) and 
II ~I 

(157) 

(158) 

(159)
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This is the same result as Equation (148) except for the definition of 

&. When negative complex function was used the complex part of & was 

positive but for the conjugate of that field it was negative. Of course the 

second and the third equations remain the same because they are 

independent of &. If Equation (155) is substituted into Equation (135), the 

fourth Maxwell's equation becomes, 

v x ifceiaJC = ]treeeiaJ( +iwDee'aJ(. (160) 

Substituting Equation (137) into Equation (160) and rearranging gives, 

_(, u)_
V x He = i~& - i w Ee· (161) 

Defining & as 

.u 
&=&-Z-, (162) 

W 

Equation (161) becomes, 

V x fIe = iW& Ee. (163) 

Equations (158), (159), (162) and (163) are discussed in Bohren and 

Huffman2 
. 

This result indicates that if either a complex wave function is used for 

the fields in Maxwell's equations or its conjugate, the result is the same. 

However, the definition of the dielectric constant & changes. In the first 

case, the complex part of the dielectric constant is positive while in the 

second case it is negative. 
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A wave equation can also be found by Maxwell's equations. The 

following useful vector identity will be introduced as a key to the derivation 

of the wave equation, 

Vx(VxA)= V(V.A)-V 2 A. (164) 

Substituting Equations (137), (138) and (140) in Equation (135) the 

following equation is obtained 

- - aE 
V x B = j..J(£ + f.LB at . (165) 

Taking the curl of Equation (133), and using Equations (164), (132) and 

(165) yields, 

- aE &E v2 E = f.La- + f.LB-. (166)at at 

Taking the wave function for any of the six fields results in 

alj/ & lj/v2 
lj/ = f.La- + f.LB - . (167)at at 

This is the wave equation in general. Now what will be the wave equation 

in dielectrics? In the dielectrics, the conductivity a = 0, thus, 

2 &lj/ 
v lj/ = f.LB ----at ' (168) 

where 
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1 
f..1& = / . (169) 

It is important to note that V x (V x jj) gives the same result as Equation 

(168). The general solution for Equation (168) is 

tAz,t) = f(z - vt) + g(z + vt). (170) 

Assume that the c; = z + vt and '7 = z - vt, then it can be shown that the 

resulting equation has the solution of the form = f(c;) + g('7). Using 

operators yields, 

8 8 8c; 8 8'7 8 a 
-=--+--=-+- (171)
az ac; az a'7 az ac; a'7 ' 

Ef 8 (8 8J 8 (8 aJ (172)8Z2 = 8c; az + az + a'7' 8z + 8z ' 

Ef Ef Ef Ef 
(173)8z2= ac;2 + 28c;8'7 + 8'72 

' 

a a ac; a a'7 {a a ) ----+--- --- (174)at - ac; at a'7 at - ac; a'7' 

~ 2( ~ Ef ~ ) (175)at2= v ac;2 - 2 ac;a'7 + a'72 
• 
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Using Equations (168), (169), (173) and (175) gives, 

4 a2 

lf/ = 0 Ef If/ _ (176)a~aTJ ~ a~aTJ - O. 

This result indicates that f(~) is independent of TJ and that g(TJ) is 

independent of ~. Equation (176) is the solution to problem 1 of Chapter 24 

. W 10III angsness. 

Index of refraction 

It is obvious that the speed of light in a denser medium is less than in 

lighter ones. The speed of light in solids is less than in liquids and it is less 

in liquids than in gases. This is because of the index of refraction. The 

index of refraction n is the ratio of the speed of light in a vacuum c to the 

speed of light in a medium v, n=c/v. From this, it can be inferred that the 

refractive index of solids is greater than the refractive index of liquids, and 

the refractive index of liquids is greater than that of gases. The index of 

refraction of vacuum is unity. When light travels in a medium its frequency 

remains constant but its wavelength changes. The speed of light in a 

medium is given by v=c/n. The wavelength of light in a vacuum is 

Ao = elf and the wavelength of light in a medium is A = vI f = c I(fn). ..1,0 

and A are the wavelengths in a vacuum and a medium respectively, andf is 

the frequency. Light enters the medium from a vacuum and leaves the 

medium to the vacuum with the same speed. This means that the waves at 

both surfaces of the medium move together regardless of the time delay 

while traveling through the medium. The only factor that causes them to get 
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together is the bending of light in the medium as shown in Figure 16. The 

geometry of this figure shows that sin ei / sin er = C / v = A0/ A= n, where the 

subscripts i and r stand for the incident and the refracted. This relation is 

called Snell's law. 

