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CHAPTER 1

Introduction

In this paper, we present an elementary introduction to
geometric groups. These are groups having their origin in
some branch of geometry. Geometric groups are useful in many
applications of group theory in science. From a mathematical
point of view, they provide a better understanding of the
interaction between different branches of mathematics, in
particular between group theory, linear algebra, and geometry.
Our goal in this paper is to discuss and illustrate the basic
properties of geometric groups and some of their applications.
The nature of this study is more that of a compilation of
existent ideas than that of a development of original ideas.
The theorems, proofs, and examples constitute a modeling of
materials from multiple sources so that, even if possible, in
most instances, crediting a single source would not be
appropriate, though occasionally a specific source is cited.
We provide a list of references that we consulted in this

study at the end of the paper.

The material in this paper is intended for readers
familiar with the contents of standard courses in linear
algebra and abstract algebra. In particular, we assume that
the reader is familiar with the following notations: finite-

dimensional vector spaces, subspaces, linear transformations



and matrices, determinants, eigenvalues, groups, subgroups,
group homomorphisms, group isomorphisms, kernels, normal
subgroups, direct products, permutations, cycle decompositions
of permutations. Accounts of these topics may be found in
most linear algebra and abstract algebra books; for example,
[2]), [16], and [21]. Partly in order to establish notation,
we devote the rest of this chapter to review without proofs,
basic notations, and terminology of Euclidean spaces and some

related topics.

THROUGHOUT THIS STUDY, E DENOTES AN n-DIMENSIONAL
EUCLIDIAN SPACE OVER THE FIELD OF REAL NUMBERS UNLESS STATED

OTHERWISE.

Definitions:

1.1 A Euclidean space is a finite-dimensional real
vector space E together with a function < , >:ExE-R,
called the inner product on E, that satisfies the
following conditions:

(1) <A,B>=<B,A> for all vectors A, B€E;

(2) <A+B,C>=<A,C>+<B,C> for all vectors A,B,C€E;

(3) <cA,B>=<A,cB>=c<A,B> for all vectors A,Be€E and all
scalars ceR;

(4) <A,A>20 for all vectors A€E, and <A,A>=0 if and only

if A=0, the zero vector of E.



1.2

1.3

1.4

1.5

1.6

1.9

Let E be a Euclidean space. The length (or
Euclidean norm) of the vector A is the number [A]=y<A4,A>.

Let E be a Euclidean space. The distance function
on E is a function d:ExE-R defined by setting d(A,B)
=JA-BJ] for all A, Be€E.

Let F be a Euclidean space. Two vectors A,BgE are
said to be orthogonal if <A,B>=0, in which case we write
AlLB.

Let E be a Euclidean space, and let U be a subspace
of E. The orthogonal complement of U is the set
U'={X€E[X1A for every vector A€U}.

Let E be a Euclidean space. An orthonormal basis
for Eis a basis {AI'AZ' . .,Aﬂ} of E such that <Ai'Aj>:5ij'

where 51’j is the Kronecker symbol (or delta); §;; equals

i
1l when i=j7 and 0 otherwise.

A linear isomorphism of a vector space V over a
field F is a one-to-one linear transformation mapping V
onto V,

Let Vv be a finite-dimensional vector space over F,
and let W be a subspace of V. Let T be a linear
transformation of V into V. Then the subspace W is
called invariant with respect to T if T(W)cW.

Let V be a vector space, and let T be a linear
transformation of V into V. A polynomial p,(t) is called
a minimal polynomial for T if ¢,(T)=0 and ¢,(t) is the
lowest degree of such polynomials of ¢t.

3



Theorems:

1.1 Let E be a Euclidean space, and let A,B€E, then
<A,B>=—% [d(a,0)2+d(B,0)%-d(A, B)?] .

1.2 Let E be a Euclidean space, and let U be a subspace
of E. Then U* is a subspace. Moreover E=UeU!; that is
every vector in E may be written uniquely in the form
A+B, where A€U and Bell.

1.3 The set GL(V) of all linear isomorphisms on a vector
space V is a group under function composition called the
general linear group of V.,

1.4 R”={(x1,xz, A ,xa)/xiel} is an n-dimensional Euclidean
space with the inner product defined by setting

<(a1, vee ,an), (bl’ ce ,ba)>=a1b1+. .o +anba
for all vectors (al,...,aﬂ),(bl,...,bn)elﬂ. 1f

A=(a1,...,an) and B=(b1,...,ba), then

1Al =ya1 t.*a,,

d(a,B) =y(a,-b,)*+.+(a,-b,) %,

and
<A,B>=]AJ ] B] cosé,
where 8 is the angle between A and B.
In the sequel, P with this inner product is called the

ordinary Euclidean n-space.



1.

1.

5

6

1.7

1.

8

Let V be a vector space, and let T be a linear
transformation of V. Let pr(t) be a minimal polynomial
of T. Then
1. If f(t) is any polynomial for which f(T)=0, then
',(t) divides £f(t). 1In particular, 'f(t) divides the
characteristic polynomial of T.

2. There is only one minimal polynomial for T; i.e.,
p,(t) is unique.

Let V be a vector space, and let T be a linear
transformation of V. Let ,f(t) be a minimal polynomial
of T. A scalar A1 is an eigenvalue of T if and only if
pﬂ1)=0. Hence the characteristic polynomial and the
minimal polynomial for T have the same roots.

Let V be a vector space, and let T be a linear
transformation of V. Let f(t) be a characteristic
polynomial and ,,(t) be a minimal polynomial of T,

Suppose that f(t) factors as
f( t) = (A]__t)ni(lz—t) n,_" (Ak_t) nkl

where 41"?""1k are the distinct eigenvalues of T.
Then there exist integers my,my,...,m such that 1ﬂmsni

for all i and

@p(t) = (t=A) ™ (t-4,) ™ (t-A,) ™.

Let Vv be a vector space over F, and let T be a

linear transformation of V. Assume that the minimal



1.9

1.10

polynomial ,,(t) of T is a product of two polynomials
'j(t) and 'z(t) which are relatively prime over F. Let
Vi={aev[/g,(T)(a)=0} and Vf-{ae‘V/,z(T)(a)=0}. Then
1. Vv=vev, and T(VI)‘VJ' T(Vz)cVz
2. Vi={9,(T)(a)]aeV}, V{9, (T)(a)]a€V}.
3. The restriction T, [TZ] of T to Vv, [Vz] has 'I(t)

[,z(t)] as its minimal polynomial.

Let V be a finite vector space over F, and let T be
a linear transformation of V, and let # be a T-invariant
subspace of V. Then the characteristic polynomial of T/,
divides the characteristic polynomial of T.

Let V be a finite vector space over F, and let T be
a linear transformation of V, and suppose that
V=W ®...0W,, where W, is a T-invariant subspace of V for
each 1 (l=ixk). If f(t) denotes the characteristic
polynomial of T and fl-(t) denotes the characteristic

polynomial of T|, (lIsis<k), then

F(E)=£(t)E,(t). . £,(t).



CHAPTER 2

The Orthogonal Group

Throughout this chapter, E denotes a finite dimensional
real Euclidean space. Thus E is a vector space together with

an inner product < , >:ExE-R. If Ac€E, then the number
JAl=y/<A,A> is called the length (or Euclidean norm) of A. Our

objective in this chapter is the study of length-preserving
transformations of E. There are two types of length
preserving transformations that are of primary concern to us
in this chapter: orthogonal transformations and Euclidean
transformations.

In Section 2.1, we define and study the basic properties
of orthogonal transformations. In Section 2.2, an algebraic
structure on the set of orthogonal transformations O(E) is
introduced and it is shown that with respect to this structure
O(E) is a group, called the orthogonal group of the space.
Section 2.3 is devoted to the study of Euclidean
transformations (or rigid motions). Euclidean
transformations, like orthogonal transformations, form a
group, called the Euclidean group of the space, and the study

of its structure is given in Section 2.3.

2.1 Orthogonal Transformations
In this section, we are going to discuss special kinds of

linear transformations of a Euclidean space E, namely



orthogonal transformations. We first characterize these
transformations geometrically and note that they extend the
concept of rotations and reflections of ordinary plane
Euclidean geometry to higher dimensional Euclidean spaces.
Among the most important results to be proved in this section
is the spectral decomposition theorem for orthogonal

transformations.

Definition 2.1:

Let E be a finite dimensional real Euclidean space. An
isometry (Euclidean transformation or rigid motion) of E is a
mapping o:E~E such that d(A,B)=d(c(A),o(B)) for all A, BE€E,

where d is the distance function on E.

Thus, an isometry of E is a function from E into E that

preserves the distance between all points in E.

Theorem 2.1:

Let 0:E~E be an isometry of E. Then

1. o is one-to-one.

2. ol:E<E is also an isometry.

3. If 7:E~E is another isometry of E then 007 is an isometry
of E.

Proof:

1. Assume o(A)=o(B) for some A,B€E. Then d(¢o(A),o0(B))=0;

therefore, d(A,B)=JA-BJ=0 - A=B. Hence o is one-to-one.



Since o0 is one-to-one and we will prove later ¢ is also

onto, then o exists. And we know that

d(A,B)=d(o(A),o(B)) for all A, B€E.
Then d(ol(a),ol(B))=d(o(oi(a)),o(c'(B)))=d(A,B).

Therefore, ol is an isometry.

3. We are given that ¢ and t are isometries on E. We wish
to show o0t is an isometry. Let A,BeE. Since o and <t
are isometries, d(A,B)=d(o(A).,o0(B)) and d(A,B)
=d(t(A),t(B)). Therefore, d(o0ot(a),00t(B))=d(t(A).,t(B))
=d(A,B); hence, 00t is an isometry.

Corollary:

Let Iso(E) be set of all isometries of E. Then Iso(E) is

a group under composition of functions.

Proof:

1.

2.

5.

Iso(E)#re. The identity map l,eIso(E).

(Iso(E),o) is a mathematical system since composition of
isometries is an isometry by Theorem 2.1.

The associative property holds since a composition of
functions in general is associative.

The identity map 15:E~E,VZ€ENQJA)=A, is the identity
element.

VoeIso(E), ad is an isometry by Theorem 2.1.

Therefore, (Iso(E),®) is a group.



Definition 2.2:
Let E be a Euclidean space. Suppose A€E. The map T :E-E

given by 7)(x):=x+A is called the translation of E by A.

Theorem 2.2:
The translation of a space E by A is an isometry of E.
Proof:
Let 1}(x)=x+A. We wish to show 1)6Iso(E). Let B,Ce€E,
then 7)(B)=B+A and Th(C)=C+A.
So, d(Ty(B),Ty;(C))=d(B+A,C+A)
=J (B+A)-(c+A)]
=] B-C]

=d(B,C).

Definition 2.3:
An orthogonal transformation of E is a linear isometry of
E; that is, o is an orthogonal transformation of E if o is a

linear transformation from E to E and ¢ is an isometry.

Lemma 2.3:
An isometry o¢:E-E is a linear isometry if and only if
0(0)=0.
Proof:
(=) Assume o¢ is a linear transformation. Then VA, Be€E,
o(A)+o(B)=o(A+B). Therefore, 0(0)=0(0+0)=0(0)+0(0), and

thus o(0)=0.

10



Assume ¢ is an isometry such that ¢(0)=0. First, we need
to show ¢ preserves the inner product of E. Let A, BgE,
then
<o(a),o(B)>=1/2[d(a(A),0)*+d(c(B),0) -d(a(A),a(B))]
=1/2[d(o(A),0(0))’+d(a(B),0(0))?-d(c(A),0(B))*]
=1/2[d(A,0)’+d(B,0)"-d(a,B)]
=<A,B>.
Next, to show ¢ is a linear transformation, let A,B,CeFE
and ceR. Since ¢ is an onto map, then JC’'€E such that
C=o(C'). So
<o(A+B)-o0(A)-o(B),C>=<o(A+B)-0(A)-o(B),o(C')>
=<g(A+B),0(C')>-<o(A),0(C")>
-<o(B),o(C"')>
=<A+B,C'>-<A,C'>-<B,C'>
=<A+B-A-B,C'>
=<0,C'>
=0.
Therefore, VCeE,o(A+B)-0(A)-0(B)iC; thus o(A+B)-o0(A)-0(B)
must be the zero vector. Hence o(A+B)=o(A)+o(B). Thus
o preserves vector addition. Similarly,
<o(cA)-co(A),C>=<o(cA)-co(B),o0(C')>
=<o(cA),o(C")>-<co(A),0(C')>
=<cA,C'>-<cA,C'>
=0.

Therefore, VceR, o(cA)=co(A).

11



The following theorem shows that in studying isometries
of a space E, it will often suffice to study only linear

isometries.

Theorem 2.4:

Every isometry o:E-E can be expressed as a composition of
a linear isometry of E and a translation of E.

Proof:

Let o0:E-E be an isometry of E, and let A=¢(0). By
Theorem 2.2, the translation T, is an isometry of E. Thus,
the map =T po is an isometry of E. Since t(0)=(T_fa)(0)
=T*(a(0))=Td(A)=0, Lemma 2.3 implies that v is a linear

isometry. Moreover, a=T1d

°7=T° 7. This completes the proof.
Corollary 1:

The factors t and T, are uniquely determined by o.

Corollary 2:

Every isometry o of E is onto.
Proof:

Since 0:E-E is an isometry, then by Theorem 2.4, we have
a=qpt, where 7 is a linear isometry and 7} is a translation
of E. By Theorem 2.1 (1), 7 is one-to-one, and since 7 is a
linear transformation and E is finite dimensional, 7 is onto.

Now we are going to show that T, is onto. Let Xe€E. Then

12



X=(TA°T_J)(X)=TJ(T_‘(X)) and T_‘(X)GE'. Hence, T, is onto. Thus,

0=T‘° T is onto.

Next, we are going to give a variety of characterizations
of orthogonal transformations. The following theorem gives a

geometric characterization of an orthogonal transformation.

Theorem 2.5:

Let o0 be a linear transformation on a finite dimensional

Euclidean space E. Then the following statements are
equivalent:
1. ¢ is an orthogonal transformation.

2. lo(A)]=]A] VAe€E; that is, o preserves the length of all
vectors in E.

3. I1f AcE is a unit vector (i.e., if JAJ=1), then Jo(A)]=1.

4, For any vectors A,BeE, <o(A),o(B)>=<A,B>; that 1is, o
preserves the inner product on E.

Proof:

(1=2) Assume o0 is an orthogonal transformation. We wish to
show VA€eE, Jo(A)]=JA]. Let A€E. Then
Jo(a))?=d(0,0(A))*

=d(0(0),0(a))’
=d(0,a)’
=]a)?. Therefore, Jo(A)]=]A].

13



(2=1) Assume ¢ is a linear transformation such that VAeE,
l1o(A)I=14]. We wish to show ¢ is an orthogonal
transformation. Let A,B€E. Then
d(a(a),0(B))'=)a(A)-a(B)I’

=<o(A)-o(B),o(A)-0(B)>

=<g(A-B),0(A-B)>

=] o(a-B)I’

=]a-8J’

=d(a,B)’.
Therefore, o0 is an isometry, and hence ¢ is an orthogonal
transformation.

(2=3) Assume YAeE, Jo(A)]=]A]. 1f JA]=1, then [Jo(A)]=1.

(3=»2) Assume ¢ is a linear transformation such that if A€E is
a unit vector then [Jo(Aa)[]=1. We wish to show VBeE,
lo(B)I=]B]. 1f BeE, and B=0, then Jo(B)]=]c(0)]=]0]=]B].
Let B€E, and B#0 and let A=B/[B]. Then A is a unit
vector; therefore,
lo(B)I=1o(1BlA)]

=IBllo(A)]
=18l .

(1l=4) Assume o is an orthogonal transformation. We wish to
show VA,BeE, <o(A),o0(B)>=<A,B>. Let A,B€E. Then
<o(A),o(B)>=1/2[d(c(A),0)+d(c(B),0)"-d(a(a),o(B)) ]

=1/2[d(o(A),a(0))*+d(a(B),a(0))!-d(a(a),a(B)) ]
=1/2[d(a,0)’+d(B,0)*-d(a,B)']

=<A, B>,

14



(4=2) Assume o0 is a linear transformation such that VA, B¢E,
<o(A),o(B)>=<A,B>. We wish to show VYcCeE, [Jo(c)l=]c].
Let C€E. Then

Jo(c)l?=<a(C),0(C)>

=<C,C>
=fcl’.
Corollary:
Let o0:!E-E be a linear transformation. Then o¢ is an

orthogonal transformation if and only if for some orthonormal

basis [el,ez, .o ,eﬂ} of E, the set of vectors
{a(el),a(ez),...,a(ea)} forms an orthonormal set.
Proof:

Assume that o is an orthogonal transformation. Let

{el,ez,. . .,en} be an orthonormal basis of E. Then <el-,ej>=0 if
i#j and <e;, e;>=1. By Theorem 2.5 (4), we have <a(e1-),a(e]-)>=0
if i#j and <o(e;),o0(e;)>=1, or <0(ei).0(ej)>=51_1={% if i:%

(51-]- is called the Kronecker delta). Thus
{a(el),a(ez),...,a(en)} is an orthonormal set.
Conversely, suppose that for some orthonormal basis

{el,ez,...,e”} of E, the set {a(el),a(ez),...,a(en)} is an

15



orthonormal set. Let A=a1e1+...+anen=; a;e; be an arbitrary
=0

vector in E. Then

JAR=<A, A>

= ,gjgaiai <e,,ep

> taiajbu

I=1j=1

=$a? .

i=1

and

lo (A) =<0 (A),0(A) >ﬁ
=<§1a10 (ey) ,j_lajo (eg)>
=i%jgaiaj<o (e,) ,0(ey)>

) taia_,b_u

i=14=1

-$al.

=1

Hence [JA[J=Jo(A)]. Thus, by theorem 2.5 (2), o is an

orthogonal transformation.

Remarks:

In the literature, an orthogonal transformation is also
called a unitary map or unitary operator. The reason why some
authors use the terminology wunitary is that they are
characterized by the fact that they map unit vectors into unit

vectors as we have shown in Theorem 2.5 (3). The reason most

16
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authors use the term, orthogonal transformations, is that

these transformations preserve orthogonality of vectors.

Throughout the paper we are going to follow this standard
terminology. Unfortunately, this choice is not the best
choice for the following reason: Let U:E-E be a unitary map;
that is, U satisfies the condition: If Xe€E such that [JXx[/=1,
then JU(X)J=1. Then it follows that U preserves orthogonality
of vectors in £. On the other hand, it does not follow that
a map which preserves orthogonality of vectors is necessarily
unitary. For example, the map a:i..i given by o(X)=2X,

preserves orthogonality but is not unitary.

Before we continue with other characterizations of

orthogonal transformations, let us give some examples.

Example 1:

Let E be any n-dimensional Euclidean space. The identity
transformation on E is the map 1,:E~E defined by li(A)=A for
any vector A€E, and the inversion transformation on E is the
map -lg:E-E defined by —1,(A)=-A for any vector AFE. These are
both orthogonal transformations of E since both tl, are linear
transformation of E and <115(A),115(B)>=<1A,tB>=<A,B> for all
vectors A, B€E.

Geometrically, the inversion transformation maps every

vector to its inverse. The figures below illustrate the

17



inversion transformation on the lI~-dimensional Euclidean space

R’, and on the 2-dimensional Euclidean plane Rz

A
a /
_A / —A "4’
“-=="" o e”
-1p R R

_1‘3:RZ__)RZ

Figure 2.1 Figure 2.2

Example 2:

Let E be an n-dimensional real Euclidean space. Let H be
a hyperplane in E; that is, H is an (n-1)-dimensional subspace
of E. Then its orthogonal complement H! is a l-dimensional
subspace of E. Let L=H!. Then E=HeL and hence every vector
X€E can be written uniquely in the form X=X,+X£, where X,EH and
X;€L. The map R;:E-E defined by R,(X)=X,-X£ for every Xe€E is an
orthogonal transformation of E. The map R; is called a
hyperplane reflection of E through (or in) the hyperplane H.
If E=Rz or R’, then R’(X) is the mirror image of X obtained by
regarding H as a two sided mirror. The figure below
illustrates a typical hyperplane reflection of the 3-

dimensional Euclidean space R’

18



Figure 2.3

Example 3:
Let E be an n-dimensional Euclidean space, and let A be
a nonzero vector in E. The map S;:E~E defined by

<X, A>

=X-2
Sy (X) A A

A for every A€E is an orthogonal transformation

of E. For example, let E=Rz and A=(1,2), then S“’Z}:Rl-'lz is

given by

(1,2)(x,y)
1 2)(1.2) ‘2
= (x,¥) -% (x+2y) (1,2)

4 4

-(3,- 4., _4,..3
(§x-5Y: —5Xx" 57 -

S, ((x,¥)) =(x,y) -2

Thus S(I 2) is a hyperplane reflection of the space (or plane)
P through the line H=al=<(1,2)>l=<(2,-1)>. See the figure

below.

19



.2)

T, H= o)
=<2

Sa. a0

Figure 2.4

The preceding example illustrates that the orthogonal
transformation q,on IF is just the reflection of lg through a
line H=A! passing through the origin; that is, in the notation

of example 2, S,=R,.. This type of orthogonal transformation

is called a symmetry of E and it will be discussed later.

The following theorem gives a characterization of

orthogonal transformations in terms of matrices.

Theorem 2.6:

Let 0 be a linear transformation of E. Then o is an
orthogonal transformation if and only if the matrix A of ¢
with respect to some orthonormal basis of E satisfies the

¢ ¢

condition A*A=I, where A" is the transpose of A.

20



Proof:

Suppose that o is an orthogonal transformation. Let

{e,,...,e,} be an orthonormal basis of E. Let o(e)-ﬁa e, .
1 2 1 7 o Ok

By the corollary to Theorem 2.5, the set
{a(el),a(e‘,),...,a(en)} is an orthonormal set; thus, we have

<a(ei),a(ej)>=6ij. Also we have

(o(e),o(e)>=<ta e tc e>=ta &,,. These equations imply
1 I gy BRI GLHTE S HTN

that AtA=I since the (i,k)th entry of At is @ Conversely,
assume that a‘a=I. Thus the equations above are satisfied and
hence the set {a(el),a(ez),...,o(en)} is an orthonormal set.

This completes the proof.

Corollary:

aat=r.

Definition 2.4:
An nxn matrix A with real entries is called an orthogonal

matrix if AtA=I.

Example 4:
Let us use the matrix approach to show that every
rotation of the Euclidean plane R’ about the origin is an

orthogonal transformation of the plane. Recall that the
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rotation of the plane through an angle of 8 radians about the
origin is a mapping p,:lz-lz, where

p,(x,y)=(xcose—ysin9,xs.in9+ycose) for all vectors (x,Y)ERz.
It follows easily from this formula that p;, is a linear
transformation of Rz whose matrix representation relative to

the standard orthonormal basis {el,ez} is

As(coso -sinO)
8in® cosb )’

Pglx. ¥)
AN
\
\
\
\
0 (x. »)
Figure 2.5

Since the inverse of a rotation is the rotation in the

opposite direction, p0-1=p_,; therefore,
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_la(cos(—ﬂ) -sin(-ﬂ))a(cose sinﬂ)_Ac
sin(-0) cos(-0) -8in0® cos6 ’

It follows that A is an orthogonal matrix and hence that the
rotation p, is an orthogonal transformation of the Euclidean

plane RZ

Now we are going to show that the determinant of an
orthogonal transformation is always #1, and then use this fact
to extend the notion of rotations and reflections of ordinary

plane geometry to higher dimensional Euclidean spaces.

Theorem 2.7:

LLet 0 be an orthogonal transformation of a Euclidean
space E. Then det(c)=%l.
Proof:

Let M(c) be a matrix representation of the orthogonal
transformation 0. Since o is an orthogonal transformation of
E, we have M(o)tM(a)=I. Therefore, det(M(a)tM(a))=det(I), so
det(M(a)t)det(M(a))=1. Hence det(M(o))":l. It follows that

det(M(c))=tl. Thus det(o)=2l.
Lemma 2.8

Let E be a 2-dimensional real Euclidean space. Let o be

an orthogonal transformation of E. Then there exists an
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orthonomal basis B of E such that the matrix of o with respect

to the basis B is either one of the following two matrices:

cos® -sinf

(1) [0],'[ ], where 0s<8s2x.

8in® cos6

(2) [o],={: 11].

