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Introduction
 
Bessel equation of order /1(2: 0) is one of the most important differential equations 

in applied mathematics. This equation has the form: 

X2y" + xy' + (X 2 _ /l2)y = 0 

Many good algorithms have been proposed for the evaluation of Bessel functions of 
integer orders. However, the computing Bessel functions of fractional orders presents 
special difficulities. Recently a stable and efficient algorithm for the evaluation of 
bessel functions of fractional orders appears in Numerical Recipes [10]. A brief de­
scription of the analysis for this method is given but this thesis will a more details 
explanation of the mathematical basis for the algorithm. 

In Chapter 1, the basic notation and definitions in the study of Bessel functions, 
are presented. The method of deriving two linearly independent power series solutions 
is described. Chapter 2 provides a details description of one particular application of 
fractional order Bessel functions, namely in the theory of absorption and scattering 
by small particles. Since the algorithm under discussion use technique that involve 
the evaluation of continued fractions, Chapter 3 provides back background material 
on this subject. The final chapter, Chapter 4 presents a detailed description of the 
algorithm. Several of the more technical details appears in Appendices A through E. 
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Chapter 1 

Bessel's equation 

There are certain forms of differential equations that are useful to describe a variety 
of physical phenomena. Bessel's equation of order v 

x 2y" + XV' + (X 
2 

- V 
2 )y = 0 (1.1 ) 

is one such type. This equation occurs in the study of electricity, heat conduction, 
and stress tests [9]. An application involving the light scattering properties and in­
terstellar dust will be particularly addressed later. This work is specifically interested 
in methods of approximating the solution to (1.1) when v is a non-integer, positive 
rational number. 

Before discussing the solution of Bessel's equation, it is necessary to mention some 
basic definitions. Bessel's equation of order v is a special case of a general second 
order linear differential equation with form: 

~y dy
P(X)-d2 + Q(x)-l + R(x)y = 0 (1.2)

X (X 

Definitions: 

1. A point Xo such that P(xo) -# 0 is called an ordZ:nary point of (1.2). 

2. A point Xo such that P(xo) = 0 is called the sZ:ngular poZ:nt of (1.2). 

3. A singular point Xo is called a regular singular point of (1.2) if 

· ( )Q(x) . fi .11m X - Xo P( ) IS mte. 
x~xo X 

and 
· ( )2 R( x) . fi .11m X - Xo P( ) IS mte. 

x~xo X 

Now consider the series solution of Bessel's equation of order v 

x 2 y" + xy' + (:r 2 
- v 2 )y = 0, X > 0 (1.3) 
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2	 2where P(x) = x , Q(x) = x,R(x) = x - y2.
 
Since
 

1, ( 0) Q( x) l' xl' fi '
 
1m x - P() = 1m x 2 = IS mtex_O x x-O X 

and 
lim(x _0)2 R (X) = limx2(x 

2 
- y2) = _y2 is finite 

x-O P(x) x-O x2 

X = 0 is a regular singular point. Hence the method of Frobenius (see [9]) is an 
appropriate method for determining a series solution which we describe in section 
1.1. 

1.1	 Bessel function of the first kind of 
order 1/ 

Suppose 
co 

y = Lanxn+r 

n=O 
is a series solution of (1.3), then 

co 

y' =	 L(n + r )anxn+r
-

1 and 
n=O 
co 

y" =	 L(n + r)(n + r - 1)an x
n+r 

-
2 

n=O 

Substituting in (1.3), yields 

x 2y" + xy' + (x 2 _ y2)y 
co 

nL(n + r)(n + r - l)anx +r +
 
n=O
 
co	 00 

n+rL(n + r)anxn+r + (:r 2 
- y2) L anx
 

n=O n=O
 
co	 co 

L[(n + r)(n + r - 1) + (n + r) - y2]anx n+1
' + L anx n+r +2 

n=O n=O 
(r 2 - y2)aoxr + ((1 + r)2 - y2)al X 1+ r 

co 
n+r+L((n + r)(n + r - 1) + (n + r) - y2)anx 

n=2 

+L
co 

ak_2 Xk+r with 1..: = n + 2
 
k=2
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(r2 - v2)aoxT + [(1 + r)2 - V2]alXl+T 

T+ L
00 

{[(n + r)2 - v2]an + an-2} Xn+ (1.4) 
n=2 

o 
Requiring y to be a solution of (1.3) leads to 

(r 2 
- v2 )ao = 0 (1.5) 

[(1 + r)2 - v2 ]al = 0 (1.6) 

and [(n + r)2 - v 2]an + an-2 = 0 ,for n 2: 2 (1.7) 

(1.5) is called the indicial equation. Suppose ao =J. 0, then r 2 
- v 2 = O. The roots 

of the indicial equation are v and -v. Since equation(L5), (1.6), one can not have a 
2solution for both r2 = v2 and (1 + r)2 = 1/ , hence set al = O. Then (1.7) gives 

-an -2	 -an-2 
an = =	 .