The basis of this part of the section is mostly from Feynman17 
. It is 

true apparently that light travels at c/n through a material with index of 

refraction n, but the fields are still produced because of the oscillating 

charges. It is of interest to understand what causes the slowing down of light 

while travelling through a material. Suppose a source of light is placed at s, 

a large distance from a transparent material, glass plate. It is possible to 

find the field due to this source at point P, a large distance from the glass but 

at the opposite side. However, we can't find the field near the glass because 

we don't have a relevant formula to find the field near the source. In this 

case even the plate could be assumed as a source because of the oscillating 
I• 
Icharges. When light travels through the plate it oscillates the electron inside 
~ 

the atoms up and down, because it exerts a force on them. The oscillating ,•
electrons also produce an electric field. The field at point P is the 

summation of the field due to the source and the induced field due to the 

moving charges of the plate. 

E = E s + L Eeachcharge, (177) 
all charg es 

where Es is the field due to the source and the other term is due to the 

accelerating charges. If the thin plate were not present the field at P would 

exactly be the same as the source field which is 
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E = E' jm(t-z!c) (178)s oe . 

In the presence of the thin plate the field at P is different. What is the 

field due to the moving charges, that slows down the electromagnetic Ea, 

field or the wave? Assume &: is the thickness of the plate. If the plate were 

not there, the light would move a distance &: in time &: / c. In the presence 

of the plate the wave moves a distance &: in time n&: / c, which takes a 

longer time. The additional time is, thus, I'J.t = (n -I)!'J.z / c. After the wave 

passes the plate it continues to travel with the speed c. The extra delay in 

time t due to the oscillating charges in Equation (178) should be replaced by 

t - I'J.t or by ~ - (n - I)&: / c]. So the wave after placing the plate becomes, 

E after plate = Eo e !t-(n-I)6Z!C-Z!c]
jm (179) 

This equation can also be written as, 

- -/m(n-l)6z!c E ;m(t-z!c) - ,m(n-I)6z!c E 
E after plate - e 0 e - e s . (180) 

The factor im(n -I)&: / c is the phase shift that retards the wave because of 

the negative sign in the exponent. So the field is multiplied by a factor that 

shifts its phase. Using eX =1+ x for very small x results in, 

Eafterplate = Eoeim(t-z!cl _ ioJ...n c-I)I'J.z Eoeim(t-Z!c) (181) 
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The first term is the field due to the source and the second term is the field 

due to the oscillating charges, Ea' expressed in terms of index of refraction 

and dependent on the source field. The factor - i indicates that ifEs is real 

then Ea is negative imaginary or in other words Es and Ea make a right 

angle as shown in Figure 17. 

Now the field due to the moving charges of dielectrics can be found. 

When light travels through a dielectric it exerts forces on the electrons inside 

the atoms and causes the electrons to oscillate. These oscillating charges 

also produce another field as well. In gases at the standard pressure and 

temperature the interatomic distances are large on the atomic scale, so the 

index of refraction is close to unity. In this case the damping factor due the 

frictional force is very small. Therefore, 

d 2 x dx 
m dt2 - my dt - mOJ~x = qE. (182) 

The first term on the left is the mass of the electron times its acceleration, 

the middle term is the damping force, which is directly proportional to the 

velocity and the third term is the restoring force with natural frequency OJ 0' 

and the term on the right is the driving force. If the displacement and the 

electric field are assumed to be as, 

iwt 
X = xoe 

(183)
E -E- oeImt 

Then the solution to Equation (182) becomes, 
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qlm qlm
x(t) = (2 2 . )Eo e 

wH

= (2 2 . )E. (184)
0)0 - 0) + zyO) 0)0 - 0) + I yO) 

For gases at high pressure where the interatomic distances are small the 

factor r is high because of the frictional force between the atoms. For the 

gases at. standard pressure and temperature the factor r is very small 

because of the small frictional force due to the large interatomic distances. 

Therefore, for gases at standard pressure and temperature the factor r can be 

neglected. When 0) 0> 0) then E(t) and x(t) have the same signs, which 

means that the displacement and the field from the source are in phase. 

When 0) 0 < 0), then E(t) and x(t) have opposite signs, which means that the 

field due to the source and the displacement are 180' out of phase. 

From Equation (4), P = Nqr, so by substituting Equation (184) in 

Equation (4) yields, 

- q 
2 
NElm 

P=( 2 ). (185)2 
0)0 - 0) + i yO) 

Rearranging Equation (14), substituting it in Equation (l0) and usmg 

Equation (185) and the fact that G = K GO the following result is obtained, 

q 
2 
Nlm 

(186)
G = GO + (0); _ 0)2 + iyO)) . 