Furthermore, type (1) occurs if and only if det(o)=1, and type
(2) occurs if and only if det(o)=-1.
Proof:

By Theorem 2.6, we can choose an orthonormal basis {ﬁpﬁz}

of E such that the matrix of o with respect to this basis

a b| . . . ,
A-¢: is an orthogonal matrix. Since A is orthogonal, we

have AtA =AAt=I. Thus

a?+pi=y al+c?=1
ac+bd=0 ab+cd=0
c3+d?=1 b3+dé=1

The equation az+t3=l implies that there is a unigque real number
8, with 0<8<2x, such that a=cos8 and b=siné. If det(o)=1,
then ad-bec=1. Using this equation together with the equations
ac+bd=0 and cLH¥=1, we have c=-b=-sin6 and d=a=cosf. Hence
the matrix of o relative to the base B=ﬂ%,ﬁr}is of type (1).
Conversely, if the matrix of ¢ relative to an orthonormal

basis B is of type (1) then det(a)=cosla+sin29=1. On the other
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hand, if det(oc)=-1 then ad-bc=-1. Using equation together
with the equations ac+bd=0 and c2+dz=1, we obtain c¢=zb=siné and

d=-a=z-cosé. Hence the matrix of ¢ relative to the basis

cosb siné

8iné -cose]' Consider the system of

{ﬂl,ﬁz} has the form A=

linear equations:

]

coso sinﬂ]x
8in® -cos6
This is equivalent to

[cosO-l gind ]B]B[O]
sin® -(1i+cosf) 0

. cosB-1 sin@ _ _ il
Since dec[ gin® - (1+cos8)|” (cos8-1)(l+cos8)-sin‘é

=~ (cosze-l ) -sin"e:o,
*1
Yy

the system has a nonzero solution, say ﬂ=[ .] By normalizing

this solution, we obtain a unit vector, call it ¢1=—I%i.
Clearly a(a1)=a1. Since E is 2-dimensional, we can choose
another unit vector, say a,, such that B={a1,a2} is an
orthonormal basis of E. Thus the transformation ¢ can be

represented by an orthogonal matrix with respect to the basis
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_ 1p 1p 1 p| |cos® sinbd
B-{al,az} of the form \0 q] det.[oJ g, but[o Ql [sinﬁ —cosO]

cos® siné

for some 8. det] . =-1. Thus g=-1. Hence p=0.
8in® -cosbO

Therefore, in this case, [o], is of type 2. Conversely, if

the matrix of o is type (2) then det(o)=-1.

Now we are going to generalize the notions of rotation
and reflection in ordinary plane geometry to higher
dimensional Euclidean spaces. First, let us examine the 2-

dimensional Euclidean plane lz

Let E=l’ be the 2~dimensional ordinary Euclidean plane.
Let o be an orthogonal transformation of E. Then by Lemma

2.8, the matrix of o with respect to an orthonormal basis

. . . cos® -siné
B={a;,a,} is either of the following form [g], [sinﬂ cosb

[o],=[; _01]. Observe that in the first case, det(a)=cos‘79+sin29

=], and in the second case, det(o)=-1. In the first case, if

A is a nonzero vector in .2' we calculate the angle between A
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and o(4). If [A]Brtf] then [0080 —sine“j:

sin® cos6

xcosb-ysind

= . . The
x8in®+ycoso

angle ¢ between the vectors A and o¢(A) is given by

<A,0(A)> _<A,0(A)>
1allo (A) ] 1A

cosé=

o(Aa)

Figure 2.6

<A,o(A)>=|x y{xaose-yszne

xsinB+ycosO

=(xzcose—xysine)+xysin9+yzcosze
=(xz+yz)cose

=IAIZcose.
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2
Thus cos¢=Jé%§$§g=cose. Hence ¢=8 if 0<8<x and 8=-2x-¢ if
x<8<2x. Thus o0 in this case is a counterclockwise rotation of
the plane IK about the origin through an angle of radian
measure 6.

In the second case, o0 satisfies the following properties:

1. 02=1,, (the identity transformation of IF).

2. The line L=(ra,trel} is pointwise fixed by o; that is,

o(x)=x for every xe€L.

3. Let AeR. Then A=xa;+ya, and since [o],k:]-[: _01]E]=[3‘],

then a(A)=xal-ya2. Thus ¢ maps A into its mirror image
with respect to the line L; that is, o0 is a reflection of
lg thorough the line L. Note that o(A) can be written as

a(A)=A-2<A,aZ>az for all Aei?.

Since rotations of the plane have determinant +l1 and
reflections have determinant -1, we formally define rotations
and reflections of n-dimensional real Euclidean space as

follows:

Definition 2.4:

28



Let E be an n-dimensional real Euclidean space. An
orthogonal transformation ¢ of E is called a rotation if

det(o)=+1 and a reflection if det(o)=-1.

Remark:

We caution the reader about the terms rotation and
reflection as just defined for arbitrary real Euclidean
spaces. In the context of an arbitrary real Euclidean space,
they simply express a formal property of an orthogonal
transformation and should not mislead the reader into
thinking, for example, that a rotation "rotates"™ the space
about an "axis" or that a reflection "reflects" the space
through some hyperplane. Let us illustrate this remark with
examples.

Example:
Let £ be a 4-dimensional real Euclidean space, and let

a:E‘-oE‘ be the inversion transformation given by 0=-1, . Since

det(a)=(-1)‘=l, o is a rotation of E/. But o does not "rotate"
E‘ about a fixed axis since o fixes no nonzero vector in E‘
Example:

Let E" be a 3-dimensional Euclidean space and o=-1p.

Since det(a)=(-1)3=-1, o is a reflection of E'. But o does not
reflect the space through a hyperplane since o fixes only the

zero vector and hence it does not fix the vectors of the
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Il

hyperplane. Thus 0=1, is a reflection in the general sense

of the word, but o is not a hyperplane reflection.

Theorem 2.8:

Let E be an n-dimensional real Euclidean space. Then
there exist a rotation and a reflection of E.
Proof:

o=1,, the identity transformation of E, is obviously a
rotation. Suppose B={ep...,er}is an orthonormal basis for E.
Let o0:!E-<E be the linear transformation defined on B by
a(e1)=-e1 and a(el.)zei for i=2,...,n. Then <a(e1-),o(ei)>=1 for
i=2,...,n, and <a(ei),a(ey)>=0 for i#j. Hence o is an isometry

and the matrix of o with respect to B is given by

-1 0 - 0
0 1 -
[ol’-- i w0
0 «01

Thus det(o)=-1 and hence ¢ is a reflection.

Corollary:

Let E be an n-dimensional Euclidean space. then E has at
least n reflections.
Proof:

Let oy:E*E be a linear transformation defined on B by
al-(el-)=—ei for a fixed ie{l,...,n}, and ai(e]-)=ej for all jwi.

Then det(ai)=—1 and hence 9; is a reflection. Since there
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exist n such linear transformation o¢;'s, E has at least n

i

reflections.

Theorem 2.9:

1.

Let E be an n-dimensional Euclidean space. Then

If n is even then o0=-1; is a rotation, and if n is odd
then o is a reflection.

The product of two rotations is a rotation.

The product of two reflections is a rotation.

The product of a rotation and a reflection is a

reflection.

Proof:

1.

Assume n is even. Then det(a)=det(-l,)=(-l)”=1;
therefore, ¢ is a rotation. If n is odd, then
det(a)=det(-1,)=(—1)”=-l; therefore, o is a reflection.

Let ¢ and t be rotations. Then det(c)=1 and det(t)=1;
therefore, det(otr)=det(o)det(t)=1, and hence ot is a
rotation.

Let 0 and 7 be reflections. Then det(o)=-1 and det(zt)

=-1; therefore, det(ot)=det(c)det(t)=1, and hence o7 is
a rotation.

Let o be a rotation and 7 be a reflection. Then det(o)=1
and det(t)=-1; therefore, det(otr)=det(to)=det(oc)det(t)

=-1, and hence ot and to are reflections.
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Our next objective is the proof of an important result
called the spectral decomposition theorem for orthogonal
transformations. This theorem is concerned with the matrix
representation of an orthogonal transformation by choosing a
suitable orthonormal basis of E.

First, we need to prove some preliminary results which we

shall need.

Lemma 2.10:
Let ¢ be an orthogonal transformation on n-dimensional

Euclidean space E.

1. If 0 has a real eigenvalue 1, then i1=11.
2. Every eigenvalue of ¢ has absolute value 1.
3. If U is a subspace of E invariant under o, then U} is

invariant under o.

Proof:

1, Let o(x)=1x, where x#0. Then <x,x>=<0(x),0(x)>=<Ax,Ax>
=12<x,x>. Thus (12-1)<x,x>:0. Since x#0, <x,x>#0, and
hence 4°-1=0 or A=$1.

2. Let o(x)=Ax, where x#0. Then [x[=]o(x)]=]Ax]=]a]]x].
Thus [3/=1.

3. Since U is invariant under ¢, then o(U)=U and ad(U)=U.
Let yeU!. Then for any xeU, we have <o(y),x>=<y,ad(x)>

=0, Thus o(y)el* for every yel!, and hence o(Ut)=Ut.
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 Lemma 2.11:
Let o be an isometry on E. If o/(x)=0 for some x€E and

for some integer p2>1, then o(x)=0.

Proof:

Let g be the smallest integer such that aq(x)=0. Assume
that g>1 and let y=of/(x). Then ywo. a(y)=a(a”(x))=a’(x)=0.
Thus Jo(y)]=0. Since o is an isometry on E, then Jo(y)l=lx]=0

a contradiction since y#0. Thus o¢(x)=0.

Lemma 2.12:

Let o be an isometry on E. If ¢1 is an irreducible
factor of the minimal polynomial m of o then

m=¢, ¢,

where ¢, and # are relatively prime. That is, the factors of
m are distinct.
Proof:

Assume that m=¢1’-', where ¢, and ¢ are relatively prime.
We shall show that p=1l. Since m is the minimal polynomial of
o, then for x€E, we have m(o)(x)=0, thus m(o)(x)
=¢1’(a)(¢(a)(x))=0. Now we apply Lemma 2.11 to the isometry
¢1(a) and the vector ¢(o)(x), we obtain ¢1(a)(¢(a)(x))=0.
Since this is the case for any x€E, then ¢1(a)¢(a)=0. Thus

p=1l.
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We are now in a position to prove the spectral

decomposition theorem for orthogonal transformations.

Theorem 2.13 (Spectral Theorem):

Let o be an orthogonal transformation of an n-dimensional
real Euclidean space E. Then there exists an orthonormal
basis B={al,...,aﬂ} of E with respect to which o can be
represented by a matrix of the form

b I T 0 1
0 ~ .

cosf, -sin@,
8in®, cos6,
a 0
! cosf, -sinf,

0 o e e 0 ginok cosﬂk-

where 1 and -1 appear the same number of times as their
multiplicities as eigenvalues and 91, . .,8‘, 059]-<2;:, are such
that cosejiisinej, l<j<k, are the distinct eigenvalues of A4
other than t1, each block appearing the same number of times

as the multiplicity of cos6:+isinf; as a characteristic root.

] ]
Proof:

The proof is by induction on the dimension of E. If
dim(E)=1, then the only orthogonal transformations of E are
o=tl, and the matrix representation of o¢ has the form

[a],=[tl]. Assume that the theorem is valid for any
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- orthogonal transformation on a Euclidean space E' with
;d.im(E')=k, where k21. Let E be a Euclidean space and

(* dim(E)=k+1. Let o be an orthogonal transformation on E.

Since E is a real Euclidean space, the minimal polynomial m of
o has irreducible factors that are either linear or quadratic.
- That is, mis either the product of factors of the form x-c or
(x-a)2+b", where bw0 and a,b,c are real numbers. Lemma 2.12
implies the factors of m are distinct. We consider the
following two cases.
1, m has a linear factor, say (x-c), with ¢ as a real
eigenvalue. Lemma 2.10 (1) implies c=%#l1. Let a be
an eigenvector corresponding to ¢. Then U=<a> is a
l-dimensional subspace of E and U is invariant
under ¢. Thus by Lemma 2.10, U! is invariant under
0. We have E=Ue¢l'. Since dim(U')=k, we may apply
the inductive assumption to the restriction of o to
lin to obtain an orthonormal basis, say

B'={al, .o .,a‘,}, with respect to which the matrix ofol,,;

is of the form given in the theorem. Let
B={a',al, ce ,an}, where a'=a/[Jal. Then B is an
orthonormal basis of E. Then the matrix of o with

respect to the basis B has a block diagonal form

_ +1 0
[U]a— 0 [olu*]a' ’

Thus the theorem is valid for dim(E)=k+1.
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The minimal polynomial m has only gquadratic factors of
the form (x—a)z+bz, where b#so0. Then by Theorem 1.8,
there exists an invariant subspace under o, say U, on
which the minimal polynomial of the restriction of ¢ to
U, say o', is m'=(x—a)z+bz. Thus o', the restriction of
o to U, can be expressed in the form o'=alI+bJ, where I is
the identity transformation and J=(o'-aI)/b. Since
(o'-a1)’+b’1=0, we have J=(o'-aI)l/b’=(-M1)/b=-1. Let
B be an arbitrary nonzero vector in U, and set /32=J(/31).
Let W=<{B,.B,}>.

Claim 1: W is a subspace of U invariant wunder o'.

Clearly W is a subspace of U. To show that W 1is
invariant under o¢’, let weW. Then w=a1ﬁ1+alﬁ2, where

o'(w)=aj0'(B;)+a,0' (By)=a;(al+bJ)(B))+a,(aI+bJ)(J(B,))
=a1a(ﬁ1)+a1bJ(ﬁ1)+a2aJ(/31)+azbJ2(/a'l)'—'ala/sl+a1b/32-aza/31-azbﬁ1
=(ala-aza-a?b)ﬁ1+(alb)ﬁle‘w. Therefore, W 1is invariant
under o’.

Claim 2: {/31,/32} is linearly independent. Assume the
contrary, namely B and B, are linearly dependent. Then
B;=a,R, for some nonzero scalar a,. Thus J(/31)=J(az/31)
=azJ(ﬁ2)=a1J(J(ﬁ1))=-a1/31. This is equivalent to By=-aB
- /31/a2=—a2ﬁ1 - ﬁ1+azzﬁ1=0 - (1+a22)ﬁ1=0, a contradiction

2

since l+a, »0 and B;#0. Hence {ﬁz'ﬁz} is linearly

independent and dim(W)=2.
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By Lemma 2.8, there exists an orthonormal basis {al,az}

of Wwith respect to which the matrix of o' has the form

cos® -8inb

[0]] 5= in® cosd ] , 0=8s<2x.

(Note that the other matrix form of o' does not occur
since ¢' does not have %1 as an eigenvalue.) The
characteristic polynomial of [a'],. is given by

-cosf sind

Clx) = -8in® x-cos

J= (x-cos0)2+3in%0.

Claim 3: sin6#0. Assume the contrary, namely sin8=0.
Then C(x)=(x-cose)2 and hence o' has real eigenvalues
which contradicts the fact that o¢' has no real
eigenvalues. Thus sin8#0. Therefore, c(x)=(x-

26 is the minimal polynomial of o'. Thus

cose)2+sin
cos8=a and sin@=b. Since dim(W)=2 and E-WieW, we apply
the inductive hypothesis to the restriction of o to W.

This implies there exists an orthonormal basis BY” of w

with respect to which the matrix of 0|, has the form

given in the theorem. Then the matrix of o with respect

to the basis B=B"uUB' has a block diagonal form
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[6] 5= cosf -sin6|.
cos® sind

This completes the proof.
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_;? The Orthogonal Group

Let EF be an n dimensional real Euclidean space. The set
) nonsingular linear transformations of E forms a group under
;Kmpositions of maps. This group is one of the '"classical
froups'", and it is called the general linear group, and it is
enoted by GL(E). In this section our objective is to study

wo groups that are subgroups of GL(E).

‘Theorem 2.14:

Let E be an n-dimensional Euclidean space, and let O(E)

'be the set of all orthogonal transformations of E. Then O(E)
is a group under function composition.

Proof:

1. O(E)#2 since lieo(E), and clearly (O(E),®) 1is a

mathematical system since the composition of two

orthogonal transformations is an orthogonal
transformation.

2. (O(E),o ) is associative since composition of functions is
associative.

3, lreo(E) is the identity element.
4. If o0€0(E) then det(c)=+1; therefore, dJ exists, and

det(04)=tl; hence, OJGO(E).

Definition 2.5:
The group O(E) of orthogonal transformations of E is

called the orthogonal group of E.
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- Example 1:

Let us find the orthogonal group of a I-dimensional
Euclidean space E!. The general linear group GL(EJ) consists
of all linear transformations ac:E‘I--E‘I, where ¢ is a nonzero
scaler and ac(x)=cx. To find the elements of GL(EJ) that are
orthogonal transformations, note that <ac(x),ob(y)>=cj<x,y>,

thus o, is orthogonal if and only if c2=1 or c=t1, Hence

O(EY) = {-15,1p}) .

Example 2:
Let Ezbe a 2-dimensional Euclidean plane. We have shown
earlier in Lemma 2.8 that if ¢ is an orthogonal transformation

of E? then there exists an orthonormal basis B of E such that

the matrix of o relative to B is eitherA,=[ol,=

cosf —sinﬂ]
sin® cosb

0
or Azs[a],={; _1]. det(A1)=+l and det(A2)=—l; hence, if o is

a rotation, then its matrix is A; and o=p;, the rotation of the
plane through an angle of 8 radians about the origin. If, on
the other hand, o is a reflection, then its matrix must be A,.
Thus, O(E?) consists of the usual rotations about the origin
of Ezand the reflections of E? through a line passing through

the origin.
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Let E be an n-dimensional Euclidean space. We denote the
subgroup of rotations of E by o' (E) and the set of reflections

of E by O (E).

Theorem 2.15:

Let E be an n-dimensional Euclidean space. Then Of(E) is
a normal subgroup of O(E). Moreover, O(E)/O'(E)-Zz, and
therefore the index of Of(E) in O(E) 1is 2; that is,
[0(E):0'(E)]=2.

Proof:

Consider the map det:O(E)-{+1,-1}. If o,t€0(E) then
det(ot)=det(o)det(t); therefore, det is a group homomorphism
of O(E) onto {+1,-1}. By definition, the kernel of det is the
set of rotations Of(E) of E. Therefore, 0"(E) 4 O(E) and

O(E)/0'(E)uz,.

Definition 2.6:
The subgroup 0*(E) of the group O(E) is called the

rotation group of E.

Remark:
The set O (E) of reflection of E is not a subgroup of
O(E). However, since [O(E):O'(E)]=2, the rotation group Of(E)

partition O(E) into two cosets, namely O*(E) and O (E).

41



- Example:
1 The rotation group of the 2-dimensional Euclidean plane
ll consists of the rotations p, through an angle of & radians

%gbout the origin. That is Of(RZ)={p,€O(Rz)/B€R}. Moreover,

fOW]F) is isomorphic to the circle group R/2xZ. 1If p,and Py
?are rotation of R, then PgPy=Pgg'=PyPy; therefore, O*(RZ) is
gabelian. Define a function f:R-oO*(RZ) by VeeR, f(8)=p,. Then
£ is a group homomorphism from the additive group of real
numbers into the rotation subgroup OWIK), and f is onto since
every rotation of E has the form py for some B8e€R. Observe

that pe=1p if and only if 8=2zxzk for some integer k;

therefore, Ker(f)=2z2Z and hence, by the fundamental theorem of

group homomorphism, 0*(R2)~R/2xz.

The study of the structure and more properties of the
orthogonal group and the rotation group of an n-dimensional
Euclidean space E will be given in other chapters of this

paper.
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fi3 Euclidean Motions and the Euclidean Group

“ In Sections 2.1 and 2.2, we discussed orthogonal
3ransformations and the orthogonal group of a Euclidean space.
: thogonal transformations are the distance-preserving linear
;ransformations of the space. 1In this section, we are going
0 discuss the distance-preserving mapping on a Euclidean
space. These mappings are called Euclidean transformations or
{Euclidean) rigid motions of the space.

First, let us recall definition 2.1: let E be a finite
flimensional real Euclidean space. A Euclidean transformation
(or a Euclidean motion) of E is a mapping m:E-E such that
d(A,B)=d(m(A),m(B)) for all A,B€E, where d is the distance
function on E.

Clearly, every orthogonal transformation of E 1is a

%
%.

' Buclidean motion of E. However, there are Euclidean motions

~that are not linear transformations and hence are not
orthogonal transformations of E. For example, the translation
of the space E by a nonzero vector A, T,:E~E, given by
ﬁ(x)=x£A is a Euclidean motion, but T, is not an orthogonal
transformation. However, it follows from Lemma 2.3 that if
m:E-E is a Euclidean motion and m(0)=0 then m is an orthogonal
transformation.
Let M(E) be the set of Euclidean motions of E. We have
shown in Section 2.1, that M(E) is a group under function

composition. Moreover, the orthogonal group O(E) is a
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subgroup of M(E). The group M(E) is called the Euclidean

group of E.

Theorem 2.16:

The set of translations of E, T(E) is a normal subgroup
of the Euclidean group M(E). The subgroup T(E) is called the
translation group of E.

Proof:

We have already shown that T(E) is a subgroup of M(E).
We need to show T(E)«aM(E). Let TAET(E) and feM(E). Then f=T50
for some oc€0O(E); therefore, fT‘f'1=TﬂaT‘a'1T_5. Now, aT‘a'1=Tam.
If XeE, then (07304)(X)=a(ad(X)+A)=X+0(A)=7;M)(X), and hence
orjol=r, ). 1t follows that fryfl=ry(oTio )T =TT, )\ =T, ).

Hence fT,f'eT(E). Therefore, T(E)<M(E).

Corollary 1:
M(E)=T(E)O(E).
Proof:
We know that by Theorem 2.4, every feM(E) is of the form

Tyo for some TE€T(E) and o€O(E).

Corollary 2:
M(E)/T(E)»O(E).
Proof:
Define the function a:M(E)~O(E) by setting a(720)=o for

every QueT(E) and every o¢€0(E). Let Tyoland To, be elements
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of M(E). Then a(Tb.aITcaz)=a(TB (e) 03)=aJ for some o0;=0,0,. Also

401

a(Tﬂal)a(Tcaz)=alaz=03; therefore, a is a group-homomorphism

mapping M(E) onto O(E) and Ker(a)=T(E). Hence M(E)/T(E)=~O(E).

The preceding results give us a complete description of
the Euclidean motions of a Euclidean space E in terms of the
orthogonal transformations of E. They are precisely the
orthogonal transformations of the space E followed by any
translation of the space.

Let A€E, and let M(E?l be the set of Euclidean motions

that fix the vector A. That is, M(E)f{mE'M(A)/m(A):A}.

Corollary 3:

1. Let meM(E),. Then there exists 0€O(E) such that m=T‘aT"1.

2. M(E)g=T,0(E)T, .

3. M(E)‘-M(E).

Proof:

1. Let a=1}4nﬂu. Then o0 is a Euclidean motion of E since it
is the product of three elements in M(E) and fixes the
zero vector since a(0)=1)4m73(0)=1h4(A)=0. Therefore, o
is an orthogonal transformation of E. Hence m=qfw§*.

2. Note that M(E)FTAO(E)T"I. Since every motion in
TJO(E‘)TJ'I fixes the vector A4, TAO(E)T"ICM(E)A. Therefore,

M(E);=T,0(E)T, "
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3. Define a:M(E),~M(E) by a(T,0oT '1)=Ta. Then a is group
4 F i | 4

homomorphism from M(E)A onto M(E).

Example:

Let E be a I-dimensional Euclidean space. We found in
Section 2.1, the orthogonal group of E.‘I, O(EJ)={1,,-1E}. The
translation group of E is given by T(E)=(T,(x)=x+afaeR},
M(E' )=0(E)T (E! )={00oT ocO(E'), T,eT(E') }={1p T, -1;0T,}.  But
(lfTa)(x)=lE(Ta(x))=15(x+a)=x+a=Ta(x) and (-lfTa)(x)
=-15(T,(x))=-1y(x+a)=-(x+a)=-T,(x). Thus M(E')={+T,[aeR}.
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Chapter 3

Symmetries and Cartan's Theorem

The objective of this chapter is to prove Cartan's
Theorem and to apply it to the classification of orthogonal
(and Euclidean) transformations on 2- and 3-dimensional

Euclidean spaces.

3.1 Symmetries

In this section, we are going to study a very important
class of orthogonal transformations of E, namely the
symmetries of E. The symmetries of a Euclidean space E are
especially important because, as we will show later in this
section, they are the basic building blocks from which all
orthogonal transformations are constructed. This result,
known as Cartan's Theorem, sates that the symmetries of E
generate all the orthogonal transformations of E; that is,
every orthogonal transformation of F is a product of a finite

number of symmetries.

First, we need to prove the following lemma.

Lemma 3.1:
Let U and W be orthogonal subspaces of E. Let F=Ue¢W.
Suppose that o¢:U-~U and t:W-W are orthogonal transformations.

