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The aim of this study is to discuss some of the old 

integer factoring methods, as well as some of the more recent 

methods that utilize the Kraitchik scheme. In the first 

chapter, the statement of the factoring problem is presented. 

A review of some concepts of elementary number theory and some 

details about continued fractions that are needed in later 

chapters are given. In chapter two, some of the old factoring 

methods, Trial Division, Legendre's, Gauss' and Fermat's 

factoring methods, are discussed. In chapter three, the 

continued Fraction method is presented. In chapter four, 

the Quadratic Sieve method with some of its improvements are 

presented. In chapter five, the Number Field Sieve method is 

presented. 
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Chapter 1 

Introduction 

until the last decade, the centuries-old problem of 

factoring large integers was of interest mainly to 

specialists. Worldwide interest in factoring integers 

increased dramatically in 1978, when Rivest, Shamir and 

Adleman [21] published their pUblic key cryptosystem. The 

security of this system relies on the fact that some large 

integers are hard to factor. with the advent of powerful 

computing tools and numerous advances in mathematics 

computer science and cryptography, computational number 

theory in general and factoring large integers in particular 

has become an important sUbject in its own right. The aim 

of this paper is to give an overview of some of the 

factoring methods known today, with an emphasis on those 

factoring methods that utilize the Kraitchik factoring 

scheme. 

1.1 statement of the Factoring Problem: 

The factoring problem can be simply stated as follows: 

Given an integer N > 1 which is not a prime, find integers a 

and b both greater than 1, such that N = a * b. This 

process may be further applied to a and b, their factors, 

and so on, obtaining in the end the complete prime 

factorization of N. 

There are really two problems here. The first problem 

1
 



is the determination that N is not a prime, and the second 

is the calculation of a and b. In this paper, we are 

concerned with the second problem. For readers interested o 

in the first problem and the determination of the primeness 

of an integer (i.e. the problem of primality testing), we 

recommend few references to the enormous literature [1], 

[3], and [20]. 

Given that we know that N is composite, how can we 

proceed to find the factors of N? This seems a much harder 

problem than that of showing that N is composite. Everyone 

knows an algorithm on input of an integer N > 1 either 

proves N is prime or produces the complete prime 

factorization of N when N is composite. This is the trial 

division algorithm. The trial division algorithm consists 

of making trial divisions of the number N by all primes less 

than or equal to /N. In the worst case, this is an 

O(!Malgorithm and, when N is large, means that it could 

take a very long time to execute. For example, we might use 

the trial division algorithm on a computer that can do one 

million trial divisions per second to determine if a given 

integer N is prime or composite. If N is a prime near 1040, 

the running time would be about one million years. If N is 

a prime near 1050, the age of the universe would not 

suffice. Thus in factoring large integers, the main concern 

is in reducing the running time of the factoring method and 
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developing new factoring methods with lower running times. 

Several ingenious ways to speed up the factoring process 

have been discovered. 

REMARKS CONCERNING THE EXAMPLES GIVEN IN THE PAPER: 

The factoring methods presented in this paper are 

employed to factor large integers - in some cases over a 100 

decimal digit integers using high speed computers. However, 

in this paper the examples presented to illustrate the 

different factoring methods are of small integers so that 

calculations can be carried out by hand or with a 

calculator. 

1.2 Review of Elementary Number Theory 

The object of this introductory section is to provide 

the readers with a short account of the concepts from 

elementary number theory that we need in later chapters. 

Most of the results in this section are given without proof. 

The proofs can be found in most elementary number theory 

books, such as [22], [23]. 

DEFINITIONS 

1. An integer P > 1 is called a prime number, or simply a 

prime, if its only positive divisors are 1 and P. 

2. An integer which is not a prime is called a composite 

number. 

3. If a and b are integers, we say that a divides b if 
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there is an integer c such that b = ac. If a divides b 

we denote this by alb. We write alb to indicate that b 

is not divisible by a. 

4.	 Let a and b be given integers, where at least one of 

them is different from zero. The greatest common 

divisor of a and b, denoted by gcd (a, b), is the 

positive integer d satisfying: 

(a)	 dla and dlb 

(b)	 if cia and clb, then c~d. 

5.	 The least common mUltiple of two nonzero integers a and 

b, denoted by lcm [a, b], is the positive integer m 

satisfying 

(a)	 aim and blm 

(b)	 if ale and blc with c> 0, then m~ c. 

6.	 Let n be a fixed positive integer. Two integers a and 

b are said to be congruent modulo n, symbolized by 

a: b (mod n), if n divides the difference a-b. That 

is if a - b = kn for some integer k. 

7.	 Let P be an odd prime and a an integer such that gcd 

(a, P) = 1. If the congruence x 2
: a (mod P) has a 

solution, then a is said to be a quadratic residue of 

P. Otherwise a is called a quadratic nonresidue of P. 

8.	 Let p be an odd prime and gcd (a, p) = I, then the 

Legendre symbol (;) is defined by 
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if a is quadratic residue of p(;)= {-i if a is quadra tic nonresidue of p 

THEOREMS (WITHOUT PROOFS)
 

Theorem 1: If a, b, c, d, k and m are integers where m > 0,
 

k > 0, such that a=b (mod m), and c=d (mod m), then
 

(1) a + c = b + d (mod m) 

(2) a - c = b d (mod m) 

(3) ac = bd (mod m) 

(4) a k=b k (mod m) 

(5) f(a) = feb) (mod m) where f(x) is a polynomial 

with integer coefficients. 

Theorem 2: If a, b, c, and m are integers such that m > 0. 

d = gcd (c, m) and ac = bc (mod m), then a = b (mod ~). 

Theorem 3: If a = b (mod m,), a =b (mod m2), ••• , and a ~ 

b (mod mk ), where a, b, m" m2 , mk are integers with m" 

m2 , ••• , mk are positive then a = b (mod lcm Em"~ m2 , ••• , 

mk ] ) • 

Theorem 4 (Euler's criterion): Let p be an odd prime and 

let a be a positive integer not divisible by p. Then 

.!.E....::....! 
(;) =a 

2 (mod p) . 

Theorem 5: Let p be an odd prime and let a and b be 

integers relatively prime to p, then 
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(1) if a == b (mod p), then (;) = (;) 

(2) (~) = (;) (;) 

.te....:....ll 
(-1) 2

(3) (-;)= 

(p2 - 1) 

(4) (~) = (-1) 8 

Theorem 6 (Law of Quadratic Reciprocity): If p and q are 

distinct odd primes and either p or q is == 1 (mod 4), then 

(~) = (~) 

If both p and q are == 3 (mod 4), then 

(~) = -( ~) • 

Theorem 7 (The Chines Remainder Theorem): Let m" mz ' ... , 

m r be pairwise relatively prime positive integers. Then the 

system of congruences 

x == a, (mod m,), 

x == a z (mod mz) . 

x == a r (mod mr ) • 
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has a unique solution modulo M = m1 • m2 ••• m r • 

Theorem 8 (The Euclidean algorithm): Let r o = a and r 1 = b 

be integers such that a ~ b > o. If the division algorithm 

is successively applied to obtain r j = r j + 1 qj+ 1 + r j +2 with 

a < r j + 2 < r j + 1 for j = 0, 1, 2, ... , n - 2 and r + 1 = an 

then gcd (a, b) = r n , the last nonzero remainder. 

Example: To find gcd (252,198), we apply the Euclidean 

algorithm as follows: 

252 = 198 • 1 + 54 

198 = 54 • 3 + 36 

54 = 36 • 1 + 18 

36 = 18 • 2 

18 is the last nonzero remainder, hence gcd (252,196) = 18. 

Fast Exponentiation (or modular exponentiation): We apply 

this algorithm to congruences involving large powers of 

integers. An example would be finding the least positive 

residue of b N mod m when both m and N are very large. To 

illustrate this algorithm, we proceed as follows: Let m, b, 

N be positive integers. To compute b N mod m, where Nand m 

are large integers; we first express the exponent N in 

binary notation as N = (ak a k- 1 ••• a 1 a O)2. Then we find the 

b 2kleast positive residues of b, b 2 , b4 , ••• , modulo m, by 
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successively squaring and reducing modulo m. Finally, we 

b 2Jmultiply the least positive residues modulo m of for 

those a j with a j = 1, reducing modulo m after each
 

mUltiplication.
 

Example: Find the least positive residue of 2M4 mod 645.
 

Solution: First we express 644 in binary notation
 

644 = 2 - 322 + 0 

322 = 2 - 161 + 0 

161 = 2 - 80 + 1 

80 = 2 - 40 + 0 

40 = 2 - 20 + 0 

20 = 2 - 10 + 0 

10 = 2 - 5 + 0 

5 = 2 - 2 + 1 

2 = 2 - 1 + 0 

1 = 2 - 0 + 1 

Therefore, (644)'0 = (1010000100)2 = 

1-29+0-28+1-27+0-26+0-25+0-24+0-23+1-22+0-21+0-2°. We have 

here b = 2, N = 644, m = 645. We find the least positive 

b 2kresidue of b, b 2 , ••• , modulo N by squaring and reducing 

mod m as follows 

2 = 2 (mod 645) 

22 = 4 (mod 645) 

24 = 16 (mod 645) 
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28 =: 256 (mod 645) 

2 16 == (28) 2 == 391 (mod 645) 

232 == (216) 2 == 16 (mod 645) 

264 == 256 (mod 645) 

2 128 == 391 (mod 645) 

2256 == 16 (mod 645) 

2 512 == 256 (mod 645). 

2 2JWe mUltiply the least positive residues modulo 645 of 

2644for these j with a j = 1. This gives = 

22'·227·22~=2512"128"4=2512·2128·24==256.391.16==1 (mod 645). 

1.3 continued Fractions: 

This section gives a brief introduction to continued 

fractions. We will restrict the discussion of this 

fascinating sUbject to only those features which will be 

needed in the paper. 

A continued fraction is an expression of the form 

b o + a1----­

b 1 + a2'-----­

b + a _ 
2 3 

b 3 + a 4 

b 4 + ... 

where a 
1

, a
2

, and b 11 b2 , •••• are real (or complex) 

nUmbers, and the number of terms may be finite or infinite. 

The numbers a j are called partial numerators and the 

numbers b i (apart from bo) are called partial denominators 
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(or partial quotients). 

A much more convenient way of writing a continued 

a a2 a3fraction is b o + b 1+ ""I)"+ b + ...• 
1 2 3 

If all partial numerators a i are equal to 1, and if bo 

is an integer and all partial denominators b i are positive 

integers, the continued fraction is said to be simple or 

regular. A simple continued fraction would have the form 

1 1 1 
b +-b+ b + b + ••••o 1 2 3 

Another convenient way to write the simple continued 

fraction above is 

[bo ' b 1 , b 2 , ••• ] • 

Let us consider the finite simple continued fraction 

x=2+~ 1 1 
3 + 4 + 2". 

=2+-!+ 13 ­
4 +-! 

2 

=2+ 1
 
3 + -.!..
 

9 
2 
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119=2+ =2+--=2+­
3 +~ ~ 29
 

9 9 

=	 67
 
29
 

Thus, the continued fraction represents the rational 

X= 24number 67 Conversely, let 

Then, 

Thus, 

29 •	 19 . 

24 5 1-=1+-=1+-­
19 19 19 

5 

19 4 1-=3+-=3+­
555
 

4
 

5 1-=1+-.
4 4 

x= 24 ­ 1+ 1 
19 ­

3 + 1 

1 +1. 
4 

or, X=3+~1 
1 + 4". 

In general, we have the following theorem whose proof 

can be found in [23]. 
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Theorem 1.1: 

Any finite simple continued fraction represents a 

rational number. Conversely, any rational number P can be 
q 

represented as a finite simple continued fraction in a 

unique way. 

Now, let us construct the continued fraction of 

irrational numbers. The procedure for expanding an 

irrational number is fundamentally the same as that used for 

rational numbers. 

Let x be an irrational number. The continued fraction 

expansion of x is achieved by successively computing the 

numbers b o,bl ,b2 , ••• ,bn , ••• and the numbers 

Xl' X 2 , X 3 , ••• ,Xn , ••• as follows: 

Let b o = [x] be the greatest integer less than or equal 

to x and express x in the form x=bo+ ~ o( ~ ( 1, where 
Xl~ 

the number Xl is given by Xl = lb >1. 
x- o 

Note that Xl is irrational, for, if an integer (in this case 

b o ) is subtracted from an irrational number (in this case 

Xl)' the result and the reciprocal of the result are 

irrational. 
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Let b l = [Xl] and express x, in the form 

1 -X'
, b lXl =b + 1 o<....!.- <1 ~1 where, again, the number 

2 x 2 

1 "t' Ix2 = b >1, lS lrra lona . 
Xl - 1 

This calculation may be repeated indefinitely, 

producing the following equations: 

b o = [x], 

x = b o + 1 
Xl> 1, b, = [X,], 

Xl 

x, = b, + 
x
1

2 

x 2>1, b, ~ 1, b 2 = [x2 ] 

b = [X ]n n 

1 x = b + ~- , x + ,>1, b ~ 1,n n n nxn + l 

where bo' b" ... , b n , ••• are all integers and the numbers 

xo' x" ' ••• , x ' ••• are all irrational. This processx 2 n 

cannot terminate, for the only way this could happen would 

be for some integer b to be equal to x ' which isn n 

impossible since each successive xi is irrational. 
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If we combine all the above equations, we obtain the 

continued fraction expansion for x as 

1 1_ 1 1bx= 0 + b--+ b 2 + J:j"+'" or 
l b) + n 

x=[bo,bl ,b2 ,b), ,."bn , ",]. 

Example: Expand /2 into an infinite simple continued 

fraction. 

b o=[/2] =1, /2=1+--!­x'1 

Xl = 1 = [Xl] =2 ,/2-1 --/2+1, b l 

1 1 _ 1 
Xl = 2 +--!­x' x2 = Xl -2 (/2+ 1) -2 - /2-1 =/2+1.

2 

since x2 has turned out to be the same as x" there is 

no need for further calculation, because the calculation of 

x3 , x4 ' .0. in each case will produce the same result, 

namely /2 + 1 and b3 , = b4 = o. 0 = 2. Thus, the continued 

fraction expansion of /2 is 

1 1 .!+ .../2=1+~ 
2+ 2 

= [1, 2, 2, ••• ] 

=[1,2], where the bar over the 2 on the right hand side 

indicates that the number 2 is repeated indefinitely. 
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Similarly we have 

1 1 _1_~+ 
v'3=1+i+2"'+"" 1 + 2 

=[1,1,2] 

v'3'I"= [5, 1,1,3,5,3,1,1, 10] 

In these examples, the continued fractions are periodic. In
 

fact, this is true for any irrational number of the form
 

/.N. In general we have the following theorem:
 

Theorem 1.2 (Lagrange):
 

Any quadratic irrational number X= P+~{D, where P and Q ~o 

are integers, and D is a positive integer which is not a 

perfect square, has a continued fraction expansion which is 

periodic from some point onwards. 

The proof of Lagrange's Theorem is given in [23]. Our 

next objective is to study some general properties of 

continued fractions, whose validity does not depend on the 

nature of the terms b" b2 , b3 , ••• of the continued 

fraction. For the time being, therefore, we treat the terms 

of a continued fraction as real numbers. 

1 1Let b o + b b +. .. be any continued fraction. The 
1+ 2 

1 1continued fractions b o' b o+....!., b o + b b , ... obtained by
b 1 1 + 2 
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stopping the expansion process after the first, second, 

third, ... steps, are called the first, second, third, 

convergents respectively. In general, the nth convergent is 

1 1 .l:.-.
Cn=bo+ b +'" bJ... 

2 n 

It is important to develop a systematic way of computing 

these convergents. 

b A
We write C =_0 =_0 where A =b B =1 

o 1 B' 0 0' 0 
o 

C =b +.l:.- = bob1 +1 _ A1 
1 o b b --B' 

1 1 1 

C =b + 1 1 _ b ob 1b 2 +b o+b Awhere A1 =bob1 + I, B1 =b1 , 2 0 -- 2_ 2
b + b b b + 1 - -B ' 

1 2 1 2 2 

C = b + 1 1.l:.- = bob1b 2b) +bob1 +bOb) +b 2b) +1 = A]
 
) 0 b + b + b) b 1b b) +b1 +b) B]
1 2 2

Now, let us take a closer look at these convergents. For 

_ b ob 1b 2 +bo+ b 2 _ b 2 (bob1 + 1) + b o _ b 2A1 + Ao _ A2example C2 - - - --.
b b +1 b (b ) + 1 b B + Bo B1 2 2 1 2 1 2 

Thus, A:z =b 2A1 + Ao and B2 =b 2B1 + Bo • 

Also C) = b) (bob 1b 2 + b o+b 2 ) + (bob1 +1) b)A2 + A1 A) 
= =­

b) (b1 b 2 + 1) + (b 1 ) b)B2 +B1 B) 

Thus, A3 = b 3 A2 + A1 and ~ = b 3 B2 + B1 • 
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In general, we have the following theorem. 

Theorem 1.3: 

Let b o ' b" ... , b n, ... be real nUmbers, with b" b 2 , 

b n , ••• positive. Let the sequences Ao' A" •.. , An' •.. 

and Bo' B" ... , Bn, ... be defined recursively by 

Ao = b o' Bo = 1, A, = b o b, + 1, B, = b, and Ak = b k Ak _, + Ak -2 , 

B = b Bk _, + Bk- for k = 2,3, .•.. Then, the kthk k 2 

Akconvergent c k = [bo' b" ... , b k ] is given by Ck = 
Bk 

Proof: 

The proof is by mathematical induction on k. For k = a 

we have C = [b ] = b o _ Ao 
o 0 -- ­

I Bo 

C = [b b] =b + 1 _ bob1 + 1 AFor k = 1, 1 0' 1 0 -- - 1 Hence, theb b -13 
1 1 1 

theorem is valid for k = 0, 1. Assume that the theorem is 

valid for the integers 0, 1, 2, ••. , k for some integer k ~ 

A b0k-l +Ak ­
1. Thus Ck = [bo,b1 ,,· " 

bk] = Bk -- b~k-l+ B -
2 • Ck+, = [bo, b" 

k k 2 

1 
... , b k , b k+,] = [bo ' b" ... , b k ] + = [bo' b" • •• b k_"

b k + 1 
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= (bJc + ~ )AJc - 1 + A Jc - 2 

b + _1 ] 
Jc b Jc + 1
 

(bJc + bJc1+ 1 ) BJc - 1 + B Jc - 2
 

_ (b~Jc+l + 1) A Jc - 1 + b Jc +1A Jc - 2 

- (b~Jc+l +1) B Jc - 1 +bJc + lBJc - 2 

= b Jc +1 (b0Jc-l +AJc - 2 ) + A Jc - 1 
b Jc +1_(b~Jc-l + B Jc - 2 ) + B Jc - 1 

= b Jc + lAJc + A Jc - 1 

bJc+1BJc+ B Jc -1 

A Jc + 1
 

= 1
BJc + 

.. AnThus, the theorem lS valld for k+1 and C =-- for any non­n Bn 

negative integer n. 

Theorem 1.4: 

AJc •Let CJc=-- be the kth convergent of the contlnued 
BJc 

fraction [bo' b" ... ,] where k = 1, 2, ... . If Ale and Ble 

are as defined in Theorem 1.3 above, then 
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AJ!3k-1 -Ak - 1Bk = (-1) k-1 for any integer k~ 1. 

Proof: 

The proof is by mathematical induction on k. 

For k = 1 we have A1B -A B1 = (b b 1 + 1) .1-b .b1 =1 = (-1) 1-1.o o o o

Assume the theorem is true for some integer k~l. Thus, 

AJ!3k-1 -Ak - 1Bk = (-1) k-1. Then, we have 

Ak+ 1Bk- AJ!3k+1 = (bk + 1Ak+ Ak-1) Bk-Ak (bk + 1Bk+ Bk -1) 

=bk + 1AJ!3k+Ak-1Bk-A~k+1Bk-AJ!3k-1 = Ak - 1Bk -AJ!3k-1 =- (AJ!3k-1 -Ak - 1Bk ) 

=- (_1)k-1= (-l)k. 

Thus, the theorem is true for k + 1, and 

AJ!3k-1-Ak-1Bk= (_1)k-1 for any integer k~l. 

Corollary 1: 

A k •
Let Ck = - be the kth convergent of the slmple

Bk 

continued fraction [bo' b" b 2 , ••• ]. Then, the integers Ak
 

and Bk are relatively prime.
 