Now setting v = II ~q..L, c = II ~GOf.Jo and n = clv gives, 
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n 
2 
=KeKm . (187) 

For those materials with relative permeability equal to unity the following 

relationship is obtained 
2 

n = K e = 6/60' (188) 

Therefore, 

2( ) lVq2 1 
n W = 1+-( 2 . ). (189)2 

60 m Wo - W + 1yw 

This expression, index of refraction as a function of frequency, is called the 

dispersion equation. This equation indicates that at frequencies above the 

natural resonance frequency, the displacement is out of phase with the 

driving force and so is the polarization out of phase with the field of the 

source. Thus, the dielectric constant and the index of refraction are less than 

unity. At frequencies below the resonance, the displacement, the 

polarization and the applied field are all in phase. Therefore, the dielectric 

constant and as a result the index of refraction both are greater than unity. 

For gases at high pressure (~1 03 atm) the interatomic distances are very 

small and consequently, the interaction between the atoms produces 

frictional forces that cause energy dissipation. Hence, the factor y is large. 

Equation (189) can be generalized as 

2( :\ lVq2 " f J 
n W) = 1+ - ~ (2 2,) . (190)

com j WOj - W + trW 
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The tenn I 
l

, where "Ll
i 

= 1, is called oscillator strength. The atoms in 
] 

dielectrics have several natural frequencies. Also the strength of each mode 

is different, that is why the polarizability of each mode is multiplied by the 

tenn Ii' It is also called the transition probability because of the occurrence 

of atomic transition. 

In denser materials like liquids and solids the atoms interact with one 

another and with the local field as well. Therefore, the atoms in addition to 

applied fields experience another field, P/3&0' Using Equations (107), (56) 

and (14) yields, 

Na 
(191)x = 1- (Na /3) , 

x _ K-l 1 
(192)X+3-K+2=3Na. 

Now comparing Equations (63) and (185) the following result is obtained, 

l/&om 
1 

(193)a=( 2 ).OJo - OJ + iyOJ 

Substituting Equation (193) in Equation (192) and using Equation (188) 

yields, 

n2 -1 N q2 1 
(194)

n2+2 = 3&om(OJ~-OJ2+iyOJ)' 

Equation (194) can be generalized for all natural frequencies 
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2 
n - 1 = N q2 L f J 

2 (195) 
n +2 3&omJ(m~J-m2+irm)' 

This equation is for the electron oscillator but it can work for the ion 

oscillator as well. To utilize it for ion oscillations the mass of the electron 

should be replaced by the mass of the ion. The electronic polarization 

contributes to n at all regions of the optical spectrum, whereas the lomc 

polarization affects n only in regions of resonance where m = mo' 

Transparent materials like glass have natural frequencies above the 

optical region, that is why they are colorless. They have natural frequencies 

in the ultraviolet region at wavelengths of about 100nm, where they are 

opaque. As the frequency gets close to the natural frequency of glass the 

index of refraction increases, which is called normal dispersion. At the 

ultraviolet regions where m = mo, the oscillators will begin to resonate and 

the amplitudes increase. The damping due to the absorption of energy of the 

incident wave starts to increase and the damping term will be dominant. The 

regions in the vicinity of different natural frequencies mOJ' as in Figure 18, 

are called absorption bands. 

The index of refraction of a mixture is not just the average of the 

indexes. It should be evaluated by the summation of the polarizabilities of 

the individual elements. For example, to find the index of refraction of a 

sugar solution, the determination of the refractive index of water and sugar 

individually is required. Then they are added together as shown below. 
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Jn
2 -1J (196)\n2 + 2 = N sa s + N wa w . 

This equation gives a reasonable result, which agrees with the experimental 

results. 
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Chapter 3
 

Effective Polarizability
 

This chapter focuses on some modeling for the dipoles in an applied electric 

field. Bulk matter is made up of many atoms. First consider the effect of an 

applied electric field on a single atom. For weak electric fields the atom will 

acquire a dipole moment given by p =a co E , where a is the polarizability. 

For a particular atom a can be calculated using quantum mechanical 

methods. In practice, it appears that the calculation is difficult. The 

approximate calculation of a for a hydrogen atom in its ground state is 

3discussed by Park18
. The result of this calculation is a H = 0.6668 x 10-30 m • 

In this model, the calculation of the polarizabilities from quantum mechanics 

is not performed. Rather, a is assumed to be given. The polarizabilities of 

isolated atoms are given in the CRC Handbook1
9. The order of magnitude is 

~10-30 m3 for all of them. For strong electric fields the dipole moment 

becomes a nonlinear function of the field. 

In a crystal, atoms are arranged in a regular lattice. The dipole moment of 

each atom is determined by the total electric field acting on the atom. 