(n+r)2- v2 (n+r-v)(n+r+v) 

Thus, it follows 
al = a3 = a5 = ... = a2n+l = ... = 0 

and let n = 2m, then 

-a2m-2
a2m =	 , m> 1 

(2m + r - v) (2m + r + v) ­

Consider the case r = v. The recurrence relation for the coefficients for the series 
solution is 

-a2m-2 -am -2 
a2m = ~-----:-:--:----------,--

(2m + v - v)(2rn + v + v) 22m(m+v) 

hence 

-aD 
a2 

22 . 1 . (1 + v) 
-a2 _ (-1)2 ao 

a4 
22 . 2 . (2 + v) - 24 . 2 . 1 . (1 + v) (2 + v) 

-a4 _	 (-1)3 ao 
a6 

23 . 3 . (3 + v) - 26 . 3 . 2 . 1 . (1 + v) (2 + v) (3 + v) 

(-l)m ao 
22ma2m 

. m!(m + v)(m - 1 + v)··· (2 + v)(l + v)' 

Therefore, corresponding to the case when r = v, one solution is 

n vYl(X) =	 L
00 

anx +

n=O
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II + 2+11 + 4+11 + + 2m+1I +aox a2x a4x . . . a2mX ... 
00 

a2m X2m+1I aox ll + L 
m=l 

oo 
II IIL (-1)m ao (X)2maox + - . X 

m=lm!(m+v)(m+v-1) ... (2+v)(1+v) 2 

aox ll [l + "
00 (

-
1)m 

(:. )2m] (1.8)
~m!(m+v)(m+v-1) ... (l+v) 2 

Note YI (x) is a power series, whose convergence is seen by applying the ratio test: 

2m+1IX
lim I a2m I 

m--+oo a2(m_1)x2m- 2+11 
2m 2m 1Ilim I (-1)m ao /2 m!(m + v)(m -1 + IJ)'" (1 + v) /.1 x +

m--+oo (_1)m-1ao/22m- 2(m - 1)!(m - 1 + v)··· (1 + v) 

lim I 22 (1 \ I . I x 2 Im--+oo m m + v 

lim 1 x2
 
m--+oo 22m(m + v)
 
o , for x > O. 

Thus the series converges for all x. Thus, Yl(X) is a solution of Bessel's equation. 
For simplicity, the gamma function will be used to rewrite YI (x). Since f( x +1) = 

xr(x ), 

(m + v)(m + v - 1)· .. (2 + v)(1 + v) 
f(v + 1)

(m+v)(m+v-1)"'(2+v)(l+v) ( .
fv+1 

r(m+v+1) 
f(v+1) 

Let ao = ~ .. ~} .". 

Then 
00 

YI(X) = La2mX2m+1I 
m=O 

~ (_1)m ao (:')2m;r ll 

LJ m!(m + v) .. · (2 + v)(1 + v) 2 
m=O 

~ (_1)m ao (:: )2m llx
LJ m!f(m + IJ + 1)/f(v + 1) 2 
m=O 

~ (_1)m (X)2m+1I 
LJ m!f( m + v + 1) 2 
m=O 
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which is known as the Bessel function of the first kind of order 1/. It is denoted by 
JlI(x). 

Corresponding to the other root -1/ of the indicial equation, if 1/ is not an integer, 
the second independent solution can be found by replacing 1/ by -1/ in (1.8). 

-11 = (_1)m (~)2m] 
Y2(X) = aox [1 + L m!(m _ I/)(m _ 1/ - 1) ... (2 - I/)(l 1/) 2 

m=l 

which is denoted by J_ lI (x), with ao = ~ .. ,.l , 

= (_l)m (~)2m-1l 
J_ lI (x) = L m!f(m - 1/ + 1) 2 

m=O 

Thus, if JlI(x) and J_ lI (x) are linearly independent, the general solution of Bessel's 
equation is 

y = AJlI(x) +BJ_ lI (x) (1.9) 

where A and B are arbitrary constants. 
However, there are some limitations for using (1.8) as the general solution of 