Proof:
 

Let d = gcd(Ak,Bk), then dlAk and dlBk • Thus, 

dl(xAk + yBk ) for any integers x and y. In particular let 

x=Bk _ and y= -Ak - 1 , then dl (AJ!3k-1 -Ak - 1Bk ). But,1 

AJ!3k-1 -Ak - 1Bk = (-1) k-1. Hence dl (-1) k-1. Therefore d = 1 and 

Ak and Bk are relatively prime. 
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Corollary 2: 

A k •
Let Ck =-- be the kth convergent of the contlnued

Bk 

Ck-C - = (_l)k-l for all k:l: 1fraction [bo' b" ... ]. Then, k 1 
B~k-l 

b (-l)k
and Ck -Ck - = k for all k:l:2.2 

B~k-2 

Proof: 

From Theorem 1.4 we have A~k-l - B0k-l = (-1) k-l • 

A k Ak - 1 _ (_l)k-l
Dividing both sides by B~k-l' we obtain -- ----

Bk Bk - 1 B~k-l 

) k-l(-1Thus, To establish the second identity, we
Ck - Ck - 1 = B~k-l 

have Ck-Ck_2=Ak_Ak-2 =A~k-2-B0k-2 since Ak =b0k-l + Ak - 2 
B k Bk - 2 B~k-2 

and Bk=b~k-l+Bk - 2 , 

C -C = (b0k-l+Ak-2)Bk-2-(b~k-l+Bk-2)Ak-2 
k k-2 B 1=? 

~k-2 

= b0k-1Bk-2 + Ak - 2Bk - 2 - b~k-1Ak-2 - Bk- 2Ak - 2 b k (Ak- 1Bk- 2 - Bk - 1Ak - 2) _ 
= ­

B~k-2 B~k-2 
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b (-l)k= k
 

BJl3k-2
 

Theorem 1.5: 

Let x be a real number whose continued fraction 

expansion x = [b" b 2 , b3 , ••• J has convergents 
}1i 

Then,
Bi 

}1.•• }1i }1i+ 1 }1i+l <X<_l.for each 1, e1ther - < X< -- , or
Bi Bi + 1 B i

-
+1 

b.
1 

Proof: 

1 1 1 1Let x=b1 + b + , where x denotes the
b + x2 3 bn - 1 + n 

n 

1rest of the fraction, that is, b +­ _1_+ ... = 
X = n b + n n+l b n + 2 

1 1 +_1_+.b + We haven and x n + 1 =bn + 1 + b + b +3

X n + 1 n 2 n
 

X =b + _1_ >b since _1_ >o. Similarly, x + >b + orn n n n 1 n 1 
X n + 1 X n + 1 

1 1--<--. 
X n + 1 bb+l 

Thus bn<xn=b _1_<b + b 1 • •• (*)n n
X n + 1 n+l 
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An 1 1 1 1Now, - =b +-­
b +B n 1 2 b 3 + bn~br. 

1 1 1 1x=b1 + -- ­
b 2 + b 3 + bn - 1 + x n
 

1 1 1 1
An + 1 = b + b 2 + b + --.~- 1 b +Bn + 1 3 n b n + 1 

From (*) we thus have 

A----!!.=b+ 1 1 1B 1 b + ••• b + b =x-xn+bn <>., since bn-x <0.
 
n
 2 n-l n n 

An+ 1 =b +_1_... 1 _1__1_ = (X-X ) +bn+-1­Also 
Bn+ 1

1 b 2 + b n- 1 + b n + b n+ 1 
n b n+ 1 

1
=X+ (bn+~ -Xn) >x, since (bn+~ -xn) >0. 

n+l n+l 

An An + 1Hence -<x<--. 
Bn Bn + 1 

THE CONTINUED FRACTION EXPANSION OF IN : 

We shall now demonstrate how the continued fraction 

expansion of IN can be used to find small quadratic 

residues mod N. First we present an algorithm for finding 

the simple continued fraction of IN. 

Theorem 1.6: 

Let N be a positive integer that is not a perfect 
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• ~+~ . square. Defl.ne X k = , where Pk and Qk ~ 0 are l.ntegers, 
Ok 

. N-Pk 
2 

+ ideterml.ned by Po = 0 I 00 = 1 I Pk+ 1 =bkOk - Pk , and Ok+ 1 = ~ ,for 

k = 0, 1, 2, ... where bk = [xk ]. Then the continued 

fraction expansion of .fN is given by IN= [bol b il b 21 ••• ] • 

Proof: 

First by using mathematical induction on k, we will 

show that Pk and Qk are integers with Ok~Oand okl (N-P;) for 

k = 0, 1, 2, For k = 0, we have Po = 0 and Qo = 1 are 

integers and OolN holds from the hypothesis of the theorem. 

Now assume that Pk and Qk are integers with Ok~O and 

Okl(N-P;) for some integer k~O, then Pk+i=bkOk-Pk is also 

2N-Pk + i N- (bkOk-Pk ) 2 
an integer. Further, = °K+i = OK Ok 

= N- (b;O; -2bkOkPk +P;) (N-P;) + (2b P -b;Ok) • sincek k= OkOk 

Okl(N-P;) by the induction hypothesis, we see that OK+i is 

an integer, and since N is not a perfect square N-P;~O, 
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2 . N-Pk 
2 

+ 1N-Pk "I' O.
thus OX+ 1 = Ok S1nce Ok= 0 ,we can conclude that 

k+1 

oX+11 (N- P;. 1). Therefore the assertion is true for k + 1. 

This completes the inductive argument. 

Next we need to show that the integers b o' b" b 2 , ••• are 

the partial quotients of the simple continued fraction of 

..(N. We accomplish this by showing that X k + 1 = 1 , for k 
x k - b k 

x -b = Pk+..(N -b =..jN-	(bkO-K-Pk ) = ..jN-Pk+1= 0, 1, 2, .... 
k k Ok k Ok	 Ok 

..jN-Pk+1 ..jN+Pk+1	 N-P; OkOk+1 Ok +1 _ 1= e __--=--=
 
Ok ..jN+ Pk+1 Ok (..jN+ Pk+1) Ok (..jN+PX+1) ..jN+ PX+1 - X k+1 •
 

Hence ..jN= [bo' b 1, b 2 , ••• ] • 

We illustrate the use of the algorithm given in Theorem 

1.6 above with the following example. 

Example: 

Let	 N = 14
 

Table 1.1
 

k Pk Qk xk b k 

0 0 1 /14 3 
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1 3 5 13+& 
5 

2 2 2 2+& 
2 

2 

3 2 5 2+& 
5 

1 

4 3 1 3+& 
1 

6 

5 3 5 3+y'I4" 
5 

1 

Since Xs = x 1 ' also x6 = x2 ' and so on, which means that the 

block of integers 1, 2, 1, 6, 1, repeats indefinitely. Thus 

the continued fraction expansion of v14 is periodic and is 

given by v14=[3,l,2,1,6,2] Notice that just before 

recurrence starts we have Qk = 1, thus Xk=Pk+/N, hence 

b k = [xk] =Pk + [v'N! =Pk+bo • Also 

Ok~ 1 =N- P:+ 1 =N- (bk - Pk) 2 =N-b; = 01 • 

Pk~ 1 =bkOk-Pk=bk-Pk=bo =P1 • 

Thus we have proved the following theorem. 
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Theorem 1.7: 

Suppose that QIe = 1. then the pair (PIe+"QIe+') is a 

repeat of the pair (P"Q,), and hence the calculation of 

Pie's, ' sand b le ' s starts to repeat: b k + 1 =b1l b k+2 =b2 IQIe ' S, x le 

etc. 

There is one more result we need to prove here about 

the continued fraction expansion of IN. This result is in 

fact the key (or one of the keys) to find small quadratic 

residues mod N. 

Theorem 1.8: 

Let N be a positive integer that is not a perfect 

X = Pk+1Nsquare. Define k b k = [Xk] , Pk + 1 =bkOk-Pk and 
Ok ' 

N-Pk 
2 

+ 1
Ok+l = , for k = 0, 1, 2, ... where xo=1N Po = ° and Qor'I 

A= 1. Furthermore, let -! denote the kth convergent of the 
Bk 

continued fraction expansion of IN. Then 

Ak2 ­ B2-(1)k+1oN k - - k+ 1· 

To prove the theorem we need the following lemma. 
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Lemma 1.9: 

Let N be a positive integer that is not a perfect 

square and a, b, c, and d are rational numbers. Then a +
 

bIN = c + dIN if and only if a = c and b = d.
 

Proof:
 

Clearly if a = c and b = d then a + bIN = c + dIN. 

Conversely, assume that a + bIN = c + dIN, if b ~ d then 

IN= ~=~ but ~=~ is a rational number and IN is 

irrational, thus b = d. Hence a + bIN = c + bIN implies a
 

= c.
 

Proof: (Theorem 1.8)
 

Sl.nce. ro - - [b0' b b ] then ro - Ak + 1vN-Xo- l' ••• , k,Xk + 1 v N ---. 
Bk + 1 

x A +A
By Theorem 1.6 we have IN= k+ 1 k k-1. Since 

X k +1Bk + Bk ­1 

(Pk+1+ IN> we have IN= (Pk+1 + IN> Ak + Ok+1Ak-1
X k + 1 = Thus
 

Ok+1 (Pk+ 1 + IN> Bk + Ok +1BX-1
 

IN [(Pk +1 +IN> Bk + Ok+1Bk-1] = (Pk +1 + IN> Ak + Ok+ 1Ak-1) • 

Or N Bk + (Pk+1 Bk + Ok+1 Bk-1) IN= (Pk+1 Ak + Ok+1 Ak-1) + AkIN 

By Lemma 1.9 we must have (1) N Ble = PIe+, Ale + QIe+' AIe _" and 

(2) PIe+, + QIe+' BIe _, = Ale· Multiply the first equation by BleBle 
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and the second equation by Ak we obtain 

(3) NB; =Pk+1A~k+ Ok+1Ak-1Bk 

(4) A;=Pk+1B0k+Ok+ 1Bk-1Ak. 

subtract equation (3) from equation (4) we obtain 

A; - NB; = (A~k-1 - Ak - 1Bk ) Ok+1 = (-1) k+1 Ok+1 • 

How large can the quadratic residues mod N we obtain 

from the continued fraction expansion of IN be? 

First we need to prove the following Lemma. 

Lemma 1.10: 

Let x > 1 be a real number whose continued fraction 

Aiexpansion has convergent -. Then for all i the inequality
Bi 

hold: IAt-x 2Btl <2x. 

Proof: 

A· A·
By Theorem 1.5 we have -~ <x< ----:!....::.!. 

B i Bi + 1 

IA i +1 _ Ai I= IAi + 1-Bi -AiBi + 11 =J(-1)i+1lConsider 
Bi +1 B i B i B i +1 B i B i + 1 

1 =--- (By Theorem 1.4).
BiBi +1 

28
 



A 2 
2 1 II Ai

=Bi-- X --+ x 
B i B i 

Thus IAi -x 2Bi 1= Bi 1---4 -x 21 
Ai I 

B i 

2 Ai A· 2 A· A·
=Bi Ix- -I-Ix+ _1 I =Bi Ix- _1 I- (X+ _1) <B11 A i +1 _ Ai I(x+ Ai)

B i B i B i B i Bi +1 B i B i 

=B;- 1 (X+ Ai) <B;- 1 (X+ (x+ 1 »). Hence 
Bi Bi +1 B i B i Bi +1 BiBi + 1 

IA;-x2Bll-2x<B1- 1 (x+ (x+ 1 »)-2X
BiBi + 1 Bi Bi +1 

B i Bi 1 )=-- (2x+ -2x =2x --+ -1 <2x --+---11) ( B i 1 1 (Bi + 1 BiBi + 1 Bi + 1 2xBf+ 1 B 1 +1 B i + 1 

=2X(Bi.+l_l)<2X(B~+1 -1)=0. Thus IAi-x2B11<2x. 
B 1 + 1 B 1 + 1 

Theorem 1. 11 : 

Let N be a positive integer which is not a perfect 

Ai square. Let be the convergents in the continued
Bi 

fraction expansion of /.N. Then the residue of Ai (mod N) 

which is smallest in absolute value (i.e. between Nand 
2 

N) is less than 2/.N. 

29
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Proof: 

Apply the previous Lemma with x=/N. Then A~ =b~ -NB~ 
~ - ~ ~ 

(mod N), but IAt-NBtl<2/N. 

This theorem implies the Qk's satisfy the inequality 

0<Qk<2/N for each k. 
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Chapter 2 

Classical Factoring Techniques 

In this chapter, we present a description of some 

classical factoring techniques. The factoring techniques 

presented are either currently in use in factoring large 

numbers or they are used in conjunction with one of the more 

recently developed factoring algorithms. In fact, many 

recent factoring algorithms are themselves based on these 

techniques. 

Along with each factoring technique presented in this 

chapter is discussed not only the technique but the theory 

behind the technique. Improvements that speed the 

algorithms are discussed, and each algorithm is illustrated 

by examples. For some of the algorithms presented, a 

running time estimate is given as well. 

2.1 Trial Division Method 

Trial division is probably the first method that comes 

into consideration when attempting to factor an integer N 

(or of proving it prime). If N = aeb with a > 1 and b > 1, 

the a and b must be one of integers 2, 3, ... , N - 1. Thus, 

the trial division algorithm in its simplest form consists 

of dividing N by 2, 3, 4, ... , N - 1 in turn and to "cast 

out" each factor that is discovered. That is, if the trial 

division of N by one of the integers, say, a, leaves a zero 

remainder, a factorization N = ae(N) has been obtained. 
a 
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The time required to find a factor of N by trial 

division is closely related to the number of possible trial 

divisors. Thus, most improvements to the speed the trial 

division algorithm attempt to eliminate some of the trial 

divisors in advance. Other improvements attempt to increase 

the speed of the algorithm by replacing some of the 

divisions by cheaper operations. The first step toward 

eliminating trial divisors is based on the simple 

observation that the list of divisors need not contain a 

number u whose factors occur prior to u in the list. This 

observation actually reduces the trial divisors to all 

primes below N. 

A second step in eliminating more trial divisors is 

based on the following theorem. 

Theorem 2.1: 

If N is a composite integer, then N has a prime factor 

P not exceeding IN. 

Proof: 

If an integer N > 1 is composite, then it may be 

written as N = a b, where 1 < a < Nand 1 < b < N. Assuming 

that a~b, we get a2~ba=N and ultimately a~lN. Since a > 

I, then a has at least one prime factor P, and P~a~lN. 

Thus, in the trial division algorithm it is sufficient 

to try as divisors all the primes less than or equal to 
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[v'NJ , where [v'NJ denotes the greatest integer less than or 

equal to IN. 

This reduction in the number of trial divisors leads to 

a speeding up of the algorithm. with these improvements we 

can outline the algorithm as follows: 

First we divide N successively by the primes 2, 3, 5, 

... , P, where P is the largest prime ~ [1M , until 

discovering the first one, say q, for which qllN. Then q, is 

the smallest prime factor of N, and the same process may be 

applied to .!!.. by successively dividing ...!!... by q, and the 
~ ~ 

primes greater than q,. The process stops when the 

unfactored part that remains is less than the square of the 

last prime we tested; for if m is the unfactored part that 

remains and ~ is the last prime tested and m < q~, then 

[JIDJ ~qm and m must be prime. 

Although the trial division algorithm is quite simple, 

the question remains: How can we generate all primes less 

than or equal to [IN]? If N is not too large (say N ~ 

100,000), then it is convenient to store a table of primes 

up to some limit and take the sequence of trial divisors 

from this list. For example, if N is less than a million, 

we need to store a table of all primes less than 1000, and 
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there are 168 primes less than 1000. However, if the 

integer N we wish to factor is too large, storing a table of 

primes less than or equal to [IN] would speed the algorithm 

at the expense of using a good deal of storage space. An 

alternative to storing a table of primes would be to 

generate the primes. This leads to an algorithm running a 

little slower, but demanding less storage space. One way to 

improve the running time of the algorithm in the latter case 

is to use the integers 2 and 3 and then all positive 

integers of the form 6k ± 1 as trial divisors. Clearly, 

this list of integers includes all primes and also includes 

some composite numbers, namely 24, 35, 49, .•.. To generate 

all integers of the form 6k ± 1, we start with 5 and then 

alternately add 2 and 4 thus getting 5 + 2 = 7, 7 + 4 = 11, 

11 + 2 = 13, 13 + 4 = 17, and so on. Other methods to 

reduce the number of trial divisors have been developed by 

Legendre and Gauss who used the theory of quadratic 

residues. Both methods will be presented in sections 2.2 

and 2.3. 

Let us illustrate the trial division algorithm by 

examples: 

Example 1: 

Let N = 25852. 

The list of trial divisors are 2, 3, 5, 7, 11, 13, 17, •.. , 

157. Since 21N then q, = 2 is a prime divisor of N. Now, 
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we consider the integer N1 =.!!... =12926. with 2112926, qz = 2 
% 

is a prime factor of N,. Next we consider the integer 

N2 = N1 =6463. We find N is not divisible by 2, 3, 5, 7, 11,z% 

13, 17, 19, but 2316463, hence q3 = 23 is a prime factor of 

. h' N2Now, we conslder t e lnteger N3 = - =281. since N3 isNz· 
% 

less than the square of the last prime tested, we know N3 =
 

281 must be a prime, and here we stop. Thus the
 

factorization of N is N = 25852 = 2-2-23-281.
 

Note that the factorization of N = 25852 has involved a
 

total of 11 division operations, namely the division by 2
 

three times and the division one time by each of the
 

integers 2, 5, 7, 11, 13, 17, 19, and 23.
 

Example 2:
 

Let N = 25849. 

The list of trial divisors are 2, 3, 5, 7, 11, 13, 17, ..• , 

163. By dividing N successively by the trial divisors, we 

find none of them divides N. Thus we conclude that N = 

25849 is prime. 

Note that the number of division operations involved to 

attempt to factor N = 25849 is 37. Thus the number of 

division operations needed to attempt to factor 25849 is 
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more than three times the number of division operations 

needed to factor 25852. A natural question one may ask is, 

how many trial divisions are necessary to factor (or prove 

the primality) of an integer N by using the trial division 

algorithm? Obviously, the number of trial divisions depends 

heavily on the size of the prime factors of N. For example, 

if N is a power of 2, say, N = 2k, the number of trial 

division is approximately k = log2N. On the other hand, if 

N is a prime, the number of trial divisions is approximately 

IN. To measure the trial division algorithm time 

complexity, that is, to estimate the expected running time 

required to factor an integer N (or prove its primality) by 

the trial division algorithm, we may count the number of 

trial divisions the algorithm must perform. Thus, the best­

case complexity of the algorithm is O(log N) and the worst-

case complexity of the algorithm is O(IN). For a random 

integer, the time complexity of the algorithm has been 

studied by Knuth and Pardo [8]. In [8] it is shown that the 

probability that the kth largest prime factor of N is less 

than NX
, where x is a real number between 0 and ~, 

approaches a limit Fk(x) as N approaches infinity. The 

tabulated values of Fk(x) given in the paper enables one to 

estimate the probability that the factorization of N will be 

completed in O(NX) steps, for varying x. For example, the 
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number of trial divisions will be less than or equal to 

NO. 35 about 50% of all cases, and in more than 70% of all 

cases the running time will be less than or equal to NO•4 • 

Although the trial division algorithm is inefficient and 

hence not well suited for factoring large numbers 

completely, the algorithm has certain advantages. Some of 

the advantages of the trial division algorithm are: 

1.	 The method often succeeds in quickly removing one or 

two small prime factors of the number thereby reducing 

the size of the number and the running time of other 

factoring methods that can be used to complete the 

factorization of the number. 

2.	 The factors produced by the trial division algorithm 

are guaranteed to be prime. This property is not 

shared by any other factorization method. 

3.	 Upon dividing N by primes up to some limit, say B 

without success in finding a factor of N, it guarantees 

that N has no prime factor below B. This information 

is not easily obtained by other factoring methods. 

Moreover, this information leads to a guarantee that if 

a factor q of N is discovered by another factor method 

and q < B2 then q is a prime factor of N. 

Because of these advantages, if one is given no information 

about the number N, the trial division algorithm should 

always be attempted up to some bound B before using a more 

powerful factoring algorithm. 
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2.2 Legendre's Factoring Method: 

Legendre's factoring method is based on restricting the 

trial divisors in the trial division method by constructing 

small quadratic residues of the number N. After a 

sufficient number of small quadratic residues have been 

found, a sieve is used in which each quadratic residue 

restricts the possible factors of N to a particular form, by 

the Law of quadratic reciprocity. 

First let us recall that a number m is a quadratic 

residue modulo N if gcd(m, N) = 1 and the congruence x 2 = m 

(mod N) has a solution. If m is a quadratic residue mod N 

we denote this by m R N. 

Now, if N = a.b and m R N, then m R a and m R b. To see 

the reasons why, assume x = r is a solution to the congruent 

2 2 2x =m (mod N), in which case r = m (mod a.b), hence r = m 

(mod a) and r 2 = m (mod b). 

Example 1: 

m = 1 is a quadratic residue modulo 15 since x = 4 is a 

solution to the congruence x 2 = 1 (mod 15). Thus, m = 1 is 

a quadratic residue mod 3 and a quadratic residue mod 5. In 

fact, 42 = 1 (mod 3) and 42 = 1 (mod 5). 