Then the map p:F-~F defined by p(A+B)=0(A)+t(B) for AeU and
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BeW, is an orthogonal transformation of F extending both o and
T. We shall denote p by p=oer.
Proof:

Since o and t are both linear transformations, p is a
linear transformation. We wish to show p preserves the inner
product of F, Let X,YeF. Then X=A,+B, and Y=A,+B, for some
A;,AeU and B, B,€W.
<p(X),p(Y)>=<p(A*+B;),p(A,*B,)>

=<o(A;)+t(B;),0(A,)+t(B,)>
=<a(A1),a(A2)>+<a(AI),t(Bz)>
+<t(B}),0(a,)>+<t(B;), *(B,;)>
=<o(A,),0(A,)>+<t(B;), t(B,)>
=<A|,A,>+<B), B,>
=<A,,A,>+<A|,B,>+<B|,A,>+<B, B,>
:<A1+BI’AZ+BZ>

=<X,Y>.

Therefore, p is an orthogonal transformation.

Corollary:
Let U be a subspace of E, and let o0:U~U and rt:0¢-U¢ be
orthogonal transformations. Then
1. o®T is an orthogonal transformation.
2. Let M, and M, be matrix representations of ¢ and t with

respect to orthogonal bases BI and B, of U and W©
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M O
respectively. Then M=[O° M‘] is the matrix representation

of oet with respect to the basis BJUBZ.
det(oet)=(det(c))(det(t)).

0@t is a rotation of E if and only if either ¢ and t are
rotations or o and t are reflections.

o9t is a reflection of F if and only if either o is a
reflection and 7t is a rotation or ¢ is a rotation and «

is a reflection.

Proof:

1.

Since o and 7t are orthogonal transformations, oert is a

linear transformation. Let A,B€E; then A=A +A, and
B=B,+By. for some Ay B;€U, Ap,Bu€U.

<oet (A) ,cet (B) > =<oet (A +A,.) , 00t (B,+B,.) >
=<oet (A,) +oet (AL) , 0ot (By) +oet (By) >
=<0 (A,) +t (Ap.) , 0(By) +t(Bp) >
=<A,B>
Therefore, oeT is an orthogonal transformation.
Since BI and Bz are bases of U and U4 respectively, B=BIUBZ
is an orthogonal basis of E-UeU!. We take B by listing

the elements of BI and Bz in succession. In this case

0
the matrix of ocertr relative to B is M=[);' M, .
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3. det (oet)=det (M)
=det(Md)det(Ht)
=det(o)det(7).
4. By (3), det(oetr)=1 if and only if either det(¢)=1 and
det(t)=1 or det(c)=-1 and det(t)=-1.
5. By (3), det(oetr)=-1 if and only if either det(¢)=-1 and
det(t)=1 or det(o)=1 and det(t)=-1.

Let E be an n-dimensional Euclidean space, and let H be
a hyperplane in E; that is, H is an (n-1)-dimensional subspace

of E. Then # is a I-dimensional subspace of E and E=HeH.

Definition 3.1:

The orthogonal transformation S:E-E given by S=1,8-1,. is

called the symmetry of E with respect to H (or the hyperplane

reflection of E with respect to H).

Theorem 3.2:

Let S be a symmetry of E with respect to H. Then

1. S is an involution; that is, sz=13.
2. S is a reflection of E.
3. S leaves every vector in H fixed and reverses each vector

in #; that is, S(X)=X for every XeH and S(Y)=-Y for

every Yer.
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' Proof:
1. Let XeEzHeH.. Then X=Y+Z for some YeH and ZeH.
y s(x)=8(v+2)
=S(1,(¥)+(~10 ) (Z))
=S(Y+(-2))
=1,(Y)+1,. (-2)
=Y+2=X.
Therefore, S=1,.

2. By the above Corollary (3), det(S)=det(ly)det(-1yu)

=(1)(-1)=-1. Therefore, S is a reflection of E.

3. By definition of symmetry S=1,8-1,., it is clear that

S(X)=X for every XeH and S(Y)=-Y for every YeH.

Theorem 3.3:

Let o0:E~<E be an orthogonal transformation leaving a
hyperplane H pointwise fixed. Then either a=1, or o is a
symmetry of E with respect to H.

Proof:

E=H¢H“.’ Since o leaves H pointwise fixed, o(H4)=H', and

thus o=l,oo' where o' is an orthogonal transformation of .

But dim(#')=1. Thus 6=#1, . Therefore, either 0=101,=1, or
0=18-1,, in which case o0 is a symmetry of E with respect to

H.
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Corollary:

Let o, and 0, be both rotations or both reflections of E.
Suppose that there is a hyperplane H in E such that 01/’=02/’.
Then o;=0,.

Proof:

Since det(az'101)=(detaz'1) (deto;)=(tl1)(£1)=1, then az'lal is
a rotation of E. Since o;/4;~0,[;, then for every AeH,
aI(A)=az(A) and thus 02'101 (A)=A. Hence az'lal leave the
hyperplane H pointwise fixed. By Theorem 3.3, either a[,'laflx
or 02'101 is a symmetry, but it can not be a symmetry since

a_,'lal is a rotation. Hence o;=0,.

Theorem 3.4 (Existence of Symmetries):
Let A be a non-zero vector in E. Then the map

{X,A>
<A, A

S,(X) =X-2 A for every X€E is a symmetry of E with respect

to H=<a>; that is, S,=1,.6(-1.,,).

Proof:
First,-nw-e need to show S, is a linear transformation of
E. Let Y,Z€E. Then

<Y+Z,A>A
<A4,A>
<Y,A>+<Z,A>
v .2 <A, A 7.2
v <Y, A> _n KZ,A>
Y-z <A,A>A+Z 2 <A,A)A
=S“(Y) +S“(Z) .

S,(Y+2) = (Y+2Z) -2

=Y+Z-2 A

Let YeE and ceR. Then
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{cY,A>
S Fod = L il Rl
(c¥) = (c¥) <A,A> A

ol <Y,A>
C(Y <A,2> A)
=CS,(Y)

Therefore, S, is a linear transformation.

Next, we need to show 5, is a symmetry of E. Let X€E.
Then X=Y+Z for some YeH=<A> and Z€<A> since E=<A>!@<A>. Note
that A,Ze<A>; therefore, Z=cA for some ceR.

Sy(X) =5, (Y+2)
=S, (¥) +5,(2)
<Y, A> <Z,A>
= +
232 Aa,A A+z-2 <A, A>
<CcA,A>
»nY-0+Z2-2—°°
2 <A, A> A
<A, A>
=Y+7 -
Y+Z2-2 <A,A>CA
=Y+Z-22Z
=Y-Z,

—1 A

Hence, 5,(X)=S,(Y+Z)=Y-Z; that is, S,=1.,.8(-1,,).

Remark:
In the previous theorem, we have shown that every non-
zero vector A in E gives rise to a symmetry of E, namely 5.

Conversely, every symmetry 0=1,0-1, of E with respect to the

hyperplane H has the form Sy for some non-zero vector B in E.

Given two non-zero vectors A and B in E, a natural
question one may ask is under what conditions S‘=SB? To give
necessary and sufficient conditions for 5, to equal Sy, we need

the following lemma:
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Lemma 3.5:

let A be a non-zero vector in E. Then

1. A vector XeE is left fixed by S, if and only if Xe<AaXt,
2. A vector XcE is reversed by S;; that is, S‘(X)=—X if and
only if Xe<a>.
Proof:
1.~ Assume Xe<Aa>, then
5, (X) -x—z%;\
=X since <X,A>=0.
Therefore, X is left fixed by s,.

- Assume a non-zero vector Xc€E is left fixed by Sy, then

<X,A>

S,(X)=X. By definition of s, =X-2 A=X. Thus
1 (X) y definition 1 SalX) W
MA=0. Since A # 0, we have <A,A> # 0 and hence
<A, A>
<X,A>=0; that is, Xxe<a>.
2.~ Assume Xe€<A>. Then X=cA for some ceéR. Then
<X,A>
=X-2-=—L=_A
52 (%) <A, A>
<cA,A>
=X-2——"1"7 A
< >
=X-20—L—A
°<a,a
=X-2CA
=X-2X
=-X
Therefore, X is reversed by Sy
- Assume X€E is reversed by &S,. Then S;(X)=-X. By
ey <X, A
finitio f s, -2—=—L-_" A,
de ion of S5;, S,(X)=X-2 <A,A>A
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<X,A>

Therefore, -2-222220
2 <A, A>

A=-2X.

. {X,A>
That , ==t A=), H <A>.
at is <A,A>A X ence Xe<Aa

Theorem 3.6:

Let A and B be non-zero vector in E. Then 5,=5y if and

only if A and B are linearly dependent.

Proof:

-

Assume A,B€E and S5,=S;; we need to show A and B are
linearly dependent. By Lemma 3.5, S‘(A)=—A and since
s‘(x)=s,(x) then S,(A)=-A, and hence Ag€<B>. Therefore,
A=bB for some scalar b and hence A and B are linearly
dependent.

Assume that A and B are linearly dependent. Then <A>=<B>

That is, 5;=Sy.

Theorem 3.7:

Let E be a Euclidean space, and let U be a subspace of E.

Let A be a non-zero vector in U, and let S" and 5; stand for

the symmetries of U and E respectively. Then

l.

Uis a Euclidean space under the restriction of the inner
product on E to U.

S‘,/(,:SA', where S,/; stands for the restriction of 5, to U.
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R A £

Proof:
1. By definition of subspace, U is a Euclidean space under
the restriction of the inner product on E to U.

.. . _ 2
2. By definition of s,/,, S,/,=S;.
Finally we are in a position to proof Cartan's Theorem,

Theorem 3.8 (Cartan's Theorem):

Let E be an n-dimensional Euclidean space. Then every
orthogonal transformation of E is the product of at most n
symmetries of E.

Proof:

The proof is by induction on the dimension n of E. Let
o be an orthogonal transformation of E. Suppose n=1. Then
0=tl,. But -l, is the only symmetry of E. Since 1t=(-1l)”and
-1’=(—1’)1, every orthogonal transformation of E is a product
of at most one symmetry.

Now suppose n > 1 and assume that every orthogonal
transformation of a Euclidean space E of dimension k < n can
be written as a product of at most k symmetries of the space.
Let o be an orthogonal transformation of E. There are two
cases to consider.

1, Suppose that o fixes some non-zero vector A€E. Let

H=<A> be the hyperplane orthogonal to A. Then H is a

Euclidean space of dimension n-1 and the restriction of,

of 0 to H is an orthogonal transformation of H. Hence,
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by assumption, there are symmetries S;,...,S;_ of H such

that 0|y=S,..Sy,, where msn-1 and A;,...,A¢€H. Let

SA,...,SA_ be symmetries of E corresponding to the vectors

AI' ..., A Now we claim: a=S‘l...S‘_. Let X€E. Since E=Ae¢H

2
then X=X‘+X,, where X‘€<A> and X,eH. Since X16<A>, X‘=cA

for some c€eR, and hence a(X‘)=a(cA)=A. Also

0 (Xy) = (0]y) (Xg) =Sy, .53 (Xz) . But S, |[g=5x, ands, (X,) =X,

since X‘,LAI- . Therefore,

0 (X) =a(X,) +0 (Xg)
=X, +Sy, . Sy, (Xy)
=X, +5) Sy (Xy)
=Sy, Sy, (X4 Xy)
= S“l o SA- (X)

Thus °=SA,---SA.7 that is, o0 is a product of at most

n-1 symmetries of E.

2. Suppose that o fixes no vector in E other than the zero
vector. Let A be any non-zero vector in E, and let
B=o(A)-A. Then B » 0.

<o(A),B>B
(). 0(a)

= _»_%0 +0(A)-A> _

0 (A) -2 A -4, o (A) -a> (° (&) -A)

<o (A) ,0(A)>~<o(A), K6 A>

2<(01(1AA$G (A)(;)—(X (‘)A) ,A>-<A, 0 (A)>+<A,A>

< ? ~-<0 ? > -
2(<A,A>-<0(A),A>) (o(a)-2)

Sp(0(A)) =0 (A) -2

=0 (A) -2 (o (A) -A)

no(A) -
=A.
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Therefore, Sr7is an orthogonal transformation of E

that fixes the non-zero vector A and hence, by part

(1), there exist symmetries ng.",ﬁh such that

540=5, ..5, , where m = n-1. It follows that
o=S§13h...SA_. That is, o is the product of at most

n symmetries.

Corollary:

The orthogonal group O(E) of E is finitely generated by
the symmetries of E.
Proof:

Since every o¢€0(E) 1is the product of at most n

symmetries, O(E) is finitely generated by the symmetries of E.
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3.2 The Classification of Orthogonal Transformation in

Dimensions 2 and 3:

In this section, we apply the theorems we have
established to classify the orthogonal transformations of a 2-
dimensional Euclidean plane as well as a 3-dimensional
Euclidean space. Above all, we want to identify those
orthogonal transformations which are rotations, and those
which are reflections (in a point, in a line, or in a plane).
We are also interested in the question of whether these
exhaust the set of orthogonal transformations. We shall see
that in a 2-dimensional Euclidean plane, an orthogonal
transformation is either a rotation or a reflection in a line;
however in a 3~dimensional Euclidean space there are
orthogonal transformations which are neither rotations nor

reflections in a hyperplane.

I. 2-Dimensional Euclidean Plane:

Let E be a 2-dimensional Euclidean space (or plane). By
Cartan's Theorem, every orthogonal transformation of E is
either lr a symmetry, or the products of two symmetries. The
next theorem gives a complete description of all the

orthogonal transformations of E.
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Theorem 3.9:

Let E be a 2-dimensional Euclidean space. Let ¢ be an

orthogonal transformation of E. Then

1.

0 is a reflection if and only if o is a symmetry.

0 is a reflection (hence symmetry) if and only if aﬁl’
and o has a non-zero fixed vector in E.

A reflection is completely determined by the image of one
non-zero vector.

¢ is a rotation of E if and only if o is the product of
two symmetries of E in which case the first of these can
be chosen arbitrarily.

o is a rotation if and only if ¢=I, or ¢ has no non-zero
fixed vector in E.

A rotation is completely determined by the image of one

non-zero vector in E.

Proof:

Note that a hyperplane of E is a line through the origin

since E is a 2-dimensional Euclidean space.

1.

If 0 is a symmetry of E then by Theorem 3.2, o is a
reflection. Assume that o is a reflection. By Cartan's
Theorem, o is a product of 1 or 2 symmetries. If o is a
product of two symmetries, say =17, then det(o)
=det(qt2)=det(q)det(rz)=(-l)(-l)=l, and this is not
possible. Hence ¢ must be a symmetry.

If 0 is a reflection (hence by (1) a symmetry) then aﬁll,

and by Lemma 3.5 (1), o leaves a line in E pointwise
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fixed and hence has a nonzero fixed vector in E.
Conversely, if a#l, and o has a nonzero fixed vector Ac€E,
then o0 leaves the line <A> pointwise fixed. Thus by
Theorem 3.3, either a-'-lg or 0 is a symmetry. But orl, by
assumption, o must be a symmetry of E.

Let o and o, be reflections of E such that aJ(A)=az(A)

for some nonzero vector A€E. Then 0,|,:=0,|., and

hence by the corollary to Theorem 3.3, 0,0;.

If o=7T, where T and T, are symmetries, then det(o)
=det(t;r,)=(dett;)(detty)=(-1)(-1)=1, and hence o is a
rotation. Conversely, assume ¢ is a rotation. If o=1,
then o=tt for every symmetry 7. 1If a#l, then by Cartan's
Theorem, o is the product of one or two symmetries. But
o cannot be the product of one symmetry. Thus o must be
the product of two symmetries. It remains to show one of
these two symmetries can be chosen arbitrarily. Let o be
a rotation and let T be any symmetry. Then det(ot)
=(deto) (dett)=(1)(-1)=-1. Thus ot is a reflection. By
part (1), ot is a symmetry. Moreover, o=(ot)t for any
symmetry t.

Assume o0 is a rotation and 0(3)=A for some nonzero vector
A€E. By part (4), o is a product of two symmetries. 1If
o=tt then o=1;, and if o=tt', where t#r', then o(A)=2
implies <tr'(A)=A, and thus «t(rt'(A))=t(A). Hence,
t'(A)=t(A) and by part (3) above, this implies t=t', a
contradiction. Conversely, if o=1, then o is a rotation.
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Assume o#l, has no nonzero fixed vector in E. By
Cartan's Theorem, o is the product of one or two
symmetries. But every symmetry has a nonzero fixed
vector. Thus ¢ is the product of two symmetries, and
hence o is a rotation.

6. The proof of this part is similar to the proof of part

(3) above.

Theorem 3.10:

Let o be a rotation, and let 7 be a reflection of a

Euclidean plane E. Then rot /=07,

Proof:
to is a reflection and hence by Theorem 3.9 (1), is a
symmetry. Thus by Theorem 3.2 (1), to is an involution, and

hence (t0)!=ts. on the other hand, (to)4=odtd=odt. So

1 lzzg77!,

o‘t=t0 or o
Corollary:
The plane rotation group cf(E) of a 2-dimensional
Euclidean space is commutative.
Proof:
Let 7 be a reflection of E. Since O'(E) is a normal

subgroup of O(E), the mapping ,:CV(E)~O*(E) given by p(a)=tatd

I-671. Now let

is an automorphism. By Theorem 3.10, ¢(o)=toT
ol,aze‘o"(E). Then ,(0102)=(olaz)'1=az'lal'1, and on the other hand,

p(ol),(az)=al'loz'1. Thus 02'101'1=01'101'1, and hence o0,0,=0,0,.
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;II. 3-Dimensional Euclidean Spaces:

By Cartan's Theorem, every orthogonal transformation of
a 3-dimensional Euclidean space E is either a symmetry of E,
3 or a product of two or three symmetries of E. Since a product
of two symmetries is a rotation, a rotation of E is either 1,
or the product of exactly two symmetries. Hence a reflection
of £ is either a symmetry or the product of three symmetries
and not less than three symmetries. Thus there are two types
of reflections in 3-dimension Euclidean spaces: those that are
symmetries and those that are product of three symmetries.
For example, o=~1, is a reflection of the latter type since it
fixes no vector except the zero vector, and hence ¢ cannot be
a symmetry of E. Thus we are led to study another class of

orthogonal transformations, namely the involutions of E.

Definition 3.2:
Let E be an n-dimensional Euclidean space. An orthogonal

transformation ¢ of E is called an JInvolution if <¥=l,.

We have already worked with examples of involutions,
namely the symmetries of E, 1, and -l,. A question one may
ask: are these all the involutions? BAs we are going to show

this is not the case if n23.
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Theorem 3.11:

Let U and W be subspaces of E and E=UeW. Let a=-1001,.
Then ¢ is an involution,
Proof:

Let a€E, then a=btc, beU and cewW. az(a)=a(a(a))
=g(o(bt+c))=0(-b+c)=b+c=a; therefore, oz=1,. Hence ¢ is an

involution.

Thus it follows from this theorem that every orthogonal
splitting of E gives rise to an involution. Now we want to
show that different orthogonal splittings give rise to

different involutions.

Theorem 3.12:

Let E be an n-dimensional Euclidean space, and let
o=-l@l, and o=-1,@l,. Then U=U' and W=W'.
Proof:

Since o=-1,0l, then U={A€E[o(A)=-A} and W={A€E[oc(A)=A}.
Also since o=-1pe@l,, U'={A€E[o(A)=-A} and W'={A€E[o(A)=A}.

Thus U=U' and W=W'.
The question now, does every involution of E come from an

orthogonal splitting of E? The answer to this question is yes

and is given in the following theorem.
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Theorem 3.13:

Every involution of E comes from an orthogonal splitting
of E.
Proof:

Let ¢ be an involution of E. Then (a—lx):E~E and
(a+1,):E*E are linear transformations.
Let U=Im(o-1y)={A€E[A=(0-1;)(B) for some BEE}, and let
W=Im(o+ly)={A€E[A=(0+l;)(B) for some BEE}. Then U and W are
subspaces of E.
Claim: o0 is the involution coming from U and W.
To prove this claim we need to show:
a. U and W are orthogonal; that is, bﬂleU,Azeﬂ,<A1pAz>=0.
b. UNW={0}.
c. E=U+W.

d- g --101.01'-

a. Let A,€U and A,W. Then A,=(0-1;)(B;) for some B,€E and
A2=(a+1;)(3}) for some B,€E.
<A, Ap>=<(0-1,) (B}), (0+1p) (B,)>
"0(31)'31"’(32)“’32’
=<a(Bl),a(Bz)>+<a(BI),Bz>+<-Bl,a(Bz)>+<-BI,Bz>
=<BI,BZ>+<0(BI),a(a(BZ))>-<BI,o(Bz)>-<BI,ABz>
"‘31'Bz>+<31"’(32)>'<31'"(Bz)>'<31'32>
=0.
Therefore, U and W are orthogonal.
b. To show UNW={0}, let X€UNW. Then x€eU and xe#. Hence

there exists y€E such that x=(a—15)(y). Then x=o(y)-vy.
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Also there exists z€E such that x=(a+1s)(z). Then
x=o(z)tz. Hence o(y)-y=o(z)+z; then a’(y)-o(y)
=az(z)+a(z). Thus y-o(y)=gz+o(z). Then we have o(y)-y
=y-o(y). Hence o(y)=y or x=o(y)-y=0.
To show E=U+W, let X€E. Then (a-l,)(—x/2)=—o(x)/2+x/2€U,
and (o+1,)(x/2)=a(x)/2+x/26W; therefore,
x=(o-l,)(-x/2)+(a+1,)(x/2); hence E=U+H.
To show o=-1,.e1,, let XeE. Then X=u+t+w for some u€eU and
wewW. Also u=o(A)-A and w=0(B)+B, where A, Be€E. Thus
X=(o(A)-A)+(o(B)+B). Then
o(X)=0(o(A)-A+o(B)+B)

=o/(a)-o(a)+d’ (B)+a(B)

=A-o(A)+B+o(B)

=-(o(A)-A)+(o(B)+B)

==1gu(0(A)-A)+1y(0(B)+B)
=(-1.@1,)((c(A)-A)+(c(B)+B))
:(-10101.) (X) .

Hence o0=-1,01,.

Definition 3.3:

Let o0 be an involution of E. Then a=-1001,, where E=UeN.

We define the type of 0 to be the dimension of U. That is, the

type of 0 is the dimension of the space of vectors inverted by

o, namely U={A€E[o(A)=-A}. An involution of type 2 is also

called a 180° rotation.
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Theorem 3.14:

If 0 is an involution of E of type p, then if p is even
o is a rotation and if p is odd o is a reflection.
Proof:

det(a)=det(-1”)det(1,)

-(—1)"-{1 i1f p is even
"1 if p is odd.

Theorem 3.15:

There is only one involution of type 0, namely 13, and
there is only one involution of type n, namely —1,. The
involutions of type 1 are the symmetries of E.

Proof:

Let o be an involution of type 0. Then a=—1001, where
E=UeW and dim(U)=0. Hence E=W; therefore, o=17~1p. If o' is
an involution of ¢type n, then a=-1001,, where E=U¢W and

dim(U)=n. Hence dim(W)=0 and E=U; therefore, a=—1”=-1’.

Now we begin the investigation of the orthogonal

transformations of the 3-dimensional Euclidean space E.

A. Rotations in 3-Dimensional Euclidean Spaces
In the three-dimensional Euclidean space IP, we are

accustomed to the fact that rotations different £fromip

rotate the space around an axis of rotation. In fact, it
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turns out this is true for rotations of J3-dimensional
Euclidean spaces. This result is due to Euler, and before we

prove it, we need the following lemma.

Lemma 3.16:

Let E be an n-dimensional Euclidean space, and let o0 E-E
be an orthogonal transformation. Let F={x€E/o(x)=x} be the
fixed space of 0. Then o0 cannot be factored as a product of
less than s symmetries, where s=dim(F')=dim(E)-dim(F).

Proof:

Let 0= Ty, .. T, where T; is the symmetry of E with respect
to the hyperplane H;,. We have to show that r2s. Since T; is
a symmetry then T; leaves H; fizxed pointwise for i=1,2,...,n.