Bessel's equation. If 1/ is zero, JlI(x) and J- lI (x) are not distinct. Furthermore, if 1/ is 
a positive integer, since r(~n) is zero if n is zero or a positive integer, then the first m 

items of J -11 (x) start with zero. In this ca.se a change of variables (n = m - r) may 
be used to show: 

L= (_1)m(~)2m-1l 
J_ lI (X) 

m=Of (~1)m(~)2m-1l 

m=lIf (_1)n+1I(~)2n+1I 

n=O 

~ (_~)n+1I(~)2n+1I 

n=O 

(-ltJAx) 

This means JlI(x) and J_ lI (x) are not linearly independent solutions if 1/ is an integer. 
Depending on the roots of the indicial equation, there are several ways to find 

the second solution( see [7, p240] ). We will give an example to find two linearly 
independent solutions for the Bessel's equation of order ~ 

x 2 y" + xy' + (x 2 
- ~)y = 0, x > 0 (1.10) 
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First, let 
00 

n r
Y =	 L anx + 

n=O 

From equation(1.4) with r = ~, 

2 2 
x y" + xy' + (x - ~)y 

2	 9] r [( )2 9] l+r[r - 4" aox + 1 +r - 4" alx 

+ ~ {[(n + r)' - (~)2Ia. + a.-2 } x'+" = 0 (1.11) 

The recurrence formula is 
-an -2 

an = (n + r)2 - (~)2 

Corresponding to r = ~, 

an = -an-2 

anda,=a3="'~ (n+3)(n) ' n2:2 
Let	 n = 2m - a2n+1 = ... = o. 

-a2m-2 
a2m	 , m = 1,2,3""

(2m + 3)(2m) 
-a2m-2 

22 (m + ~)(m) 

Hence 

-aD
a2 ------,,----·1 

22 (1 + ~) 

- a2 _ (-1) 2ao 
a4 

22 (2 + ~) .2 - 24 (2 + ~)(1 + ~) .2 . 1 

-a4 _ (-1)3 ao 
a6 

22 (3 + ~) .3 - 24 (:3 + ~)( 2 + ~)( 1 + ~) .3 . 2 . 1 

( -l)m ao 
a2m 

22m (m + ~)( m - 1 + ~) ... (2 + ~) (1 + ~) .m! 

Therefore, 

00 

YI(X) =	 Lanxn+~
 
n=O
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;l. 2+;l. 2m+;l.aOx 2 + a2 x + ... + a2m X + ...2 2 

00 

3 '"""" 3aOx 2 + L..J a2m X2m+2 

m=l 

3 00 ( -1)maO ( :. )2m . X ~ 
aOx 

2 
+ L (m + ~)(m - 1 + ~) ... (2 + ~)(1 + ~) . m! 2 

m=l 2 

23 00 ( -1)m ( :. )2m] 
aox [1 + L (m + ~)(m - 1 + ~) ... (2 + ~)(1 + ~). m! 2 

m=l 2 

Let ao =	 1, 

;l. _ 00 (_1)m (:')2m]
2 

Yl(X)=X [.l+ ~(m+~)"'(2+~)(1+~)m! 2 

According to (1.11), one has 

[(r2)2 - (~)2]ao a 
2 3 2	 3 

((1+r2) -(2) )al a (r2 = -2) 

and 
-an -2	 -an -2 

an =	 = 
(n+r2+~)(n+r2-~) n·(n-3) 

so ao can be an arbitrary constant and al = O. Let n = 2m, the recurrence formula is 

-a2m-2 -a2m-2 
a2m = 2m(2m - 3) - 22m(m - ~) 

and al =	 a3 = ... = a2n+l = ... = O. Similar to Yl (x), it is easy to find 

00 

Y2(X) - Lanxn-~
 
n=O
 

_;l. +	 2-;l. + + 2m-;l. +aox 2	 a2 x 2 a2m X •••• • • 2 

3 00	 ( -1 )m ( :. )2m ] 
aox-2[l	 + L m!(rn - ~)(m - 1 - ~) ... (2 - ~)(1 -~) 2 

m=l 2 

1.2	 Bessel function of the second kind of 
order v 

As we have previously shown, if v is an integer, (1.9) cannot be a general solution of 
Bessel's equation because Jv(x) and J_v(x) are not linearly independent solutions. 
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For purposes of obtaining a second linearly independent solution Y2 whose inde­
pendence is not restricted to certain values of v, such a solution is defined by 

Y (x) = cos V71" JII ~ x) - J II (X)
II 

SIll V71" 

which is called the Bessel function of the second kind of order v. When v is not an 
integer, YII(x) is a combination of two independent solutions JII and J_ II , and still 
is linearly independent of JII(x). If v is an integer, YII(x) becomes an indeterminate 
form g. However, it can be shown that the limit exists as v ---t 11" 11, is an integer,( [3], 
p274 ) and it is defined by 