However, this field is a superposition of the externally applied field and the 

field due to other dipoles. Assume that the atoms are identical and their 

dipoles point along the direction of the local electric field. The situation is 

modeled with two atoms. It is assumed that the two atoms are located on the 

x-axis and are separated by a distance a. Initially, assume that the dipoles 

point along the same direction as the external electric field. The dipoles are 

subjected to an externally applied uniform electric field that is pointing 

along the x direction. Therefore, the dipoles also point along the x direction 
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as shown in Figure 19. It is important to note that when the atoms are placed 

in an external electric field their induced dipoles interact with one another 

continuously. Consequently, the electric field in the vicinity of the dipoles is 

altered. In the beginning the dipole moments are calculated for the case 

where the interaction between them is very weak. After this first 

approximation, higher order terms will be obtained. 

Let one of the dipoles be PI and the other P2, the polarizabilities be a I and 

a 2 respectively and the external electric field be Eo. Thus, 

1 2P2 )- -+ -3-' (197)P, = alGO( Eo 4;r Go a 

1 2 P,) 
(198)P2 = a2GO(£0+ 4;r Go --;;- . 

Assume the dipoles are identical, so a 1 = a 2 = a and PI = P2 = p. 

Therefore, 

1 2P)
( (199)P = aGO E o + 4;r GO a3 , 

_ (2;rdaGo)_ aGO_
P= 3 Eo= , 3Eo· (200)

2;r a - a 1- a /2;r a 
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From Equation (200) the polarizability for this system can be found, 

2a 
a ell = 1 .... /2 (201)-a, Jra 3 • 

Referring to Equations (197) and (198) and solving them 

simultaneously yields, 

PI P2 (202)2Jr God = Eo,alGO 

P2 PI 
(203)2Jr God = Eo.a2GO 

Multiplying Equation (202) by a 1 G 0 and Equation (203) by 2Jr G oa3 yields, 

2Jr d _ al _ ( )
--P2- 3P2= a'Go+2JrdGo Eo. (204)

a2 2Jra 

Rearranging equation (204) the following result is obtained, 

__ (2Jrdala2Go+(2Jrd)2 a2Go ] 
(205)P2 - (3)2 .2Jra -a l a 2 

Using the same procedure to solve for PI yields, 

__ (2Jrdala2Go+(2Jrd)2aIGo] 
(206)PI - (2 3)2 .Jra -a l a 2 
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Since the dipoles are identical, then a 1 =a 2 =a; consequently, 

PI = P2 = P, hence, 

_ = (2Jr d a 2GO + (2Jr d)2 a GOI 
(207)P (2Jr a3)2-a 2 r 

Solving for the polarizability of the system yields, 

2a 
- 3· (208)a eff - 1- a / 2Jr a 

This equation indicates that asa ~ 2Jr a3 
, then aeff ~ 00. Now the question 

arises whether or not this phenomenon is physically acceptable. Of course, 

the answer to this question is no because the relation p = a GO E holds only 

for low electric fields but for high electric field this relation is no longer true. 

If the effective polarizability increases the dipole moment and as a result the 

total electric field on each atom increases as well. As the field increases the 

linear relationship between the field and the induced dipole gradually breaks 

down. 

Equations (201) and (208) also imply that for a given a there is a 

critical separation distance a = (a /2Jr )1/3 . It could be concluded that the 

effective polarizability of such a system is dependent on the separation 

distance. 

Now the net electric field half way between the two dipoles is, 
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- - 1 (2 PI 2 Pz J E 4P (209)E(O) = Eo + 4Jr Go (a/2Y + (a/2Y = 0 + Jr G 
O 
a3 • 

Substituting the value of P from equation (200) in equation (209) yields, 

-) - 8a( J­E{O = Eo + Eo· (210)
2Jr a 

3
- a 

Now it is possible to find the electric field at some distance r from the 

origin, which is half way in the middle between the two charges. Assume 

that r is much larger than a. Thus, 

-() - 1 ( 2 PI 2 Pz J (211)EO = Eo + 47l" Go (r+a/2Y + (r-a/2Y , 

therefore, 

-() - 1 ( 2 PI 2 Pz J (212)
E r = Eo + 4Jr GO r3 (1+a/2rY + (1-a/2rY . 

Since r> >a, the term a/2r ~ 0 , and since PI = Pz = P, then 

P (213)E(r) = Eo + 4Jr GOr' . 

Substituting equation (200) in equation (213) yields, 

2a3 a _ 
E{r) = Eo- + (2Jra3-a )3 Eo . (214) 
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Now the determination of the dipole moment of the higher terms is 

attempted, where the two dipoles interact strongly. Substituting the value of 

P
2 

from Equation (198) into Equation (197) yields 

- _ ( - 1 2( (- 1 2PI]Ji
PI - a 1&\ E0 + 4Jr &0 a 3 a 2&0 Eo + 4Jr &0 d r (215) 

Assuming al =a2 =a and PI = P2 = P and rearranging equation (215) 

yields, 

p = a &0(1 +2:a};'o +(i:) Ii· (216) 

Now substituting the value of P from equation (199) in equation (216) the 

following result is obtained, 

Ii = a &0(1+ 2:JEo+ 
(217) 

(
a )2( (_ 2P)]1 

2~ d a &0 Eo + 4Jr &0 d . 