Thus o¢=7;7,...7, leaves (HlnH/)...nHr) pointwise fixed. Thus

r
(H,nazn. . .nHr)cF. Hence dim(HlnHzn. . nHI)sdim(F)=n—s. Since
dim(HI+H2+. .o +Hr)=dim(H1) +d1‘m(Hz)+. .. +dim(H!) -dim(HjnH/l. . .nH[),
and d.im(Hl+H2+. . +Hr)5n and dim(Hi)=n—1 for i=1,2,...,r then
nz(n-1)+... +(n-1)—dim(HlnHzn. . .nH[) or dim(Hlnﬂzn. . .nH,)

2r(n-1)-nzn-r. Therefore, n-szdim(HlnHZH. . .nH[)zn-r and hence

n-szn-r or S=sr.
Corollary 1:

If 0 leaves no nonzero vector fixed, then o is the

product of exactly n symmetries.
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Proof:

Since ¢ leaves no nonzero vector fixed, the fixed space
of 0 is F={0}. Thus F'=F and hence dim(E)=n=dim(F!)=s. By the
;?theorem, o cannot be factored into less than n symmetries;
i that is, o is the product of at least n symmetries. From
Cartan's Theorem, we know o0 is the product of at most n
g symmetries. Therefore, o¢ is the product of exactly n

symmetries.

Corollary 2:

If the dimension n of E is odd, then every rotation p of
E has a nonzero fixed vector. If the dimension n of E is
even, then every reflection o0 of E has a nonzero fixed vector.
Proof:

Let p be a rotation of E. By Cartan's Theorem,
P77y .. Ty, where T; is a symmetry for i=1,2,...s and s=n.
Then det(p)=1=(-1)’. Hence s is even. Since s is even and n
is odd then s#n. By the theorem, the dimension of the fixed
space of p is at least n-s>0, and therefore, p has a nonzero

fixed vector. The proof of the second part of the corollary

is similar to the argument used above.

Now we present a proof of Euler's Theorem.
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Theorem 3.17 (Euler):

Let o be a rotation of a 3-dimensional Euclidean space E
and o#l,. Then o leaves one and only one line L in E
pointwise fixed. This unique line L is called the axis of
rotation for o.
Proof:

By Corollary (2) above, ¢ has a nonzero fixed vector, say
x. Let L=<x>={ax|/acR}. Then o(ax)=zaoc(x)=zax. Thus o leaves
L fixed pointwise. Now we are going to show L is unique. Let
yé€L. We must show o(y)#y. Assume the contrary, namely
o(y)=y. Then o would leave the plane H=<x,y> pointwise fixed.
But as a consequence of Theorem 3.3, the only rotation leaving
a hyperplane pointwise fixed is 1. This contradicts our

assumption that a#ll. So o(y)#y. This completes the proof.

Let E be a 3-dimensional Euclidean space, and let L be
any line in E. Let O(E;L) be the set of orthogonal
transformations of E that leave L pointwise fixed. That is,
O(E;L) ={a€0(E)/o(x)=x,Vk€L}. Let (f(E;L) be the set of

rotations of E that leave L pointwise fixed.
Theorem 3.18:

O(E;L) is a subgroup of O(E), and O'(E;L) is a subgroup

of 0'(E).
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roof:

_ First, O(E;L)#e since lfO(E;L), and also O(E;L)cO(E).
;Ie need to show that if o,t€0(E;L) then ot€O(E;L). Let xé€L,

then or(x)=o(7r(x))=x. Thus ot leaves [ pointwise fizxed.

§!!ence oreO(E;L). Also since o(x)=x, a'l(a(x))=a'1(x). Hence
x=a'1(x), and thus o’eo(E:L). Therefore, O(E;L)<O(E).

B8imilarly, we can show that O'(E;L)s.O'(E).

Let L! be t;he orthogonal complement of L. Then dim(It)=2
and E=Lel’. Suppose that oe€O(E;L). Since o(L)=L, then by
Lemma 2.8, o(L{)=Lf{, and hence o=1,80', where o' is the

restriction of o to the hyperplane L!. So we have a mapping

¢:0(E;L)~0(L*) given by ¢(0) =0/=0],..

Theorem 3.19:

The mapping ¢:O(E,‘L)~O(L‘) is an isomorphism carrying the
subgroup O'(E;L) onto the rotation group O'(L!) of the 2-
dimensional Euclidean plane Li.

Proof:

Let o0,t€0(E;L), and let x€E. Then x=a+b, where a€L and

beLt. so (ot)(x)=(ot)(atb)=o(t(a)+t(b))=c(a+t'(b))

zo(a)+tor'(b)=atc't'(b). This implies (ot)|.=0't/, hence

¢(or)=0'tv'=¢(o)¢(tr); therefore, ¢ is a homomorphism. To show

¢ is one-to-one, assume ¢(o)=¢(t). Then o|,.=%|,.. Hence by

the Corollary to Theorem 3.3, o=7r. To show ¢ is onto, let
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0'€0(L') and o=1;@0'. Then 0'=0|,.=¢(0)€0(E;L). Therefore, ¢

i is an isomorphism.

v From this theorem, it follows that for any line L in lf,
’i the group O(R’;L)-O(Rz) and 0*(R1;L)~O*(RZ). That is, the
structure of the orthogonal group and the rotation group of lﬁ
does not depend on the line L. 1In particular if OQ]F;L) and
OQ]H;L') are the rotation groups of E about the axes L and L'
respectively, then O*(R’;L)-vo"(l’;l,'). Thus in studying the
rotation group of R’, it will be assumed that a rotation
p,c—‘O* (R’) is about a line passing through the origin through an
angle 8 radians. In this case the rotation Py has a matrix

representation of the form:

1 0 0
0 cosb -sin@
0 8inf® cos@

Thus any rotation in R’ is completely determined by its axis
of rotation L and the angle of rotation around the axis L.
The phrase "angle of rotation around the axis L" could be
replaced by the phrase "the rotation of the plane L* induced

by o".
B. Reflections in 3-Space

We now turn to the investigation of reflections in a 3-

dimensional Euclidean space E.
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;

g».
% Theorem 3.20:

An orthogonal transformation of E leaves a nonzero vector
fixed if and only if °=1i' o is a symmetry or o is the product
of two symmetries. That is, o is a rotation or o is a
symmetry.

Proof:

Let o be an orthogonal transformation that leaves a
nonzero vector A€E fixed. We need to show o is the product of
two or less symmetries. Let L={tA[teR}, then o fixes L
pointwise since o(ta)=to(A)=tA. Thus o0€0(E;L). Since
O(E;L)=0(L*), the image of ¢ in the orthogonal group of the
plane L? is the product of at most two symmetries (by Cartan's

Theorem). Thus o is the product of two or less symmetries.

Corollary 1:
An orthogonal transformation o of E leaves only the
origin fixed if and only if o is the product of exactly 3

symmetries.

Corollary 2:
The reflections of E consist of the symmetries of E,
together with the orthogonal transformations of E that leave

only the origin fixed.

According to corollary 2 above, the problem of

characterizing the reflections of E is reduced to determining
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the orthogonal transformations of E which leave only the

origin fixed. These are given in the next lemma.

Lemma 3.21:

The reflections of F which leave only the origin fixed
are given by: S={-p/peo'(E), and p 1inverts no nongzgero
vectors}.

Proof:

Let p be a rotation of E which inverts no nongzero
vectors. There are two cases to consider.
Case 1: p=1,.

Then -p=-1, is a reflection of E which leaves only the

origin fixed.
Case 2: p#l,.

By Euler's Theorem 3.17, there exists a nonzero vector A

fixed by p. Then -p reverses the vector A. Now we

proceed by contradiction. Let us assume that there is
another nonzero vector B such that -p(B)=B. Clearly the
vectors A and B are linearly independent. Moreover, pz
is a rotation which fixes every vector of the hyperplane
H=<Aa,B>. Thus by Theorem 3.3, pz is either 1; or a

symmetry. But since p#»l,, then pz

is a symmetry, a
contradiction. Conversely assume that ¢ is a reflection
which leaves only the origin fixed. We must show o=-p,
where peO'(E) and p(A)#»-A for any nonzero vector Ac¢E.

Clearly p=-o0 is a rotation. Moreover, if p(A)=(-0)(A)=-A
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for a nonzero vector Ac¢E, then ¢(3)=-1((-0)(A))=-1(-4)=A.

Thus ¢ fixes a nonzero vector, a contradiction,

Now we must find the rotations of E which invert no

nonzero vectors.

Lemma 3.22:

The involutions of a 3-dimensional Euclidean space E
consist of 1, -1,, the symmetries of E, and the 180° rotations.
Proof:

Let E be a 3-dimensional Euclidean space, and let o be an
involution of E. Then o=-11l,, where U and W are subspaces
of E and E=UeWN. The possible dimensions of the subspaces U
and W are dim(U)=3 and dim(W)=0, in which case, o=-lg or
dim(U)=2 and dim(W)=1, in which case ¢ is an involution of
type 2, that is a 180° rotation; or dim(U)=1 and dim(W)=2, in
which case, o is a symmetry; or €£finally, dim(U)=0 and

dim(W)=3, in which case, o=l

The only involutions of E of type 0 and type 3 are 1, and
—1,respective1y. The next theorem describe the involutions

of type 1 and type 2.

Lemma 3.23:
Let ¢ be an orthogonal transformation of the 3-

dimensional Euclidean space E. Then o leaves a nonzero vector
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B in E fixed and reverse a nonzero vector B in E if and only

if 0 is an involution of type 1 or type 2.

Proof:

Let 0 be an involution of type 1. Then o is a symmetry.
By Theorem 3.2, o leaves a nonzero vector fixed and reverses

a nonzero vector. If ¢ is an involution of type 2, then o=-

¢

_f 1001, with dim(U)=2. Thus ¢ reverses the vectors in U and

fixes the vectors in W. Conversely, assume that o is an
orthogonal transformation of E such that o(A)=2 and o(B)=-B
for some nonzero vectors A,B€E. Then o](A)=o(a(A))=o(A)=A,
andc#(B)=a(a(B))=a(-B)=-a(B)=-(—B)=B;therefore, dzleaves the
two vectors A and B fizxed. But A and B must be linearly
independent because if A=zaB for some nonzero scalar a, then
o(A)=aoc(B) would imply A=zaB=a(-B)=-aA=-A and this is
impossible since A»0. Thus the vectors A and B determine a
hyperplane H=<A,B>, and azfixes H pointwise. Thus by Theorem
3.3, 02=1r Therefore, o is an involution. By Lemma 3.22, the
only involutions of E are ilr the symmetries of E, and 180°
rotations. But I, inverts no nonzero vector, and -1, does not
fix a nonzero vector; therefore, ¢ must be either a symmetry

or a 180° rotation.
Corollary:

The only rotations that invert a nonzero vector are the

180° rotations.
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A 180° rotation inverts a whole plane of vectors.

§COnversely, let p be a rotation of E which inverts a nonzero

vector. By Euler's Theorem 3.17, p leaves a nonzero vector

fixed. Thus by the Lemma above, p is a 180° rotation.

Now we are going to describe the 180° rotations of E. By
Euler's Theorem 3.17, every 180° rotation of E has a unique
axis of rotation. Conversely, for every line in E, there is
precisely one 180° rotation with that line as axis. Let L be
any line in E, and let O'LE;L) be the set of rotations of FE
that leave L pointwise fixed. We know that if pGO'CE;L), then
p=lep’', where p'é‘O*(L‘). Thus a rotation p of 0'(E;L) inverts
no nonzero vector if the rotation p' is not a 180° rotation of

the hyperplane f; that is, if p’a-lL;. So the rotations of

E which invert no nonzero vector are given in the following

theorem.

Theorem 3.24:

The rotations of E which invert no nonzero vectors are

A={0*(B;L)~-{-1,.} |L is a line in E}.

By Lemma 3.21, we obtain the reflections of E which leave

only the origin fixed. These are S={-p/peA}. Thus o€S if and
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‘only if a=-p=-1£oa', where ¢' is any rotation of the plane ¢

‘different from 1;., and L is a line in E.

Summarizing the above discussion concerning the
orthogonal transformations of a 3-dimensional Euclidean space,
we may state: an orthogonal transformation of a 3-dimensional

Buclidean space E is either

:
-

a. 1t Identity (Rotation)

b. rotation about a line. In this case, the set of all such
rotations (together with l‘.) is denoted by O"(E;L) and
0'(E;L)~O*(E'z), where E is a 2-dimensional Euclidean
space.

c. the reflections of a 3-dimensional Euclidean space are of
two types:

Type (1) Symmetries (i.e., hyperplane reflections).
Type (2) reflections that are product of 3-symmetries
these are of the form 0--1,60' where L is a line in E and

o'e(0'(E;L)-{1,.}[L is a line in E}

«0'(E)-(15}.

Now we are going to combine the results of this section
concerning the classification of orthogonal transformations of
a 3-dimensional Euclidean space E and Theorem 2.13 to give a
matrix representation of the different types of the orthogonal

transformations of E.
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r

- orthogonal transformation ¢ of E has either one of the

From Theorem 2.13, it follows that a matrizx

frepresentation relative to an orthonormal basis B of an

;following forms:

1 O 0
A,(0) =[0] ;=|0 cos0 -8inB| , 0<O<2x
0 8in® cosbd

or

-1 0 0
A,(8) =[0],=|0 cosb6 -sin@| , 0<B0<2x.
0 sin® cosb
The matrix A; corresponds to the rotations and the matrix A,

to the reflections.

1. For 8=0, we obtain

, which corresponds to the identity

A, (0) =

o O -
o+ O
- O O

A, (0) =

0
0|, 180° rotation about a line, and this is
1 .

o O
o O

the same as a reflection (or symmetry) through a plane.
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For O0=x, we obtain

1 0 O
A, (x)=[0 -1 0|, a reflection through a line and this is
0O 0 -1

the same as 180° rotation about a line.

-2 0 O
A,(x)=|0 -1 0|, a reflection through a point, namely
0 0 -1
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33 The Classification of Euclidean Motions in Dimensions 2

and 3

This section describes the Euclidean motions of a 2-
dimensional Euclidean plane and a 3-dimensional Euclidean

space E.

A. The 2-Dimensional Euclidean Plane E’

First, recall that every Euclidean motion of a space E
can be written in the form Tpo, where T, is a translation of
E and o0 is an orthogonal transformation of E. In particular,
since the orthogonal transformations of a 2-dimensional
Euclidean plane are either rotations about a point in E"
through an angle 8 or reflections through a line, it follows
that every Euclidean motion of a 2-dimensional plane is either
a translation, a rotation, a product of a translation and a
rotation, or a product of a translation and a reflection. Now

we are going to describe each type.

1. Translations
These are given by TJ:EZ-oEJ, where A€E’ and Tl(x)=x+A.
Geometrically, T, translates the whole plane along the vector

A. If A#0, T, has no fixed points.

81



2. Rotations about a point

Geometrically these rotate the plane through an angle &
about a point AGEJ, and they are denoted by Pay In

particular, if A=0, we write p, to mean p;,. Note that

- -1 . . |cos® -sin®
Po, 1" TyPgTy - The rotation p;, has matrix [sinﬁ cosd

coso —sinO [’&]

n x,co80-x,81n0
Thus pe(x) = 8in® cos6

x,8in0+x,co080|

Thus p,’fT‘p,T"I (x)
=Tlp,(T.‘(X))

- Tfoﬂxl-all]

=Tﬂ (x,-a,) cosl- (x;-a;) sinﬂD

(x,-a,) 8inb+ (x,-a,) cosd
x,co80-x,8in6| |-(a,cos0-a,8inb)

. xlsinﬂ-bx,cosﬁ] +[- (a,8in6+a,cos0) D

xlcosﬁ—x,s in6
x131n6+x,ccsa “Pe(A)

Xx,co080-x,8in6
“Tapefy . 8inB+x,cos0

TA-p. ) Po-

Thus the rotation py 4 may be obtained by first rotating the
plane through an angle 8 about the origin and then translating

along the vector A-p,(A).
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3. Reflections about a line

Let L be any line in E;. The reflection of‘E?through the
line L is denoted by R,. Let L' be the line parallel to L and
passes through the origin. There is a unique vector 4 that is
perpendicular to L and passes through the origin. Now we
claim that R£=TASJTJ'1, where S; is the symmetry of the plane fond
determined by A. The proof of the claim follows by examining

the figure below.

Figure 3.1

R.(x)=(T,8,T," ) (x)=T,8, (x-A)
; 151T) 151 Gx-A, 2>
-T‘{(x -a) 2R A)
<x-A,A>
=((x-a) -2 XA A2 a) .
((x T W )
<X, A>-<A,A> ,
<A, A>
23622 a422
<A, A>
=Ty (5,(x)).

=x-2
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4. Glide reflections

A glide reflection of E is any translation of £l by a
nonzero vector followed by a reflection about any line
parallel to the translating vector. If A is the nonzero
translating vector and L stands for any line parallel to A,
then the glide reflection determined by A and L is the map

g"L:E‘z-.EZ, given by gM=R£TA.

94,0
L
X+ A
B’F X
\
u _--V'A
Figure 3.2

Now we are going to show that a Euclidean motion of E‘z
that is a product of a rotation and a translation is a
rotation of E.

Let m=Tp,. We claim that m=Typ;=pg g for some vector BeE .

Consider the map 1z2-py. Since Py fixes only the zero vector,

then 1,:-pg fixes only the zero vector. Thus Ker(lz;:-pg) ={0}.
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Hence the linear map 1l.-py is one-to-one and hence it is onto.

Therefore, there exists a vector BeE’ such that (152-pg) (B) =4,
or A=B-py(B). S0 Typy=Tp, 5 Po=TpTreisPe=Ts(PeTs Po ) Po=ToPeT5"

=Py 5 Thus m=T;p, is a rotation of E/ about the point B
through an angle 6.

Finally, consider a Euclidean motion of the form m=T,S;,
where Sy is a symmetry with respect to <B>. 1If A=0, then m=Sy

and hence m is a symmetry (or reflection). Therefore, assume

<A,B> <A, B> .
Ar0, and let X=A-——t__ B and Y=A-——L—"_B. If X=0, th B is
<B, B> 2<B, B> en

a scalar multiple of A, and in this case Sp=58,; therefore,

TxSa=T,(1,S2, and from (3) above, this is a reflection of the
a7 2
plane about the line L-—;-A+<A>‘. If, on the other hand, X=#0,

then X is orthogonal to Y since

<A, B> <A, B>
<X, Y>=(A--=t=°p !
( <B,B> ' 2<B, B>
<A, B> <A,B> o, <A,B>
=(A, —=r=7_B\- 't—° B z B
< ' 2<B, B> ) <<B,B> ! 2¢<B,B> )
<A, B> 1(<A,B>
= 222 <A, B> - >
2<B, B> A, B> 2 <B,B>) <B.B

Let L=Y+<X>. Then L is a line through Y and parallel to X.
In this case T;Sy9y,;  to see this, recall from part (4) above

92,1 T2vi5,,, Sy But 2Y+S,(X)=A-X+X=A since X1Y and S5,=5; since

Y and B are linearly dependent. Therefore 9r =TSy We
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?Eonclude that every Euclidean motion of E‘Z is either a
translation, a rotation, a reflection, or a glide reflection.

Rence we have proved the following theorem.

Theorem 3.25:
Any Euclidean motion of Eg is a translation, a rotation,

a reflection, or a glide reflection.

B. The 3-Dimensional Euclidean Space E;

In a 3-dimensional Euclidean space EJ, there are six
types of Euclidean motions:
1. Translation.
2. Rotation about a line L in E.
3. reflection in a hyperplane H (or symmetry with respect H).
4, Glide reflection.

If H is a hyperplane in E; and ﬂ‘is a translation that
leave H fixed then the rigid motion TRy is called a glide

reflection.

X
i
H !
STaRu&@
Rylx) T
|
Figure 3.3
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- §. Rotatory inversion (or reflection)

Let p be a rotation with axis of rotation L, and let P be

a point on L. A rotatory inversion is the composition of 180
rotation and p. Note that a rotatory inversion is also the

composition of a reflection Ry and a rotation see the figure

below.
e N\
r\~5 _L,"!
LT T 1
(i)
H L‘& L -7
TN
\
= _&RHCI)
Ryfx)
Pigure 3.4

6. Screw displacement
Let p be a rotation with axis L and T, a translaiion
determined by & in the direction of L. The composition pT‘is

called a screw displacement with axis L.

L

N
\

RN
4

-~ /%’Wi)
|
|
|
I
|

el N
/

e~ —m e

L

r~\i
Et%ga)

Figure 3.5
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| Theorem 3.26:
Every Euclidean motion of E' is one of the above six
types.
Proof:
The proof of this theorem is similar to the proof of

Theorem 3.25.
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CHAPTER 4

Symmetry and the Orthogonal Group

This chapter deals with the study of symmetry groups of
bounded sets in the 2- and 3-dimensional Euclidean spaces ‘Z
and P respectively. We are interested in classifying all
finite symmetry groups of bounded sets in ll and R’ These
symmetry groups are particularly important in science. For
example, they are used in chemistry to describe the symmetry
of molecules, and they are important in the study of the
symmetry properties of crystals. It turns out that the
problem of classifying the finite symmetry groups of bounded
sets in R’ and R’ reduces to the problem of classifying all
finite subgroups of the orthogonal groups O(l’) and O(R")
respectively, so our main objective in this chapter is to
classify all finite subgroups of O(Rz) and O(R’). In the
applications of group theory in science, finite subgroups of
O(R’) are called point groups since they always have a fixed
point. These point groups are of two types: point groups of
the first kind, which contain only rotations (that is finite
subgroups of O'(R’)), and point groups of the second kind,

which also contain reflections.
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4.1 Symmetry groups

Definition 4.1:

Let E be an n-dimensional Euclidean space. Let S be a
nonempty subset of E. A rigid motion (or isometry) o of E is
said to be a symmetry of s if o(85)=S; that is, if o maps every

point in S to a point in S.

Theorem 4.1:

Let S be a nonempty subset of E. The set of all
symmetries of S forms a subgroup of the Euclidean group M(E)
of E. That is, G%={aeM(E)/a(S)=S} is a subgroup of M(E).
Proof:

Clearly we have GeM(E) and Gyre since 1,6G,. Let o, t€G,.
Then o¢(S)=S and t(S)=s. Thus (otr)(S)=o0(r(5))=0(S)=5, and
hence oteG;. Also o’o(5)=0’'(5); that is, S=07(s). This

implies ol

€G,. Therefore, GksM(E).
Definition 4.2:
The group of symmetries Gy of 5 is called the symmetry

group of S.

Example 1:
Let S=({A}, where A€E. Then the symmetry group Gy of s
consists of all isometries of E that fix the point A. Thus

the symmetry group of S={A} is M(E)r
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Example 2:
Let S be an equilateral triangle in 2. Then the
symmetry group of S is Gy={1p,p, 2s,p, 42,0,,0,,0,}, where
'3 '3

P, ax and P, 4x are rotation about the point p through angles -23“-
’ 3 ’

3

and —431 radians respectively. oL Op and o, are reflections

in the lines L, L, and L, respectively.

Ly
Figure 4.1

Example 3:

Let S be a regular n-gon (nz23) in R] We need to find
the symmetry group of S. First, we are going to show that the
symmetry group of S has order 2n. Consider a regular n-~gon
whose vertices are numbered 0,1,2,...,(n~1). Since a symmetry

of S preserves distance between the locations of the vertices
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0 and I, the locations of the vertices 0 and 1 determine the
entire symmetry. There are n choices for the vertex 0; having
made any of these n choices for vertex 0, there are two
choices for the vertex 1. Hence there are at most 2n possible
symmetries. Now we are going to show that all these
possibilities do arise. Let p be the counterclockwise
rotation of Iﬁ about the center p of the n-gon through an
angle of 2x/n radians, and let o be the reflection of lﬁ about
the line L. We claim that G is generated by p and o. The
rotation p takes 0-1,1-2,2-3,...,(n-1)-0, and pz takes
I

0-2,1-3,...,1-1i+2,...,(n-1)~1 and in general for lIs<k=n, p

takes 0-k,l1-k+1,2-k+2,...,(n-1)-(k-1).

Figure 4.2

Thus p generates a subgroup <p> of G; whose elements are the

n rotations {p,p2,p3,...,p%=15} . Since the reflection o is

not an element of the subgroup <p>, the right coset <p>ow<p>
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and in fact <p>o gives the other n elements of Gy, namely
{p’a/k=1,...,n}. Clearly for k=1,...,n, p’a are distinct; to
see why {p’a/k=1,.. .,n} are distinct, assume that pia=pja for
some l<i<j<n. Then pj'i=1, where l<j-i<n which is impossible.

"a. Since a

Clearly, p%=1 and o’=1. We claim that op=p
symmetry in Gy is determined by the locations of 0 and 1, we
consider apa'1(0)=ap(0)=a(1)=n-1. Also p'1(0)=n-1. Thus

apa'1(0)=p'1(0). Similarly, apa°1(1)=op(n-1)=a(0)=0, and

p'1(1)=0, thus apa'1(1)=p'1(l). Therefore, apa'1=p"’ or ap=p"'a.
We conclude, therefore, that GS is a group of order 2n
generated by the two elements p and o that satisfy the
relations p?=c’=1 and op=po. Thus Gy is the dihedral group D,

generated by p and o.