Yn(x)=limYII(x) ,11,=0,1,2,···.
II-+n 

Recurrence formulas There are several useful recurrence relations for the Bessel 
functions of the first kind of order v. The derivation can be developed from their 
series definition, such as 

d = (_I)m(,£)2m+1Id
-[xIlJ( )] [""' 2 Xli]
dx II X dx ~ ml f( m + v + 1)
m=O 

~ (-I)m(2m+2v) x2m+211-1 
~ m!f(m + v + 1)22m+1I 
m=O 

~ (_l)m(m + v) (:')2m+II-I. Xli 
~ m!(rn + v)f(m + v) 2m=O 
= ( I'm

""' - ) (:. ?m+II-1 . Xli 
~ m!f(m + (v - 1) + 1) 2m=O
 
JII_1(X)·X Il . (1.12)
 

Similarly, one finds that 

d 
dx[x- II JII (:r)] = -X-IIJv+I(X) (1.13) 

Differentiate on the left-hand sides in (1.12) and (1.13) and divide the results by 
11Xli and ,7:- respectively, to obtain 

J~(x) + ~JII(X) JII_1(x) (1.14) 
x 

J~(x) - ~JII(T) -JII+1(x) (1.15) 
X 

The sum and difference of (1.14) and (1.1.5) yield respectively, 

2J~(x) JII_1(x) - JII+I(X) (1.16) 

2v JII(x) JII_1(x) + JII+1(x) (1.17) 
x 
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Bessel function of fractional order Consider the Bessel's equation of order 1/2 

2 1/ I (2 1) 0x y + xy + x - - Y = 
4 

From (1.7) with /I = ~, and r = ~ gives 

n(n + l)a n + an -2 = 0 

-an -2 
-- , , , ...an n(n + 1) , n = 2 4 6

-a2m-2 
a2m 2m(2m+1) , m= 1,2,3,'" 

a2m-4 
2m(2m + 1)(2m - 2)(2m - 1) 

(-1 )m ao 

(2m + I)! 

Hence, by (1.8) 

ll 1IYl (x) aox + L
00 

a2m x2m+
m=1 

00 2m
X1/2"" (_1)m aox 
~ '')
m=O l_m+l)! 

00 

X- I/2 L (_1)m aox2m+l 

m=O (2m + I)! 
-1/2 .

X ao SIn x 

Let ao = ~ll2r: 1 , ,\ = IF .Thus, the Bessel function of the first kind of order 1/2 is 

11/2(x) = (2 sinx , x> 0V;; 
Similarly, corresponding to another root of the indicial equation r - - ~ , one can 
find 

1_1/2(x) = (2cos xV;; 
By means of the recurrence formula (1.17), it is possible to find In+I/2(x), where n is 
an integer. 
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Spherical Bessel Functions Related to I n +1/2(X), there is a special form of Bessel 
functions called spherical Bessel functions which are defined by 

jn(X) ji; I n +1/2(X) 

Yn(X) = ji; Yn +1/2(X) 

Similar to the Bessel functions of first kind, spherical Bessel functions also have some 
useful recurrence formulas, and spherical functions arise in the study of a particular 
application of Bessel functions which will be treated in the next chapter. 

Bessel functions of the third kind Bessel functions of the third kind are also 
called Hankel functions which are defined by 

H~l)(X ) Jl/(X) + iYl/(x)
 
H~2)(x ) Jl/(x) - iYl/(x)
 

These functions are linear combinations of the Bessel function of first and second 
kinds. The most useful property of the Hankel functions is that they have very a 
simple asymptotic expression if I x I is very large (see [8, pID8]). Hankel functions 
will be used in a later section. 
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Chapter 2 

Applications of Bessel functions 

Bessel functions appear in many physics and engineering problems. One specific 
example for the application of Bessel functions is in the theory of absorption and 
scattering by small particles (see [6] chap.3). When a spherical particle is illuminated 
by a beam of light with specified characteristics, the electromagnetic field surrounding 
the particle will be influenced, and the fielel inside the particle will also be changed. It 
can be shown that a time- harmonic electromagnetic field (E, H) in a linear, isotropic, 
homogeneous medium must satify the vector wave equation 

~2E + k2E = 0 ~2 H+ k2 H= 0 

where P = W
2 cfl is a constant, and ~ . E = 0, ~. H = O. In addition, ~ x E = 

iWflH and h x H = -iwcE, where c is the electric permittivity, fl is the magnetic 
permeability, w is the angular frequency. 