Rearranging equation (217) yields, 

Ii = a &0(1 + 2:d {2:JJEo +(2;'bJIi· (218) 

69
 



Continuing this process the following result is obtained, 

a
p=a£of(2 3Jn-I Eo +(2··· a 3JN p. (219) 

n=l Jr a Jr a 

Therefore, 

3a £ 0 f (a /2 Jr a )n-l Eo 
p= n=l (220)

1 - (a /2 Jr a 3t 

The effective polarizability in this case is 

a f(a/2Jra3)n-l 
n=l (221)aeff= 1-(a/2JrdY 

Again the effective polarizability is dependent on the separation distance and 

the critical distance is a = (a I 2JrJI3 . Thus, a > (a I 2JrJI3 because if 

a = (a I 2JrJI3 the effective polarizability is infinite, which physically doesn't 

make sense. Likewise, when a < (a I 2JrJI3 the effective polarizability is 

negative, which is also unphysical. For a> (a 12Jrt3 
, a 12Jr a3 < 1 and 

therefore (a I 2Jra3r~ 0 as N ~ 00 . Using geometric infinite series the 

3numerator, f (a I 2Jra3t 1 
, converges to 1/(1 - (a I 2Jr a )). Therefore, 

n=l 

a 
(222)aeff= 1-(a/2Jrd)' 
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It is noted that Equation (221) is the same as Equation (200). This indicates 

that the dipoles initially affect one another and after some point where the 

electric field exceeds some limit the linear relation between the dipole and 

the electric field breaks down and that the polarizability does not go beyond 

some limit. 

Figure 20 shows the graphic relationship between aeff/a and a for this 

orientation. The graph indicates that as a ~ (a / 21rr3 
, aejJ ~ 00 and that 

for 21r a 3 » a then aeff ~ a. 
~ 

Up to this point the dipoles were assumed to be pointing along the preferred 

direction which is the direction of the externally applied electric field. Now 

the use of the general case and polarizability tensor is applied. Assume the 

dipoles are on the x-axis a distance a from each other as in Figure 19. 

Therefore, 

__ ~ 3[(P2)+P2Y}+P2z k).ai]ai 
E\=Eol + 4 51r GOa 

(223) 
a2(Phi + P2y ) + P2Z k) 

41r Go a5 

2- ". - " - -" P . - " E =E i+ 1 -P2y J-P2z ko 2x 
1 4n God = 

(224) 
1 (~" " ,,)

--\p\) + PlY} + P1zk . 
alGO 

From Equation (224) the following result is obtained. 

2al 
PI = a I G0 Eo + 4 3 P2x , (225) 

x 1ra 
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and 

-al -aj 
P = 3 P2y ' P1z =-43P2z

Iy 41Z' a IZ'a 

Similarly, it can be found that 

2al 
P2x =aoGoEo+-3P1x ' 4IZ'a 

and 

-aj -aj 
P = --3Ply P2z =-43Plz2y 41Z'a	 IZ'a 

Solving this linear system by Maple20 yields, 

Ply = Plz = P2y = P2z = 0 , 

and 

Therefore, 

and, 

P -2 
Ix-

P -22x ­

(a eff) j 

_
(aeff)1- 4 2 6 , 

IZ' a - ala2 

41Z' 3 

aeff= 4 26 a (ala2+lZ'a\al+a2))'
IZ' a - ala2 

3
alGoEolZ'a	 (2IZ'd+a2) 

2 6 ,-ala2+ 4 1Z'	 a 

3
a2GoEolZ'd(2IZ'a +al) 

0 6 , _ a I a 2 + 4 IZ'. a 

_ 21Z' d a I (21Z' d + a 2) 
- 4 2 6 , 

IZ' a - ala2 

321Z' d a 2(21Z' a	 + a J 

(226) 

(227) 

(228) 

(229) 

(230) 

(231) 

(232) 

(233) 

(234) 
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Assume that a I = a 2 = a , then, 

_ 4;r a3 
(2 3)

aeff - 4 2 6 2 \a + 2;r a a ., (235) 
;r a -a 

Equation (235) can be reduced to 

2a 
(236)a eff = 1- (a /2;r d) . 