Knowing a quadratic residue m mod N, where N is the 

number we want to factor, allows us to restrict the possible 

divisors of N to the set of trial divisors u for which m is 

a quadratic residue modulo u, i.e. {2~u~ [1m ImRu}. 
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Example 2: 

Let N = 77. 

m = -6 is a quadratic residue mod 77. The set of trial 

divisors u for which m = -6 is a quadratic residue mod u are 

{ 2 :s: U:S: 81 -6 R u} = {5, 7}. 

Example 3: 

Let N = 1537. 

m = -1 is a quadratic residue mod 1537. The set of prime 

divisors is {2:s:p:S:391-1RP} = {5, 13, 17, 29, 37}. 

The above discussion raises the following questions: 

1. How many trial divisors u with 2:s: u:s: [/N] will survive 

the condition m R u? 

2. How do we find the necessary quadratic residues mod N? 

3. How do we use the quadratic residues mod N to restrict 

the possible factors of N to particular forms? 

The overall plan of this section is to answer these 

questions gradually until we can finally state a precise 

version of Legendre's factoring algorithm. 

The answer to the first question is based on the 

following theorem. 

Theorem 2.2: 

P-lIf P is an odd prime, then there are exactly 
2 

P-l d t' 'd dquadratic residues mod P and ~ qua ra 1C nonreS1 ues mo 
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P among the integers 1, 2, 3, ... , p-1. 

Proof: 

To find all the quadratic residues of p among the 

integers 1, 2, ••• , P - 1 we compute the least positive 

residues modulo p of the squares of the integers 1, 2, .•. , 

p - 1. Since there are p - 1 squares to consider and since 

each congruence xl = a (mod p) has either zero or two 

(p-1)solutions, there must be exactly quadratic residues 
2 

of P among the integers 1, 2, ... , P - 1. The remaining 

p-1- (p-1) = (p -1) positive integers less than p - 1 are 
2 2 

quadratic nonresidues of p. 

We need to know how the residues and non-residues are 

distributed in a subinterval of the interval of integers [1, 

p - 1]. The answer is given by the following theorem, whose 

proof is beyond the scope of this paper. 

Theorem 2.3: 

Suppose that a and P (a<p) are two fixed proper 

fractions. For a large prime p, about one half the integers 

in the subinterval [ap, Pp] are quadratic residues x mod p. 

That is, the quadratic residues mod p are equally 

distributed in the interval [1, p - 1]. 

It follows from this theorem that only about one half 
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of all trial divisors between 2 and IN will satisfy the 

condition m R u for a particular m. In addition, knowing 

several quadratic residues m" m2 , ••• , mk of N with no 

common divisor, the restrictions imposed by each mi are 

independent and only about (~)k of all trial divisors in 
2 

the set of all divisors u that satisfy the conditions mi R u 

will be left for actual trial divisions. Thus 20 known 

quadratic residues will reduce the number of trial divisions 

necessary by a factor of abut 220 ~ 1,000,000. 

The answer to the second question is relatively simple. 

To find some quadratic residues mod N simply take a number 

x, square it, and reduce the result modulo N. However, it 

is not easy to determine the arithmetic progression to which 

the primes in {p : m is a quadratic residue mod p} belong 

when m is large. Thus, it would be more useful to have a 

number of small quadratic residues, whereby new quadratic 

residues may be obtained. The method is based on the 

following Lemma. 

Lemma 2.4: 

If m = n e a 2 is a quadratic residue mod N, where a and 

n are integers, then n is a quadratic residue mod N. 

Proof: 

since m = n e a 2 is a quadratic residue the congruence 

2x =n e a 2 (mod N) has a solution, say x = xo• Thus x;=n e a 2 
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(mod N) ••. (*) hold. By definition, gcd(a2 n,N) = 1, thus 

gcd(a2 , N) = 1. Thus, a has an inverse mod N: that is, there 

exists an integer b such that a e b=l(mod N). By mUltiplying 

both sides of (*) by b 2 , we obtain b 2x;=n(a e b)2 (mod N). 

Thus (xo e b)2=n (mod N). Hence n is a quadratic residue mod 

N. 

Example: 

m = 60 = 15 e 22 is a quadratic residue mod 77 because 

262 = 60 (mod 77). By removing the square factor 22 from m 

we obtain n = 15 and thus by the lemma, 15 is a quadratic 

residue mod 77. In fact, since b = 39 is the inverse of 2 

mod 77, (26 e 39)2 = 15 (mod 77). 

We now assume that we have an initial set of small 

quadratic residues which can be completely factorized. These 

quadratic residues can then be combined easily by 

mUltiplication and removing the square factors to yield new 

quadratic residues. 

It remains to specify how the initial set of quadratic 

residues mod N is formed. Legendre used the continued 

fraction expansion of IN to find the initial set of 

quadratic residues. However, before we describe how the 

initial set of quadratic residues is found, we must answer 

the third question. The answer is based on the following 

version of the law of quadratic reciprocity. 

Theorem 2.5: 
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Let q be a fixed positive odd prime, and let prange 

over the odd positive primes ~ q. Every such p has a 

unique representation in exactly one of the two forms 

(1) p=4qk±a with k an integer, O<a<4q, a=l (mod 4). When 

(1) holds, (2) (~)=(~). Thus the p for which (~) = 1, are 

exactly those p =± a (mod 4q), for all a such that 

(3) 0 < a < 4q, a = 1 (mod 4), (~) = 1. The a's satisfying 

(3) are given by the smallest positive remainders (mod 4q)
 

of the odd squares 12 , 32 , 52, ••• , (q - 2) 2.
 

Proof:
 

By the division algorithm, there are unique integers 

k', a' such that p = 4qk'+ a', where 1s:a l <4q. Clearly a' is 

odd. If a' = 1 (mod 4), (1) holds with the plus sign and 

with k = k', a = a'. If a' = -1 (mod4), (1) holds with the 

minus sign and k = k' + 1, a = 4 q - a'e Any other value of 

k than k' and k' + 1 would yield lal~4q. To verify (2), let 

us suppose that the plus sign is correct in (1). Then p ­

1 (mod 4) and p = a (mod q), making (~) =( ~) =( ~) . I f the 

minus sign is correct, the p = -1 (mod 4) and p =-a (mod 

q), so either q = -1 (mod 4), and (~)=-(~)=-(-:)=(~), or q 
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~ l(mod 4), and (~)=(~)=(-:)=(~). Finally, if (~)=1, there 

is an integer b such that a == b2 (mod q) and 1~b~q-1, 

whereby also a == (q - b)2 (mod q) and 1~q-b~q-1. Since 

either b or q-b is odd-say b'-we have a == b 2 (mod q), 

1~b'~q-2, b'==l (mod 2). But, likewise, a==1==b 2 (mod 4), so 

that a==b 2 (mod 4q). This completes the proof. 

Example 1: 

We illustrate the theorem by taking q = 3. in which 

case the only integer satisfying the condition (3) is a = 1, 

so that 3 is a quadratic residue of the primes p = 12k ± 1. 

Every other odd number is of one of the forms 12k ± 3 or 

12k ± 5, and no prime except 3 occurs in the progressions 

12k ± 3. Hence (~) is completely determined by the 

equations (.l)={ 1 it p=±l (mod 12)
p -1 ~f p=±5 (mod 12) . 

Example 2: 

Let q = 17. Consider the squares 12, 32, 52, 72, 92, 

112, 132, 152, which reduce (mod 4-17) to 1, 9, 25, 49, 13, 

53, 33, 21. Thus, 17 is a quadratic residue of primes of 

the forms 68k ± 1, 9, 13, 21, 25, 33, 49, and 53. 

Determining the primes of which a composite number is a 

quadratic residue is somewhat more complicated. We 

illustrate this in the next example. 
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Example 3: 

Let us find the primes p such that (~)=1. 

(~)=1 if and only either (~)=(~)=1 or (~) =(~) =-1. 

(~)=1 if and only if p=±l (mod 8). 

(~)=1 if and only if p=±l (mod 12). 

(~)=-1 if and only if p=±3 (mod 8). 

(~)=-1 if and only if p=±5 (mod 12). 

Thus we have the following pairs of congruences, each pair
 

to be solved simultaneously.
 

p=l (mod 8) p=-l (mod 8)
 

p=l (mod 12) p= -1 (mod 12)
 

p=l (mod 8) p=-l (mod 8)
 

p= -1 (mod 12) p=l (mod 12)
 

p=3 (mod 8) p= -3 (mod 8)
 

p=5 (mod 12) p= -5 (mod 12)
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p=3 (mod 8) p=-3 (mod 8) 

p=-S (mod 12) p=S (mod 12). 

Four of these pairs are internally inconsistent, while the 

other that implies (~)=1 are given by p=±l, ±S (mod 24). 

The primes in the set of possible divisors {pi 2 ~p~ [v'NJ , m 

R p} where m R N have been extensively tabulated by Legendre 

[11] for small values of m. The primes in arithmetic 

progression for some values of m are given in table 2.1. 

We now describe how the continued fraction expansion of IN 

can be used to find small quadratic residues mod N. 

From Theorem 1.8 we have for every non-negative integer 

k, A;-NB;=(-1)k+1Qk+l. Thus,for every non-negative integer 

k, we have A; =(-1) k+l Qk+l (mod N). Thus, (-1) k+l Qk+ 1 is a 

quadratic residue mod N. We note that the Qk's are small 

compared to N. Recall that the Qk's satisfy the following 

inequality O<Qk<2IN for each k. 

Table 2.1 

m The form of p m The form of p 

-1 4k + 1 
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-2 8k + 1, 3 2 8k ± 1 

-3 6k + 1 3 12k ± 1 

10k ± 1 

24k ± 1, 5 

-5 20k + 1, 3, 7, 9 5 

-6 24k + 1, 5, 7, 11 6 

Example 1: 

Let N = 1537. 

AkThe sequence {Qk}' together with x k and the convergentes 
Bk 

generated by the continued fraction expansion of V1537 , are 

given in table 2.2: 

Since m = -16 (-1) (4 2 ) is a quadratic residue mod 1537, then 

m = -1 is also a quadratic residue mod 1537. Thus the prime 

factors of N = 1537 are the form p = 4k + 1, k ~ 1. We now 

apply the trial division algorithm with trial divisors the 

primes of the form 4k + 1 up to P = 37. The set of trial 

prime divisors are {5, 13, 17, 29, 37}. Since 2911537 then 

29 is a prime factor of 1537. Since 1537 =53 is prime then 
29 

the prime factorization of N = 1537 is 1537 = 29-53. 
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Table 2.2 

k P +IN
X = II 

k Ok 

Ak 
Bk 

A; -NB; Ok+ 1 

0 1x o=39 +-
Xl 

39 -
1 

39 2-1537 °12 = -16 01 =16 

1 1 
Xl =4 +­

x2 

157- ­
4 

157 2-1537 °4 2 = 57 O2 = -57 

2 _ 1 
X 2 -1+­

x3 

196- ­
5 

196 2-1537 °52 =-9 03 =9 

3 1x 3 =7 +­
x 4 

1529 1529 2-1537 °39 2 =64 04 =64 
39 

In summary, Legendre's factoring method of a composite 

integer N consists of the following steps: 

1.	 Form a set of initial quadratic residues mod N by 

expanding IN in a continued fraction. 

2.	 Reduce the set of quadratic residues to obtain square 

free residues. Notice that a complete prime 

factorization of each initial quadratic residue is 

necessary to perform the reduction. 

3.	 Use the quadratic residues to determine the arithmetic 

progression and hence the form of prime divisors of N. 
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4.	 Use the trial division algorithm to find the actual 

prime divisors left over from the elimination process. 

Example: factor N = 1711.
 

The continued fraction expansion of J1711 yields the
 

following table of sequences {Qk} and {Ak }.
 

Table 2.3 

k of 1 Ak 
(-1) k+1 Qk+

1 Factorization of 

(-1) k+1 Qk+1 

1 41 -30 -1-2-3-5 

2 83 45 32 -5 

3 124 -23 -1-23 

4 331 57 3-19 

5 455 -6 -1-2-3 

6 -598 5 5 

7 -558 -38 -2-19 

8 -3 9 3-3 

since m = 5 is a quadratic residue of N, the prime 

divisors of N are the form 10k ± 1. This reduces the trial 

divisors in the set {pI2~P~41} to only {11, 19, 29, 31, 
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41}. Then, the trial division algorithm gives the factor p 

1711 =59.= 29 of N = 1711 and the other factor is We may
29 

use also the fact that m = -6 is a quadratic residue of N to 

restrict the possible prime divisors of N to {5, 7, 11, 29, 

31} and then use the trial division algorithm to find the 

actual prime divisors of N among the primes in the set {5, 

7, 11, 29, 31}. However, the two lists of primes restrict 

the possible prime divisors of N less than [IN] +1 to {II, 

19, 29, 31, 41} n{5, 7, 11, 29, 31} = {II, 29, 31}. 

2.3 Gauss's Faotoring Method: 

Gauss' factoring method is very similar to that of 

Legendre, discussed in section 2.2. It differs only in the 

procedure for finding small quadratic residues of N. Like 

Legendre's method Gauss' method is a sort of exclusion 

method which, by finding more and more quadratic residues 

mod N, excludes more and more primes from being possible 

factors of N. Then one may apply the trial division 

algorithm by those remaining possible factors to factor N. 

Gauss' factoring method consists of two steps. The 

first step is to find many small quadratic residues mod N. 

The second is to use these quadratic residues to reduce the 

number of trial divisors in the trial division algorithm. 

How can we find many small quadratic residues? To find a 

quadratic residue mod N, simply take an integer and square 

it and then reduce the square (mod N). In general this 
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method leads to big quadratic residues mod N when N is 

large. However, we need to find small quadratic residues 

mod N in order to exclude a number of primes as possible 

divisors of N. Gauss used the following method to find 

small quadratic residues mod N: 

If a is a quadratic residue mod N, then the congruence 

x 2 = a (mod N) has a solution, and x2 - a = kN for some 

integer k or a = x2 - kN. Thus, we find small quadratic 

residues mod N, by letting x close to [~. As the product 

of two quadratic residues is again a quadratic residue, we 

can combine these quadratic residues by multiplication and 

removing the square factors to yield new quadratic residues. 

In general, we want the value of a to be such that lal 

< 50,000 and the prime factors of a less than 100. Let us 

illustrate the method of finding quadratic residues by an 

example. 

Example: 

Let N = 12007001 

Consider the equation a = x 2 - kN 

Our goal is to choose values of x close to [~ for 

different values of k such that lal=lx 2 -kNI<so,ooo and the 

prime factors of a are less than 100. 

For k = 1 we have [1m = 3465. Take x = 3459 then a = 

(3459)2 - 12007001. Thus a = -42320 = (-1) -24 -S-23 2 • For x 

= 3460, a = -35401 has no prime factor less than 100. Thus 
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we discard this x. For x = 3461, a = -1-26 -5-89. For x =
 

3463, a = -1-2 3 -31-59, and
 

x = 3464, -a=5-23-67
 

x = 3465 -a=-1-2 3 -97.
 

For k = 2, 

[v'KNJ = [.,124014002] =4900. 

Let 

x = 4898 -a=-1-2-3 3 -19-23 

x = 4900 -a=2-3-23-29 

For k = 3, 

[v'KNJ = [.,136 02100 3] =6 0 01 

Let 

x = 6003 -a=2-3-41-61 

For k = 5, 

[v'KNJ = [.,16003505] =7748 

Let 

x = 7745 -a=-1-2 2 -3-5-7 2 -17 

For k = 8, 

[v'KNJ = [.,196056008] =9800 

x = 9788 -a=-1-3-11-13-83 

For k = 10, 

[y'KN] = [.,1120070010] = 109 57 

x = 10957 -a=-1-7 2 -17 2 
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For k = 11, 

[kN] = [1132077011] =11492 

x = 11491 ~a=-1·2·32·5·13·29 

x = 11492 ~a=-1.3·41·89 

For k = 14, 

[kN] = [1168098014] = 12965 

x = 12964 ~a=-1·2·3·7·19·41 

x = 12965 ~a=-1·3·31·73 

for k = 17, 

[kN] = [1204119017] =14287 

x = 14287 ~a=-1·23·34 

for k = 19, 

[kN] = [1228133019] = 15104, x = 15105 

~a=2·11·19·67 

for k = 21, 

[kN] = [1252147021] =15879, x = 15879 

~ a = -1.2 2 • 3 • 5·73 

At this point we remove the square factors from the 

quadratic residues we obtained in order to find new ones. 

a=-1·24 ·5·232 gives a=-5. 

a=-1·7 2·17 2 gives a=-l. 

As the product of two quadratic residues is itself a 

quadratic residue, the above quadratic residues when 

multiplied gives the quadratic residue a = 5. 
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a=-l e Z6e 5 e 89 and a = -5 gives a = 89. 

a=-l e Z3e 34 gives a = 2. 

a = 2 and a=Z 3 e 97 gives a = 97. 

a = - 3 e 3 1 e 7 3 and a = -1 e Z2 e 3 e 5 e 7 3 gives a = 3 1 • 

a=-Z3 e 31 e 59 gives a = 59.
 

a=Z e 3 e 41 e 61 and a=-3 e 41 e 89 gives a = 61.
 

Thus, we have the following set of small quadratic 

residues (mod 12007001); a=-1,±Z,±5,±31,±59,±61,±89 and 

±97. 

The second step in Gauss' method is to use the 

quadratic residues we found to reduce the number of possible 

prime factors of N. Since a = -1 is a quadratic residue mod 

N, only primes of the form p = 4k + 1 can divide N. a = 2 

gives p = 8k ± 1. However, every prime of the form p = 4k 

+ 1 is also of the form p = 8k + 1 = 4(Zk) + 1. Thus, only 

primes of the form p = 8k + 1 are possible divisors of N. 

Since a = 5 is a quadratic residue mod N, this restricts the 

prime divisors of N to primes of the form p = 10k ± 1. 

Thus, a prime divisor of N must satisfy p = 8k + 1 and p = 

10k + 1 for some k. If P = 8k + 1 and p = 10k + 1 then p 

must be of the form p = 40k + 1. If P = 8k + 1 and p = 10k 

-1 then p must be of the form p = 40k + 9. 

Now we determine which of the primes of the two forms p 

= 40k + 1 and p = 40k + 9 below [IN] = [JIZ007001] = 3465 has 
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as a quadratic residue, all of the quadratic residues mod N 

that we obtained, namely, a=±2, ±31,±59, ±61,±B9, ±97 by 

computing the value of Legendre's symbol (;). As soon as we 

find (;)=-1 for a prime p, that prime is eliminated as a 

possible divisor of N. This procedure eliminates about half 

of the remaining primes for each new value of a that is 

used. The only primes below 3465 of the form p = 40k + 1 or 

p = 40k + 9 such that (~)=+1 are: p = 41, 281, 521, 769, 

1249, 1289, 1321, 1361, 1409, 1489, 1601, 1609, 1721, 2081, 

2281, 2521, 2609, 2726, 3001, 3089, 3169, 3209, 3449. 

We now compute the Legendre's symbol (~) for these primes. 

(~)=+1 for p = 41, 281, 521, 1361, 1609, 2081, 2729, 3001, 

3089, 3449.
 

By computing (~) for the above primes we find (6;)=+1 for
 

p = 41, 1361, 2729, 3001, 3089. Finally, by computing (~), 

we find (~)=+1 for p = 3001. Thus, P = 3001 is a prime 

factor of N = 12007001. In fact, 12007001 = 3001-4001. 
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Gauss' factoring method becomes more complicated and 

tedious when the number of known quadratic residues mod N is 

large, say 100 or more quadratic residues are known. other 

factoring methods will be presented in later chapters of 

this study, which like Gauss' factoring method, start by 

finding many small quadratic residues of N and breaking 

these up into prime factors. But, unlike Gauss' method, the 

quadratic residues in these methods are not used to restrict 

the possible prime factors of N. Instead, they are used to 

2find nontrivial solutions to the congruence x = y2 (mod N). 

Three factoring methods, namely, the continued fraction 

method, the quadratic sieve method, and the number field 

sieve will be presented in this study, and are based upon 

the fact that any time we are able to obtain a nontrivial 

2solution to the congruence x = y2 (mod N), we immediately 

find a factor of N. 

2.4 Fermat's Factoring Method: 

In this section, we present a very important 

factorization technique, known as Fermat factorization, 

which was discovered by Fermat in 1643. Although the method 

is not always efficient, it is of theoretical as well as 

some practical interest. Fermat's idea is employed in some 

of today's most powerful factoring algorithms, the quadratic 

sieve and the number field sieve algorithms. Fermat's 

method is based on the following Lemma. 