Example 4:
Finally, let us find the symmetry group of a regular

tetrahedron in R’

Figure 4.3
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Let us begin by finding the rotations of R’ fixing a vertex
and leaving the tetrahedron invariant. Let o, stand for a
120° counterclockwise rotation off the tetrahedron about an
axis passing through vertex V and the center of the face

opposite to V. For example, the effect of g; on the vertices

2

B CD) Also, the 9

of the tetrahedron is given by a‘:(‘i cpB”

ABCD 3

effect on the vertices is given by o%: . The ¢
e ice g Yy o3 (A i C] i

effect on the vertices is given by o,":(: g gz), that is,

o}-lp. Thus we conclude that there are eight rotations that

fix one vertex of the tetrahedron: o ojz, T o,z, T ocz, and
o) anz. Now we find the 180° rotations of R’ that leaves the
tetrahedron invariant. These are the 180° rotations about an
axis passing tprough the midpoints of opposite edges. There

are three such pairs of opposite edges, namely (P,P'), (0.0Q')

’ . ') N . A B C D
and (R,R’); these produce the 180° rotations: o p :(B 2D C)'
ABCD ABCD
G (0.0h :(CD A B] and 0, g :(D cB A)' Next we find the

hyperplane reflections of R’ that leave the tetrahedron

94



invariant. These are reflections through the planes bisecting
the tetrahedron. A plane is determined by an edge and the
midpoint of the opposite edge, for example, the edge AB and
the point P, Let % denote the reflection of IH through the

plane determined by P and AB. Then the effect of T, on the

BC D) There

vertices of the tetrahedron is given by: t,:(: spa”

ABCD
are another five reflections given by: f":(ADCB)'

. _(ABCD] ind € _ABCD]
@ \¢cBAD MacBD

t_ABCD t_ABC'D
R*\0pBCcal '\BaAacD)
The remaining six orthogonal transformations that leave the
tetrahedron invariant are the ones that are products of three

symmetries. These are given below with the effect of each on

the vertices of the tetrahedron.

. .(ABC'D] et .(ABCD) < ﬂ.(ABCD)
0P r:\p o a )’ R oppal YPR\pap

] ) ””_(ABCD] cnr,|ABCP
"\ cpa)’ 2P gpac rNcapas)

The table below is the list of the 24 elements of the symmetry

group of the tetrahedron.
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Table 4.1

Rigid Description Vertex
motion permutation
1p Identity (3 BC Dl
transformation
Stor BCD
oy a‘§ (BCcD), (DBC)
oy oy, |120°, 240° (apc), (AcCD)
Opr %, rotations (ABD), (ADB)
9 o) (ACB), (ABC)
%0 180° rotations (AC) (BD)
o (BC) (aD)
Tpr Tp Symmetries, (cp), (AB)
T T i.e., (BD), (AC)
Th rzl hyperplane (AD), (BC)
reflections
T TpiTy (ADBC)
fztp,t + | Transformations | (ACBD)
tptng that are (ADCB)
TpTy1Tpr | Products of 3 (ABCD)
T .gltp. symmetries (ABDC)

From the table, it is not hard to see that the symmetry group
of the tetrahedron Gkis isomorphic to the symmetric group 5.
Moreover, the rotation subgroup of the tetrahedron
G'f{l.;,ad, UJZ' Oy, o,z,ac,acz,ap,apz, "p,p"“e,a""x,x'} is isomorphic to

the alternating group A‘.

Similarly, one can find the rotational symmetry groups of
the other platonic solids. The list of the five platonic
solids and their rotational symmetry groups are given below
together with the number of their vertices, edges, faces and

the shape of their faces.
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Table 4.2

Number Number |Number |Shape of rotational
iplatonic |of of of faces symmetry
solid vertices |edges faces group
; ‘ 4 6 4 Triangles |ea,

} Tetrshedron

i

.- 8 12 4 Squares "Sl
Cube

{A 6 12 8 Triangles ~S,

Octahedron

| £

C’) 20 30 12 Pentagons -A5
Dodecahedron

M 12 30 20 Triangles -A5
lcosahedron

Definition 4.3:

Let S and S' be two nonempty subsets of E.

We say S and

S' are congruent if there is an isometry o¢:E-E such that

S'=zo0(8).
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heorem 4.2:

Let S and S’ be congruent subsets of E. Then their
ymmetry groups are isomorphic; that is, Gs-vGS..
roof :

Since S and S' are congruent, there exists an isometry o
uch that o(S)=S'. Let teG, and let t'=oto™l. Then t'(S')
=0ta'1(s')=ot(s)=a(s)=s', and hence 1t'€G,. Define a map
:Gg=Gg1 by p(t)=r'=ata'1. Let 71,,7,6G;. Then 9(7,7y)=07 700
=arla'10rza'1 ='(t1),('¢'z). Thus ¢ is an homomorphism. To show
) is onto, let ‘t'€G5v, and let t=0lto. Then t(s)=a'1r’a(s)=a'
t'(S')=a'1(S')=S, hence t€G; and '(t)-‘-’OT'O-I:O(a-IT'0)0-1-’1". To
1

how @ is one-to-one, assume ¢(t;)=¢(7;). Then 01’10- =atza'1,

ence 7,57,. Therefore, ¢ is an isomorphism.

It follows from this theorem that a symmetry group G, of
. subset S of E does not depend upon the location of the set
' in the space E. However, it is important to realize that
he symmetry group of a set S does depend on the space in
hich we view it. For example, the symmetry group of a line
egment in RI is [1’,-1’}. However, the symmetry group of a
ine segment considered as a set of points in EF is

o

yare reflections in the x and y axis

,1..,al,a:,p‘}, where o,

nd p, is a rotation about the origin through 180°.

The next theorem shows that the problem of classifying

he (finite) symmetry groups of bounded sets in Rz and R’
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reduces to the problem of classifying all (finite) subgroups

of O(R?) and O(R’).

Theorem 4.3:

Every rigid motion in a symmetry group of a bounded set
in ¥ or P has at least one fixed point.
Proof:

Let S be a bounded set in R or K. Since S is bounded,
S can be contained inside some sufficiently large sphere. A
rigid motion in G; cannot be a nontrivial translation, a glide
reflection, or a screw displacement since one of these rigid
motions indefinitely repeated would map S outside of the
bounding sphere. Thus the only rigid motions in G; are
rotations, reflections, and rotatory inversion. Hence every

element of Gg has at least one fixed point.

Corollary:

1. A symmetry group of a bounded set in K is isomorphic to
a subgroup of O(lﬁ.

2. A symmetry group of a bounded set in ]H is isomorphic to
a subgroup of O(Rb.

Proof:
Let Gy be a symmetry group of a bounded set in lg (IH).

But each element of G;must have a fixed point. Thus the only

rigid motions in G; are rotations, reflections, and rotatory
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ﬁ’i\’nversions (in the case of RJ). Thus G; is isomorphic to a

;subgroup of O(R?) (or O(R’)).
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§ﬁ2 Classification of Pinite Subgroups of Oﬂlﬁ
Before we start the classification of the finite
bgroups of O(Rz), we recall a few basic facts from group

heory.

befinition 4.4:

Let G be a group and S be a (finite) set. To say that G
acts (or operates) on S means that, for every geG and every
#€8, there is defined a unique element gseS such that;

es=s for all s€S5 (e is the identity of G).

(g99')s=g(g's), for all ¢,g'€G and ses.
'A set S on which a group G acts is often called a G-set.

For example, let G=0(R5. Then G operates on the set of
all points of the plane lg, the set of triangles in lg, and so

on.

Let S be a finite G-set and let ¢gcG be a fixed element of

G. Thus we have a map ny:s~s defined by ny(s)=gs. This map

describes the way the fixed element ge€G operates on S.

Theorem 4.4:

The map n@:S»S defined by ny(s)=gs is a permutation of S;

that is, n? is one-to-one and onto.
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R T R RN

iE!'roof :

First, we show m, is one-to-one. Assume mg(-"z):’"g(-"z)-

Then gs;=gs,. Therefore, g'lgsl=g'lgsl; that is, 5,5S,, hence m,

is one-to-one. Next, we show m, is onto. Let s'es. Let s=g

Ige, Therefore, gs=s’; that is, m,(s)=s'. Hence m, is onto.
Theorem 4.5:
Let S be a G-set. The relation ~ on S defined by s~s' if

and only if s’=gs for some ge€G is an equivalence relation on

S.
Proof:

To show ~ is reflexive, let s€S. Then s=es where e&G is
the identity element. Therefore, s~s. To show ~ is

symmetric, assume s~s'. Then s'=gs for some geG. Since g'"eG,

ls'=g'1gs=s. This implies s'~s. To show ~ is transitive,

v
assume s~s’' and s’'~s'’. Then s’=gls and s"=gzs' for some
9,,9;€G. Then s"=g;(gls)=(g1gz)s. Since g,9,6G, s~s'’'. Since
~ is reflexive, symmetric, and transitive relation, ~ is an

equivalence relation.

Definition 4.5:
Let S be a G-set and s€5. The equivalence class of the
relation ~ determined by s is called the orbit of s in S.

Thus the orbit of s in 5§ is the set 0,={gs/g€G}.
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Being equivalence classes, the orbits of the elements of

B partition S into disjoint subsets. And the group G operates

on S by operating independently on each orbit. In other
words, an element g€G permutes the elements of each orbit and

3
gﬂose not carry elements of one orbit to another orbit.

- pefinition 4.6:
Let S be a G-set. We say G operates transitively on § if

there is just one orbit in S5; that is, if .E"--Os for some sE&S.

Note that if G operates on a set S transitively then
every element of S is carried to every other one by some

element of the group.

Definition 4.7:
Let S be a G-set. The stabilizer of an element seS is
denoted by stab(s) and is defined by stab(s)={ge€G/gs=s}. That

is, stab(s) is the set of elements in G that leaves s fixed.

Theorem 4.6:
stab(s) is a subgroup of G.
Proof:
Note that stab(s)cG, and stab(s)#e (since eestab(s)).

Let g, ,g,6stab(s). Then (g,9,)s=9,(9,5)=g)(s)=s; therefore,

1

g9,6stab(s). 1f gestab(s), then gs=s, and g'lgs=g's; that is,

]

s=g ‘s, so gdestab(s). Therefore, stab(s)=G.
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AT AR S N

Let H be a subgroup of a group G. Let G/H denote the set

of all left cosets of H in G; that is, G/H={gH[geG}. We shall

call G/H the left coset space of G relative to H. Note that
G/H is not a group unless the subgroup H is normal in G.
However, G operates on the left coset space G/H in a natural
way. The action of G on G/H is specified by g'(gH)=(g'g)H,
where ¢g'€G and gHeG/H. The orbit of the coset H=IH is given
by Of{gH/ge‘G}=G/H. Thus G operates transitively on G/H. The
stabilizer of a coset gH is given by stab(gH)=(g'eG[g'(gH)=gH}

={g'eG/g'Ig'geH}. In particular stab(H)=H.

Theorem 4.7:

Let S be a G-set, and let seS. Then [0,/=[G:stab(s)].
That is the order of the orbit of s is equal to the index of
the stabilizer subgroup of s.

Proof:

We define a one-to-one map ¢ from O, onto the left coset
space G/stab(s). Let €0, . Then there exists g;€G such that
$)9;s. Define ¢:Os-»G/stab(s) as follows: ¢(sl)=glstab(s).
First,.we need to show that ¢ is well defined; that is, it is
independent of the choice of g;€G. Suppose that g,S=s; for some
g,6G. Then g;s=g,s, so gl'l(gls)=g1'1(gzs), and thus s=(g1'1gz)(s).
Therefore, gl'lgzestab(s), S0 gze‘stab(s)gl and glstab(s)
=g[stab(s). Thus the map ¢ is well defined. To show the map
$ is one-to-one, suppose s,,8,€0, and ¢(51)=¢(51)' Then there

exist 9,,9,€G such that S|=9;S, S,°9,S, and gze'glstab(s). Then
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9,°9,9 for some gestab(s), so .sz=gzs=g1g(s)=gl(gs)=gl(s)=sl.
Thus ¢ is one-to-one. Finally, we show that ¢ is onto. Let
glstab(s) be an element in G/stab(s). Then if g;s=s;, we have
g;stab(s)=¢(s;). Thus ¢ is onto. Hence [O,/=[G/stab(s)[. By
Lagrange's Theorem, [G/stab(s)]/=[G|/[stab(s)[=[G:stab(s)].

Corollary (Counting Formula):

/6l =]stab(s)]]o,].

To classify the symmetry groups of bounded sets in l? and

l’, we need to establish some preliminary results.

Lemma 4.8:
Let E be either K or F. Let S=(s;[/s;€E,i=1,...,n} be a

finite set of points of E, and let p be the center of gravity

of S, defined by psi(sl+...+sn), where the right side is
n

computed by vector addition. Let mbe a rigid motion, and let

51"=m(51') for all i and p’=m(p). Then p’-%(s{tﬂsﬁ); in other

words, a rigid motion carries a center of gravity to a center
of gravity.
Proof:

Case 1: m is a translation, say m=T‘.
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Then p'=m(P)=p+a and si'=m(si')=si+a. Therefore,

2 (slr.+a]) =2 [(5,4a) +.4 (5,2a) ]

-u%(sh+m+s,)+a

=p+a
=p!.

Case 2: m is a rotation or a reflection.

Then m is a linear transformation; therefore,

p/-m(% (31*“‘"‘9::))
-2 (m(5,) +.+m(s,))

-n%(sd+m+s¢).

Lemma 4.9 (Fixed Point Theorem):
Let Gbe a finite subgroup of the group of rigid motions
M(E). Then there is a point p in E such that for all geG,

g(p)=p; that is, G has a common fixed point.

Proof:
Note that E is a G-set. Let s€E, and let 0,={g(s)[g€G}

be the orbit of 5. Note that G operates on 0 transitively;

that is, G will permute the elements of O,. Let p be the
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center of gravity of the orbit 0,. Then p=-]oll Y g(s). Let

) PEG

g'eG; then
! =g/l ¥
g’(p) 91(10—.[“69(8))
= 7
Wg{:@gg(s)
a 1l T o
O, ﬂ'tag ()
-p.
Corollary:

The elements of a finite subgroup of O(E) have a common

fixed point.

We are now ready to state the main Theorem; Hermann Weyl
[30] credits the discovery of this theorem, in essence, to
Leonardo da Vinci, who wanted to determine the possible ways
to attach chapels and niches to a central building without

destroying the symmetry of the nucleus.

Theorem 4.10:

Let G be a finite subgroup of the group O(Rz) which fixes
the origin. Then G is one of following groups:
1. G=C,: the cyclic group of order n, generated by the

rotation p,, where 8=2x/n.
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2.

G=D”: the dihedral group of order 2n, generated by two
elements, the rotation p;,, where 6=2x/n, and a reflection

o about a line through the origin.

Proof:

Case

Case

There are two cases to consider.

1: All elements of G are rotations.

We need to show G is cyclic in this case. If G={1,),
then G=C;. Otherwise G contains a nontrivial rotation
Py Let @ Dbe the smallest positive angle of rotation
among thé elements of G. Then G is generated by p,. Let
p,6G, where acR. Let n8 be the greatest integer multiple
of @ which is less than a, so that ae=né+3, with 0=xB<8.
Since G is a group and since p,, p,EG, Pg=P P .14€6- But @
is the smallest positive angle of rotation in G.
Therefore, =0 and a=nf. Hence ;5=pf. This shows that
G is cyclic. Let né be the smallest multiple of 8 which
is 22x, so that 2x<n6<2x+8. Since & is the smallest
positive angle of rotation in G, né=2x. Thus 8=2x/n for
some integer n.

2 : G contains a reflection o.

Let 066G be a reflection in a line through the origin.
Let H be the subgroup of rotations in G. We c¢an apply
what has been proved in case 1 to the group H, to
conclude that it is a eyclic group generated by p, (i.e.,

H=qp. Then the 2n elements of the set {pf, pfa/
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0sis<n-1}, are in G. It is not hard to see that pg=1p,

g3=15 and ap,=p,'ja. Therefore, G contains the dihedral

group D” generated by Py and 0. We need to show in fact
G=D‘,n. Now if g€G is a rotation, then g€H; hence g is
one of the elements of Dy,. If g is a reflection, then
go 18 a rotation because it is the product of two
reflections. Therefore, ga=p/ for some k so that
g=p,ta'1=pfa since o’z1. Thus g€eDy and hence G=D,.
Corollary 1:
Let G be a finite subgroup of 0(]7)’, which fixes the

point p. Then G is either TC'HT'I or T'D”T,'I.

A
Proof:
Let 0 be the origin. Note that Tp(0)=p. Then T"IGTP(O)
=Tp-1G(p)=Tp-1(P)=0, hence TP'IGT’ fixes the origin. Therefore,

by the theorem, T,76T,=C, or T,'6T,=D,, thus G is either T,cT,”

? ’
-1
or TFDZHTP .

Corollary 2:

Let G be a finite subgroup of the Euclidean group M(l’).
If coordinates are introduced suitably, then G becomes one of
the groups C, or Dy, where C, is generated by Py 6=2x/n and Dy,

is generated by Py and a reflection o.
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Since G is a finite subgroup of motions M(Rz), G has a

ixed point p by Theorem 4.9. Then introducing a coordinate

ystem with the origin at p, G is either C, or G=Dy,.

110



.3 Classification of the Finite Subgroups of O(R')
In this section, we turn to the classification of the
inite subgroups of the orthogonal group of the 3-dimensional

Euclidean space o(k’).

First, we are going to show that the problem of
classifying the finite subgroups of O(R’) can be reduced to a
great extent to the problem of classifying only the finite
subgroups of the rotation group O'(R’).

Let Gbe a finite subgroup of O(l’). By Lemma 4.9, G has
a fixed point p. Thus G contains only rotations and rotatory-
inversions with axes through the point p. I1f G consists
entirely of rotations then G is a subgroup of 0'(]’). I1f not,
G contains a rotatory-inversion, say, o€G. Let p,.p,,....,p, be

all rotations in G, where p,=1p. The set H={p;.p,,....p,} is

a subgroup of G, called the rotation subgroup of G. Consider
the elements in G given by PO:P)O, . ,PyO. Clearly, po are
rotatory-inversions for each i=1,2,...,n. Also these elements
are distinct. Moreover, any rotatory-inversion in G is one of
these elements. To see this, let o' be any rotatory-inversion

I is a rotation in G. Thus o’a'1=pl~ for some

in G. Then o'0o’
l<i<n. Hence o0'sp;0. Thus G={p;.p;,....PpPO,PO,...,p,0}.
Hence the order of G, O0(G)=2n and [G:H]=2, and hence H is a
normal subgroup of G. There are two possibilities; either G

contains the inversion t=-1p36CG or it does not.
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?‘Case 1: If t=-1,6G, then t€Ho, so Hr=Ho and we can write
=HUHT, or G={p; Py, ...,PpP;T:PsT,-..,p,t}. Since t?=1, and

p;t=tp; for all i, then K={p;, v} forms a subgroup of G and
=HK. Moreover, H and K are normal subgroup in G and
HnK={p1}. Thus G is a direct product of H and K; that is,
G=HxK.

Case 2: If <t=-1p¢G, then the description of G becomes a

little more complicated. G={P[+Pgr e sPpsPIO, PO, oo, PpO}.

Note that pl-a=(-pia)(-1.,)=(—pia)t=tit, where ~pio=t; is a

rotation. Hence G={p;,py, ....pp, t T, ty7, ..., ¢t,t}. Claim: all
the t; are different from all the pj Assume the contrary,
namely, ti"Pj for some j. Then tit='pj‘t implies PO=P;T, thus
pj'lpl-a=t and hence t=pj’1pl-aer", a contradiction. Hence all the
t; are different from all the pPj:

Let G'={p1,pz,...,pa,tj,tz,...,t,}. Then G is a subgroup of
0'(3’) of order 2n with H={p1, . .,p,} a normal subgroup of ¢! of
index 2. Conversely, if G'={p1,pz,...,p,,t1,t2,...,tn} is a
subgroup of 0'(!’) of order 2n with H={p1,...,pa} a normal
subgroup of G’ of index 2, then G={PsPys v+ P t T, tyT, 000, tp T}
is a finite subgroup of O(RI). Moreover, ¢ is isomorphic to
G. To show that ¢’ is isomorphic to G, define a map ':G-»G* by
¢(p;)=p; for i=1,2,...,nand ¢(t;r)=t; for i=1,2,...,n. Clearly
¢ is one-to-one and onto. Thus it remains to show that ¢ is
a homomorphism. Let p;p;=p;, then ,(pjpj)='(p‘,)=p‘,=pipj

=9(p1-)9(pj). Let t;r and tj‘t be two rotatory inversions in G.

112



Then the product (tit)(tj‘t) is a rotation, say (tl-t)(tjt)=tit2t]-
=tit]-=p‘. '((tl-t)(tjt))='(p‘)=p‘,. Oon the other hand,
'(tit)p(tjt)=titj=p‘,. Thus '((t‘-t)(tjt))='(ti‘t)'(t]-t). Finally
p(pi(tit))=,(p1-(pja))='(p,o)='(t,t)=t,. on the other hand,
'(Pi)'(Pj)=(Pj)(tj)"'Pi(Pj"):Pto:tI‘ Thus '(Pi(tjt))='(P1')'(tjt).
Therefore, ¢ is an isomorphism and hence GwG'. Thus in this
case, G is isomorphic to the rotation group ¢

Thus we have proved the following theorem.

Theorem 4.11:

Let G be a finite subgroup of O(R), and let H=Gn0'(l') be
the subgroup of rotations in G. Then there are exactly 3
possibilities:
1. =H if and only if G is a subgroup of O'(R').
2. G is a direct product of the rotation subgroup H and the

cyclic group K={1p,-1p} if and only if -1p6G.
3. G=Hu(tt|/teG'-H}«G', where <t=-1p and ¢ is a finite

rotation subgroup of 0*(3’) containing H with [G':H]=2.

G is of this form if and only if G#H and -1, 6G.

Remark:

Note that G and G’ are as abstract groups isomorphic,
i.e,, algebraically they are the same. However, they are
geometrically different since G has rotatory-inversions but ¢!

has only rotations.
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From the theorem above, it follows that in order to find
all finite subgroup of O(R’), we need only find all finite
subgroups of O'(l’) and look for all subgroup of these groups
with index 2. Thus we turn now to the classification of all
the finite subgroups of O'(R’). The method given below for the
classifications of finite subgroups of 0'(2’) is essentially
due to Pelix Klein [15]. Recently, Marjorie Senechal [27]
extended Klein's method to include the classification of all

finite subgroups of the orthogonal group O(R’).

Let G be a finite subgroup of O'(l’). By Euler's Theorem
3.17, every element g€G except the identity is a rotation
about a unique line L. Let S=(xc-‘l’/lx—xﬂ[=1} be the unit
sphere with center at the common fixed point of G, namely x,.
G acts on S, for every geG, gx€S for every x€S and ¢ is
completely determined by its action on the elements of S
because S contains a basis for F. Thus every ¢g€G such that

grly fixes exactly two points of the unit sphere S, namely

the two antipodal points of the intersection S/1L. We call
these points the poles of g. Thus we have the following

definition.
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Definition 4.8:
Let Gbe a finite subgroup of 0*(2’). A point p on S is

a pole if there exists an element ¢g€G such that g#1y, and

g(p)=p.

Note that it is possible that the same point pesSnL may be

a pole for more than one group element.

Since the group G is finite, the set of all poles of all

elements g€G such that gsly is a finite set of points on the

sphere S; we denote this set by P. Next we are going to

examine this set in great detail.

Lemma 4.12:

The set of poles P is a G-set. That is, the set P is
carried to itself by the action of G on the sphere.
Proof:

Let peP, then p is a pole for some element 1y,#9g€G. Let

p be any element in G. We must show p(p)eP; that is, p(p) is

left fixed by some element p’'€G where p'#ly. Let p'=pgpq.

Then p'(p(p))=(pgp")(p(p))=p9(p)=p(p) since g(p)=p; also

pgp'1¢1., because if pgp'1=1.a then pg=p and hence g=1p, a

contradiction.
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Now we are going to apply the counting formula to the G-
set P and show that the set of poles P has to be a

particularly "nice" configuration of points.