Equation (236) holds provided that a < 2;r a3 ,so the critical distance is 

r = (aj2Jr)I3.c 

Now assume that the dipoles are on the x-axis but the electric field is 

pointing along the y direction as shown in figure 21. Thus, 

_ _ ~ 3[(.02) + P2Y] + p2Z k).at] at 
E1 =EoJ+ 4;r coa5 

(237)
d(p2) + p2Y ]+ p2z k) 

4;r cod 

and 

- " __ ~ 2P i-p ~ - " 
E = EoJ + 2x 2yJ - P2z k 

= 1 4;r cod 
(238) 

a:co (PI) + PlY] + plZ k) 

Therefore, 
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2al 
P,y= aOGoEo+-3P2y ' (239)

4:ra 

and 
-al -al 

P'x=-43PZx P1Z =-43PZz (240)
:ra :ra 

Similarly, it is found that 

2al 
PZy = aOGoEo+-43P1y ' (241)

:ra 

and 

-a, -a, 
P = 3P\x P'z=-43P1Z (242)Zx 4:r a - :ra 

Solving the linear system by Maple20 yields, 

Pix = PIZ = Pzx = PZZ = 0, (243) 

3 
alGoEo:r a (4:r d - aJ (244)- 4 ,P'y- 16:rza6-a,az 

and 
3 a zGO Eo :r a (4:r d - a J 

(245)Pzy = 4 16 z 6:r a -a,az 

Therefore, 

_ 4:rdal(2:rd+ az)
( ) (246)aeifj- 16 z 6 ,:r a - alaZ 

_ 4:rdaz(2:rd+aJ
( ) (247)a eif Z - 16 z 6 ,:r a - a,az 
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and 
3 

4;r a (3( ) )a elf = 16 2 6 4;ra at+a2 -2a 1a2 .. (248)
;r a -ala2 

Now assume that a 1 = a 2 = a , then 

3 2) 
-

8;r 
6
a 

2 
(4n a3 a - a ., (249)aelf - 16;r2 a - a 

Equation (249) reduces to 

2a 
(250)a elf = 1+ (a /4;r d) . 

From Equation (250) it can be concluded that the critical distance is 

negative, r = (_a!4n)1/3, which physically does not make sense. Also the c 

separation distance a =F- O. Figure 22 shows the graphic relationship between 

aelf / a and a for this orientation. The graph indicates that as the separation 

distance decreases the effective polarizability decreases too. When the 

separation distance gets larger and larger the effective polarizability 

approaches the summation of the individual polarizabilities. 

Now assume that the applied electric field points along the z direction and 

the dipoles are still on x-axis as in Figure 23. Thus, 
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" . - " - ") ]3[(­£1 = £ok + P2x l + P2Y } + P2z k .at at 
4;r cod 

(251) 
d(P2) + P2Y ] + P2z k) 

4;r Co as 

and 

. - "" __ " 2P- l-P . - " 
E = Eok + 2x 2y} - P2z k 

J 4;r cod = 
(252) 

a~co ( Pj) + PlY] + P1zk) 

Therefore, 

2aJ 
Plz=a ocoEo+-3P2z , (253)

4;ra 

and 

-al -a] 
P = --3P2y ' (254)PIX = 4 3 P2x 

Iy 4;r a;ra 

Similarly, it is found that 

2al 
P2z = aocoEo+-3P1z ' (255)

4;ra 

and 

-aj -al 
P = 3Plx P = --3P1y (256)2x 4;r a 2y 4;r a 

Solving this linear equation by Maple20 yields 

- -P ,P -P -P Iz 2x - 2z -0- (257)Ix ­
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a,EoEoJr d(4Jr d - a2) (258)- 4 ,P 
lz­ 16Jr2a6-a,a2 

and 

_ 4 a2EoEoJr d(4Jr d - a) 
2 6 

(259)P2z - 16
Jr a -a 1a2 

The polarizability of this system is the same as the previous one except for 

the direction of the dipole that is along the z-axis. This indicates that the 

dipole points along the direction of the externally applied electric field. 

Thus, the polarizability of this system is 

2a 
(260)a eff = 1+ (a /4Jr d) . 

Now assume that the dipoles are on the y-axis and separated from one 

another by a distance a and the applied electric field is along the x direction 

as in Figure 24. Therefore, 

_ _ ~ 3[( i\) + P2Y } + i\)~)' a}l a} 
E 1 =Eol+ 4 

Jr Eoa5 

(261)
d( Phi + P2Y } + P2Z k) 

4Jr Eod 
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- "" - " 
_" • - 1"\2E = E- z" P2yJ - Pox z - P kI 0 • 2z 

4lr Bod = 

a:&o ( PI) + PlY) + P1Z k) 

2a r 
Plx=al&oEo- 4lrd P2X ' 