Lemma 2.6 
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Let N be a positive odd integer. There is a one-to-one 

correspondence between factorization of N in the form N = 
2ab, where a~b)O, and representations of N in the form x ­


y2, where x and yare nonnegative integers.
 

Proof:
 

Let N be an odd positive integer and N = a b be a 

factorization of N into two positive integers. Thus, N can 

be written as the difference of two squares 

2 (a +b) (a-b)N = ab = x - y2, where x = and y = are both 
2 2 

integers since a and b are both odd. 

Conversely, if N is the difference of two squares, say 

2N = x - y2, then we can factor N by noting that N = ab, 

where a = x + y and b = x - y. Moreover, if N = (x + y) (x ­

y) = z2 - w2 then z = x and w = y. 

Suppose N > 1 is an odd, non-square integer, so we do 

not have to worry about the trivial exceptions. Thus, N = 

aeb for some integers a and b where l~a<b<N. From Lemma 

2.6, we know there exists nonnegative integers x and y such 

2that N = x - y2 = (x - y) (x + y), a factorization of N. 

The problem of factoring N is then reduced to finding 

2nonnegative integers x and y such that x - y2 = N. 

Obviously, x must be greater than /.N. Thus we start with x 

equal to the smallest integer greater than or equal to the 

square root of N. That is; we start with x = [/.N] + 1. 
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2Then we consider z = x - N and check whether this number is 

2 2a square. If it is, we have y2 = x - N, hence N = x _ y2 

and we are done. otherwise, we increase x by 1, i.e. we try 

x = [IN] + 2, and compute ([.(FfJ + 2) 2 - N, and test whether 

this is a square, and continue to search for a square among 

the sequence of integers ([IN] +3)2_N, ([.(FfJ +4)2 -N, ...• 

This procedure is guaranteed to terminate, since the trivial 

factorization of N = N·l leads to the equation 

N=( N; 1r-( N; 1r, in which case N is prime. 

We illustrate the above procedure by examples. 

Example 1: 

Let N = 2027651281. 

[IN] =45029 •
 

2
Thus, we start with x = 45030 and compute z = x - N = 

49619, which is not a square. Then successively we compute 

2x - N for x = 45031, 45032, ... until a square is found. 

The calculations are given in the table below: 

Table 2.4 

X x2 - N X x2 - N X x2 - N 

45030 49619 45035 499944 450340 950319 

45031 139680 45036 590015 45041 1040400 

(square) 
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45032 229743 45037 680088 

45033 319808 45038 770163 

45034 409875 45039 860210 

From the table we have 1040400 = (1020)2, then y2 = (1020)2. 

Hence N = (45041)2 - (1020)2 = (45041 - 1020) (45041 + 1020)= 

44021 • 46061.
 

Example 2: Factor N = 44021?
 

Solution: [1m =209. Thus we start with x = 210, and 

2compute z = x - N. z = (210)2 - 44021 = 79 which is not a 

2perfect square. Then successively we compute x - N for x = 

210, 211, 212, ... until a square is found. The calculation 

is given in the table below. 

Table 2.5 

X x2 - N X x2 - N 

210 79 215 2204 

211 500 216 2635 

212 923 217 3068 

213 1348 218 3503 

214 1775 219 3940 

These calculations terminate when N and this leadsz =( N;l r­
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to the equation N = (N;lf-(N;lf. 

Le, 44021 = (44~22f-(44~20f =(22011)2-(22010)2 =44021. 

Thus N is a prime. 

Remark: 

In Fermat factorization one can rule out most of the 

non-square values of x2 - N by looking at the last two 

digits of x2 - N. The possible final two digits of a 

perfect square contain the following 22 combinations: 00, 

01, 04, 09, 16, 21, 24, 25, 29, 36, 41, 44, 49, 56, 61, 64, 

69, 76, 81, 84, 89, and 96.
 

In Example 1, above, the only possible perfect squares are
 

499944 and 1040400. However, 499944 is not a square because
 

it is divisible by 3 but is not divisible by 9.
 

We are now going to determine how much work is required 

to factor an integer N. If N = pq, with P < q and p and q 

are primes, then the factorization of N will be achieved 

when x = y = Since the starting value of xp;q and q;p.
 

N
is approximately IN and q = for x to increase from 
P 

p+N
 

[IN] +1 to p+q will take approximately 2 p -IN= ({N- p) 2
 

2 2p 
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steps. In particular, Fermat Factorization is most 

effective when x is close to /N. That is, when p and q are 

almost equal factors. In this case, the amount of work 

needed to find a factorization is small. 

If N = ab, where a < b are not close in value, then one 

can attempt to find some mUltiplier k such that Nk admits a 

factorization into two very close factors. If we choose k 

== b, then Nk will have two factors a-k==b and b which are 
a 

close. However, how can we find k when we do not know the 

b?size of We could choose numbers at random, hoping to 
a 

produce an a and b of about the same size, or possibly 

1 

successively try k = 1, 2, ••• , [N J ] and apply the Fermat 

Factorization to N-k, for each value of k. Another method 

is to choose a highly composite integer (i.e. an integer 

containing many factors of different sizes) hoping that the 

factors of k will combine with the factors of N to produce a 

and b of about the same size and then we can apply Fermat 

Factorization to N-k. Suitable choices of a highly 

composite integer k could be factorial numbers 

1-2-3 .. . m=m!. Another systematic method of choosing m is 

due to Lehman [12]. Lehman's method of choosing m makes the 

1 

time complexity of Fermat Factorization O(N3 ) . 
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Example: 

We shall illustrate the idea of mUltiplying N by an integer 

k to produce factors a and b of N of about the same size by 

an example. 

Let N = 64803 = 3-21601. Choose k = 7201, then 

N-k=21603-21601. Then apply Fermat Factorization to N-k. 

The idea behind Fermat's method led to several of 

today's most powerful factorization algorithms. Maurice 

Kraitchick, in the 1920's realized that a major saving of 

time could be accomplished if, instead of looking for x and 

2y satisfying x - y2 = N, we select x and y satisfying a 

2congruence x = y2 (mod N). Finding such a pair of integers 

x and y satisfying the above congruence no longer guarantees 

a factorization of N. It does mean that NI(X2 _ y 2) or 

NI (x-y) (x+Y). Thus, there is a chance that gcd(x-y, N) or 

gcd(x+y,N) will be a nontrivial factor of N. Kraitchick's 

approach for finding such pairs ( x, y) was rather ad hoc. 

A few years later, in 1931, D. H. Lehmer and R. Powers 

[13] showed how to find these pairs systematically by using 

continued fractions. Their algorithm, however, was not 

practical until the coming of high speed computers. with 

the advance in computer technology in early 1970, 

mathematicians realized that the Lehmer-Powers algorithm was 

worth re-examination. Daniel Shank [24] was one of the 

first to come up with a practical algorithm using Lehmer­
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Powers and Kraitchick's ideas. Shank's method is called the 

square forms factorization. In 1975, John Brillhart and 

Michael Morrison [16] modified the Lehmer-Powers method to 

one of the fastest methods of factoring large integers that 

is still in use today. The Brillhart-Morrison method is 

called the continued fraction method and will be presented 

in Chapter 3. In 1981, Carl Pomerance [18] developed a 

different method called quadratic sieve, for finding x and y 

and it will be presented in Chapter 4. In 1990, John 

Pollard and others [14] developed the number field sieve, 

which will be presented in Chapter 5. 
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Chapter 3 

The continued Fraction Method 

In this chapter, the continued fraction method 

(commonly known as CFRAC method) for factoring large 

integers is described. The method was discovered by John 

Brillhart and Michael Morrison in 1975 [16]. The original 

idea of the continued fraction method is actually due to D. 

H. Lehmer and R. E. Powers [13] and it draws much of its 

inspiration from Legendre's factorization method and an idea 

of Maurice Kraitchik [10]. 

3.1 The Kraitchik Factoring Scheme: 

The continued fraction method is one of several 

factoring methods that utilize an idea of Kraitchik. If N 

is the number to be factored, then the idea is to multiply 

congruences u = v (mod N), where u ~ v and complete or 

partial factorizations (depending on the method) have been 

obtained for u and v, so as to produce a square congruence 

2x = y2 (mod N). utilizing this approach, one stands a good 

chance that the greatest common divisor, gcd(x-y,M or 

gcd(X+y,Mare nontrivial factors of N. These factoring 

methods have several phases: 

1.	 Generation of Congruences u = v (mod N) . 

2.	 Determination of the complete or partial factorization 

of u or v for some of the congruences. 

3.	 Determination of a subset of the factored congruences 

64 



which can be multiplied to produce a square congruence 

2x ==	 y2 (mod N). 

4.	 The computation of gcd (x-y, N) and gcd (x+y, N) by the 

Euclidean algorithm. 

The difference between these factoring methods lies in 

how the congruences u == v (mod N)are generated and the way 

the u's or v's are factored. For example in the continued 

fraction method, the congruences u ==v (mod N) are obtained 

as in Legendre's factorization method, from the continued 

fraction expansion of [KN. Historically, the situation in 

the continued fraction method as well as the other factoring 

methods that utilized Kraitchik's idea is much the same as 

for Pollard's (p - 1) method. The underlying ideas have 

been known for quite a long time and occasionally have been 

applied to specific cases, in particular by D. H. Lehmer and 

R. E. Powers [13] and by Kraitchik himself [10]. The 

current version of the continued fraction method is due to 

Brillhart and Morrison who have systematically explored the 

potentials of these ideas and have constructed a good 

algorithm which has been put to extensive use on computers 

in the past twenty years. Before giving a full description 

of the continued fraction method, we need to establish a few 

preliminary results. 

For	 every integer N, prime or composite, the square 

2congruence x == y2 (mod N) has the trivial solutions x ==± y 
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(mod N). However, if N is composite and not a power of a 

prime, the square congruence also has other non-trivial 

solutions, which can be used to factor N. Assume that N is 

composite and we have a pair of integers x and y such that 

x2 = y2 (mod N) and x _± y (mod N); that is, x and yare 

2 2nontrivial solution. Thus we have x = y2 (mod N), or x ­

y2 = (x - y) (x + y) = 0 (mod N). Thus NI (x-y) (x+Y). But 

since x -± y (mod N), then N!(x+y) and N!(x-y). Hence 

gcd(x+y,N) 'Jill or Nand gcd(x-y,N) 'Jill or N. Thus, 

gcd(x+y,N) and gcd(x-y,N) are proper factors of N. 

Example: 

Suppose we want to factor N = 4633. Note that x = 118 

and y = 5 is a non-trivial solution to the square congruence 

x2 = y2 (mod 4633). Thus, gcd(118+S,4633) and 

gcd(118-S,4633) are factors of N. By the Euclidean 

algorithm one can find gcd(118+S,4633) =41, and 

gcd(118 -5,4633) =113. Hence 4633 = 41 • 113. 

The reader might wonder where the solution x = 118 and 

y = 5 came from? As we mentioned earlier, several very 

important factorization methods make use of square 

congruences. However, they differ only in the way in which 

2the solutions to the congruences x = y2 (mod N) are found. 

Next, we want to show that if N is composite and not a power 

of prime, then the square congruence has non-trivial 

solutions. To prove this fact, we use the following Lemma. 
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Lemma 3.1: 

Let P be an odd prime and a an integer not divisible by 

P. Then the congruence xl = a (mod P) has either no 

solutions or exactly two incongruent solutions (mod P) • 

Proof: 

If xl = a (mod P) has a solution, say x = xo' then x = 

-xo is a second incongruent solution since (-XO)l = x~ = a 

(mod P). We note that Xo • -xo (mod P). For, if xo=-xo (mod 

P), then 2xo = 0 (mod P) i.e., pl2xo • This is impossible 

(since P is odd and PIxo since x~ = a (mod P) and PIa). To 

show that there are no more than two incongruent solutions, 

assume that x = Xo and x = x, are both solutions of xl = a 

(mod P). Then we have x~ =xt = a (mod P), so that 

x~-xt= (XO-xl ) (XO+xl ) =0 (mod P). Hence pi (XO+xl ) or 

pi (Xo -Xl) so that Xl =X (mod P) or Xl =Xo (mod P) .o 

Therefore, if there is a solution of x 2 =a (mod P), there 

are exactly two incongruent solutions. 

Corollary: 

The congruence x 2 =a 2 (mod P) for any prime has 

precisely two solutions (mod P), namely x=±a (mod P). 

Now, consider the congruences U 2 :y2 (mod P) and U 2 =y2 (mod 

q), where y is considered as a fixed integer P and q are two 
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distinct odd primes with Ply and qly. Thus, the congruence 

X 2 ==y2 (mod pq) has four solutions, which we may find by 

combining in four ways the two solutions (mod P) and the two 

solutions (mod q) : 

u == y (mod P)} . . 
{u==y (mod q) glvlng x=y (mod Pq) , 

u == -y (mod P)} ..
{u == -y (mod q) glvlng x=-y (mod Pq) , 

u=y (mOdP)} .. 
{ u==-y (mod q) glvlng x=z (mod Pq) , 

u =-y (mod P)} . . 
{ u=y (mod q) glvlng X= -z (mod Pq) • 

Thus, if N = Pq, the congruence X 2=y2 (mod N) has four 

solutions, namely, the trivial solutions x = ± y (mod N) , 

and one more pair of solutions x =± z (mod N) . 

Example: 

Let N = 77 = 7 • 11. Consider the congruence X 2 =y2 

(mod 77). u 2=(36)2 (mod 7) has two solutions (mod 7), 

namely u==±36 (mod 7). u=(36)2 (mod 11) has two solutions 

(mod 11), namely u=±36 (mod 11). By combining these 

solutions we have 

u =36 (mod 7) }
{u==36 (mod 11) - x=36 (mod 77) 

u=-36 (mod 7) }
{ u==-36 (mod 11) - x=-36 (mod 77) 
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u == 36 (mod 7) }
{ u == -36 (mod 11) - X== 8 (mod 77) 

U==-36 (mod 7)}
{ u==36 (mod 11) -x==-8 (mod 77) 

Thus x = 36 and y = 8, satisfying the congruence X 2 ==y2 (mod 

77) • 

If N has more than two prime factors, the method still 

works in a similar way since the above reasoning can be 

applied to one of the prime factors p and the 

corresponding co-factor a = -N , which in this case will be 
p 

composite. 

3.2 The continued Fraction Algorithm: 

We are now ready to present the continued fraction 

algorithm. First, we give an outline of the algorithm. 

Let N > 1 be an odd, composite integer that we seek to 

factor. The algorithm has four major steps: 

step I: The Expansion step. 

In this step, the regular continued fraction expansion 

of IN or /KN for some suitably chosen integer k > 1 is 

computed. Using the notations of Theorem 1.6, we have: For 

each value of i, ls.is.No ' we have At-kNBt=(-1)i+10i + 1 , and 

hence At == (-1) i +10i +1 (mod kN), where Ai is the ith 
Bi 

69
 



convergent of /KN. Each pair of positive integers (Ai,Oi+l) 

on the last congruence is called an "A - Q pair". 

step II: Finding square sets (or s-sets) 

In this step we use some of the A-Q pairs generated in 

step I to form certain subsets of integers, called square 

sets or s-sets, each having the property that II
m 

(-1) 
i 
jOi 

. 1 jJ= 

is a square. If no s-set can be found, we return to step I
 

to expand /KN further.
 

step III: Finding solutions to X 2 =y2 (mod kN).
 

Each s-set found in step II can be used to find a 

solution to the square congruence X 2 =y2 (mod kN). Let 

IIj.l (-1) i jOi = 0 2 • We set x = Ai ·Ai •... Ai (mod kN), where 
j 12. 

Ai are the integers corresponding to the Oi in the (A - Q)
j j 

pairs, we found in step I, for j = 1, 2, ... , m. The 

X 2 =AI
1 
.AI

2 
• ... ·AI

ID 
(mod kN), and since Al = (-1) i jO ; (mod kN) j.j 

m 
individually, then x 2 =AI·AI· ... ·AI= II Oi =0 2 (mod kN) is a 

1 2 ... 1 jJ= 

solution to the square congruence X 2 =y2 (mod kN). This 

congruence may fail to factor kN if x = y or x = -y (mod 

kN). In this case we use another s-set and if no s-set 
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gives a non-trivial solution to the congruence X 2 =y2 (mod 

kN), we can go back to step I and expand /KN further. 

step IV: Computing gcd (x- y, kN) and gcd (x+ y, kN) • 

The final step in the continued fraction method is the 

calculation of gcd (x- y, kN) and gcd (x+ y, kN) by the 

Euclidean algorithm for non-trivial solutions x and y. 

Then gcd(x-y, kN) =u and gcd(x+y, kN) =v are non-trivial 

factors of kN. 

We now explain steps I - IV, outlined above, and give 

examples to illustrate each step. 

step I: The Expansion step. 

Expand /KN for a suitably chosen integer k > 1, into a 

simple continued fraction by the following algorithm: 

The expansion algorithm generates the integers: An' 

Qn' b n, r n and Pn, n = 1, 2, 

(i) Set A_ 1 = 0, Ao = 1, Q-1 = kN, r o = g = [/KN] Po = 0 and 

Qo = 1. 

(ii)	 We use the following formula r n + 1=(g+Pn) mod Qn •.. (1) 

to generate r n for n ~ 1. 

_[ (g+ Pn ) ](iii) Compute b n, n~l from the formula b n + 1 - On •• (2) 

(iv)	 We use the recursion formula An+1 =bn+1An+An-1 (modkN) .. (3) 

to compute An (mod kN) for n ~ o. 

(v) We use the formula g + Pn + 1 = 2g - r n + 1 ... (4) to 
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generate g + Pn + 1 for n ~ o. 

(vi)	 We use the formula Qn+1=Qn-1+bn+1 (rn+1-rn) .•• (5) to 

generate Qn + 1 for n ~ o. 

(vi) Increase n by 1 and return to (ii). 

Remarks: 

1.	 Recall that the integers Qn and P satisfy then 

inequalities 0 ~ Pn<..[I<N and 0 <On <2..[I<N for n ~ o. Thus, the 

Qn's	 and Pn's are small compared to N. 

with little luck we may find a complete factorization 

of some of the Qn's by trial division. The pairs (~, Qn + 1) 

where Qn + 1 is too difficult to factor by trial division are 

simply discarded. In this way, only Qn + l' having small 

prime factors, are saved for later use to generate the s-

sets in step II. In factoring some of the Qn's an attempt 

will be made to choose a relatively small fixed set of 

primes, called the factor base, and use trial division to 

consider only those Qn's that have all of their prime 

factors in the factor base. Using a factor base to factor 

some of the Qn's saves trial divisions and discards pairs 

(An'	 Qn + 1) having little chance of entering an s-set. 

2.	 To calculate g = [~ one may use the following 

modification of the Newton-Raphson method: 

a.	 Choose a number X such that X > ..[I<N.o	 o 

b. For n ~ 0 successively compute xn + 1 = [x; +kN]
2xn 
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c . When xn + 1 - x n ~ 0, then g = xn + 1. 

3. Since the continued fraction expansion of IN is 

periodic, in those cases where the period of IN is too 

short for the method to succeed, it is necessary to 

choose an integer k > 1 and expand IKN. Selecting an 

integer k > 1, may result in including more small 

primes as possible divisors of Qn than by using k = 1. 

On the other hand, a large value of k will make the 

Qn's larger, hence will be less likely to factor 

completely. We want to balance these tendencies by 

choosing k wisely. R. Schroeppel suggests that the 

best choice of k is the value that maximizes 

~ 
p prime f(p, kN) log P = ~ log k, where 

f(p, kN) = the average number of times p divides A2 ­

(kN)B2 , when A and B are two relatively prime 

independent random integers and the sum is over all 

primes less than or equal to Pm' where Pm is the 

largest prime in the factor base. The function f(p, d) 

is given by 

E..:...! 
~ if d 2 mod p = 1 
p2-1f(p, d) ~ { 

E..:...! 
o if d 2 mod p = p - 1 
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For more details about the selection of k, see Knuth [7] and
 

Morrison and Brillhart[16].
 

Example 1:
 

Let N = 77 and k = 2. Table 3.1 contains the results 

of the expansion of /KN up to no = 21 in a simple continued 

fraction. g = [J2*77] = 12 

Example 2: 

Let N = 13290059 and k = 1. Then g = [J13290059] = 

3645. Table 3.2 contains selected results from the 

expansion of IN. 