Lemma 4.13:

Let G be a nontrivial finite subgroup of 0'(3’). Then the
number of G-orbits of poles is either 2 or 3.
Proof:

Let O(P)={01,02,...,0‘,} denote the distinct G-orbits of
the set of poles P. We need to show that k=2 or 3. Choose a
pole from each orbit, x0;,, i=1,2,...,k. For each x;, let

stab(xl-) be the stabilizer of X, and let r; be the order of
stab(xi). Since x; is a pole, the stabilizer stab(xi) contains

an element besides the identity element 1y of G. Then rj22

for every i=1,2,...,k. Let n; be the number of poles in the
ith G-orbit 0;. By the counting formula, ri“i"/G/ for
i=1,2,...,k. Each element g€G, where g#ly has two poles;
thus the total number of poles, counting repetition is

2(|G]-1). The set of elements of G with a given x; is the

stabilizer stab(xl-) minus the identity element 1g5; that is,

{9€G[/g(x;)=x;}=stab(x;)-{1p}. Thus the pole x; occurs as a

pole of an element ¢g€G, when g»lg, (rl--l)-times. Now if p and

p' are in the same orbit then the stabilizers stab(p) and
stab(p’') have the same order. To see this, we apply the

counting formula, since p and p' are in the same orbit, then
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;O'=0,:, but [stab(p)[=[G[/[0,/=]G|/]|0,]=]|stab(p')]. Since

there are n; poles in the ith orbit Oi' the total number of

poles counting repetitions is itn,(ri-l) . Thus
=1

1%n,(r,—1)-2(|6|—1) ().

By the counting formula, we have /G/=n1-ri. Dividing both sides

of equation (1) by /G/, we obtain

-2 =3[1-1
2-14] ifl(l 11) .o (2).

Since G is nontrivial, the left side of equation (2) satisfies

the inequality 152-1%[<2. On the other hand, since r;x2,

each term on the right hand side satisfies the inequality

—J-'-sl-—]; <1. 1t follows form equation (2) that there can be

2 r,

at most three orbits; because if the number of orbits k24,

- 2 = —.l _4.= 2 b i i i
then 2 -lz;[ 1%(1 ri]z > 2 hence -[(—;[so and this is impossible.

Thus the possible number of orbits are k=1, 2 or 3. 1If there

. . 2 1 1 2
’ t - ] = e - — - h
is one orbit hen 2 -l—l-G 1 £2 -I_[G <1 whic is
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impossible because 2--%[21. Hence the number of orbits is

either 2 or 3.

Now we are going to examine these two possibilities

separately.

Theorem 4.14:

If G is a nontrivial finite subgroup of 0'()’) and if
there are only two G-orbits of poles, then G is cyclic and is
generated by a rotation through the angle 2x/n, where n=/G/.
Proof:

Let 01-, X, ny, and L, i=1,2,...,k be as in the proof

above. Then the equation 2(|G|-1) -;n,(ri—l) becomes
=

2(/G/—1)=n1(r1-1)+n2(r2-1)

=nr;-n;+n,r,~n,

=2/G/-(n1+nz).
Thus 2=n1+n1. Since n, and n, are positive integers, then
n;=n,=1, and hence r;=r,=/G[=n. This means that there are two
poles, X,€0, and X,€0,, and the two poles must lie on a diameter
of the sphere § , and hence the rotations in G are rotations
about this diameter, say L. Thus by Theorem 3.18, G is a
subgroup of 0*(12). Hence by Theorem 4.10, G is a cyclic group

generated by the rotation Py about L through the angle 2x/n.
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Figure 4.4

Next we consider the case when the number of G-orbits

k=3. 1In this case, the situation is more complicated.

Theorem 4.15:

If Gis a nontrivial subgroup of O"(R’) whose order is n<o
and if there are three G-orbits of poles, then G is one of the
following groups:

1. The dihedral group, D,, of the symmetry group of a
regular r-gon.

2. The group T of rotations of the tetrahedral symmetry
group.

3. The group O of rotations of a cube or regular octahedron
symmetry group.

4. The group I of rotations of a regular dodecahedron or a

regular icosahedron symmetry group.
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Proof:

., 1=1,2,...,k be as in the proof of

Let Oi, X f

ir By and r

the previous Lemma 4.13. When k=3, equation (2) of the Lemma

4.13 becomes 2--2 =t[l-i]=(1-i)'(1-i)$(1-—}—] and hence

[GI FL1 ri 1'1 1'2 Y

1+—2-=i+i+i. Without loss of generality assume that

n r, r, r,

1.22.1 _1.1.1._.
L Sry<ry. I1f r123, we would have ?,+T,+?;$3+3+3=" and

this implies 1+-|%[s1 hence -l%[so, a contradiction. Thus

25r1<3 and hence r1=2. Now 1+%=~l+—

2 r, 3 I, I,
rzz4, we would have

contradiction. Hence r, is 2 or 3. Thus there are four
possibilities:
Case 1: r1=2, r,=2, r3=n/2, n is even and n=4.
In this case, n1=n/2, nz=n/2 and n;=2.
Case 2: r1=2, rz=3, r3=3.
In this case, n=12, n1=6, n2=4 and n3=4.
Case 3: r1=2, rz=3, r3=4.
In this case, n=24, n1=12, nz=8 and n3=6.

Case 4: r1=2, rz=3, r3=5.
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In this case, n=60, n1=30, nz=20 and n3=12.
These four cases are the only possibilities. PFor if r1=2 and

2

r,zs, then -rl:'r%; s%+%=%, which implies 72‘0' a

contradiction.

Now we are going to consider each of these four cases in
turn.
Case 1: r;~r,=2 and r;~r23.
Then n=2r. Since r3=n/2 then n3=2 and hence there is one pair
of poles {xj,xj'} making the G-orbit 0;. Thus every element
p€EG either fixes x; and x,' or interchanges them. Hence the
elements of G are rotation about the diameter D passing
through the poles X3 and xJ', or else they are 180° rotation
about a line D' perpendicular to D. Every rotation in the
stabilizer stab(x,) fixes D, thus stab(x:) is a subgroup of
0'(3’,0)-0’(]2). Therefore, stab(x_,) is a cyclic subgroup of
order r generated by Py where 6=2x/r. Let X, €0, and consider
the points X p,(xl), p/(xl),..-., p,”'l(xl) on the sphere. We
claim that they are distinct and they are the vertices of a
regular r-gon. To see this, suppose p,’(x1)=p,t(x1), where t>s.
Then p,t”(x1)=x1. But Xy and xJ' are the only poles which are

left fixed by p,t"’, and x; cannot be Xy or xJ' since o,no,={1,.}.

To see why these points are the vertices of a regular r-gon,
recall that p, preserves distance, and thus d(xl,p,(xl))

=d(p,(x1),p,2(x1))=. . .=d(p,"1(x1),x1). Therefore,
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xl,p,(xl), ce 'POH("‘I) are the vertices of a regular r-gon.
Since G consists of 2r rotations each of which leave the
regular r-gon invariant, then G must be the symmetry group of

the r-gon. Hence, G is the dihedral group D,,.

Figure 4.5

Case 2: r;=2, r,=r;=3

Then G is a group of order 12. The orbit of X; consists of
four points. Choose one, say u, and choose a generator p for
the stab(x:). Then the points u, p(u), pz(u) are distinct
points of the sphere. Since p preserves distance, they are
equidistant from X5 and they are the vertices of an
equilateral triangle; see the figure below. Note that the
points X3, p(u), and pz(u) are equidistant form u. Therefore,
X5 u, p(u), pz(u) are the vertices of a regular tetrahedron

T, which is left invariant by the rotations of G. Since the
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order of Gis 12, it must be the rotational symmetry group of

T.

4 2>

Figure 4.6

Case 3: =2, r,=3, r;=4.

Then the order of G is 24. There are six points in the orbit
of x;. Choose one, say u, and let p generate stab(x,). Then
u, p(u), pz(u), and p’(u) are equidistant from x; and are the
vertices of a square, Also the points x; and x3' are
equidistant from u. Therefore, x; u, p(u), pz(u), p3(u), x3'
are the vertices of a regular octahedron 0 and 0 is left

invariant by G, hence G is the rotational symmetry group of O.
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Figure 4.7

Case 4: =2, r,=3, ryJ.

Then G is a group of order 60. There are 12 points in the
orbit of x;. Choose two, say uand v. If pis a generator of
stab(xj), then u, p(u), pz(u), p’(u), and p‘(u) are all distinct
and equidistant from Xy, and they are the vertices of a
regular pentagon; see the figure below. Also v, p(v), pz(v),
pJ(V), and p‘(v) are all distinct and equidistant from X, and
form the vertices of a regular pentagon. The 12 points X3,
x;' u, p(u), pl(u), pl(u), pltu), v, p(v), p(v), p'(v), and
p‘(v) are the vertices of a regular icosahedron I, and hence

G is the rotational symmetry group of I.
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Figure 4.8

To complete the proof of the Theorem, it remains to show
that the rotation group of a regular octahedron is also a
rotation group of a cube; and the rotation group of a regular
icosahedron is the also a rotation group of a regular
dodecahedron. For this purpose we introduce the concept of
dual polyhedron. Given a polyhedron, we can construct its
dual polyhedron as follows: The vertices of the dual are the
centers of the faces of the original polyhedron. Two centers
are joined by an edge if the corresponding faces meet in an
edge. The dual of a platonic solid is again a platonic solid.
If this process in done twice one recovers the original
platonic solid (or smaller version of it). The dual of a
tetrahedron is a tetrahedron; the dual of the regular
octahedron is a cube; and the dual of an icosahedron is a

dodecahedron. Since any symmetry of a platonic solid will
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induce a symmetry on its corresponding dual and vice versa,

the proof is complete.

Summarizing these results, we find that any finite

subgroup of O'(l’) is one of the groups in the list below:

1 Cn, a cyclic group of order n generated by a rotation
through an angle 2x/n, n=1,2,...; C,Z,.

2 D,,, a dihedral group of order 2r generated by a rotation
through an angle 2x/r, r=1,2,... and 180° rotations.

3 T, the rotational symmetry group of a tetrahedron; Tea,.

4 0, the rotational symmetry group of a cube or an

octahedron; Oss,.
5 I, the rotational symmetry group of an icosahedron or a
dodecahedron; IsA;.
As an immediate consequence of this result and Theorem 4.11,
we can give a complete list of all possible finite subgroup of
O(R’). In the theorem below, we are going to use the same
symbols as in Theorem 4.11. Let G be a finite subgroup of

o(R), and let H=6GNO'(F’), K={1p ,-1p }, and t=-1. RAlso, G is

a finite rotation subgroup of O(I’) containing Hwith [G“ :H]=2.
Theorem 4.16:

If G is a finite subgroup of O(R’) then G is one of the

groups in the following two tables.
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if G contains r=-1p

Table 4.3

H G Order of G |Remarks
Gl=2]H|

1(C, |CxK or |2n GaC,, (if n is odd)
durce, GeD, (if n=2)

2 DZn thK or | 4n G"DZ(Zn} if n is odd, n»l
D’ngch

3|T TxK or 24 G is not the complete
TutT symmetry group of tetrahedron

4 |0 OxK or 48 Complete symmetry group of
Out0 octahedron

511I IxK or 120 Complete symmetry group of
ITutl icosahedron

Table 4.4

if G does not contain r=-1p

Order of G

2n

2n

4n

24
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if G contains t=-1p

Table 4.3

H G Order of G |Remarks
[6[=2]H|
1|C, |CxK or |2n GuC,, (if n is odd)
C':UtC,, GaD, (if n=2)
2 Dh thK or | 4n G-D”h) if n is odd, n»l
D, utD,,
3|7 TxK or 24 G is not the complete
TutT symmetry group of tetrahedron
4|0 OxK or 48 Complete symmetry group of
ouvt0 octahedron
5| IxK or 120 Complete symmetry group of
Tutl ! icosahedron
Table 4.4

if G does not contain 7=-1p

Order of G

2n

2n

4n

24
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CHAPTER 5

Applications

Geometric groups play a very important role in science,
in particular, in physics and chemistry and their importance
continue to grow rapidly. In this chapter, we confine our
selves with two applications. First, we use the rotation
group of a 2-dimensional Euclidean space to develop plane
trigonometry. Second, we use the finite symmetric groups of
O(R?) and O(R’) via Pélya's enumeration theory to isomer

enumeration.

5.1 Plane Trigonometry

Elementary courses in plane trigonometry are concerned
with the study of the six trigonometric functions sine,
cosine, tangent, cosecant, secant, and cotangent. These six
trigonometric functions are defined either for angles (or
their measurement) or as circular functions via the winding
function. In Chapter 2, we have shown that every rotation of
a Euclidean plane E is completely determined by the angle of
rotation around the origin. In this section, we are going to
demonstrate how the six trigonometric functions can be defined
as functions from the rotation group O*(E) to the field of
real numbers R, where E is a 2-dimensional real Euclidean
plane. Moreover, we are going to demonstrate how this

approach to trigonometry makes the derivations of the
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properties of the trigonometric functions natural and straight
forward. Throughout the discussion, a comparison between the
results we obtain wusing the rotation group and the

corresponding classical ones will be made.
First we need the following lemma.

Lemma 5.1:

Let e)and e, be two unit vectors in E. Then there exists
a unique element pe‘O*(E) such that p(e1)=e2.

Proof:

If e, and e, are linearly dependent then e,~rej, where
r=tl., If r=1, let p=1l, then p(e))=e,. If r=-1, let p=-1
then -15(e1)=13(-e1)=—ef=qr Clearly p in both cases is unique.
On the other hand, if e; and e, are linearly independent then
B={e1,e2} is a basis for E. Define p:E-E by p(e1)=e2 and
p(e,)=e€E, e being a nonzero vector. Thus it remains to show
that p is unique. Let p'eo*CE) where p'(e1)=er
Then p(e,))=p(p’'(e;))

=p'(p(eL)) (since Of(E) is commutative)
=p'(e;).
Thus p(e1)=p'(e1) and p(e2)=p'(e2). But since f{e;e,} is a

basis for E then p=p’.
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Corollary:

Let A and B be nonzero vectors in E, then there exists a
unique rotation onVE? such that o(A)=cB for some positive
scalar c.

Proof:

Since A and B are nonzero vectors, than A and B are

unit vectors, and by Lemma 5.1, there exists a unique element

and hence o(A) =JA—'B.

$ A
€0 (E) such that ct——)
1Al I8l

-
18]

We begin by defining the cosine function as a function
whose domain is the rotation group O*(E) and range a subset of
the field of real numbers R.

cos:O"(E) -R.

The definition is based on the following lemma.

Lemma 5.2:
Let p be any rotation of E, and let A and B be any two

<A,p(A)> _<B,p(B)>

A T That is,

nonzero elements in E. Then

the scalar QA]A;5)> is the same for all nonzero vectors A€E.
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Proof:
By the corollary above, let o€OQIU be such that o(Aa)=cB

for a nonzero scalar ¢. Then

<A,p(A)> _<o(A),0(p(A))> (since o is an isometry)
AP lo (&) P

=<0(4),p(0(A))> (since O'(E) is commutative)
lo(a) P

=XCB.p(CB)> (gynce o(a)=cB)
IcBP?

= c3<B,p (B)> (since <

, > is bilinear)
CZIBIZ

. <B,p(B)>
181

Definition 5.1:

The cosine of a rotation p of E is defined by

cosp= _LA'IAI(:) 2

where A is any nonzero vector of E.

As an immediate consequence of this definition, we have
Theorem 5.3:
1. cosp=0 if and only if A is orthogonal to p(a) for a

nonzero vector A€E.
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2. cosl,=1.

3. cos(-15)=-1.

The corresponding results for angles are:
1'. cos(x/2)=0.
2'. cos0=1.

3'". cosx=-1.

Theorem 5.4:

For any peO*(E), cos(p'1)=cosp.
Proof:

Let A be any nonzero vector of E. Since pGO%E?, then
pleo’(E). <a,pl(a)>=<p(a),p(p(A))>. Thus

<A, p1(A)> _ <p(A),A>
AP AP

and this implies cos(pd)=cos(p).

The corresponding result in terms of angles is
cos(-a)=cosa; that is, cos is an even function. Note that if
p is a rotation represented by the angle a then pd is the

rotation represented by the angle -a.

Ve

Let pe‘O* (E). Then -p denotes the composition -lfpe‘O*(E).

Theorem 5.5:

Let A€E be a nonzero vector. Then
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C'OS(‘p) = <A, -E (A) >
AP

_ <A, (-1,0p) (A)>
1A

- <Al P (—13(A) ) >
1A

(since 0*(E) is commutative)

- <A,p(-a)>
AP

<A, (-1) p (A)>
1AP

(since p is a linear transformation)

= _(_L_(A'Ml(f) ? ) =-cosp.

If p is a rotation represented by the angle a, then the
rotation -p is represented by the angle x+a; see the figure

below.

p (A)
n xta \\a
:A ( “A
-p (A)
Figure 5.1
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S

Thus in terms of angles, the above theorem states cos(x+ta)

==Ccosa.

Corollary:
cos(—p4)=-cosp.

In terms of angles, this states cos(x-a)=-cosa.

We know from linear algebra if A and B are nonzero
vectors in an inner product space V, then the angle 8 between

<A,B>
lalis]

A and B is obtained from cosf= Now we need to examine

this result in terms of rotations.

Let A and B be nonzero vectors in E. Then by the
corollary to Lemma 5.1, there exists a unique rotation pe‘O*(E)
such that p(A)=cB for some positive scalar c. Thus the
"angle" between A and B is the angle represented by the

rotation p.

<A,p(A)> _<A,cB> _Cc<A,B>
AP AP AP

cosp =

Since p(A)=cB

Al=VIAF=y<&, 2> =/<p (A) , p (A) >
=/<CB, cB> ={/c3<B, B> =c/<B, B>

=c|B].

<A, B
lalisl

Thus cosp=
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The next theorem is in part a restatement of Lemma 2.7.

Theorem 5.6:

Let pe0'(E), and let [p]as[:' Z] be the matrix of p

relative to an orthonormal basis B={e1,ez}. Then
1. a=d=cosp.

2. b2=c2=1—coszp.

3. c=-b.
Proof:
1. p(e1)=ae1+bez. Since e, is a nonzero unit vector in E,
then
cosp = fewple)> {e,,ae,+be,> =a<e,,e,> =a.

le, P

Similarly if e, is used to compute cosp, we obtain cosp=d
and thus a=d=cosp.

2.  since [p(e;)l=]p(e,)]=1, then a’+c’=1 and b'+d’=1, and this

implies cz=1-az=l-coszp and b2=1-coszp.

3. {p(el),pez)} is an orthonormal set. Thus p(ez)6<p(e1)>",
but dim(<p(e1)>‘)=l and (-c,a)€<p(e1)>‘. Thus
p(ez)=r(-c,a)=(-rc,ra) for some scalar r. But

IP(GI)I=IP(G;)I=1 implies a’+c?=1 and zjaz+r‘7cz=1, and thus
r=+1. p(e2)=(b,d)=;t(—c,a) implies b=tc and d=+a. Since

pEO*(E), then detp=ac-bd=coszp—bc=1, and this implies
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-bc=l-coszp=c‘7 (by part 2). If ¢»0 then -b=c, and if c¢=0

then since b=#c, we have b=0.

Remark:
The scalars a and [c¢/ do not depend on the choice of

basis b={e;,e,} for E. That is, the a and [c/ are unique for

a given rotation pe0'(E). 1In fact, a=cosp and [c/=y/1-cos?p.

Corollary:
1f peo’(E) then -lscospsl.
Proof:

2

By Theorem 5.6 (2), we know l-cos‘p is a square. Thus

l-coszpzo and this is equivalent to -lIscosps<l.

Our next objective is to define the sine of a rotation p.

0f course, we want the identity sin2p+coszp=l to hold for any

pe‘O*(E'). The identity sinzp+coszp=l is equivalent to
sinzp=l-coszp. We know from Theorem 5.6, that 1—coszp is the

square of a scalar b; however, the trouble is that l—coszp is
also the square of -b. The question is should we define
sinp=b or sinp=-b? The choice depends on the "orientation" of
E.

Now we are going to develop the concept of orientation in
a vector space V. Let B={e1,e2, ...,e,} and B'={e ',ez', S '}

be two bases for a real vector space V. Let P=(p1«]-) be the
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transition matrix from B to B'. Recall that Pjj is given by

e;-jtejpji. Also the matrix P is unique and invertible, and
=1
thus det(P)#0.

Definition 5.2:

The two bases B and B' of V are said to be similarly
oriented (or have the same orientation) if det(P)>0 and they
are said to have opposite orientation if det(P)<0. 1If B and
B' have the same orientation, we denote this by B~B';

otherwise we denote this by B#B’'.
The proof of the next theorem is straightforward.

Theorem 5.7:
The relation ~ is an equivalence relation on the set of

all bases of a vector space V.

Since ~ is an equivalence relation on the set of bases
for V, it partitions the bases for V into two equivalence
classes. To "orient" a vector space V means to decide which
class is designated as the positively oriented class and which
class the negatively oriented one. More precisely, we have

the following definition.
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Definition 5.3:
An oriented vector space is a vector space V where one
basis (and hence the whole class) is designated as being

positively oriented.

In the case of the 2-dimensional real vector space IF,

the space is oriented so that the standard basis {(1,0),(0,1)}

has a positive orientation. Note that if {E{,E;} has the same
orientation as~{(1,0);(0,1)} then 3; can be rotated about the
origin to coincide with @, in a counterclockwise direction

through an angle 8 with measure such that 0<@<x. This

observation leads to the following definition.

Definition 5.4:

Let p be a rotation in O’(E) where prily, and let A be a
nonzero vector. p is called a counterclockwise rotation if
(A,p(A)} is positively oriented and p is called a clockwise

rotation if {(A,p(A)} is negatively oriented.

Theorem 5.8:

Let pGO*(E) when petl,. If A is a nonzero vector of E, the
vectors A and p(A) are linearly independent. Further, the
orientation of (A,p(A)} is the same for all nonzero vectors

A€E,

138



Proof:

Assume that A€E and A#0 but (A,p(A)} is linearly
dependent. Then p(A)=cA for some scalar c¢. Thus [p(Aa)]=]A]
implies cJIAIZ=IAIZ. Since IAIZ#O, then c¢=t#l1, and hence p=1l;
contrary to the hypothesis.

Let A and B be nonzero vectors in E. We need to show
that {A,p(A)} and {B,p(B)} have the same orientation. By the
corollary to the Lemma 5.1, there exists a unigque rotation
an'CE) such that o(A)=cB for some scalar c¢. Let [a], be the
matrix of o relative to the basis {(A,p(3)}. Thus
[a(A),a(p(A))]=[A,p(A)][a]r Since o is a rotation, det[a],=1.
[0(8),0(p(8))]=[0(A),p(c(A))] since O'(E) is commutative

=[cB,p(cB)]
=[cB,cp(B)]
=c[B,p(B)].
Thus 1/c[o(A),0(p(A))]=[B,p(B)], or [B,p(B)]

-1
=[cda(A),cd(d(p(A))J=[A,p(A)]r: QJ[OJr
0 ¢

c-’.

Since detﬂ
0

co_l][o],]=(c")z>o, it follows that {A&,p(A)} and

{B,p(B)} have the same orientation.

Now we are in a position to define the sine function
sin:O*(E)-oR. Recall that we want the identity sinzp=1-coszp to

hold for all rotations p. Since cosl,=1 and cos(-lx)=-l, we
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2

define s.inl,=sin(-1,)=0. 1f prtly l-cos‘p is a nonzero square

real number. As usual Jl-cosip denotes the positive real

number b such that b2=1-coszp.

Definition 5.5:

Let peO'(E). The sine of the rotation p is defined as

Y1-cos®p if p is a counterclockwise rotation

follows: sinp={-/1-cos?p if p is a clockwise rotation
0 if p=21,.

Note that the definition of sinp does not depend on the choice

of a basis for E. It depends only on the orientation of p.

Theorem 5.9:
Let pc-‘O'(E). Then
1. sin(p4)=-sinp,
2. sin(-p)=-sinp.
Proof:
1. Clearly if p=t1,, then sin(p'1)=0, and the identity

]

holds. 1If p#tl, then the rotations p and p ' have opposite

orientations. To see this, let A be a nonzero vector in E.

Then by Theorem 5.8, B={A,p(A)} is a basis of E. Let

. Dy P .
P=[p 1]= 172 be the matrix of pl relative to the basis B.
I} Pe

since pleo’ (E), then det(P)=1. (p”'(a),p (p(2))=(a,p(A))P, from
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P17 Py

which it follows that (p'l(A),A)=(A,p(A))P=(A,p(A))p3p
4

Since det

Hence (a,p7(a)) =(a,pa))| 7.
4

Py Py

D, P
2 1]=-1<a, it

follows that {A,p(A)} and {A,pd(ﬂ)} have opposite

1

orientations. Therefore, p and p have opposite orientations.