2a, -al 
PlY = 4lr d P2y Plz =-43P2zlra 

Similarly, 
2a2 

P2x =a2&oEo- 4lrd P1x , 

2a2 - ao 
P = --3Ply P2z=-4-3P1z2y 4lr a lra 

Solving this linear system by Maple20 yields, 

Ply = Plz = P2Y = P2z = 0, 

3 3 
- 4 al&oEolra (4lra - aJ ,P - 2 6 

Ix 16lr a -a 1a2 

3 3 
a2&oEolra (4lra - aJ

P = 4 602x 16lr-a-a la2 

(262) 

(263) 

(264) 

(265) 

(266) 

(267) 

(268) 

(269) 
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This is exactly the same as the second part where the dipoles were on the x­

axis and the electric field pointed along the y-axis. However, the only 

difference is that in this system the dipole points along the x direction where 

in the second case it pointed along the y direction. This indicates that the 

direction of the dipole moment for this particular system is determined by 

the externally electric field. Therefore, 

2a 
(270)aejJ = 1+ (a /4Jr d) . 

Now assume that the dipoles are on z-axis and the electric field points along 

the x direction as in Figure 25. Thus, 

_ _ ~ 3[(Pz) + pZY} + pzzk). ak] ak 
E l = Eol + 4 S 

Jr GOa 
(271)

aZ(pz) + pZY} + pzzk) 
s 

4Jr GOa 

and 

,,2pzz k- pz) - pZY}" = 
- -. 3 

El = Eol 4Jr GOa 
(272) 

1 (_ " _ " _ ,,) 
-- PI) + PlY} + P1zk 
alGO . 

Solving 

al 
(273)P1x=aIGoEo- 4Jrd Pzx' 
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-al 2a l 

Ply = 4Jr a3 P2y P1z =-43P2z ' (274)
Jra 

a2 
P2x=a2GoEo- 4Jrd P1X ' (275) 

and 

-a2 2a2 
P = --3P1y P~-=-43P1z (276)2y 4Jr a ." Jr a 

Solving this linear system by Maple20 yields, 

Ply = PI: = P2y = P2z = 0, (277) 

P - 4 al GoEoJr d(4Jr d - a J, (278) 
Ix 

- 6 2 61 Jra-a 1a2 

and 

a2GoEoJr d(4Jr d - aJ (279)
P = 4 62x 161r 2 a - a I a 2 

Therefore, 

2a 
(280)aeif= 1+ (a/4Jrd) . 

This is the same as the case where the dipoles were on the x-axis and the 

applied electric field pointed along the z direction. The only difference is in 

the direction of the dipole, which in the former case pointed in the z 

direction while in the latter case it pointed along the x direction. This 
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indicates that the electric field determines the direction of the dipole for this 

particular system. 

The whole work of this chapter can be summarized as a polarizability 
tensor. The mathematical expression of the polarizability tensor for this 
system is, 

I 2a l 
I / 001
I l - a /4;ra I 
I 2a 0 I(atLff=1 0 (281)

l+a/4;rd I 
2a Jl

I
o I 30 1+a/4;rG 

The first row elements are identified as Un:, uxy, U xz, and similarly for the 

second and third rows. The term Un: is the effective polarizability for the 

case where the externally applied electric field is parallel to the line 

connecting the dipoles. The other two polarizabilities on the diagonal of the 

matrix are the effective polarizabilities for the case where the externally 

applied electric field is perpendicular to the line connecting the dipoles. The 

fact that the off-diagonal elements are zero is related to the fact that the total 

dipole moment for this system always points in the direction of the applied 

external field. 

The evaluation of the polarizability tensor for the general case of a 

larger system can be performed by the following procedure. First, the local 

electric field at each dipole location due to all the other dipoles is written as, 

1
E;j= __ I' (3[Pj(r,- rJJ(r,- r j)- pjlr,-rTJ.1 

4;r & 0 r i- r i. 

(282) 
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Then the dipole moment at each site is expressed in terms of the local total 

electric field as, 

I 
(283)jJ i = a & 0 [it 0 + f. it iJ . 

J=1 
J"i 

In general, Equations (282) and (283) are a system of linear equations that 

can be solved for the dipole moments. 
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Chapter 4
 

Conclusions
 

In this thesis the general theory of the dielectric constant and 

polarizability, and the relationship between them were reviewed. Equation 

(64) is particularly important in that it shows the linear relationship between 

the dielectric constant and the polarizability. The dielectric constant is 

measured at a macroscopic scale while polarizability is measured at a 

microscopic scale. A couple of model problems for the effective 

polarizability of barium titanate were solved. Equations (122) and (131) are 

the polarizabilities for a chain of barium and titanium atoms (barium 

titanate) for two different structures. Maxwell's equations were discussed in 

detail as well. Equations (147) and (162) show the complex dielectric 

constant for a time varying complex wave and its conjugate, respectively, 

when applied to Maxwell's equations. When a complex exponential with a 

negative exponent was used, the imaginary part of the dielectric constant 

was positive, while for a positive exponent the imaginary part was negative. 