Table 3.1 

n An mod N Qn b n r n P n Qn Factored 

-1 0 154 - - - -

1 

2 • 5 

3 • 3 

2 • 3 

3 • 5 

7 

3 • 5 

2 • 3 

0 1 1 - 12 0 

1 12 10 12 0 12 

2 25 9 2 4 8 

3 62 6 2 2 10 

4 57 15 3 4 8 

5 42 7 1 5 7 

6 64 15 2 5 7 

7 29 6 1 4 8 
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8 74 9 3 2 10 3 • 3 

9 23 10 2 4 8 2 

2 

3 

2 

3 

3 

2 

3 

2 

2 

3 

• 5 

1 

• 5 

• 3 

• 3 

• 5 

7 

• 5 

• 3 

• 3 

• 5 

1 

• 5 

• 3 

10 43 1 2 0 12 

11 54 10 24 0 12 

12 74 9 2 4 8 

13 48 6 2 2 10 

14 64 15 3 4 8 

15 35 7 1 5 7 

16 57 15 2 5 7 

17 15 6 1 4 8 

18 25 9 3 2 10 

19 65 10 2 4 8 

20 1 1 2 0 12 

21 
I 

12 10 24 0 12 

22 25 9 2 4 8 

Table 3.2 

n An Mod N Q
n b n r n P n Qn Factored 

-1 0 13290059 - - - -
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0 1 1 - 3645 0 1 

1 3645 4034 3645 0 3645 2-2017 

2 3646 3257 1 3256 389 3257 

3 7291 1555 1 777 2868 5-311 

4 32810 1321 4 293 3352 1321 

5 1713412 2050 5 392 3253 2- 52_ 41 

10 6700527 1333 3 748 2673 31-43 

22 5235158 4633 4 986 1134 41-113 

23 1914221 226 1 146 3499 2-113 

26 11455708 3286 31 138 1977 2- 31- 53 

31 1895246 5650 1 2336 2603 2- 52_ 113 

40 3213960 4558 1 598 2931 2-43-53 

52 2467124 25 1 2018 3628 52 

step II: Finding S-Sets 

In this step, we need to determine if any s-sets exist 

in the set of (An' Qn+') pairs generated in step I and to 

devise a procedure to find them when they exist. 

A simple procedure can be used to both determine if any s­

sets exist and to find them when they do exist. The idea is 

to factor some of the Qn's over a relatively small fixed set 
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of primes, called the factor base, so that some subset of 

the factored Qn's, when mUltiplied together will give an 

integer c whose square is congruent to a perfect square mod 

N. The details follow. 

Definition 3.1:
 

A factor base is a set B = {P" P2, ••• , Ph} of distinct
 

primes, except that P, may be the integer -1.
 

Definition 3.2:
 

Let B be a factor base. An integer a is called a B-number
 

(for a given N) if the integer c that is defined by the
 

conditions (i) and (ii) below can be written as a product of
 

numbers from B.
 

(i) c = a 2 mod N ( ii) _N~C~N. 
2 2 

The number c is called the least absolute residue of a mod 

N. 

Examples: 

(1) For N = 4633 and B ={-1, 2, 3} the integers a' = 67, a 2 

= 68, and a 3 = 69 are B-numbers for a;=67 2 =-144 (mod 4633) 

and -144 = -1 - 24
- 32 • 

a;=68 2 =-9 (mod 4633) and -9 = -1 _3 2 • 

a 3
2 =69 2 =128 (mod 4633) and 128 = 27 • 
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(2) For N = 1729 and B = {-1, 2, 5}, show that a 1 = 186 

and a z = 267 are B-numbers.
 

Let Z~ denote the vector space whose elements consists of h-


tuples of zeros and ones over the field of two elements Zz. 

We are given an integer Nand B ={P1 , Pz' •.• , Ph} as a 

factor base. Let a be a B-number then the least absolute 

residue of a (mod N) can be written as ll~-lP;j where a. j ~ 0 • 

We associate a vector £ (a)EZ~ with a where e(a) = (Q 1 (mod 

2), Q 2 (mod 2) ... , Q h (mod 2». Note that Q i (mod 2) = 

{~
 if a. i is even
 
if a. i is odd . 

Example: 

In example (1) above, the vector associated with a = 67 

is e(67) = (1, 0, 0), the vector associated by a = 68 is 

e(68) = (1, 0, 0) and the vector associated with a = 69 is 

£ (69) = (0, 1, 0). 

Suppose we have a set of B-numbers {a1 , a 2 , ••• , an} 

such that the corresponding vectors £i = (£i1' £i2' ••• , e ih ), 

i = 1, 2, ... , n add up to the zero vector in Z~. Let c i ' i 

= 1, 2, ... , n be the least absolute residues of a i (mod N). 

• h lIij
Wrlte each C i as c i =llj-1Pj , a.ij~O. Then 
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h h h h ED h
II c = IT ( II p~ij> = II p.i o 

1 
I1 ij.

1. , J , J The exponent E «1 of each , 
~=1 ~=1 )=1 )=1 i=l j 

P j on the right hand side is an even number. Thus 

h E1-1 11 ij 1 n 
n Pj is a square. I f we set Yj = - E «1 then 

j=l 2 i = 1 j 

nITh E10 (hIT YjJ21 ij ­
,Pj 

11 

-, Pj Set a = ,IT ai mod N (least positive 
)=1 )=1 ~=1 

h 
residue) and c = ,IT p]j mod N (least positive residue). We 

)=1 

have c j == at (mod N) for each i = 1, 2, ..., n, thus 

n n h Y n 
,n Ci == ,II at (mod N) and hence c 2 = ( ,II p/> 2 == ,IT at ==a 2 (mod 
~=1 ~=1 )=1 ~=1 

N) • 

When can we be sure that we have enough B-numbers a j so 

that the sum of the corresponding vectors €i is the zero 

vector? In other words, given a collection of vectors in 

z~, when can we be sure of being able to find a subset of 

them whose sum is zero? This happens if the set of vectors 

in the collection is linearly dependent over the field Z2. 

From linear algebra we know this is guaranteed to occur if 
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the number of vectors in the collection is larger than or 

equal to h + 1. Thus, at worst we will have to generate h + 

1 different B-numbers in order that (nidi) 2 == (nj P;1 j mod N. ) 2 

Of course, we may obtain a linearly dependent set of vectors
 

sooner.
 

Example:
 

Let N = 4633 and B = {-1, 2, 3}. Example (1) above 

demonstrates that the integers a, = 67 and a 2 = 68 are B­

numbers. The vectors corresponding to a, and a 2 are £,= (1, 

0, 0 ) and £ 2 = (1 , 0, 0). £, + £ 2 = (1 , 0 , 0 ) + (1 , 0, 0 ) = 

(0, 0, 0). We compute a = 67 - 68 (mod 4633) and obtain a = 
-77 (mod 4633). The least absolute residues of a, and a 2 as 

(mod 4633) are respectively 

c, = -144 = -1 - 2 4 - 32 

c 2 = - 9 = -1 - 3 2 • 

c, - c 2 = (_1)2 - 24
- 34

.. 1 1 = 1, 12 = 2 and 1 3 = 2. Thus c 

= -1 _2 2 _3 2 = -36. Note that (-77)2 = (-36)2 (mod 4633). 

Example: 

Let N = 4633 and B = {-1, 2, 3, 5}. The integers a, = 

68, a 2 = 69, and a 3 = 96 are B-numbers. The vectors 

corresponding to these numbers are respectively £, = (1, 0, 

0, 0), £ 2 = (0, 1, 0, 0) and £ 3 = (1, 1, 0, 0). £, + £ 2 + £ 3 

= (0, 0, 0, 0). We compute a = 68 - 69 - 96 (mod 4633) and 

obtain a = 1031 (mod 4633). The least absolute residues of 

a" a 2, and a 3 mod 4633 are respectively: 
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c 1 
:: -9 :: -1 .32 

C 2 :: 128 :: 2 7 

C 
3 

:: -50 :: -1 • 2 • 52 

.. C 1 • C 2 • C 
3 

:: (-1)2 .28 • 3 2 • 52 .. Yi=1, y2 =4, Y3=1, Y4=1. 

Thus, c :: -1 • 2 4 • 3 1 • 51 :: - 24 0 • a 2 :: ( 103 1) 2 == ( - 2 4 0 ) 2 

(mod 4633). 

In the examples we presented above, we were able to 

find a subset of vectors £j which sums to zero. However, if 

the factor base has many elements, that is, if h is large, 

we might not be able to find a subset of vectors £j which 

sum to zero just by inspection. In that case, we write the 

vectors £j as rows in a matrix and use a process similar to 

the Gaussian elimination method to find a linearly dependent 

set of rows. First, we write the vectors £j as rows in a 

matrix (E jj ). Then we start reducing this matrix to a form 

where, for each j, only one row has its left most 1 in 

column j. This is accomplished by performing the following 

for j :: 1, 2, ... , m. If more than one row has its left most 

1 in column j, we keep the first row with 1 in column j and 

add this row to the rows below it that have 1 in column j. 

As the reduction proceeds, we keep a record of the actual 

contents of each row as a sum of £j. When the reduction is 

completed, the reduced matrix is searched for occurrences of 

zero rows. Since each row is recorded as a sum of £1 these 

vectors are linearly dependent. We illustrate the procedure 

above by examples. 
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Exam:Qle:
 

Let B = {-1, 2, 3, 5 } •
 

a, = 15 = 3 • 5 ....e, = (0, 0, 1, 1)
 

a = 9 = 3 2 .... e = (0, 0, 0, 0)
2 2 

a 3 = -10 = -1 • 2 • 5 .... e 3 = (1, 1, 0, 1) 

a = 15 = 3 • 5 .... e 4 = (0, 0, 1, 1)4 

as = -6 = -1 • 2 • 3 .... e = (1, 1, 1, 0)s 

n -1 2 3 5 

1 0 

0 

1 

0 

1 

0 

0 

1 

0 

1 

1 

0 

0 

1 

1 

1 

0 

1 

1 

1 

2 

3 

4 

5 

starting in column 1, we keep row 3 unchanged and replace 

row 5 by the sum of row 5 and row 3 (note that we record 

rows are summed to the left). To get: 

n -1 2 3 5 

1 0 

0 

1 

0 

0 

1 

1 

0 

0 

1 

0 

1 

2 

3 
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4 0 0 1 1 

3+5 0 0 1 1 

since no row has its left-most 1 in column 2, we proceed to 

column 3. We keep row 1 and replace row 4 by the sum of 

rows 1 and row 4 and replace the new row 5 by the sum of 

this row and row 1 and get: 

n -1 2 3 5 

1 0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

1 

0 

0 

0 

0 

1 

0 

1 

0 

0 

2 

3 

1+4 

1+3+5 

No row has its left-most 1 in column 4. Therefore the 

reduction is completed, and the following sets of vectors 

are identified as linearly dependent: {e 2 }, {e" e4 } and {e" 

e 3 , e }. The question that remains to be answered in thiss

step is, how do we choose a factor base and B-numbers in 

factoring an integer N? The answer to this question is 

given by the following theorem. 

Theorem 3.2: 
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If in the continued fraction expansion of f.KN an odd 

prime p divides Qn' n ~ 1, then the value of the Legendre 

symbol ( kN) = +1 or o. 
p 

Proof: Suppose n ~ 1 and plQn. In this case the identity 

A;-l - kNB;-l =. (-1) nOn =. 0 (mod p) impl ies A;-l =. kNB;_l (mod p) . 

However, p cannot divide Bn _" since by corollary 1 to 

Theorem 1.4, gcd (An." Bn _ ,) = 1. Thus, (An_1)2 =.kN (mod 
Bn - 1 

p). That is, kN is a quadratic residue of p, hence (~ = 1 

if plkN and if plkN then (~ = o. This completes the 

proof. 

The factor base can now be chosen by selecting the 

smallest possible odd primes P2' P3' ••. , PB for which 

(~) = 0 or 1. In addition, the prime P, = 2 and Po = -1 

(that is needed to hold the sign of Qn) are always included 

in the factor base. The parameter B ~ [~]. 

The B-numbers are the Qn1s that factor completely over the 

factor base. The other Qn1s are discarded. 

Example: 
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Let N = 77, k = 2.
 

The following table contains some "A - Q" pairs o~ ­

continued fraction expansion of y2-77= y154, and ~_
 

vectors associated with each factored Qn.
 

Table 3.3 

n An mod 154 A~ mod 154 (-1) n Q
n Factorizatior 

of Qn 

1 12 144 -10 -1- 2- 5 - ­-

2 25 9 9 3- 3 - ­-­

3 62 148 -6 -1-2-3 · ­-

4 57 15 15 3- 5 - ­-

5 42 70 -7 -1- 7 

6 64 92 15 3- 5 - -- ­

7 29 71 -6 -1-2-3 · --

8 74 86 9 3- 3 - ­
- ­

9 23 67 -10 -1- 2- 5 · -- ­

10 43 1 1 1 

. (154) (154) 4Slnce -3- = -5- = 1 and B = [ytI54] = 3, we choo:. 

factor base B = {-I, 2, 3, 5}. By applying the 
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Gaussian elimination method to the vectors en we , 

obtain 

Table 3.4 

k e k k e k k e k 

1 110 1 1 110 1 1 110 1 

2 000 0 2 000 0 2 o 0 0 0 

3 1 1 1 0 1+3 o 0 1 1 1+3 o 0 1 1 

4 o 0 1 1 4 o 0 1 1 1+3+4 o 0 0 0 

5 o 0 1 1 5 o 0 1 1 1+3+5 000 0 

6 1 1 1 0 1+6 o 0 1 1 1+3+1+6 o 0 0 0 

7 o 0 0 0 7 o 0 0 0 7 000 0 

8 110 1 1+8 o 0 0 0 1+8 000 0 

After developing step III below, we will use the 

results of this example to find a complete 

factorization of N=77. 

step III: Finding solutions to x 2 =y2 (mod kN) 

Assume that in step II, above, we obtained a 

subset of "A- Q" pairs, such that Qi1' Qi2' ... , areQim 

completely factored over the factor base and their 

product is a square. That is, llj:l(-1)i jQij =Q2. Let x j 
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= Ai' j = 1, 2, ... , m be the corresponding value of 
:1 

o 

01 in the "A - Q" pairs. Set Y" = (-l}i:1 e Oi for j = 1,
:1 J :1 

2, ... , m. Thus, the set of pairs (x j ' Yj) satisfy the 

conditions ITj.1Yj=02 and X}=Yj (mod kN) for j = 1, 2, 

m 
••• , m. Let x = ,IT x j (mod kn), then x 2 =ITj.1X} • 

J=l 

Thus, x2 = Q2 (mod kN) is a solution to the square 

congruence x2 =y2 (mod kN). This congruence may fail 

to factor kN (if x = y (mod kN) or x = -y (mod kN». 

In this case, we would look for another square set 

until we either find one or determine that if no square 

sets exist. In the latter case, we would go back and 

continue to expand /FFJ to obtain more "A - Q" pairs. 

Example (Continuation of Last Example) 

From the previous example, (-1)2 Q2 = 9 is a 

2square. Thus, x, = 25, Y{ = 9 is a solution of x = y2 

(mod 154). 

other solutions of x2 =y2 (mod 154) are: 

y; = (-1)' Q, • (-1)3 Q3· (-1)4 Q4 = 900, 

x2 = A, • A3 • A4 mod 154 = 58 
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y; = (-1)' Q, • (-1)3 Q3 • (-1)6 Q6 = 900 

x3 = A, • A3 • A, • A6 mod 154 = 30 (trivial solution) 

y; = (-I)' Q, • (-1)3 Q3 • (-I)' Q, • (-1)7 Q7 = 3600 

x4 = A, • A3 • A, • A7 mod 154 = 38
 

Compute gcd(kN, x, - Y,) = gcd(154, 22) = 22 = 2 • 11
 

gcd(kN, x2 - Y2) = gcd(154, 28) = 14 = 2 • 7
 

gcd(kN, x4 - Y4) = gcd(154, 22) = 22 = 2 • 11
 

Thus 154= 2 • 7 • 11.
 

Example: Factor N = 1711, as another illustration of
 

the continued fraction algorithm.
 

step 1 The Expansion step: 

The following table contains the expansion of IN 

up to k = 12. 

Table 3.5 

k+l Ale QIe + , Factorization of (Q's) 

1 41 -30 -1 • 2 • 3 • 5 

3 • 3 • 5 

-1 • 23 

3 • 19 

-1 • 2 • 3 

2 83 45 

3 124 -23 

4 331 57 

5 455 -6 
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6 -598 5 5 

7 -558 -38 -1 • 2 

3 • 

-1 • 2 • 3 

-1 • 5 

-1 • 2 • 

29 

-1 • 2 • 

• 19 

3 

• 3 • 3 

• 5 

3 • 5 

3 • 5 

8 -3 9 

9 -582 -54 

10 -585 -25 

11 -41 -30 

12 -667 29 

13 336 -30 

The factor base = {-1, 2, 3, 5, 19} 

The Q's which are factored completely over the factor 

base are: -30, 45, 57, -6, 5 ,-38, 9, -54, 25, -30. 

The corresponding vectors to these Q's are the 

following. 

e, ( -30) = (1, 1, 1, 1, 0) e2 (45) = (0 , 0, 0, 1, 0) 

e 3 (57) = (0 , 0, 1, 0, 1) e4 (-6) = (1, 1, 1, 0, 0) 

e s (5) = (0 , 0, 0, 1, 0) e6(-38) = (1, 1, 0, 0, 1) 

e 7 (9) = (0 , 0, 0, 0, 0) e s (54) = (1, 1, 1 , 0,0) 

e 9 (25) = (0,0, 0, 0, 0) e,o(-30) = (1, 1, 1, 1,0) 

step II: Finding Square Sets (S-sets): 

In this step, we form the binary matrix whose rows 

are the above vectors, then apply a Gaussian 
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elimination method on this matrix to obtain zero-rows. 

n 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

-1 2 3 5 19 

1 1 1 1 0 

0 0 0 1 0 

0 0 1 0 1 

1 1 1 0 0 

0 0 0 1 0 

1 1 0 0 1 

0 0 0 0 0 

1 1 1 0 0 

0 0 0 0 0 

1 1 1 1 0 

The reduced matrix will be as follows: 

n -1 2 30 5 19 

1 1 1 1 1 o 

2 o o o 1 o 
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3 0 0 1 0 1 

1+4+2 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2+5 

1+3+6+2 

7 

1+8+2 

9 

1+10 

After the reduction is completed, the following 

sets of vectors are linearly dependent and lead to a 

solution to the congruence x2 =y2 (mod 1711). 

a) {£1' £2' £4} 

b) {£ 2' £s} 

c) {£1' £2' £3' £6} 

d) {£7} 

e) {£1' £2' £s} 

f) { £g} 

g) {£1' £10} 

step III: Finding solutions to Legendre's Congruence 

2x = y2 (mod N). 

Each s-set found in step II can be used to find a 

solution to the Legendre congruence x2 =y2 (mod N) • 
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1) set (a) . Let x = A, • A2 • A3 = 41 • 83 • 455 

5)2 _= 1548365. Let y2 = Q, • Q2 • Q3 = (-1) 2 (2 • 32 • 

Y = 90. Since 1584365 =-90 (mod 1711), this set does 

not lead to factorization of N. 

2) set (b). Let x = A2 • A6 = 83 • 598 = 49634 

Let y2 = Q2 • Q6 = (3 • 5)2 - Y = 15. Since 49634 = 15 

(mod 1711), this set also does not lead to 

factorization of N. The same results are obtained for 

sets c and d 

3) set (e). Let x = A,. A2 • As = 41· 83. 582 = 

1980546. Let y2 = Q, • Q2 • Q9 = -30 • 45 • -54 = 

(-1) (2 • 3 • 5) (3 • 3 • 5) (-1) (3 • 3 • 3) (2) = 

(-1)2 (2 • 33 • 5)2, then 

y = 2 • 33 
• 5 = 270. 

Since x • ± y mod N, we have now a great chance of 

factoring N. 

Step IV: computing gcd(x - y, N) or gcd( x + y, N): 

We apply the Euclidian algorithm to find gcd(x - y, N) 

x - Y = 1980276 

1980276 = 1157 • 1711 + 649 

1711 = 2 • 649 + 413 

413 = 1 • 236 + 177 

236= 1 • 177 + 59 

177 = 3 • 59 

Thus, gcd(1980276, 1711) = 59, which is a factor of 
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17111711. = 29. Therefore, 59 and 29 are the
59 

factors of 1711. 

3.3 Concluding Remarks: 

No one as yet has offerred a complete explanation 

as to why the continued fraction algorithm is able to 

factor large numbers so successfully. A heuristic 

analysis given by Wunderlich [25], following ideas by 

Schroeppel, indicates that the continued fraction 

algorithm will factor an integer N in 0 (NL(N) ) 

operations, where L(M ~~ 31~(lnM. Most of the time 

in the continued fraction algorithm is spent in the 

trial division of the Q and many importantn 

improvements to the algorithm have been given to speed 

up this phase of the algorithm. (See [7] and chapters 

4 and 5 of this paper.) Another important improvement 

to the continued fraction algorithm is the so called 

"early abort" strategy that has been developed by 

Pomerance [19]. It is based on the following idea. 

Most of the time is being spent in the factorization of 

the residues Qn. (This is why methods using sieves 
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such as the Quadratic Sieve algorithm and the Number 

Field Sieve are much faster than the continued Fraction 

algorithm.) If a Qn does not have any small prime 

factors, it is not likely to factor at all before the 

largest prime of the factor base has been reached. 