Without 1loss of generality, we may assume p is a
counterclockwise rotation, and hence pd is a clockwise

rotation. Since p is a —counterclockwise rotation,

ginp =y1-cosip, and since p! is a clockwise rotation, sinp™?

=-y1-cog®p™i=-y1-cos?p; since by Theorem 5.4, c05p4=cosp.

Thus sinp4=—sinp.

2., The proof is similar to part 1.

Theorem 5.10:
Let A#0 be a vector in E. Then there exists a unique

counterclockwise rotation pet#(E) such that the vectors A and

p(A) are orthogonal. The rotation p is called the "90°
rotation". 1In this case, sinp-=1.
Proof:

Let B be a vector in E orthogonal to A. Then by the

corollary to Lemma 5.1, there exists a unique rotation an'(E)
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such that o(A)=cB, where ¢#0 is a scalar. Hence, B=-%0(A).
Since A and B are orthogonal, then 0=<A,B>=<A,€§O(A)>

<A,o(A)>. Thus <A,0(A)>=0 and hence coso=0. 1f o is a

al=

counterclockwise rotation, we take o=p. If o0 is a clockwise

rotation then ad is a counterclockwise rotation and o

1(€§A)=B. Moreover, 0=<A,B>:<A,ad(€§A)> =€E<A,04(A)>. Thus

<A,0l(a)>=0 and hence coso’=0. 1In this case, we take p=ad.

In either case, sinp-=1.

Corollary:

There exists a unique clockwise rotation 7 such that A is
orthogonal to t(A) for all vectors AcE. We call t the "270°
rotation”, and sint=-1.

Proof:
Take t=pd, where p is the unique "90° rotation” of

Theorem 5.10.

In Theorem 5.6, we have shown if pEO*(E) and B={e1,e2} is

an orthonormal basis of E, then the matrix of p relative to B

cosp ~-C

is given by [p],= c  cosp

], where ¢ is a scalar and
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| ¢] =y1-cos?p. Thus if the basis B={e;,e,} is positively

oriented, then c=sinp; if B={e1,e2} is negatively oriented,

c=-sinp. Thus we have proved the following theorem.

Theorem 5.11:
Let p be a rotation of E, and let B={e1,e2} be an
orthonormal basis of E. Then the matrix of p relative to B

has one of the following forms:

cosp -si

1. [P]a:.sinz csolsr:’p- if and only if Bis positively oriented.
e .

2. [p],=-_:::p Z;‘:: if and only if Bis negatively oriented.

Now we are going to establish the formulas that
correspond to the usual sum and difference of angles formulas
in classical trigonometry. For the angles a and B, these

formulas are:

1. cos(a+Pp) =cosacosP -sinasinp.
2. sin(a+p) =sinacosp +cosasinf.
3. cos(a-Pp) =cosacosp +sinasinp.
4, sin(a-p) =sinacospP -cosasinp.

Note that if an angle a represents the rotation p and an angle
B represents the rotation o, then the angle a+B represents the

rotation po and the angle a-B represents the rotation pa'l.
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Theorem 5.12:

If p and 0€0'(E), then

1. cospo=cospcoso-sinpsino.
2. sinpo=sinpcoso+cospsine.
Proof:

Let B={e1,ezj be a positively oriented basis of E. From

cosp -sinp

Theorem 5.11, it follows that [p]f[sinp cosp] and [o],

cosc -sino
sino coso

]. Thus the matrix of the rotation po relative to

the basis B is given by:

cosp —sinp][coso -sino]

[po] 5= [P]s[°]3=[31np cosp J|sino coso

_|cospcoso - sinpsino -cospsinoc-sinp coso]
cospsino+sinpcoso cospcosc-sinpsine

cos(po) -sin(po)

Since [pa]f[sin(pa) cos(po) |’ this proves the two formulas.

Corollary:

The following identities hold for any rotation p,ac—‘O'(E).

1. cospol=cospcoso +sinpsino.
2. cosp?=cos?®p -s8in?p.
3. cos?p = % (1+cosp?) .
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4. sinpo~l=ginp cosc -cospsinec.

5. sinp?=2sinpcosp.

6. sin?p -% (1-cosp?).

The proof of the corollary is straightforward.

Here, we stop and leave to the reader to define the other four
trigonometric functions, tangent, cosecant, secant, and
cotangent, and to develop the remainder of trigonometry. Our
objective in this section was not only to demonstrate how the
group structure of the rotation group CV(E) simplifies the
derivation of various trigonometric formulas but it makes the

study of trigonometry more attractive and general.

Before we close this section, we need to make a final
comment concerning the relationship between orientation of an
n-dimensional real Euclidean space E and the rotations and

reflections of E.

In the 2-dimensional Euclidean plane IF, we are
accustomed to the fact that rotations of the plane "preserve
orientation" and reflections of the plane about a line
"reverse orientation". That is, 1f a=-ABC is a directed
triangle in IF and p is a rotation of JK, then its image under
p is the directed triangle a4 '=-p(A)p(B)p(C) which agrees with

A in orientation (see the Figure 5.2 below).
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A_X// B—>
0

Figure 5.2

On the other hand, if o is a reflection of ]K about line L,
then the image of the triangle a4 under ¢ is the directed
triangle At=*0(A)0(B)0(C), which disagrees with 4 in

orientation (see Figure 5.3 below).

\

o) o(C)/
G/ /&

/ A
a(B) /
/ 3

Figure 5.3
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In general, it turns out any rotation of an n-dimensional
Euclidean space E preserves orientation and any reflection of
E reverses orientation. For this reason, rotations of E are
sometimes called orientation-preserving (direct or proper)
isometries, and reflections of E are called orientation-

reversing (opposite or improper) isometries.

Theorem 5.13:

Let E be an n-dimensional real Euclidean space. Let
B={e1,ez,...,en} be a basis for E. If p is a rotation of E,
then the bases B and B'={p(e1),p(e}),...,p(e,)} have the same
orientation. On the other hand, if ¢ is a reflection of E,
then B and B'={o(e1),a(e}),...,o(en)} have opposite
orientation. That is, rotations of E preserve orientation
while reflections reverse orientation.

Proof:
Let p be a rotation of E, and let P=[p]3 be the matrix of

p relative to the basis B. Then p(ej)-EHﬂjei for j=1,2,...,n.

Thus, B'=[p(e1)p(e2). . .p(en)]=[e1e2. .., ]JP. But p is a rotation
of E; thus, det(P)=1>0, and hence B and B' have the same
orientation. On the other hand, if o is a reflection of E,
then det(P')=-1<0, where p'=[a]5. Thus, B and B' have

opposite orientation.
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5.2 Isomer Enumeration and Pélya's Theorem

In this section, we are going to see how the finite
symmetry groups of bounded sets in IK and ]ﬁ are employed via
PSlya's Theorem of Enumeration to the study of the chemical
enumeration problem. 1In particular, we will be interested in
the study of the enumeration of isomers in organic chemistry.
Chemical isomers are compounds having the same chemical (or
molecular) formula, but different in their physical and
chemical properties. These isomers remain stable for periods
of time that are long in comparison with those during which
measurements of their properties are made. The existence of
isomers may be explained by assuming that the atoms in a
molecule are arranged in a definite manner, i.e., two
different isomers with the same chemical formula would have
different arrangement of their atoms. To distinguish
different isomers of the same chemical formula, chemists use
what is called structural formulae or bond-diagram to
represent the arrangement of the atoms in the molecules of
these isomers. For example, dibromobenzene, C¢HBr,, has three

isomers and their structural formulae are given below.

r " r
H—C""Nc—8r H—c” "xc—p H—(|:|/ é\f—ﬂ
H—CIII\%CI—H H—C\C;(I.",—Br H—C\éfc—H

H 1!{ gr

ortho-dibromobenzene meta-dibromobenzene para-dibromobenzene
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Another example, propyl alcohol alcohol C,H,0H has two

isomers, and their structural formulae are given below.

x5 i 8
|
H-C—C—C—0—H H—Cli—ﬁ?—(‘:"H
. kb
H

n-propyl alcohol z-propyl alcohol

Traditionally, isomers have been classified as either
structural isomers or stereoisomers. Structural (or
constitutional) isomers differ in their structures; that is,
in the manner the atoms are bonded in the molecule.
Stereoisomers have identical structure but differ in
configuration or conformation; that is, they differ only in
the way the atoms are oriented in space but are like one
another with respect to which atoms are joined to which other
atoms. In other words, stereoisomers differ in the spatial

architecture of the molecule.

There are a number of methods available for isomer

enumerations [4], [7], and [29]. In this paper the
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enumeration methods of Burnside and Pélya-Redfield will be

presented.

In this section, we are going to find the number of
(theoretically) possible derivatives or isomers of chemical
compounds. The first serious attempts at isomer enumeration
by chemists were made over 100 years ago. Most of the early
work on isomer enumeration was done on what are known as
homologous series. These are series of chemical compounds
which can be represented by one general formula such as
alkanes (formally known as paraffins) whose molecular formula
is Cﬂ%nn and aliphatic alcohols CﬁHnHOH' The best known early
organic chemists to undertake such a study, were Berzelius,
Couper, Vafit Hoff, Korner, Butlerov, Kekulfi, Blair, and Henze.
Among the first mathematicians to study this problem was
Arthur Cayley who studied the problem over a 20-years period
beginning in 1874. In 1937, [23] ([23] 1is an English
translation of the 1937 paper), the Hungarian mathematician
George Pélya presented to the combinatorial world a powerful
theorem that can be applied to solve a wide range of counting
or enumeration problems. In particular, Pélya's results had
a profound influence on the enumeration of the chemical
isomers. Ten years before Pdlya published his paper many of
the important aspects of P6lya's results were anticipated by
J. H. Redfield [25]. Unfortunately, Redfield's paper went

unnoticed until the 1960°'s.
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We now turn to the problem of chemical enumeration. The
general problem of chemical enumeration can be stated as
follows: given the number of atoms of each kind that occur in
a molecule, determine the corresponding number of possible
molecules, either as structural isomers or stereoisomers. In
this general form the problem does not seem to admit any
useful practical solutions [4]. For this reason, we are
going to restrict ourself to compounds which have a common
basic structure called the frame of the molecule. Thus given
a frame of a molecule, and a set A of atoms (or radicals),
attaching to each atom which, in the frame, has less than its
proper valency, enough atoms form A to bring its valency up to
the correct value. The problem is to determine how many

isomers or substituted compounds there are.

Let us illustrate the problem with an example.

Example 1:

Let us consider the class of chemical compounds obtained
from the benzene ring by attaching atoms X and Y in place of
the six hydrogen atoms to the carbon ring. Here we assume
that X and Y each has a valency of one. The problem we are
interested in solving is how many different molecules can be
obtained in this way? Altogether, there are Py possibilities

to attach either X or ¥ atoms to the carbon ring. But many of

151



the resulting arrangements (or configurations) of atoms in a
molecule represent the same chemical compound.

In order to solve this problem and other similar
problems, we need to formulate the problem mathematically.
First, note that each attachment of atoms X or ¥ to the carbon
ring can be regarded as a function from the vertices of a
regular hexagon (i.e., the carbon ring) to the set A=(X,Y}
consisting of the atoms X and Y. For example, the functions f,
g, and h: (1,2,3,4,5,6}~(X,Y} defined by: f(1)=f(3)=X,
£(2)=£(4)=£(5)=£(6)=Y, g(4)=9(6)=X, g(1)=9(2)=g(3)=g(5)=Y,
h(l)=h(5)=h(6)=X, h(2)=h(3)=h(4)=Y.

X h¢ X
Y‘Y XG‘Y ""r
Y X Y Y x Y

Y Y

Function f Function g Function h

Thus the number of chemical compounds that can be obtained is
equal to the number of different functions from (1,2,3,4,5,6}
to A={X,Y}. There are a total of 2‘ such functions, but many

of them represent the same chemical compound. For example,
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the functions f and ¢ above represent the same chemical
compound since the function ¢ can be obtained from the

function f by a rotation of the carbon ring. In fact, let

==(12345:5

456 12 3] be the permutation representation of the

rotation through 180° about the center of the carbon ring,
then f(a(k))=9(k) for every k=1,2,3,4,5,6. On the other hand,
f and h represent different compounds because for any rotation
or reflection of the hexagon o, we have f(o(k))#»h(k) for some
k=1,2,...,6. Thus the symmetry of the hexagon completely
determines the partition of the 2% functions into disjoint
classes, where the functions in the same class represent the
same compound. In general the symmetry group of a given frame
of a molecule acts as a permutation group on the vertices (or
on the set of atoms) in the frame of the molecule. Thus we
can generalize the example as follows: given a frame of a
molecule whose set of atoms is D, let G be a permutation group
of D. Let A be the set of atoms to be attached to the
vertices of the frame to bring its valency to the correct
value. Let f be a function from D into A, that is; f:D-A. In
this context, the functions f denotes an attachment of atoms
from A to the frame. Thus two functions f,g:D-A represent the
same chemical compound if and only if there exists a
permutation a€G such that f(a(x))=g(x) for every xeD. In this

case, we write f~g. Clearly this define an equivalence
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relation on the set of all function {f:D-A} or equivalently
this determines when two functions represent the same chemical
compound. Thus the problem we are concerned with here is that
of counting the number of equivalence classes of this
relation. Mathematically the problem can be stated as
follows: given a group of permutations G on a finite set D,
and a finite set A4, let 9={f:D-A} be the set of all functions
from D into A. Define a G-equivalence relation ~ on 2 by: f~g
if and only if there exists a permutation xeG such that fox=g,
for every f,geq. Let Q/~ be the set of all G-equivalence
classes. The problem is to develop a formula for counting the
number of G-equivalence classes 2/~. Clearly G-equivalence is

an equivalence relation on the set £.

Lemma 5.14:

Q2is a G-set where the G action is given by x(f)=fbxd for
every x€G and feQ.
Proof:

Let X, %,)€G, and let feR. Let e be the identity of G.
Then e(f)=foe’=fe=f. BAlso (xpx,)(f)=fo (xx,) " =fo (x,0x,"!)

=(fbx{1)0x14=(x1)(xz(f)). Therefore, 2 is a G-set.

Corollary:
The G-orbit of an element fef is the G-equivalence class

of f.
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Thus the number of G-equivalence classes in 2 is equal to the

number of G-orbits of R.

Theorem 5.15 (Burnside's Lemma):
Let G be a finite group, and let S be a finite G-set.

Then the number of G-orbits is equal to

1 .

where Fix(g) denotes the set of elements in S that are left
fixed (or invariant) by g; that is, Fix(g)={sesS[g(s)=s}.
Proof:

The idea of the proof is to count, in two different ways,
the number of ordered pairs (g.s) satisfying g(s)=s, where geG
and s€S, that is; we want to compute the cardinality of the
set {(g.s)/geG, se€s, and g(s)=s} in two different ways and

equate the results. On one hand, we have

|{(g, s) |geG, ses, andg(s) =s} |-£a|Fix(g) | -

On the other hand, since stab(s)={g€G/g(s)=s}, we have

Y |Fix(g) |=|{(g, s) |g€G, s€S, andg(s) =8} |= L |stab(s) |.
gee €S

1f S=Oﬁxyu...u0tis the partition of S into orbits, we have

X |stab(s) |= L |stab(s) |+ X |stab(s)|+..+ X |stab(s)]|.
ses s€0, #€0, 560,
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Claim:

1f x,y€0; for some i=1,2,...,k then [stab(x)[=[stab(y)].

By the counting formula, we have

= IGI = G = IGI =
|stab(x) | = 5 tab o 'llo_il[ [Gistab T~ |15t2 -

Let us choose representatives S1,8pr 0,5 from the k orbits,

01,01,...,01. Thus

'Ie.;lstab(s) |=]o,||stab(s,) | +|0,||stab(s,) | +..+|0,||stab(s,) |
=3§1 0,||stab(s,) |

= G
i-1 [stab(s,) |stab(s,) |

=k|G| .

Thus X |Fix(g)|=k|G| and h k=-L ¥ |Fix(g)|.
9@6' g) | =k|G| and hence Té[ml (9)]

Now we are going to apply Burnside's Lemma to find the
number of G-equivalence classes of the set of functions 2. We
have shown that Q is a G-set. Thus Burnside's Lemma implies

the number of G-equivalence classes in 2 is given by

1
-|_G-[.§alFix(n) | .

To illustrate this result, let us consider the problem in
example (1) of finding the number of chemically different
molecules obtained from the benzene ring by attaching atoms X
and Y in place of the hydrogen atoms. Let us denote the 26=64

attachments of X or Y by .Q={f1,f2,...,f“}, where each fi is a
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function from (1,2,3,4,5,6}-{X,Y}. Two attachments fiand fj
will yield the same molecule if and only if fican be obtained
from {fby means of an element of DH' the dihedral group of
order 12. Thus the number k of different chemical compounds
is equal to the number of G-equivalence classes of the set 4£.
k=-2_ ¥ |Fix(x)|=-L T |Fix(n)]|.
D1zl xen,, 12 xen,,

The elements of DU are listed below.

Table 5.1

Rotations Corresponding permutations
of the vertices

Identity (1)(2)(3)(4)(5)(6)=x,

Clockwise rotation (1 23 45 6)=x2
the center through

Clockwise rotation (1 3 5)(2 4 6)=x3

the center through

Clockwise rotation (1 4)(2 5)(3 6)=x‘
the center through

Clockwise rotation (6 4 2)(5 3 1)=15
the center through

Clockwise rotation ( 6 5432 1)=x,
the center. through
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Reflections Corresponding permutations
—————————— the vertices -

Reflection in the line
through 1 and 4

Reflection in the line
through 2 and 5§

Reflection in the line
through 3 and 6

Reflection in the line
through the midpoints of
(1 2) and (4 5)

6)(4 5)=x;

Reflection in the line
through the midpoints of
(2 3) and (5 6)

3)(5 6)=x”

Reflection in the line
through the midpoints of
(374)Vand (6 1)

5)(1 6)=x,

Figure 5.4

Now we wish to find [Fix(x;)] for all i=1,2,...,12.

Clearly /Fix(x})/=64. Consider a reflection in a line through

opposite vertices, say x;.

If an attachment of atoms X and Y
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is fixed by X7, the atoms at vertex 2 must be the same as the
atom at vertex 6, and the atoms at 3 and 5 must be the same,
but the atoms at the vertices 1 and 4 are arbitrary.

Thus [Fix(x;)[ = (the number of ways the atoms X or Y can be
attached at the vertices 1,2,3 and 4) =2‘=16.

Similarly, /Fix(x,)/=/Fix(x,)/=16.

Now consider a reflection in a line through the midpoints of
two opposite sides, say X An attachment of atoms X and Y
is fixed by x;; if the atoms at the vertices 2 and 3 are the
same, the atoms at the vertices 1 and 4 are the same, and the
atoms at the vertices 5 and 6 are the same. Thus
/Fix(xu)/=23=8. Similarly [Fix(x;)[=|Fix(x;)[=8.

Next, we find the number of attachments fixed by the
rotations. First, note that [Fix(x,)[=/Fix(x))]. An
attachment of atoms X and Y is fixed by xy if the atoms at the
vertices are all X or all Y. Thus [Fix(x))[=[Fix(x;)[=2. By
similar analysis, we find [Fix(x))[=[Fix(x;)]/=4 and
/F'ix(x‘)/=8.

Therefore -% |Fix(x)|=156 . Thus by Burnside's Lemma, the
=€D;,

number of different chemical compounds obtained by attaching

atoms X or Y to the carbon ring is equal to

-1l ; =1 =
k 12'5”17.11:(:) 12(156) 13,
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The direct application of Burnside's Lemma becomes
impractical for complex permutation groups especially when the
set D is large. This is due to the fact that the computation
of the number of elements fixed by the elements of the
permutation group can be both difficult and tedious.
Moreover, it is frequently necessary to have more information
than merely the number of different chemical compounds. in
the example above, one may wish to know the number of chemical
compounds consisting of two X atoms and four Y atoms.
Burnside's Lemma does not give a solution to this problem and
does not provide a method of finding a representative from the
different equivalent classes of chemical compounds. Pélya's
theory of enumeration offers solutions to both of these

problems.

Before developing the powerful enumeration Theorem of
Pélya, we need to introduce the concept of the cycle index of

a permutation group.

Let G be a group of permutations on a finite set D.
There is no loss in generality to assume D={(1,2,...,n}. 1It is
well-known that every permutation x€6G can be expressed
uniquely (except for order) as a product of disjoint cycles.

Let jk(x) denote the number of cycles in x of length k. Then

we have ‘gkdk(u) =n for every =xe€G.
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Example 2:

The permutation x=(3 5)(2 6) on the set D={1,2,3,4,5,6}

has two cycles of length 2 and two cycles of length 1. Thus
j1(1)=2 and jz(ﬂ-')=2.

I1f x€G has n; cycles of length 1, and n, cycles of length

2, etc., then we say that x is of type (np:y, o)

Definition 5.6:

Let G be a permutation group on D. Let XPX}'

.,x% be
indeterminates.

The cycle index of G in X1, Xy,
in the

z(G;XI'XZI « e IXI)I

o0 X is the
polynomial

variables zQ,X},...,Xh denoted by
and given by

Z(Gi X, X; 00 X,) -T%[ T fixg= .

X€Gk~1
When there is no danger of confusion,

we denote the cycle
index of a group G in the indeterminates XQ,X},

. ,X, simply by
Z(G).

Example 3:

Let G=S,be the symmetric group of degree 3.

s={id, (1 2),(1 3),(2 3),(1 2 3),(1 3 2)}.

The identity
permutation id is of type (3,0,0).

The permutations (1 2),
(1 3),

(2 3) are of type (1,1,0). The permutations (1 2 3)

and (1 3 2) are type (0,0,1). Thus z(sa)--z-(x2+3)gx,+2x,).
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Example 4:

Let G=D), be the dihedral group of order 12.
The identity permutation is of type (6,0,0,0,0,0). The
permutations (1 2 3 ¢4 5 6) and (6 5 4 3 2 1) are of type
(0,0,0,0,0,1). The permutations (1 3 5)(2 4 6) and
(6 4 2)(5 3 1) are of type (0,0,2,0,0,0). The permutations
(1 4)(2 5)(3 6), (1 2)(3 6)(45), (2 3)(5 6)(1 4), and
(2 4)(2 5)(1 6) are of type (0,3,0,0,0,0). The permutations
(1)(4)(2 6)(3 5), (2)(5)(1 3)(4 6), (3)(6)(1 5)(2 4) are of
type (2,2,0,0,0,0). Thus the cycle index of D), is

Z(D,;) -% (x5+2x,+2x3+ax2+3X3X3) .

Example 5:
Let G be the group of rotations of a cube. [G[=24, and

the elements of G can be divided into five categories:

1. The identity.

2. Three 180° rotations around lines connecting the centers
of opposite faces.

3. Six 90° rotations around lines connecting the centers of
opposite faces.

4. Six 180° rotations around lines connecting the midpoints
of opposite edges.

5. Eight 120° rotations around lines connecting opposite

vertices.
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(a). Let Vbe the set of the vertices of the cube; then G acts
as a permutation group on V. Since the cube has 8 vertices,
then [V/=8. Now we need to determine the types of all of the
permutations on V induced by the group G.

1. The identity permutation has type (8,0,0,0).

2. A permutation of category (2) has type (0,4,0,0).

3. A permutation of category (3) has type (0,0,0,2).

4, A permutation of category (4) has type (0,4,0,0).

5. A permutation of category (5) has type (2,0,2,0).

Therefore the cycle index in this case is given by
Z,(G; X, X, X;,X,) = 2—14 (x®+oxt+6x2+8x3x3) .

(b). Now let E be the set of the edges of the cube. Then &
acts as a permutation group on E. E has 12 elements. In this
case, the types of the permutations on EF induced by the group
G are given below.

1. The identity permutation is of type (12,0,0,0).

2. A permutation of category (2) has type (0,6,0,0).

3. A permutation of category (3) has type (0.,0,0,3).

4. A permutation of category (4) has type (2,5,0,0).

5. A permutation of category (5) has type (0,0,4,0).

Therefore the cycle index in this case is given by
Zg(Gi Xy, X, X5, X,) = 2—1 (x}*+3x3+6x2+6x2X5+8 %) .

(c). Let F be the set of all faces of the cube. G acts as a

permutation group on F. Since the cube has six faces, [F[=6.
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The five categories of rotations now produce permutations of
the following types: (6,0,0,0), (2,2,0,0), (2,0,0,1),

(0,3,0,0), and (0,0,2,0) respectively, and therefore

Zp(Gi X, X,, X, , X,) = —217 (XS +3X2X2+6 X2 X, +6 X3 +8X3)

The following theorem gives the cycle index of groups

which appear as symmetry groups of sets in lzor IP.