Several model problems for the effective polarizability of small 

systems of discrete dipoles in the presence of an external electric field were 

solved in detail. These results are original in that they were not found in the 

published literature. For -instance, Equation (20 I) indicates that when two 

dipoles are situated on an axis that is parallel to an externally applied electric 

field, the effective polarizability is larger than the summation of the 

individual polarizabilities of the dipoles. This is because near the second 

dipole the first dipole induces an electric field parallel to the external electric 

field. Likewise, near the first dipole the second dipole induces an electric 
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field parallel to the external electric field. The net electric field on one 

dipole is the summation of the external electric field and the induced electric 

field due to the other dipole. Therefore, the total dipole moment of the 

system is more than it would be if the dipoles did not interact. It also shows 

that the polarizability of the system increases as the distance between the 

dipoles decreases. When the distance shortens to a critical value the 

polarizability approaches infinity. This is not physically allowable for two 

reasons. First, there should be a certain limit beyond which the dipoles can't 

get closer, e.g., atomic dimensions. The second reason is that the 

polarizability expresses a linear relationship between the dipole moment and 

the electric field for a sufficiently weak field. For strong electric fields the 

linear relationship breaks down. When the dipoles are very close together 

the field acting on each dipole can be large enough to necessitate a nonlinear 

description. 

Equation (250) shows that when the two dipoles are situated on an 

axis that is perpendicular to the electric field the effective polarizability of 

this system is smaller than the summation of the polarizabilities of the two 

individual dipoles. This is because each dipole induces an electric field 

opposite to the direction of the external electric field in the neighborhood of 

the other dipole. Thus, the net electric field is the difference of the external 

electric field and the induced electric field. The result of this calculation 

also indicates that the polarizability of the system decreases as the distance 

between the dipole decreases. In both cases, each induced dipole still points 

along the direction of the externally applied electric field. This last result 

may not apply to other more general discrete dipole configurations. 

There are several opportunities for future work in this area. In this 

work, the discussion of the polarizability tensor was focused on the simple 
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two-dipole system. However, the general mathematical method was 

developed for larger configurations of dipoles. This makes it possible to 

determine the effective polarizability tensor for any finite number of discrete 

dipoles. In general, the systems of equations will be linear, but might 

require special mathematical and computational techniques. The connection 

between the microscopic polarizability tensor for a large collection of 

dipoles and the macroscopic dielectric constant should also be investigated. 

Future research should also focus on applying these methods to the 

theoretical description of interstellar dust grains. 
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Figure 2. An atom in an electric field has its distribution of electrons 
displaced with respect to this nucleus. 
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Figure 3. A dielectric slab in a uniform field. The positive charges 
displaced the distance 0 with respect to the negatives. 
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Figure 4. A nonuniform polarization P can result in a net charge in the 
body of a dielectric. 
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Figure 5. An oxygen molecule with zero dipole moment. 
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Figure 6. The water molecule has a permanent dipole moment. 
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Figure 7. In a gas of polar molecules, the individual moments are oriented at 
random. The average moment in a small volume is zero. 
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Figure 8. When there is an electric field, there is some average alignment of 
the molecules. 
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Figure 10. The field in a slot cut in a dielectric depends on the shape and the 
orientation of the slot. 
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Figure 12. The unit cell ofBaTi03• The atoms fill up most of the space; for 
clarity, only the positions of their centers are shown. 
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Figure 15. Polarizability of oxygen versus titanium. 
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Figure 17. Diagram for the transmitted wave at a particular time and axis. 
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Figure 18. The index of refraction as a function of frequency. 

WOJUJo2W OI 

] .~-"~ ..._...,...~•. " 

o 

105 

4 

1 
.Ji,. 



y
 

Figure 19. Discrete dipoles are parallel to the external electric field. Both 
the electric field and the discrete dipoles point on x direction. 
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Figure 20. The ratio of effective polarizability to the original polarizability 
versus separation distance when the dipoles are parallel to the electric field. 

107 



y 

E 

• I. ~X 

~Ia~ 

Figure 21. Discrete dipoles perpendicular to the external electric field. The 
dipoles are situated on x-axis and the electric field points in y direction. 
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Figure 22. The ratio of effective polarizability to the original polarizability 
versus separation distance when the dipoles are parallel to the electric field. 
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Figure 23. Discrete dipoles perpendicular to the external electric field. The 
dipoles are situated on x-axis and the electric field points in z direction. 
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Figure 24. Discrete dipoles perpendicular to the external electric field. The 
dipoles are situated on y-axis and the electric field points in x direction. 
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Figure 25. Discrete dipoles perpendicular to the external electric field. The 
dipoles are situated on z-axis and the electric field points in x direction. 
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