Thus, it may be advantageous to give up the trial 

division on Qn after a number of primes have been tried 

and the un factored portion is too large. Rather, we 

should abort the factoring procedure and generate a new 

residue Qn' 

Another important improvement to the algorithm is 

the use of the so called "large prime variation." It 

is based on the following idea. A large number of the 

residues Qn will not factor completely on our factor 

2base but will give congruences of the form x =Ep 

(mod N) where E does factor completely and p is a large 

prime number not in the factor base. A single such 

relation is, of course, useless. But, if we have two 

Q's with the same large prime p, say XfEE1P (mod N) 

and xt EE2p (mod N), we will have (X1 X2 )2 = E, E (mod
2P 

N), which is a useful relation. The question at this 

point, however, is how likely is it that getting the 

same p twice? It could be expected to get the same p 

twice is very rare! This, however, is not true, and is 
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another instance of the well known "birthday paradox." 

What it says in our case is that if k numbers are 

picked at random among the integers less than some 

bound B, then, if k > 18, there will be a probability 

larger than ! that two of the numbers picked will be 
2 

equal. 

Finally, the Gaussian elimination step over Z2 is 

a non-trivial task since the matrices involved can be 

very huge. However, these matrices are very sparse. 

Recently, some special techniques have been developed 

for such matrices. An example, the "intelligent 

Gaussian elimination" method developed by LaMacchia and 

Odlyzko [15]. 
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Chapter 4 

The Quadratic Sieve Method 

4.1 Introduction: 

In this chapter, we present one of the "big guns" of 

factoring large integers, namelY,the quadratic sieve 

algorithm. The quadratic sieve algorithm was developed in 

1981 by Carl Pomerance [18]. The basic idea of the 

quadratic sieve method is the same as in the continued 

fraction method. We find integers x and y such that x2 =y2 

(mod N) where x • ± y (mod N) by utilizing the Kraitchik 

factoring scheme. The difference between the continued 

fraction method and the quadratic sieve method is the way in 

which we find solutions to the square congruence x2 =y2 

(mod N). In the continued fraction method, we find small 

quadratic residues Qk (Qk<2/N) from the convergents	 A k of 
Bk 

the continued fraction expansion of /N and mUltiply some of 

them to obtain a square integer, while, by means of the 

congruence relations (-1) k+l Qk+l == A; (mod N), find integers x 

and y such that x2 =y2 (mod N). 

In the continued fraction method, most of the computing 

time in factoring an integer is spent on trying to factor 

the quadratic residues Qk by trail division of the primes in 

the factor base. What is particularly disadvantageous is 
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that most of the Qk do not factor completely within the 

factor base. For example, in factoring Fermat's 7th number 

F7 =2 27 +1, Morrison and Brillhart [16], after having 

computed 1,330,000 Qk's from the continued fraction 

expansion of J257F7 , found only 2059 Q's completely 

factored within the factor base. 

In the quadratic sieve method, the factoring of the 

quadratic residues is accomplished by a much faster sieving 

procedure that uses a faster operation than division, namely 

substraction. At the time the quadratic sieve algorithm was 

first published, it became the method of choice to factor 

large integers. In fact, it is considered to be faster than 

any previously published general purpose algorithm for 

factoring large integers. To support this idea, a running 

time analysis for the continued fraction algorithm and the 

quadratic sieve algorithm, under certain reasonable 

assumptions, has been done by Carl Pomerance [18]. He found 

that the running time estimate for the continued fraction 

algorithm is of order O(exp V21ogNloglogN), where N is the 

number to be factored and the running time estimate for 

factoring N by the quadratic sieve algorithm is of order 

O(exPV1.12S1ogNloglogN). 

4.2 Outline of the Algorithm 

As we mentioned in the introduction to this chapter, 
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the quadratic sieve method employs the Kraitchik factoring
 

scheme. Thus, there are four major steps to the quadratic
 

sieve algorithm.
 

step I: Generation of Congruences u =v (mod N).
 

This is accomplished by calculating a sequence of 

values of the polynomial Q(x) = (x + [IN])2 - N for small 

integers x, say Ixl < T, where T ~ [4JN]. Note that Q(x) is 

a quadratic polynomial with integer coefficients. For 

integer values of x, we have Q(x) = (x +[IN])2 - N = (x + 

[IN])2 (mod N), where the congruence is not trivial, i.e., 

it is not equality. This congruence plays the role of the 

congruence A;=(-1)k+1Qk+l (mod N) in the continued fraction 

method. 

step II: 

Determinetion of a complete factorization of some 

values of the Q(x) was computed in step lover a prescribed ­

but restricted - set of small primes called the factor 

base. The primes in the factor base consist of precisely 

those primes for which N is a quadratic residue, i.e., 2 and 

the odd primes, p, for which the Legendre symbol (in = 1 and 

p ~ B for some appropriate value of B. 

step III: 

In this step, we need to find a subset of the quadratic 
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residues Q(x) that completely factors over the factor base 

we obtained in step 2 and which, when mUltiplied, gives a 

square integer. Suppose that we could find a set of 

distinct integers x" x 2' •.• , x k such that Q(x,), ••• , Q(xk ) 

completely factored over the factor base and their product 

is a square, say Q(x,) Q(x2) ... Q(xk ) = y2. 

Since Q(xi ) == (xi + [/N])2 (mod N) for each i = 1, 2, 

... , k, the integers y and X = (x, + [/N]) (x2 + [/N]) ••• 

2(xk + _[/N]) satisfy the square congruence X2 == y (mod N). 

If X • ± Y (mod N) we proceed to Step IV. Otherwise, we 

find another subset of Q(x) whose product is a square. 

Step IV: 

In this step, we compute gcd(X - Y, N) and gcd(X + Y, 

N) by the Euclidean algorithm. Since X • ± Y (mod N), we 

have found proper factors of N, namely gcd(X-Y,N) and 

gcd(X+Y,N) . 

4.3 The Quadratic Sieve Algorithm: 

We are now ready to present the quadratic sieve 

algorithm in more detail. 

Step 1: 

In this step, we generate small quadratic residues of N 

by computing the value of the quadratic polynomial with 

integer coefficients Q(x) =(x + [/N])2 - N, for small values 

of x compared to N, say Ixi < T. How large should we choose 
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the parameter T? We must choose T large enough to generate 

many quadratic residues to be able to find a subset of 

which, when mUltiplied, produces a square. Heuristics 

suggest we choose T ~ [41N ] , but this is on1y a very rough 

guide. The choice of T depends of course on the size of the 

integer we need to factor and also on the computing machine 

we are using. 

Note that with the choice of values of x such that Ixl 

< [41N ] we have Q(x) = (x + [IN]) 2 - N = x2 + 2x [IN] + 

[IN] 2 - N ~ x2 + 2x [IN] = 2xIN + 0 (IN). That is, Q(x) 

grows essentially like a linear function of x for values of 

x in the range _41N < x < 41N. The values of Q(x) start 

3 

around IN and go up to around 2N 4 • It should be noted 

that, while considerably smaller than N itself, these values 

can be quite large. For example, if N ~ 10'00, the values of 

Q(x) will be around 1050 to 10~. Many important 

improvements to the algorithm have been given to overcome 

this problem. 

Example: 

To illustrate step 1, above, and the other steps of the 

quadratic sieve algorithm, we take N = 5069. 

[IN] = [V5069] =71 and ~5069 ~ 9. Thus, Q(x) =(x + 71)2 ­

5069 with Ixl ~ 9. The values of Q(x) for values of x in 
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the ranges -9 ~ x ~ 9 are given in table 4.1. 

step 2: 

In this step, we need to find some Q(x) IS that factor 

completely over a set of small primes, called the factor 

base. The potential prime divisors of Q(x) are exactly 

those primes for which N is a quadratic residue, i.e., P, = 

2 and the odd primes Pi' for which the Legendre symbol (~) 

", 

= 1. - This follows from the following theorem (4.1). 

Table 4.1 

x -9 -8 -7 -6 

Q(x) -1225 -1100 -973 -844 

x -5 -4 -3 -2 

Q(x) -713 -580 -445 -308 

x -1 0 1 2 

Q(x) -169 -28 115 260 

x 3 4 5 6 

Q(x) 407 556 707 860 

x 7 8 9 

Q(x) 1015 1172 133 

II 
'I; 

III 
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Theorem 4.1: 

If p is an odd prime, then Q(x) = (x + [1N])2 - N = 0 

(mod pU) has a solution, in fact two, if and only if, 

(in=l. If P = 2 and ~ ~ 3, then Q(x) =0 (mod 2U 
) has a 

solution, in fact four, if and only if, N =1 (mod 8). If P
 

= 2 and a = 2, then Q(x) = 0 (mod 4) has two solutions if N
 

- 1 (mod 4) but no solution if N • 1 (mod 4). Finally, if p
 

= 2 and ~ = 1 then Q(x) = 0 (mod 2) has one solution,
 

namely x = 1 (mod 2).
 

Proof:
 

Let x + [IN] = z. To say in this case that Q(x) = 0 

(mod pU) has a solution is equivalent to saying that z2 =N 

(mod pU) has a solution. 

First, assume p is an odd prime. If z2 =N (mod pU), 

has a solution, then so does z2 =N (mod p). In fact, they 

have the same solution - whence (in = 1. 

Conversely, assume that (in = 1. We show that z2 = N 

(mod pU) has a solution by induction on~. If ~ = 1, 

there is really nothing to prove because = 1 is just(in 

another way of saying that z2 =N (mod p) has a solution. 
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Assume that the result holds for « = k for some k ~ 1. 

Thus, z2 =N (mod pk) has a solution say, ZOo Then Z;=N 

(mod pk), or z; =N+bpk for some integer b. Now, we need to 

show that z2 =N (mod pk+') has a solution. Consider the 

linear congruence equation 2zoY =-b (mod p). This linear 

congruence has a unique solution since gcd(2Zo' p) = 1. Let 

Yo be this unique solution. 

Claim: z, = Zo + yopk is a solution to the congruence z2 = N 

(mod pk + ') • (zo + Yo pk)2 = z;+2zoYoP k +y2p 2k = (N + b pk) + 

2ZoYOpk + y;p2k = N + (b + 2ZoYO)pk + y;p2k. However, pi (b + 

2zoYO)' from which it follows that b + 2ZoYo = pd for some 

integer d. Thus, Z~=N+dpk+'+(y; pk-') pk+'=N (mod pk+') , and the 

congruence z2 =N (mod pa) for a = k + 1, and, by 

induction, for all positive integers a. 

Next, we shall assume that p = 2. 

If a = 1, then z = 1 is a solution of Z2 = N (mod 2), since 

N is an odd integer. 

If a = 2 and N =1 (mod 4), then N = 4k + 1 and the 

congruence z2 =N (mod 4) has two solutions mod 4, namely z 

= 1 and z = 3. On the other hand, if N • 1 (mod 4), then Z2 

- N (mod 4) has no solution because the square of any odd 

integer is congruent to 1 modulo 4. 

Next, we consider the case in which a ~ 3. 
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since the square of any odd integer is congruent to 1 modulo 

8, we see that for the congruence Z2 =N (mod 2 a ) to have a 

solution it is necessary that N should be of the form 8k + 

1. To go the other way, let us suppose that N = 1 (mod 8) 

and proceed by induction on a. When a = 3, the congruence 

z2 = N (mod 8) certainly has a solution. In fact, the 

integers 1, 3, 5, and 7 satisfy z2 =8k + 1 (mod 8). Assume 

that z2 =N (mod 2 a ) has a solution for a = n where n ~ 3, 

and say that Zo is a solution. Thus, z; = N + b 2" for some 

integer b. since N is odd, so are the integers z; and ZOo 

Thus, the linear congruence zoy =-b (mod 2), has a unique 

solution, say Yo' 

Claim: z1 = zo + Yo 2"-1 satisfies the congruence z2 = N (mod 

2" + 1) • z; = (zo + Yo 2"-1) 2 = z; + zoyo2" + y; 22" - 2 = N + (b 

+ zoyo) 2" + y; 22" - 2. But, 21 (b + zoyo) implies b + zoyo = 2d 

2" - 3 •for some integer d. Hence z; = N + d • 2" + 1 + Y; • 

2" + 1 = N (mod 2" + 1) . Thus, z2 = N (mod 2" + 1) has a 

solution, and by induction, Z2 = N (mod 2 a ) has a solution 

for all a ~ 3. This completes the proof. 

It follows from Theorem 4.1, that the odd prime p 

for which (;) = -1 has no chance at all to divide any value 
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of Q(x). Thus, we choose the factor base to be the integers 

Po = -1 that is needed to hold the sign of Q(x), the even 

prime P, = 2 and the B-1 smallest odd primes Pi for which 

(~)=1, i.e., FB={-1,2}U{Pil(~)=1,i=2,... ,B-1}, where B is 

a parameter to be chosen so that the number of the quadratic 

residues Q(x), that factor completely into factors in the 

factor base, is large enough to be able to find some subset 

of the Q(x) among which the prime factors have all occurred 

an even number of times. Heuristics suggest thay we choose 

B = [vexpJ<logAn 10glogN]. The primes in the factor base 

are roughly the random half of the first 2B primes, since 

primes p with (in = 1 and those with (in = -1 are roughly 

equally distributed. 

The question now arises as to which values of Q(x) will 

factor completely over the factor base? One of the 

advantages the quadratic sieve method has over the continued 

fraction method is that we do not need to (painfully) factor 

all the Q(x) 's we obtained in step lover the factor base. 

In fact, most of them do not factor, so this would represent 

a waste of time. Here, since Q(x) is a polynomial with 

integer coefficients, it so happens that if p is a prime in 

the factor base and paIQ(xo) for some xo' then palQ(xo ± h 

pa), h = 0, 1, 2, .... Let us state a more general theorem. 
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Theorem 4.2: 

Let f(x) be a polynomial with integer coefficients and 

let m be a positive integer such that f(xo) = O(mod m) for 

an integer x • Then, f(x + km) =0 (mod m) for any integero o 

k. 

Proof: 

For any integer k we have Xo + km =Xo (mod m). Since 

f(x) is a polynomial with integer coefficients, it follows 

from the properties of congruences that f(xo + km) = f(xo) 

(mod m). But, f(xo) = 0 (mod m) implies f(xo + km) = 0 (mod 

m) • 

Corollary: 

If p is a prime in the factor base, such that pa IQ(xo) 

for some integer xo' then palQ(x + hp«) for any integer h.o 

Proof: 

pa IQ(x ) is equivalent to Q(xo) = 0 (mod pa)o

Hence Q(x + hpa) = 0 (mod pa) and thus pa IQ(x + hpa).o o 

It follows from this corollary that if one single value 

of x can be located, for which paIQ(x) for a prime p in the 

factor base, then other instances of this event can be found 

by a sieving procedure on x, similar to the sieve of 

Eratosthenes for locating mUltiples of pa in an interval. 

This sieving procedure on x will be discussed a little 

later. However, the justification for referring to this 

factoring method as the quadratic sieve method is now 
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apparent. 

The next question we need to answer is the following: 

How can one find an integer x (if it exists) such that 

paIQ(x) where p is a prime in the factor base? In light of 

Theorem 4.1, to find an integer x such that paIQ(x) we need 

only to solve the congruence Q(x) = 0 (mod pa). 

There are two cases to consider in solving this 

congruence: 

Case I: p is an odd prime: 

If P is an odd prime and pIN and Xo is a solution to 

the congruence Q(x) = 0 (mod pa-1), then a whole series of 

solutions can be found by putting z = Xo + y pa-1, yielding 

Q ( z ) = Q ( X + y pa-1) = (x + Y pd-1 + [v'N]) 2 - N = (X +o o o 

[IN] ) 2 + 2y pa-1 (x + [IN]) - N. Dividing by pa-1 we geto 

(Xo + [yN]) 2 -N + 2y (x + [v'NJ =0 (mod p). This is a linear 
pa. -1 o 

congruence in y, whose solution is unique, say Yo and z = Xo 

+ Yo pa-1 is a solution to the congruence Q(x) = 0 (mod pa). 

Thus, the problem of solving the congruence Q(x) = 0 (mod 

pa) is reduced to solving the congruence Q(x) = 0 (mod p), 

which in turn can be solved by different methods. The first 

method of solving the congruence Q(x) = 0 (mod p) is trial 

and error for values of x in the set {O, 1, 2, .•. , P - I}. 

The trial and error method of solving the congruence is 

appropriate here because the primes in the factor base are 
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relatively small. Moreover, once we find one solution x 1' 

the second solution x 2 = -(x1 + 2[fNJ) (mod p). A second 

method for solving the congruence Q(x) = 0 (mod p), for 

primes of the form p = 4k + 3 or p = 8k + 5 is given in the 

following theorem. 

Theorem 4.3: 

For the congruence Q(x) = 0 (mod p), where p is an odd 

prime in the factor base: 

~ 
(1) If P = 4k + 3 then x = N 4 = Nk + 1 (mod p), is a 

solution to the congruence. 

(2) If p=8k+5 and N2k+1=1 (mod p), then x=Nk+1 (mod p) is a 

solution. 

(3) If p=8k+5 and N2k+1=_1 (mod p), then x=(4N)k+1. (p~ 1) 

(mod p) is a solution. 

Proof: 

J.£:.!l. 
= 1, by Euler's criterion N 2 - 1since (ID (mod p) . 

JE.:.ll 
N2k 2 N2k+1(1) If P = 4k + 3, then (Nk+1)2 = + = N • = N • N 2 

= N (mod p). 

(2) If P = 8k + 5, then N4k+2 = 1 (mod p, which implies that 

N2k+1 = 1 or -1 (mod p). Thus if N2k+1 = 1 (mod p), then 
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J2.=.U
 
(NIc+') 2 = N2k.+' • N = N 2 • N == N (mod p).
 

(3)	 If N2k.+'==-1 (mod p), then (4N) 2k+ 2 ==24k.+2. N2k.+2==_1. (-N) ==N 
4 

(mod p) • 

This completes the proof. 

A third method of solving the congruence Q(x) == 0 (mod 

p) is based on the following algorithm that was suggested by 

D. H. Lehmer in 1969 [1].
 

Algorithm to solve the congruence z2 =N (mod p):
 

Consider the congruence Z2 == N (mod p), where p is any odd
 

prime in the factor base.
 

Choose an integer h so that the	 Legendre symbol 

( h
2 ~4N) = -1. Define a sequence of integers v" v 2 ' ••• by 

the recursion 

v, = h, 

v 2 = h 2 - 2N 

1 v.,v. = h • 1 - - N • v·1 - 2 • 

2 .
We then have v 2i = Vi - 2N1 

, and v 2i + , = v·1 • v·I + 1 - h • Ni
• 

(P+ 1)Then, z - V (p+ 1)	 (mod p) is a solution, and x == z ­
--2-

• 
2 
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[IN] (mod p) is a solution to Q(x) =0 (mod p). 

Example: 

To illustrate the above algorithm, consider the 

congruence z2 =77 (mod 13). 

Let h = 24. Then, (h2~4N) =(2::). By the law of quadratic 

reciprocity, we have 

133 -1
8 2

(2 6 8) = (1 3) = (13) = (-1)-8- = (_1)21 = -1. 
1 3

v, = 24 

v 2 = v; - 2N = 422 

v3 = v, • v 2 - h • N = 8280 

v 4 = v; - 2N2 = 166226 

= v 2 • v 3 - h • N2 = 3351864V s 

v = v; - 2N3 = 676453346 

v 7 = v3 • v 4 - h • N3 = 1365394488 

Then z = v 7 • (P+l)= 8 (mod 13) is a solution. 
2 

Case II: 

The second case is solving the congruence Q(x) = 0 (mod 

2 a ), for powers of the prime p = 2. 

Solutions of the congruence are given in Theorem 4.1 

and its proof. The existence of solutions and the number of 
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solutions depends on a and the residue class of N mod 8. 

The number N to be factored is odd, and hence it is 

congruent modulo 8 to 1, 3, 5, or 7. Let us consider these 

cases. 

(1) If N = 3 or 7 (mod 8), the Q(x) = 0 (mod 2Q 
) has a 

solution if a = 1 but it has no solution for any a ~ 2. 

We have shown that x = 1 - [IN] (mod 2) is a solution. 

Now we are going to show if a ~ 2, then Q(x) = 0 (mod 2Q 
) 

has no solution. We have N = 8k + 3 or N = 8K + 7 for some 

integer k. In order for the congruence, Q(x) = (x + [1N])2 

- N = 0 (mod 2Q 
) to have a solution, it is necessary that x 

+	 [IN} is odd, say x + [IN] = 2m + 1. Thus, (2m+1)2­

(8k+3)=4m2 +4m+1-8k-3=4m2+4m-8k-2=2(2m2+2m-4k-1)-O (mod 2Q 
) 

if a ~ 2. Similarly (2m + 1)2 - (8k + 7) = 4m2 + 4m + 1 ­

8k - 7 = 2 (2m2 + 2m - 8k - 3) _ 0 (mod 2Q
) if a ~ 2. 