Theorem 5.16:

SRPTPT IS S SR—
Jarage-sndymn (1719, 1) (2727,1) .. (n72F 1)

Z(A,) =Z(S,: X, Xy s X)) +2(S5 Ky, -Xy Xy - X, 0 )

- Jatd et~
2. -2 5 1"'( jl) 3 Xf‘...xg'.
2(17+7,1) (2%7,1) .. (0721 ,1)

n

3. Z(C)--—Eq(d)xd » where ¢ is Euler's ¢-function and C,

is the cyclic group of degree n.

(n-1)
Llz(c)+2 XIX3 * ifnisodd

2
4. Z(Dy) = (n-2)

%z(q,ﬂ%(x,’mfx, Ty ifn is even.
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5. Let G and H be permutation groups on two disjoint sets D,
and D,. The direct product of G and H is the permutation
group on the set Dﬁﬂ% denoted by GxH, where the action

of (g,h)eGxH on DuD, is given by

g(k) if keD,

(glh) (k) ={.h (k) if keDz .

Then the cycle index of GxH is given by
Z(GxH)=Z(G)Z(H).
The proof of this theorem is not difficult, but it is lengthy

and it can be found in [17].

To formulate and prove Pélya's Fundamental Theorem in an
abstract and concise manner, it is convenient to regard the
objects to be counted as the set of all functions on a finite
set D into a finite set A. Let Q2={f:D-A} be the set of all
functions defined on D with values in A. Let G be a group of
permutations on D. Every element x€6G defines a mapping xt:9~9
as follows x'(f)=fbxd. It is obvious that for a fixed xeG, x'
is a one-to-one mapping of 2 onto itself, and thus xt.is a
permutation on 2. Let G'={x'/x€G}; then we have the following

Lemma whose proof is straightforward.

Lemma 5.17:

The set G' is a permutation group on 2; moreover /G’/=/G/.
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The permutation group ¢' partitions 2 into eguivalence
classes under the relation ~ defined on 2 by f~g if and only
if x’(f)=g for some x'eG'. These G‘-equivalence classes are
called patterns. Note that the G'—equivalence classes of @2

are simply the G-equivalence classes introduced earlier.

Example 6:
Let G be the Klein 4-group considered as a permutation
group on D={1,2,3,4}. Then G={x,x, x;,x,} where
x=1d=(1)(2)(3)(4),
x,=(1 2)(3 4),
x=(1 3)(2 4),
x‘=(l 4)(2 3).
Let A={X,Y} and @={f;:D-A[i=1,2,...,16}. Q=(f.f,, ..., £},
where f,={(1,X),(2,X),(3.X),(4,X)},
£,2{(1,X),(2,X),(3.X),(4,Y)},
£={(1,%X),(2,X),(3,Y),(4,X)},
£2((1,X),(2,X),(3,Y),(4,Y)},
£.2((1,X),(2,Y),(3,X),(4,X)},
f={(1,X),(2,Y),(3,X),(4,Y)},
£,20(1,%),(2,Y),(3,Y),(4,%)},
£,={(1,X),(2,Y),(3,Y),(4,Y)},
£7{(1,Y),(2,X),(3,X),(4,%)},
£,,=0(1,Y),(2,X),(3,X),(4,Y)},
£,70(1,Y),(2,%),(3,7),(4,X)},

£,5((1,Y),(2,%),(3,Y),(4,Y)},
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£550(1,%),(2,7),(3,%), (4,X)},
£,7((1,Y),(2,Y),(3,7).(4,X)},
£57((1,%),(2,Y),(3,7),(4,¥)},
£55((1,%),(2,%),(3,%), (4,¥)}.

4 4 4
Ix" rx‘ }' Where

Then G'={xlt,xz
11‘=id
x,'=(£; £1)(£5 £9) (£ £1) (£ £1) (£ £9) (£ £19),
xy'=(£; £5)(£; £9) (£ £3) (£ £1g) (£ £1) (£, £1),

% =(£; £4) (£y £6) (£, £13) (£ £1) (£y £1,) (£ £1p).

Let us find the G-orbits of 2.
0={f,},

0/ (£, £, £5, £},
Oy (£, £15),

O {5, £y}
O5={ £y, £15},

O {£g: £190 £150 £14)
O ()5}

From this example, it follows that the number of G'-

equivalence classes of 2 is equal to the number of G‘-orbits

of 2. Now we are going to apply Burnside's Lemma to the group
¢'. Let x'ec’. We need to compute /Fix(x‘)/. Note that an
element fe@ is left invariant by x' if and only if the
corresponding permutation x of D is such that f(x(k))=£f(k) for
all k. Thus feQ is left invariant by 2’ if and only if all

the elements of D in each cycle of x have the same function

value. For instance, suppose that =x=x,=(1 2)(3 4). I1f
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£(1)=£(2) and £(3)=f(4) then x'(f)=f. Hence [Fix(x')|=2°(",
where cyc(x) is the number of cycles in the unique cycle
decomposition of the permutation =x.
Thus /Fix(x;)/=24=16,

[Fix(x,)')|=2'=4,

[Fix(xy)|=2’=4,

/Fix(x,')/=21=4.

By Burnside's Lemma, the number of G’-—orbits of 2 is equal to

1Y |Fix(x*) |-% (16 +4+4+4) -%‘17 :

|G*| x*eo

We are now ready to present another formula for counting
the number of G’-equivalence classes (or G'-orbits) of 2 which

leads to a special case of Pélya's Theorem of enumeration.

Theorem 5.18:

Let G be a group of permutations on a finite set D. Let
A={a a,,...,a} and Q={f:D+A} be the set of all functions
defined on D with values on A. Then the number of &'-

equivalence classes of the set 2 is given by

K= 1 Y move(x)
REG

where cyc(x) is the number of cycles in the unique cycle

decomposition of =x.
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Proof:

We apply Burnside's Lemma to G'. Since /G/=/Gv, it
suffices to show that m¢f%= /Fﬁx(x )| for every xeG. Let x&G
and xtbe the corresponding permutation in G. An element feg
belongs to Fix(x') if and only if the value of the function f
is the same for the elements of D in each cycle of the
corresponding permutation x of D. Now x has cyc(x) different
cycles in its cycle decomposition, and we have m choices for
the common function value of eacﬁ cycle. Hence, there are
ml" Qifferent functions left invariant by =x . That is

/Fix(x')/= erefx)

Corollary (Special case of P6lya's Theorem):

The number of G'—equivalence classes is given by

K=Z(G;m,m,..,m) = 1 ¥ m?um?2. m?»
G| zea

vhere Z(Gix,,.. X, Ex xJ® is the cycle index of G.

Proof:
Let xz€G be a permutation of type (jl'jz""'jn)‘ Then

cyc(x)=j1+jz+,.‘.+jﬂ and the corresponding term in the cycle
index of G is x'x j’ xz". If we substitute for x;, by m for
i=1,2,...,n then x'x}*.x2* becomes m%.mI»=m?r*~*Ja=peve®) | Thus
K=Z(G;m,..,m) = é X mevets),

nEG
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Example 1 (Revisited):
Let us apply the corollary to the carbon ring in Example
1. G=D), is the dihedral group of order 12 and A={X,Y}. The

cycle index of D”,
Z(D,,) = 1_12 (xS+2X,+2x3 +ax2+3X2x3) .
Thus the number of different compounds is equal to

x-1—12 (26+22+42:23+4422+32222)

.?%E(s4+4+8+32+48)-13.

Hence the corollary give a straightforward solution for
counting the number of different chemical compounds obtained

by attaching atoms X or Y to the carbon ring.

However, we may be interested in counting not just the
number of different chemical compounds but the number of
different compounds with the same number of atoms. For
example, we might be interested in counting the number of
chemical compounds that has two X-atoms and four Y-atoms. To
answer gquestions of this type, we need to introduce the
concept of the weight of a function. Each element a€A is
assigned a weight #(a) which is a number of a symbol. Sums,
products and rational multiples of weights can be formed, and
these operations satisfy the usual associative, commutative

and distributive laws.
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Definition 5.7:
The weight of a function feQ, denoted by W(f), is defined

by w(f) =Ilw(£f(d)) .
dep

Example 7:

Let D={1,2,3}, A={a],az}, W(a1)=x and W(a;)=y. The weight
of the function f defined by f(1)=f(2)=x and f(3)=y is
W(f)=x6n The weight of the function ¢ defined by g(1)=9(2)

=g(3)=y is W(g)=y .

Lemma 5.19:
If f,g€eQ are G-equivalent then W(f)=W(g).
Proof:
Since f and g are G-equivalent then there exists xeG such

that fox=g. W(g)=INw(g(d))=NIw(f(n(d))). Butllw(f(x(d)))
deD deD deD
and iiW(f(d)) contain the same factors, only in different
orders. Thus Nw(f(x(d)))=NwW(f(d)) . Therefore,
deD deD

w(g) =lLW(f(d)) =wW(F) .
deD

This Lemma justifies the following definition.
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Definition 5.8:

The weight of a pattern P (or G-equivalence class),

denoted by W(P) is defined by W(P)=W(f) where f¢P.

Definition 5.9:

The inventory of a set of functions ScQ is defined as the
sum of the weight of all the functions in §; that 1is,

inventory of S=X W(f).
fes

Example 8:

Let D={1,2}, A={a1,al}, and let W(al)=x, W(a2)=y.

f1={(1,81),(2,31)} W(f1)=w(31)w(az)=xz
f2=((llal)l(2/az)} W(fz)=W(a1)W(a2)=xy
£7((1,a,),(2,a))  W(E)=H(aPW(a,)=xy

£((1,2)),(2,a)} W(E)=H(a)H(ay)=y
Inventory of (.Q)=xz+2xy+y"=(x+y)2.

We are now in a position to state Pélya's Theorem of

Enumeration.

Theorem 5.20 (Pélya's Theorem of Enumeration):
Suppose that G is a group of permutations on a finite set
D. Let Q9={f:D-A}. Then the pattern inventory (or the

inventory) of equivalence classes in 2 is given by
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F(G; Yw(a), X [wa)l?, ., X [W(a) ]‘)
a€A a€eA a€eA

where P(G;XVXQ,...,XQ) is the cycle index of the permutation

group G.

Before we present a proof of Pélya's Theorem, we

illustrate its use by examples.

Example 1 (Revisited):

The cycle index of D;, is given by
Z(D,,) -% (x8+2X +2X2+aX2+3X3X3) .
Now let us assign a weight x to an X-atom and a weight y to
a Y-atom. Then X w(a)=x+y, X [W(a)]?=x3+y2, X [W(a)]3=x3+y?,
acA aEA &€EA

., X [w(a)]®=xS+yS. By Pélya's Theorem, the pattern
acA

inventory is given by taking Z(D”;xl,xz, .o ,x;) and

substituting Y w(a) for X, Y [(w(a)l? for x,, and so on. Thus
acA aEA

the pattern inventory is

1_12 [(x+y)€+2 (x8+y®) +2 (x2+y3) 244 (x+y) 243 (x+y) 2 (x3+y3) 3]

-x‘+x5y+3x‘y2 +3x3y3+3x2y‘+xy5+y6 .
Hence the 13 different compounds are listed below:

One molecule that has only X-atonms,

One molecule that has five X-atoms and one Y-atom,
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Three molecules that have four X-atoms and two Y-atoms,
Three molecules that have three X-atoms and three Y-
atoms,

Three molecules that have two X-atoms and four Y-atoms,
One molecule that has one X-atom and five Y-atoms,

One molecule that has only Y-atoms.

Example 9:

In this example, we are going to consider the class of
compounds called "twice-substituted benzene"” CH, XY, where X
and Y represents atoms that have taken the place of two
hydrogen atoms. The question is how many twice-substituted
benzene compounds are possible. As before, we let

D=({1,2,3,4,5,6}) and A={H,X,Y}. Let W(H)=a, W(X)=b, W(Y)=c.
Z(D,,) = % (XS +2X +2X3 +a X +3 X2 X2)
By Pélya's Theorem, the pattern inventory is given by

le- [(a+b+c)®+2 (aS+bS+ct) +2 (ad+b3+c?)2+4 (a+b+c)?

+3 (atb+c)? (a?+b?+c?)?]

To find the number of twice-substituted benzene compounds, we
count the number of terms in the pattern inventory of the form
albc. There are three such terms and thus there are three
twice-substituted benzene compounds. The structural formulae

for these three compounds are given in the figure below.
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H Y " H H H
H x| Y
ortho compound meta compound para compound

In Example 1, at the beginning of this section, we
assumed in the structural formula for benzene that the carbon
atoms were arranged as to form the vertices of a regular
hexagon. Kekulé (1865) was the first to suggest a hexagon

structure for benzene. From this, he argued for the existence

of only one mono-substituted derivative and three di-
substituted derivatives of benzene. For this conclusions
rigorous proof did not exist at the time. 0f course our
calculations supports Kekulé's conclusions. Shortly after

Kekulé proposed this hexagon formula for benzene, several
chemists criticized his formula and suggested alternative
structures. BAmong the several suggestions for the structure
of benzene, we mention the Thomsen's (1886) octahedral
formula, Figure 5.4 below, and the Landenburg's (1869) prism

formula, Figure 5.5 below.

175



Figure 5.5

In both of these models, it was assumed that the Earbon atoms
are positioned at the vertices. Our objective now is to see
how Pélya's Theorem can be used to rule out these two models
as possible structures of the benzene molecule. This is done
by finding the number of twice-substituted benzene derivatives
possible when these models are assumed. We will show that the
number of possible derivatives of benzene does not agree with

the experimental results.
First, suppose the structure of the benzene molecule is

octahedron. Let D={1,2,3,4,5,6} be the set of vertices of the

octahedron. The cycle index for the octahedron is given by
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Z(GiX,, X;, X, X,) = 2—14 [xf+3X2X2+6 X2X, +6 X3 +8X7] .

Let A={H,X,Y} and assign weights to the elements of A, W(H)=a,
W(X)=b, and W(Y)=c. By Pblya's Theorem, the pattern inventory

is given by

2—]; [(a+b+c)€+3 (a+b+c)2(a2+b3+c?) 246 (a+tb+c)2 (at+bb+ct)

+6 (a2+b?+c?)2+8 (a?+b3+c3?)2] .

To find the number of twice-substituted benzene compounds, we
count the number of terms in the pattern inventory of the form

a{bc. These terms are given by

2_14[(4 i 1)a‘bc+3(2bC) (a*) +6 (2bc) (a*) ]

=2—14[30a‘bc+6a‘bc+12a‘bc] =2a‘bc.

Thus there are two possible twice-substituted benzene

compounds. The two molecules are given in the figure below.
X X
H
\—\’ 'T ‘vn
H K
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Next, we assume that the structure of the benzene molecule is
a triangular right prism. Let D=(1,2,3,4,5,6} be the vertices
of the prism. The cycle index for the triangular prism is

given by
Z(G; X,, X,, X,) -%(x:+zx:+3x:) :

Let A={H,X,Y} and assign the weights W(H)=a, W(X)=b, W(Y)=c.

By Pélya's Theorem, the pattern inventory is given by
% [(a+b'+c)°+2 (a3+b3+c3)23+3 (a%+b%+c?)?] .

To find the number of twice-substituted benzene compounds, we
count the number of terms in the pattern inventory of the form
albc. There are five terms,

1d ¢ lapel =218 a4bc] =5a¢
6[(“]_]_)abc] 6[‘“abc'] satbc.

Thus there are five possible twice-substituted benzene
compounds. These five molecules are given in the figure

below.

' A
7Y X
X
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What have we established? Well, if the carbon atoms were
arranged as in an octahedron, there would be only two possible
isomers of CﬁhXY. If they were arranged as a triangular
prism, there would be five isomers. In reality, chemists were
able to find only three; therefore, those two models must be
wrong. We haven't actually proven that the hexagonal model is
correct, but we have circumstantial evidence in its favor.
(various other methods have backed this up, and modern
chemists are essentially certain that the carbon atoms of
benzene do indeed form a regular hexagon, at least insofar as

chemical bonds maintain any rigid shape.)

Example 10:

Consider the class of organic molecules of the form

where C is a carbon atom, and each X denotes any one of the
components CH, (methyl), C,H; (ethyl), H (hydrogen), or Cl

(chlorine). Each molecule can be modeled as a regular
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tetrahedron with the carbon atom at the center and the

components labeled X at the corners; see the figure below.

Recall that the symmetry group of the tetrahedron is
isomorphic to the alternation group A,. The cycle index of A,

is given by
Z(A; X, X, X,) =1—12 (X} +8X,X,+3X7) .
Therefore, the number of different molecules is
P(A,;4,4,4) -1—12 (44+8:4-4+3+42) =36 .

Suppose we wish to find the number of molecules containing two
hydrogen atoms and two chlorine atoms, or the number of
molecules containing three hydrogen atoms. Assign weights of
the elements of the set A={CHJ,C2H5,H,C1} as follows; W(C'I!J)=a,
W(C;%)=b, W(H)=c, W(Cl)=d. By Pélya's Theorem, the pattern

inventory is given by evaluating
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z(A,; TW(a), T [W(a)1?, T [W(a)]°)
a€A 8€A a€A

= le- [(a+b+c+d)4+8 (a+b+c+d) (a3+b3+c3+d?)
+3 (a2+b%+c2+d?) ]

= altblectrdi+a'bra’cra’dran’ +hlc+b’dracd b +dd+ad’ +bdlted’

+albl +alcd +aldd +b!d +bid +dd? +albe+al edtalbdtab’ ctabld+b cd

+abc+ac’d+bcfd+abd! +acd+bed! +2abed.
Thus there is only one molecule that contain two hydrogen
atoms and two chlorine atoms. To find the number of molecules
that contain three hydrogen atoms, we count the number of
terms in the pattern inventory above of the form xcj, where
xef{a,b,¢c}. There are three terms, namely acJ, ch, and dc{
Thus there are three molecules containing three hydrogen

atoms.

Example 11:
As a final illustration of Pélya's Theorem, we calculate
the number of molecules that can be obtained by replacing one

hydrogen atom in toluene by a chlorine atom.

H 4
H
H R
H
H H
(Toluene)
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Let D={1,2,3,4,5,6,7,8} and A={(H,Cl}.

Let G be the symmetry group of the toluene molecule. Then G
is the direct product of the symmetric group S] of the
vertices {1,2,3} on the group F generated by the reflection of
the hexagon around the horizontal axis through the vertex 6
and the opposite vertex.

Sy={id, (2 3),(1 3),(1 2),(1 2 3),(1 3 2)}

F={id, (5 7),(4 8)}.
Thus G=SJxF, and the cycle index of G is the product of the
cycle indexes of S and F. That is,

2(G)=2(S,)Z(F)

= -él- (x; +3x,%,+2x,) % (7 +3,%3)

= le- (XD +30 3, +2X X, +X0 X2 +3 X3 %3 +2X, X2 X,) .
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Therefore, by Pdlya's Theorem the number of mono-substituted

toluene is equal to

Z(G;2,2,2) = _142- (2043 26242252+28224323:23422222)
= 1—12 (256+384+128+64+96 +32)
-i =
15 (960) =80.

Thus there are 80 mono-substituted toluene compounds.

We now present a proof of Pélya's Enumeration Theorem.
We begin by proving some preliminary Lemmas. Throughout this
discussion and without loss of generality, we may assume

aA={1,2,...,m}.

Lemma 5.21:
1f LU'DZ""'LG form a partition of D, and § is the set of
all functions of D into A which are constant on each subset

DP for i=1,2,...,p. Then the inventory of the set § is given

by: inventory(S)= ﬂ t [W(J)]'D‘l:
1=1f=1

that is, Tw(a) = (Ewn1™ ...(%).
fes 1=1 J=1

Proof:

A typical term on the right hand side is of the form
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[W(3y) 1 P w5, 112 [ ) 1 ¥l

which is precisely the weight of a function feQ which assumes

the value jl on Dl’ jz on DI' oo jp on Dp, and hence a term on
the right hand side of the inventory (S). Conversely, any

such function has a weight just of the above form.

Lemma 5.22:

Suppose that G'={xlt,xzt, ...} is a group of permutations of

2. For each x]-‘eG', let ﬁ(:;) be the sum of the weights of all

functions feQ left invariant by xj‘. Suppose that C;,C,, ... are
the Gt-equivalence classes and W(Ci) is the common weight of

all f in Cl-. Then

- 1 -t
!EW(C,) IG,I?W(:,) e (XX,

Proof:

The sum EW(xj) adds up for each xj’ the weights of all
3

¢

]‘ 3

exactly the number of times it is left invariant by some x‘.

functions feQ left fixed by =x Thus W(f) is added in here

That is, W(f) is added exactly [stab(f)[-times. By the
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G‘

counting formula |stab(f)|= 5
£

, where Of is the orbit of f£.

Therefore, if .Q=[f1,fz,...}, the right-hand side

——XW(x]) = I__IEW(f,) |scab(f,) |

)
NERE
W(£,) W(f)
g W) g Wiy
I0£,| J Ic(fj)l

IG‘I

W(£;) . ,
Now we add up the terms -I—L[ for all f, in equivalence
c(fy) L

W(£,)

1 . T , i_ . Each f.eC;
classes C; hat is, we need to find lfc’ A ach f;eC;
has the same weight, namely W(f-)=W(C-). Moreover,

W(£f,) V(C

Cc(f.)] = . f ,

[c(E)] /C]/ Thus !,ec, Tt chlﬁ W(C;). Therefore
W(£,) 1 v
2 =YXWN(C,). Hence ——YW(x}) =Xw(C,).

We are ready to present a proof of Pélya's Theorem.
Proof (of Pélya's Enumeration Theorem):

The sum of the left hand side of equation (**) in Lemma

5.22, namely }}W(Ci) is the pattern inventory of the set of all
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functions Q. On the other hand, ﬁ(:‘) is the sum of all

weights of all functions feQ left invariant by x'. Let

D;,Dy,...,D, be the sets containing the elements of the cycle
decomposition of x. Then FeQ is left invariant by x' if and
only if f(a)=f(b) where a and b are in the same D;. Thus
equation (*) in Lemma 5.21 gives the inventory or the sum of
weight of the set of functions left invariant by x'; that is,

equation (*) is of the form

(w(1)17+ [W(2)]i+...+[W(m)]j-k%[lv(k)]j, where j=/D;/. Thus a term

in the above expression occurs in equation (*) as many times
as /Di/ equals j; that is, as many times as x has a cycle of
length j. Hence if x has a cycle decomposition of type
(k;,ky,...) then among the numbers /D,/,/D,/,.. .,/Dp/ the number
1 occurs k; times, the number 2 occurs k, times, etc. Thus,

W(x*) or equation (*) can be rewritten as

[T [(W(k)11%[ X [W(k)131%... Therefore, the right-hand side of
kea kea

(**) becomes P(G; [X [W(k)111™, [¥ [W(k)13]%,..) . This completes
k€A k€A

the proof of P6lya's Theorem.

Corollary:
The number of patterns equals
P(G;m,m,...,m),

where m=/4/.
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Proof:
The proof follows immediately from the theorem by

choosing all the weights of the elements of A to be one.
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CHAPTER 6

Summary and Conclusion

Our objective in this paper was to discuss and illustrate
some basic properties of geometric groups and some of their
applications. These are groups having their origin in some
branch of geometry. Geometric groups are useful in many
applications of group theory in science. From a mathematical
point of view, they provide a better understanding of the
interaction between different branches of mathematics, in

particular between group theory, linear algebra, and geometry.

In Chapter 1, we provided the readers with some basic
concepts from linear algebra and abstract algebra that are
needed in later chapters. We defined some important terms and

stated theorems without proofs.

In Chapter 2, we studied two types of length (or
distance) preserving transformations of a finite-dimensional
Euclidean space namely, orthogonal transformations and

Euclidean transformations.

In Chapter 3, we stated and proved Cartan's Theorem and

applied it to the classification of orthogonal and Euclidean

transformations on 2- and 3-dimensional Euclidean spaces.
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In Chapter 4, we defined the symmetry group of a set in
a Euclidean space and classified the finite symmetry groups of

bounded sets in the 2- and 3-dimensional Euclidean spaces, IK

and Ig.

In Chapter 5, we presented two applications of geometric
groups, namely, the study of the trigonometric functions of a
2-dimensional Euclidean space and isomer enumeration 1in

organic chemistry by using Pélya's Theorem.

In conclusion, we suggest that the results of this paper
could be extended in different ways. One way would be the
classification of orthogonal and Euclidean transformations of
n-dimensional Euclidean spaces for n>3. A second way would be
the study of geometric groups in the context of algebraic
topology. A third way would be to investigate the different

applications of geometric groups in science.
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