(2) If N = 5 (mod 8) then Q(x) = 0 (mod 2Q
) has two 

solutions if a=2 and N = 1 (mod 4), but has no solutions for 

any a~3. 

In Theorem 4.1 we have shown that x = 1 - [1m (mod 4) 

and x = 3 - [IN] (mod 4) have solutions if N = 1 (mod 4). 

Now, assume that a ~ 3, and N = 8k + 5. In order for (x 

+[1N])2 - N =0 (mod 2Q
) to have a solution it is necessary 

that x + [IN] is odd, say x + [IN] = 2m + 1. Then 

(2m + 1)2 - (8k + 5) = 4m2 + 4m + 1 - 8k - 5 

111 



= 4(mZ + m - 2k - 1) • 0 (mod 2 a ) if a ~ 3. 

(3) If N = 1 (mod 8), the congruence Q(x) = 0 (mod 2 a ), has 

four solutions for any a ~ 3. 

Thus, if N = 1 (mod 8) then Q(x) = 0 (mod 2 a ) has a solution 

for every positive integer a. This in turn increases the 

odds that Q(x) IS will factor completely. Therefore, we 

would clearly like to make the number N we want to factor 

congruent to 1 mod 8. 

If the number N we need to factor is not congruent to 1 

modulo 8, then upon mUltiplying N by a appropriate factor we 

get a number that is congruent to 1 modulo 8. If N = 3 (mod 

8), we mUltiply both sides by 3 to obtain 3N=9=1 (mod 8). 

If N = 5 (mod 8) we mUltiply both sides by 5 to obtain 5N = 

25 = 1 mod 8. Finally if N = 7 (mod 8) we mUltiply by 7 to 

obtain 7N = 49 = 1 (mod 8). Thus to factor an integer N 

that is not congruent 1 modulo 8, we first mUltiply N by an 

appropriate integer k so that kN = 1 (mod 8) and then apply 

the quadratic sieve algorithm to factor kN. 

Example: 

This example is a continuation of factoring N = 5069 by 

the quadratic sieve algorithm. In step 1 we generated 

values of Q(x) for -9 ~ x ~ 9. Now, we shall proceed to 

apply step 2. 

We select a factor base FB = {-1, 2, Pz' ... PB} where 

Pz' ... , PB are the first B-1 odd primes such that (5~~9) 
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= 1 and B = [/expJlog50691og1og5069] = 4. The first 4 odd 

such primes are 5, 7, 11, and 13.
 

Hence, the factor base is FB = {-1, 2, 5, 7, 11, 13}. Next
 

we need to solve the congruences Q(x) = 0 (mod Pi) for each
 

prime in the factor base.
 

For P, = 2:
 

Since 5069 =5 (mod 8) and 5069 =1 (mod 4), the 

congruence Q(x) = (x + [J5069])2 - 5069 = 0 (mod 2a ) has two 

solutions if a = 2. The solutions are: 

A, = 1 [J5069] = 1 71 =0 (mod 2) and 

B, = 3 - [J5069] = 3 - 71 = 0 (mod 2).
 

Thus, 221Q(0 + 2h) for any integer hand 2 aIQ(x) for any
 

integer x.
 

For P2 = 5, the congruence Q(x) = (x + 71)2 - 5069 (mod 5)
 

has two solutions
 

A2 = 1 (mod 5) and B2 = -(1 + 2[J5069]) = -3 = 2 (mod 5).
 

Thus, 51Q(1 + 5h) and 51Q(2 + 5h) for every integer h.
 

For P3 = 7, the solutions are A3 = 5 (mod 7) and ~ = -(5 + 2 

• 71) = 0 (mod 7). Thus, 71Q(5 + 7h) and 71Q(0 + 7h) for
 

every integer h.
 

For P4 = 11, the solutions are A4 = 3 (mod 11) and ~ = -(3 +
 

2 • 71) = -2 (mod 11). Thus, 111Q(3 + 11h) and 11IQ(-2 +
 

11h) for every integer h.
 

For Ps = 13, the solutions are As = 2 (mod 13) and Bs = -(2 +
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2 • 71) =-1 (mod 13). Thus, 131Q(2 + 13h) and 13IQ(-1 +
 

13h) for every integer h.
 

The table below shows the values of Q(x) for -9 ~ x ~ 9, the
 

prime factors we obtained above and the residual values of
 

Q(x) after they are divided by primes.
 

Table 4.2 

x Q(x) Prime Factors from FB Residuals 

-9 -1225 5 & 7 335 

-8 -110 22 & 5 & 11 5 

-7 -973 7 139 

-6 -844 22 211 

-5 -713 - 713 

-4 -580 22 & 5 29 

-3 -445 5 89 

-2 -308 22 & 7 & 11 1 

-1 -169 13 13 

0 -28 22 & 7 1 

1 115 5 23 

2 260 22 & 5 & 13 1 

3 407 11 37 
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4 556 22 139 

5 707 7 101 

6 860 22 & 5 43 

7 1015 5 & 7 29 

8 1172 22 293 

9 1331 11 121 

Note that we solved the congruence Q(x) = 0 (mod pi) 

where Pi is an odd prime in the factor base only for Q = 1. 

To find solutions (if they exist) for Q > 1, we either apply 

the technique outlined in case I above, or simply check 

whether Pi divides the new Q(x) 's value. If it does, we 

divide it out and repeat the process until Pi does not 

divide the Q(x) . 

In the table below, we have the complete factorizations 

of the Q(x) 's over the primes in the factor base. 

Table 4.3 

x Q(x) Prime Factors 

from FB 

Residuals Factoriza­

tion of Q(x) 

over FB 

-9 -1225 5 & 7 335 -1.52.72 

-8 -1100 22 & 5 & 11 5 -1.2 2.52.11 
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-7 -973 7 139 7-139 

-6 -844 22 211 22_ 211 

-5 -713 - 713 713 

-4 -580 22 & 5 29 23-5-29 

-3 -445 5 89 5-89 

-2 -308 22 & 7 & 11 1 -1- 22 _ 7- 11 

-1 -169 13 13 -1- 132 

0 -28 22 & 7 1 -1- 22 _ 7 

1 115 5 23 5-23 

2 260 22 & 5 & 13 1 22 _ 5- 13 

3 407 11 37 11-37 

4 556 22 139 22_ 139 

5 707 7 101 7-101 

6 860 22 & 5 43 22 _ 5- 43 

7 1015 5 & 7 29 5-7-29 

8 1172 22 293 22-293 

9 1331 11 121 113 

step	 3: 

We now come to the last and most important step in the 
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quadratic sieve algorithm, namely, finding the Q(x) IS that 

factor completely over the factor base. This can be 

accomplished with a very simple sieve procedure. First, we 

describe the sieve procedure for the odd primes in the 

factor base. For each odd prime Pi in the factor base, let 

Ai and Bi be the solutions of the congruence Q(x) = 0 (mod 

Pi) that corresponds to this prime. For each x in the 

sieving interval [-T, T], we compute very crudely log2IQ(x) I 

and store these in an array indexed by x. Then, for each of 

our primes Pi' we subtract log2Pi from the number in location 

x in the array if and only if, x =Ai or Bi (mod Pi). 

Second, we describe the sieve procedure for the prime p 

= 2. You will recall that the solutions of the congruence 

Q(x) = 0 (mod 2a ), depend on the a and the residue class of 

N modulo 8. ThUS, the indices for sieving with powers of 2 

must be chosen in a somewhat different fashion depending on 

the residue class of N mod 8. Following a suggestion of 

Carl Pomerance, those sieving parameters are assigned as 

follows. 

1.	 If N =3 or 7 (mod 8), the congruence has one solution 

A1 = (mod 2). Thus, we subtract log22 = 1 from the 

number in location x in the array if and only if, x ~ 

A1 (mod 2). 

2.	 If N = 5 (mod 8) and N = 1 (mod 4), the congruence has 

two solutions A1 and B1 • Thus, we subtract log222 = 2 

from the number in location x in the array if and only 
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if, x 5 A, (mod 4) or x 5 B, (mod 4). 

3.	 If N 5 1 (mod 8), the congruence has four solutions A" 

A2, B" and B2• Thus, we subtract 10g223 = 3 from the 

number in location x in the array if and only if x 5 

A" A2, B" or B2 (mod 8). 

When all the values 10g2 Pi have been subtracted for 

all the primes (or for higher prime powers) in the factor 

base, a Q(x) will factor completely on our factor base at 

those locations in the array that have a value close to 

zero. If the logs are exact, it would be exactly zero. To 

see this, assume that Q(xo) factors completely over the 

B III
factor base. Then, Q(xo) = n Pi (Xi ~ o. Taking 10g2 of 

i=l 

both	 sides to obtain 

B III B III B 
10g2IQ(xo) 1=10g2( ,n Pi )= ,:E log2 P i =CX i ,:E log2 Pi. Thus 

~=1 ~=1 ~=1 

B 
10g21 Q(xo) I-(Xi .:E log2 P i = o. 

~=1 

Those Q(x) 's which after the sieving is completed have their 

corresponding entries close to zero will be few enough that 

we can run trial division on them to see exactly which ones 

factor completely over the factor base. 

Example: 

Apply the sieving procedure to factor N = 5069. 
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The initial array of the values of logzIQ(x) lis given in 

column two in the table below. The other columns in the 

table give the result of the sieving procedure. 

Table 4.4 

Ra R, Rz R3 R4 Rs 

x logzl Q(x) I p = 2 P = 5 P = 7 P = 11 P = 13 

-9 10.2 10.2 5.6 0 0 0 

-8 10.0 8.0 3.4 3.4 0 0 

-7 9.9 9.9 9.9 7.1 7.1 7.1 

-6 9.7 7.7 7.7 7.7 7.7 7.7 

-5 9.4 9.4 9.4 9.4 9.4 9.4 

-4 9.1 7.1 4.8 4.8 4.8 4.8 

-3 8.7 8.7 6.4 6.4 6.4 6.4 

-2 8.2 6.2 6.2 3.4 0 0 

-1 7.4 7.4 7.4 7.4 7.4 7.4 

0 4.8 2.8 2.8 0 0 0 

1 6.8 6.8 4.5 4.5 4.5 4.5 

2 7.9 5.9 3.6 3.6 3.6 -0.1 

3 8.6 8.6 8.6 8.6 5.2 5.2 
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4 9.1 7.1 7.1 7.1 7.1 7.1 

5 9.4 9.4 9.4 6.6 6.6 6.6 

6 9.7 7.7 5.4 5.4 5.4 5.4 

7 9.9 9.9 7.6 4.8 4.8 4.8 

8 10.1 8.1 8.1 8 8 8 

9 10.3 10.3 10.3 10.3 10.3 -0.8 

From the last column in the table the locations in the array 

with values close to zero correspond to the following values 

of x: -9, -8, -2, -1, 0, 2, and 9. Thus the Q(x) 's that 

factor completely over the factor base are: 

Q, (-9) = -1.52.72 

Q2(-8) = -1.22.52.11 

Q3 (-2) = -1.22.7.11 

Q4 (-1) = -1.132 

Q ( 0 ) = -1· 2 2• 7s 

Q ( 2 ) = 22• 5. 136 

Q7 (9) = 113 

We now find a subset of the Q(x) 's which factored completely 

over the factor base whose product is a perfect square. For 

each address Xi at which Q(Xi ) factored completely over the 

B 
factor base, we have Q(x i ) = .II Pj 

«!j 
where a lj ~ o. We 

J=O 

associate with each Q(x i ) a vector eiEZ~+l, given by 
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1 if a. .. is odd 
- ~J • •

E i = (a. ij)' where a. ij - {0 if a. ij ~ seven 

We now use the Gaussian elimination method on the 

matrix whose ith row is Ei to find a subset E of the Ei'S 

such that their sum is the zero vector. Once such a subset 

E is found, the integers X =~(x + [IN]) (mod N) and 

y2 = ~ Q(x) (mod N), satisfy the square congruence X2 = y2 

(mod N). Let us apply the Gaussian elimination method to 

the previous example. The result of the Gaussian 

elimination method is given in the table below. 

Table 4.5 

n -1 2 5 7 11 13 

1 1 0 0 0 0 0 

2 1 0 0 0 1 0 

3 1 0 0 1 1 0 

4 1 0 0 0 0 0 

5 1 0 0 1 0 0 

6 0 0 1 0 0 1 

7 0 0 0 0 1 0 

1 1 0 0 0 0 0 

1+2 0 0 0 0 1 0 
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1+1+2+3 0 0 0 1 0 0 

1+4 0 0 0 0 0 0 

1+1+1+2+3+5 0 0 0 0 0 0 

6 0 0 1 0 0 0 

1+2+7 0 0 0 0 0 0 

We have three solutions to the square congruence X2 == y2 

(mod 5069), namely X, = (-9 + 71) (-1 + 71) == 4340 (mod 

5069) 

2 
Yl = Q, (-9) • Q4 (-1) = 4265 (mod 5069) 

X2 = (-9 + 71)3 (-8 + 71) (-2 + 71) (0 + 71) == 2070 (mod
 

5069)
 

Y; = (Q,(-9»3 (Q2(-8» Q3(-2) Qs(O) := 1595 (mod 5069)
 

X = (-9 + 71) (-8 + 71) (9 + 71) == 3271 (mod 5069) 

2 
Y3 = Q,(-9) • Q2(-8) • Q7 (9) := 3851 (mod 5069) 

step 4: 

For the integers X and y with X2 := y2 (mod N) and x- ± Y 

(mod N) we compute gcd(X - y), N) and gcd(X + y, N) by the 

Euclidian algorithm 

In the example above the solutions to the square 

congruence X2:=y2 (mod 5069) are X, = 4340, Y, =455; 

X2 =2070, y 2 =2481 

X3 = 3271, Y3 = 1798 (trivial solution). Then 
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gcd(X1-y1,N) = g c d(3885, 5069) = 37, 

gcd(X1+y1,N) = gcd(4795, 5069) = 137,
 

gcd(X2-Y2,N) = g c d(411, 5069) = 137,
 

gcd(X2+y2,N) = gcd(4551, 5069) = 37,
 

The above calculations lead to the factorization of N = 5069
 

= 37 • 137. 

Example: 

Use the quadratic sieve algorithm to factor N = 247. 

step 1 Finding the Factor Base: 

In this step, we start by placing a bound B on the 

factor base using the heuristic suggestion. 

B= [vexpvln2471nln247] =4 

This means that our factor base consists of {-1, 2, P2' P3'
 

P4}. Next, we evaluate the Legendre symbol to find the
 

primes P2' P3' and P4·
 

(2~7)=+1 since 247 = 1 (mod 3)
 

( 2~7) = -1 since (247) 2 ... 1 (mod 5) 

(2~7)=+1 since (247)3 = 1 (mod 7) 

( 24;) = +1 since (247) 5 = 1 (mod 11)
1

Thus, the factor base = {-1, 2, 3, 7, 11}. 
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step 2 Solving the congruence Q(x) = 0 (mod p) for each p 

in the factor base. 

We start by finding Q(x) 's taking the values of x from 

the interval [-T, T] where T = [41N]. Thus, T = [~247] = 

3. Therefore, the sieving interval is [-3, 3]. The table 

below	 shows the results. 

Table 4.6 

x 1 2 3 x 0 -1 -2 -3 

x+[ IN] 16 17 18 x+[ IN] 15 14 13 12 

Q(x) 9 42 77 Q(x) -22 -51 -78 -103 

The solutions for the congruence Q(x) = 0 (mod p), 

where p € FB, are the following: 

a) A, = 0, since 247 = 7 (mod 8). Thus, 21Q(0 ± 2h) and 2 

divides Q(O), Q(2) and Q(-2). 

b) A2 = 1, 82 = -(1 + 2- 15) = -31 = -1 (mod 3). Thus, 

31Q(1 ± 3h) and 3IQ(-1 ± 3h). Therefore, 3 divides Q(l), 

Q(-2), Q(-l) and Q(2). 

c) A3 = 2, B3 = -(2 + 2 - 15) = -32 =-4 (mod 7). Thus, 

71Q(2 ±7h) and 71 (Q(-4 ± 7h). Therefore, 7 divides Q(2), 

and Q(3) . 

6d) A4 = 0, B4 = (0 + 2 - 15) = -30 = -8 (mod 11) = 3 (mod 

11). Thus, ll1Q(O ± Ilh) and lllQ(3 ± Ilh). Therefore, 11 

divides Q(O), and Q(3). The table below shows these 
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results. 

Table 4.7 

x x + [VN] Q(x) Factors from base Residual 

1 16 9 3- 3 

2 17 42 2-3-7 

3 18 77 7-11 

0 15 -22 -1-2-11 

-1 14 -51 -1-3 17 

-2 13 -78 -1-2-3 13 

-3 12 -103 -1 103 

step 3 Sieving process: 

We start sieving over the interval [-3, 3]. We compute 

log2Q(x) and store these numbers at locations indexed by x. 

Then successively, we subtract from these numbers log2P if 

pIQ(x). At the end of this process, we consider Q(x) if the 

residual number at its location is close to or equal to 

zero. The table below shows the results. 
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Table 4.8 

10g2Q(x) 10g22" 10g23" 10g27" 10g211" 10g2Q(x)­

10g2 P: 

Q(1) 3.1680 2(1.5840) 0 

Q(2) 5.3891 0.9994 1.5840 2.8057 0 

Q(3) 6.2631 2.8057 3.4574 0 

Q(0) 4.4568 0.9994 3.4574 0 

Q(-1) 5.6691 1.5840 4.0851 

Q(-2) 6.2817 0.9994 1. 5840 3.6983 

Q(-3) 6.6826 6.6826 

step 4 Solving for dependencies: 

We associate the vectors €" €2' €3 and €4 for 

Q(I), Q(2), Q(3) and Q(O) respectively. 

€ , = (0, 0, 0, 0, 0) . 

€ 2 = (0, 1, 1, 1, 0) . 

€3 = (0, 0, 0, 1, 1) . 

€ = (1, 1, 0, 0, 1) .4 

Next, we form the binary matrix corresponding to 

these vectors, 
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-1 2 3 7 11 

€, 0 0 0 0 0 

€2 0 1 1 1 0 

€3 0 0 0 1 1 

€4 1 1 0 0 1 

We apply the Gaussian elimination method on the above 

matrix to find linear dependencies. The reduced matrix 

will be as follows: 

-1 2 3 7 11 

€, 0 0 0 0 0 

€2 0 1 1 1 0 

€3 0 0 0 1 1 

€4 1 1 0 0 1 

Therefore {€,} is the only set of dependency and hence
 

forms a square set.
 

Let Q(l) = y2 ~ y2 = 32
 

Let x = 16.
 

2Then, we form the congruence x = y2 (mod N) 

162 = 32 (mod 247). Since 16 • ± 3 (mod 47), this 

congruence has nontrivial solutions. 
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step 5: 

We calculate gcd(x - y, N) or gcd(x + y, N) by 

Euclidean algorithm. Therefore, 

gcd(16 - 3, 247) = 13 and 

g cd(16 + 3, 247) = 19 

and these are the factors of 247. 

4.4 The MUltiple Polynomial Quadratic Sieve: 

The quadratic sieve just explained in section 4.3 

is called the basic quadratic sieve algorithm. Many 

modifications have been suggested to improve its 

performance. Among these are the large prime 

variations (see section 3.3). But, by far the most 

important improvement was given by Peter Montgomery. 

In this section, we give a brief discussion of 

Montgomery's work. 

One drawback of the basic quadratic algorithm just 

described is that as Ixl moves away from 0, the values 

of the polynomial Q(x) grow and become less likely to 

factor completely over the factor base. This problem 

can be overcome by using other polynomials and sieving 

each one over a shorter interval. This variation of 

the quadratic sieve is called the multiple polynomial 

quadratic sieve. 

Now, we will describe a family of polynomials that 

can be used in place of Q(x). Consider the polynomial 
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f(x) = a x2 + 2bx + c, when a, b, and c are integers 

with a > 0, such that NI (b2 - ac). This gives 

congruences just as nicely as before, since 

af(x) = (ax + b)2 - (b2 - ac). = (ax + b)2 (mod N), so 

that af(x) is a quadratic residue modulo N. The 

requirement that /f(x) I be small for values of x in the 

sieving interval [-T, T] led Montgomery to choose a ~ 

~, where a is a prime with (~ = 1. After an 

integer a is chosen, we choose an integer b satisfying 

b2 =N (mod a), 0 ~ b < a. Finally, c is chosen so 

b 2 -Nthat c = Since there are many primes a near 
a 

~ with (~ = 1, we can construct many good 

polynomials. 

As in the basic quadratic sieve algorithm, we 

compute for each prime power pa in the factor base the 

solutions of the congruences f(x) = 0 (mod pa), with 

which we will initialize an array and apply the sieving 

procedure. 

The multiple polynomial quadratic sieve described 

above has a number of nice features. For example, the 

upper bound on the value of f(x) is less than the bound 

on Q(x), so that we have a better chance of factoring 
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our numbers. We can use a much shorter sieving 

interval. If we do not get enough completely factored 

f(x) 's then we generate a new polynomial and sieve 

again over our shortened interval. Keeping the 

interval short increases the chances that a given f(x) 

will factor. One of the nicest features is that the 

sieving parallelizes perfectly. with K processors, one 

can assign a different polynomial to each processor and 

the algorithm runs K times as fast. 
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Chapter 5 

The Number Field sieve 

In this chapter, we present the most recent and 

potentially the most powerful known factoring method, the 

number field sieve. section 5.1 gives the necessary 

background on number fields needed for the development of 

the number field sieve algorithm. sections 5.2 and 5.3 

describe the algorithm. In section 5.4 a special case of 

the algorithm employed in factoring numbers of the form N = 
er - s, where rand lsi are small positive integers, r > 1, 

and e is large, is presented. 

5.1 Algebraic Number Fields: 

Let Q be the field of rational numbers. The set of 

polynomials in one indeterminate and rational coefficients 

with the usual addition and mUltiplication of polynomials 

forms a commutative ring with identity denoted by Q[x]. If 

f(x) = a o + a,x + ... + anxneQ[x] and an ~ 0, then n is called 

the degree of f(x). 

Definition: 

A polynomial f(x) e Q[x] is called irreducible over Q 

if no polynomials g(x) and hex), both with positive degree, 

exist in Q[x] satisfying f(x) = g(x) h(x). 

Definition: 

A polynomial f(x) = a o + a,x + ... + anxn e Q[x] is 

called monic if the leading coefficient an = 1. 

Definition: 
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Let a € C. Then, a is called an algebraic number if 

there exists f(x) € Q[x], such that f(a) = O. If f(x) € 

Z[x] and f(a) = 0, then a is called an algebraic integer. 

We state without proof some facts about the set of 

algebraic numbers. The proofs can be found in [22]. 

Theorem 5.1: 

(i) The set of algebraic numbers with the operations of 

complex addition and multiplication is a field denoted by 

O. 

(ii) The set of algebraic integers with the same operations
 

in (i) is an integral domain.
 

Theorem 5.2:
 

If a € C is an algebraic number, then there exists a 

unique monic irreducible polynomial over Q, f(x) € Q[x] with 

the property f(a) = o. We call this polynomial the minimal 

polynomial for a and its degree is called the degree of the 

algebraic number a. 

Theorem 5.3: 

Let a be an algebraic number of degree n. Let Q(a) 

denote the subset of the set of algebraic integers 

consisting of the elements of the form 

Q(a) = {ao + a,a + ... an_,an-'Ia i € Q}. 

Then, Q(a) is a field under the operations of complex 

addition and multiplication. The field Q(a) is called an 

algebraic number field of degree n over Q. 

Definition: 
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Let a be an algebraic number and let f(x) € Q[x] be its 

minimal polynomial. A conjugate of a is any root of the 

equation f(x) = o. 

Let a(1) = a, a(2)' ••• , a(n)' be the conjugates of an nth 

degree algebraic number a. Let ,8=a +a,a+a2a
2+ ••• a n_1a

n-1€ Q(a),o

n-l •t h en t h e numbers ,8j=ao+a,a(i)+ .•• +an-1"w, 1 = 1, •.• , n are 

called the conjugates of ,8. 

Definition: 

Let,8 € Q(a) and let ,8" .•• , ,8n be its conjugates. 

The norm of ,8 is given by N(,8) = ,81.,82 ••• ,8n. 

Theorem 5.4: 

(1) If,8, ,8' € Q(a), then N(,8,8') = N(,8) N(,8') 

(2) N(,8) ~ 0 for every ,8 ~ O. 

The following example illustrates the forgoing concepts. 

Example: Let a = 3'[2 denote the real cube root of 2. The 

minimal polynomial of a is f(x) = x3 - 2. 

3 3 3 2Then, Q( '[2) = {ao + a, ( '[2) + a 2( '[2) Ia j € Q}. 

• 31') 31')The three conJugates of a = y2 are a(,) = y2, a(2) = 

-l-{3i -l+{3i 
a(3) - Let ,8 = 3 + 2 3

[2 € Q(a), in which 
2 2 

2 3 2 3 

3
case the conjugates of ,8 are ,8, = 3 + 2a(1) =3+2'[2, 
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-l-..j3i]
132 = 3 + 2a(2) = 3 + 2. 2 ,and 133 = 3 + 2a(3) = 3 +( 1 

Also2( -l:fi 
]. 

3N(Il) = (3 +2y'2) (3 +2i( -1t i]](3 +2 i( -1t i]]
2 2
 

= (3 + 2 3.,12 ) (3 + 2"3 
1 

(-1 - 13 i» (3 + 2"3 
1 

(-1 + 13 i» 

2 

= 9 + 2"3. 

If a is an algebraic integer, we define Z[a] to be the 

set of all complex numbers of the form f(a), where f(x) € 

Z[x]. That is, Z[a] = {f(a) If(x) € Z[x]}. Z[a] is an 

integral domain under the operations of complex addition and 

mUltiplication. If the degree of a is n, then Z[a] = {a +o 

a,a + .•• + a _, an-' Ia i € Z } • n

For example, a = [5i has degree 2 because f(x) = x2 + 5 

is its minimal polynomial. Thus, Z[ [5i] = {ao + a, [5 i Ia o' a, 

€ Z}. The conjugate of a = [5i is «=-[5i. The conjugates 

of 13 = b o + b,[5i are 13 and 1l"=bo -b1[5i, and N(f3) = f31l" = 
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= ,8lf = b; + Sb; . 

In general, for any ,8 f Z[a], N(,8) is an integer. 

The following theorem is important for the design of 

the number field sieve algorithm. 

Theorem 5.5: 

Let a be an algebraic integer, f(x) f Z[x] be its 

minimal polynomial and n > 0 and m be integers such that 

f(m) == 0 (mod n). Then, there is a natural ring 

homomorphism I:Z[a] ~ Zn induced by I(a) = m mod n. 

Proof: 

A typical element in Z[a] has the form g(a) = ao + a 1a + a 2a
2 

h Define I:Z[a] ~+ ..• + an-1a
n-1 , were ao' a 1 , ... , a n- 1 f Z. 

n-1 n-1 
Zn by I (g (a) = I( 1J a.a i ) = :E aimi mod n = gem) mod n. 

i =0 i=O1 

First, we are going to show I is well defined. That is, if 

g(a) = h(a) in Z[a], then I(g(a)) = I(h(a)), and we need to 

show gem) == hem) mod n. Since g(a) = h(a), we have g(a) ­

h(a) = 0 thus f(x) I (g(x) - hex)). Thus, g(x) - hex) = 

f(x)r(x) for some rex) f Z[x]. gem) - h (m) = f (m) rem) == 0 

(mod n) . Hence gem) == hem) (mod n). Thus, I is well-

defined. 

n-1 
Let g(a), h(a) f Z[a]. Then g(a) = .:E a.a i ,~ 

~=O 
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n-1 
and h(a) = .1:: bicx i where ail b i € Z, for i = 0, ... , n - 1­

~ =0 

n-1 
Then t(g(a) + h(a» = t( 1:: (a.+b.) cx i ). 

~=O
~ ~ 

i= 1:: (a i + b i ) m mod n
 

= (g + h) (m) mod n.
 

= gem) + hem) mod n
 

= (g(m» mod n + (h(m» mod n
 

= t(g(a» + t(h(a».
 

n-1 n-1 
t(g(a)h(a» = t«.1:: aicx i ) (.1:: bicxi)) 

~=O ~=o 

2 (n-1) i 2 (n-1) i 
=t( 1:: 1:: akbi_kcx i ) = 1:: 1:: akbi_km i mod n 

i=O k=O i=O k=O 

= (g • h) (m) mod n = gem) • hem) mod n 

= t(g(a» t(h(a». 

Therefore t is a ring homomorphism. 

5.2 Outline of the Number Field sieve Algorithm: 

The main idea of the number field sieve algorithm is 

the same as in the continued fraction method and the 

quadratic sieve method. We find integers x and y such that 

x2 =y2 (mod N) where x • ± y (mod N) by utilizing the 

Kraitchik factoring scheme. In the number field sieve, we 
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achieve this as follows: 

We choose a number field K = Q(a) for some algebraic 

integer a, and let f(x) € Z[x] be the minimal polynomial of 

a. Assume that we know an integer m, such that f(m) = 0 

(mod N). By Theorem 5.5, there exists a natural ring 

homomorphism t:Z[a] ~ ZN' where tea) = m mod N. Let S = 

{g(x) Ig(x) € Z[x]} be a finite set of polynomials in Z[x] 

such that: 

2(i) g~ s gem) is a square in Z, say g~ s gem) = x . 

(ii) g~S (g(a) is a square in Z[a], say g~S g(a) = ~2 in 

Z[a].
 

Let Y be some integer with t(~) = Y mod N. The y 2 = (t(~»2
 

= t (~2) = t (II g (a) )
ges 

_ II II 
- ges t(g(a» ~ ge s g (m) = X2 (mod N) • 

That is, we have found a pair of squares that are congruent 

mod N, and so we may attempt to factor N by computing gcd(X ­

Y, N) or gcd(X + Y, N). 

The above scenario raises the questions: 

(1) How are the polynomial f(x) and the integer mare 

constructed? 

(2) How can the set S of elements g(a) € Z[a] can be found 

that satisfies conditions (i) and (ii) above? 
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5.3 The Number Field Sieve Algorithm: 

The overall plan of this section is to answer these 

questions gradually until, finally, we can state a precise 

version of the number field sieve algorithm. 

step 1: Finding A Polynomial: 

Given a positive integer N that is not a prime power, 

the first step of the number field sieve algorithm is to 

find a polynomial f(x) € Z[x] and an integer m such that 

f(m) = 0 (mod N). Assume that the polynomial f(x) has 

3 

2 d2degree N > (in practice d ~ \1(131~9N ). We set m = 
og ogN 

1 

[ N d ]. We write N in the base m, and proceed to find 

integers co' c" ... , Cd' where 0 :5 c j :5 m - 1 with N = cdmd + 

c m -' + Let f (x) = C xd + C xd-, + . .. + co· Noted-' 
d + co· d d-' 

that f(m) = N. 

Theorem 5.6: 

The leading coefficient Cd of f(x) is equal to 1 and 

c d_, :5 d. 

Proof: 

1 1 1 1 1 

since m = [N d ], N d -l<m:5Nd or N d <m+l:5Nd +1. Therefore, 

dN < (m + 1) d. Consider (m+l) d=md+ ( f) md-'+ ( g) m -2+ ... + 1. 

d d d2d = (1 + 1) d = 1 + (1) + (2) + ... + (d-l) + 1. Thus, 
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d d	 d2d - 2 = (1) + (2) + ... + (d-l) ~ (~) for every k = 1, 2, 

1	 1 
d Z	 1 . N d d H N d ­... ,	 d - 1. However, N>2 lomp' loes >2. ence, -2>2d 

1 

2~(~	 and (~ S N d - 2 S m - 1. 

Therefore the digits of (m + l)d in base m are the binomial 

coefficients (~). However, md S N < (m + l)d or md S cdmd + 

d-'	 d d) d -1 - dcd_,m +. .. + Co < m + (1 m1 • •• + 1. cd - 1 an cd _ , S 

d ) d d-'	 •(l)=d. Thusf(x =x +Cd_,X + ... +co€Z[x] loS a 

monic polynomial and f(m) = N. 

Is f(x) irreducible? Most likely, it is irreducible 

over Z. However, if f(x) is not irreducible then we have 

been lucky. Indeed, if f(x) = g(x) hex) is a non-trivial 

factorization of f(x) in Z[x], then N = f(m) = gem) hem) and 

hence gem) and hem) are non-trivial factors of N. On the 

other hand, if f(x) is irreducible in Z[x], we proceed to 

obtain a finite set s = {g(x) € Z[x]} of polynomials such 

that	 g~S gem) = X2 in Z and g~S g(a) = {32 in Z[a]. 

step	 2: Finding a set S 

From step 1, we have a polynomial f(x) € Z[x] that is 
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irreducible and monic and has degree d. We have also an 

integer m with the property f(m) = 0 (mod N). Let a € C be 

a zero of the polynomial f(x). Taking for our polynomials 

g(x) € Z[x], the linear polynomials g(x) = a + bx where a, b 

are small coprime integers with 0 < b S Band 0 sials B. In 

practice, B " exp (J~ : logN (log logNl 2). Since m " N -%;, the 

integers a + bm are small compared to N.
 

The construction of the set S proceeds in two steps. First,
 

we use a sieve to find a set T of pairs (a, b), such that
 

gem) = a + bm is z-smooth (i.e. a + bm factors into primes S
 

z) and g(a) = a + ba is smooth in Z[a]. Next, we use linear
 

algebra over the field Z2 to find a set S ~ T.
 

Let U = {(a, b) la, b € Z, gcd (a, b) = 1, 0 Sial S B, 

o < b S B}. First, we are going to use a sieving method to 

find pairs (a, b), such that gem) = a + bm are z-smooth 

where z is an integer depending on N. 

For each fixed integer b with 0 < b S B, an array is 

initialized with the integers a + bm for -B S a S B. For 

each prime p S z, the numbers in the array corresponding to 

values of a with a = -bm (mod p) are picked up one at a 

time, then each is divided by the highest power of p that 

divides them and the quotient is replaced in the same array 

at the same location from which the number is picked. At 

the end of this procedure the number in the a th location is, 
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up to sign, the largest divisor of a + bm that is coprime to 

the primes up to z. Any location that contains the number 1 

or -1 at the end of the procedure corresponds to a number a 

+ bm that is z-smooth. We denote the subset of pairs (a, b) 

€ U such that a + bm is z-smooth by T" i.e., T, = {(a, b) € 

Ula + bm is z-smooth}. The factor base is the set of primes 

less than or equal to z, i.e., FB = {pip is a prime and p ~ 

z} u {-I}. In practice, z " B " exp (J~ :1ogN(log1ogN) 2) . 

Now, assume that the number of elements in T, is more than 

the number of elements in the factor base FB. Let ~(z) = h 

be the number of primes up to z. Then, the number of 

elements in FB is less than or equal to h + 1. For each z-

h 
smooth integer, write gem) = a + bm = II P j

6j 
, where Pj

j=o 

denotes the jth prime, for 1 ~ j ~ h and Po = -1. We assign 

a vector v (a + bm) = (eo mod 2, e, mod 2, ... , en mod 2) € 

Zh+l 
2 • since the number of vectors for each (a, b) € T, 

exceeds the dimension of the vector space Z~+l, there is a 

non-empty subset S ~ T, such that (a,~)ES v (a + bm) = 0 € 

Zh +1 h f II ( b) 2' •2 • T ere ore (a, b) ES a + m = X l.S a square l.n Z. 

141
 



Our next objective is to use a sieving method similar to the 

one we discussed above to find a set S of pairs (a, b) € U 

such that (a,g) ES (a + ba) is a square in Z[a]. 

Definition: 

An element ~ € Z[a] is called z-smooth if its norm N(~) 

€ Z is z-smooth. 

We can calculate the norm of an element of the form a + 

ba € Z[a] by sUbstituting a, b for X and Y in the homogenous 

polynomial (_y)d f(- ~), where f(X)=xd+cd_1xd-1+ ... + co. Thus, 

dN(a + ba) = ad - c d_1a -1b+ ... + (-l)dcobd. For each prime, 

let R(p) = {rio ~ r ~ p - 1, fer) = 0 (mod P)}. For any 

fixed integer b, with 0 < b ~ Band b • 0 (mod P), the 

integers a with N(a + ba) = 0 (mod P) are those with a = -br 

(mod P) for some r € R(p). 

Note that if b=O (mod P), then there are no integers a 

with (a,b) € U and N(a + bd) = 0 (mod P). 

Now a modification of the earlier sieving method can be 

used to find the set T2 = {(a, b) € ula + ba is z-smooth}, 

as follows: 

For each fixed b, initialize an array with the numbers 

N(a ± ba) for -B ~ a ~ B. For each prime p ~ z that does 

not divide b, and each choice of r € R(p), the positions 

corresponding to a that are congruent to -br (mod p) are 

identified. The numbers in these positions are picked up 
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and divided by the highest power of p that divides them and 

then the quotient is replaced in the array as before. At 

the end of this process, the locations containing ± 1 

correspond to z-smooth values of a + ba with gcd(a, b) = 1 

and hence to elements of Tz• 

The next step is to apply linear algebra over the field 

Zz to obtain a subset S of Tz such that (a,g) Es (a + ba) is 

a square in Z[a]. To achieve this goal, we assign to every 

(a, b) € Tz a vector v(a + ba) = (v , r (a + ba» such thatp

v p , r (a + ba) is defined for every prime P ~ z and every 

element r € R(P) by 

v (a + ba) = {Ordp (N(a+ba.)) if a+br=O (mod P) 
p, q 0 oth .erW1.se, 

where ord p (k) is the number of prime factors p in k. 

= + II p V Ca+bc)Clearly, we have N(a + ba) - P, r p.r The following 

theorem justifies the choice of the vectors v p, r (a + b a). 

Theorem 5.7: 

Let S = {(a, b) € Tz} be a finite subset of Tz with the 

property that (a,g) Es (a + ba) is a square in the algebraic 

number field Q(a). Then, for each prime number p ~ z and 

each r € R(p), we have v p, r (a + ba) E 0 (mod 2). 

The proof of this theorem can be found in [14]. For the 
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number field sieve, we are interested in the converse of the 

theorem: Namely, if (a + ba) = 0 (mod 2) for every prime p 

S z and r € R(p), does it follow that (a + ba) is a square 

in ZEal? Unfortunately, the answer is "no" as the following 

example shows. In Z[i], let S = {(2, 1), (-1, 2)}. Then 

the elements 2 + i and -1 + 2i have norms N(2+i)=(2+i) (2­

i)=5 and N(-l + 2i) = (-1 + 2i) (-1 - 2i) = 5. 

Thus, v (2 + i) = {O ~f p*S
p, r 1 ~f p=S 

and v (-1 + 2i) = {O ~f p*S
p, r 1 ~f p=S • 

Therefore v , r (2 + i) + v , r (-1 + 2i) = 0 (mod 2), butp p

(2 + i) (-1 + 2i) = i(2 + i)2 is not a square in Z[i]. 

The condition (a,~) ES v p, r (a + ba) = 0 (mod 2) does 

not guarantee that (a,g) ES (a + ba) is a square in ZEal. 

This obstacle can be overcome by the use of quadratic 

characters. The details of this procedure are beyond the 

scope of this thesis and can be found in [13]. For now, let 

us assume that this problem is solved and try to put the 

above ideas together to write the number field sieve 

algorithm. 

You will recall that our objective is to construct a 

set S such that (a,g)ES(a+bm)=X 2 in Z and (a,g) Es (a + ba) 
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= p2 in Z[a]. We accomplish this task as follows: For a 

coprime pair (a, b) for which a + bm and a + ba are both z-

smooth in Z and Z[a] respectively, we assign the vector e(a, 

b), which has the usual exponent vector v(a + bm) in its 

first 1 + n(z) coordinates and the exponent vector v p, r (a + 

ba) in the next 1 + p~zIR(P) I coordinates. If we find a 

set S of coprime integers (a, b) with (a/~) ES e(a, b) (mod 

2) being the zero vector, then both (a/~) ES (a + ba) will 

be a square in Z[a] and (a,~)ES(a+bm) will be a square in Z 

and our goal is achieved. 

5.11 The special Number Field sieve Algorithm: 

Assume that N is of the form N = r e - s, where rand 

lsi are small positive integers, r > 1, and e is large. The 

first factorization obtained by means of the number field 

sieve was the factorization of numbers of the above form, 

227 229namely the Fermat numbers F7 = + 1 and F9 = + 1. In 

the case of F7 , the polynomial that was employed is f(x) = 

1 
3 242x + 2, m = and the algebraic number field is Q (-23") . 

5In the case of F9 , the polynomial was f (x) = x + 8. m = 2'03 

3 

and the algebraic number field is Q(-2 5 ). In general, we 
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first choose d (d = 5 for numbers having 70 digits or more) 

and take m = r k, where k = [~]. The number N = r e - s in 

d kd ebase m is N = m - sr - , and hence the polynomial f (x), is 

dgiven by f(x) = x - sr~-e. Since 0 S kd - e < d and sand r 

kd d kd kare small, so is s r -e• Moreover, f (m) = m - sr -e = r ­

kd-e kdsr = r - e (re - s) = rkd-~ == 0 (mod N) . 
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