The solution of the vector wave equation can be found by reducing the equation 
to a comparatively simpler problem of finding the solution of the scalar wave equa­
tion. Suppose that, given a scalar function 'ljJ and an arbitrary constant vector C, we 
construct a vector function: 

5=Vx(c'ljJ) 

It is known that the divergence of the curl of any vector vanishes. Thus, 

\7·5= \7. \' x (c'ljJ) = 0 

If we use the vector identity 

A x (B x C) = (;-1· C)B - (A. B)C 

then 
~ x (~ x 5) = ~(~ . 5) - V2 S. 

Since ~ . 5 = 0, we obtain 

~2 ~ 

\75 -~x(Vx§) 

-~ x (~ x (~ x (c'ljJ))) 

-~ x [V(V. (c'ljJ) - ~2(Clb)] 

-~ x ~[V. (c'ljJ)] + ~ X [~2(c'ljJ)] (2.1 ) 
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where 

'\7 . (c1/J)	 1/J'\7. c+ c· '\71/J 

0+ c· '\71/J (since cis a constant vector) 

Since c· '\71/J is a scalar function and the vector identity '\7 x '9 </> = 0, with </> a scalar 
function, the first right-hand term of (2.1) will vanish. That is 

'9 x '9['9. (c1/J)] 

'9 x '9[c. '91/J] = 0 

Thus, (2.1) becomes 
'92§ = '\7 X ['\72(c1/J)]. 

Therefore, one has 

'92§ + k2 §	 '9 X ['\72(C1f)] + k2['9 X (C1f;)] 

'9 X ['\72(C1f) + k2(c1/J)] 

'\7 X [C('\721/J + k21/J)] 

§ is the solution of the vector wave equation if 1/J satisfies the scalar wave equation 

'921/J + k21/J = 0 

Since this problem analyzes the light
 
scattered by a spherical particle it is z
 
natural to work in spherical polar co­

ordinates, r, a, and </>. Using the sepa­

ration of variables technique (i.e. set
 
1/J(r,a,</» = R(r)8(a)<I>(</» ), the wave J:C===== ~ • y
 
equation can be reduced to an ordi­
 e¢
 
nary differential equation in the radial
 
variable. This differential equation is a x 
spherical Bessel's equation. The details
 
of this transformation are as follows:
 

Figure 1 

From reference([4, p104]), a scalar function in spherical polar coordinates satisfies 
the formula 

- 81/J _ 1 81/J _ 1 81/J e­
V1/J(r,a,</» = 8r er + -:;: aa eo + rsina a</> <i> 

13 



where e--;', eo, e4> are the curvilinear unit vectors in (fig-I). And for any vector F(r, 0, ¢) 

V. F(r 0 ¢) = ~ a(r
2
Fr ) + _1_a(FosinO) + _1_aF</> 

" r 2 ar r sin 0 ao r sin 0 a¢ 

Thus, 

V2 1/J =	 V· (V1/J)
 
n (a1/J _ 1 a1/J _ 1 a1/J _)
 
v . -a er	 + - ao eo + -.-0 aA-. e¢ 

r r 1'SIll '+' 

1 a 2 a1/J 1 a . 1 a1/J 1 a 1 a1/J
= --(r -)+---(SIllO--)+---(---) 

r 2 ar ar r sin 0 ao r ao r sin 0 a¢ r sin 0 a¢ 

1 a 2a1/J 1 a . a1/J 1 a21/.' 
= 2"-a (r -a )+ 2' oao(SIllO )+ 2' 20 a A-. 2 r r r r Sill ao r Sill '+' 

Hence, the scalar wave equation in spherical polar coordinates is 

V21/J + k21/J 
1 a 2 a1/J 1 a. 81/J 1 821/J 2 

2"-a (r -8)+ 2' oao(SIl10 80 )+ 2' 208A-.2 +k 1/J=0r r	 r r Sill r Sill '+' 

Let 1/J(r,O,¢) = R(r)8(0)<I>(¢) 
Then 

81/J _ dR(r)8(0)<I>(¢)
- - dr 
ar d8(0))
a1jJ = R(1')~<I>(¢ 
ao d<I>(¢) 
81jJ = R( r )8(O)--;[¢
a¢ 

Substituting in the wave equation yields, 

~~(r2dR(r)8(0)<I>(¢))+ ~ ~(sinOR(r)<I>(¢)d8(0)) 
r 2 ar	 dr r 2 Sill 0 ao dO 

+ 2 ~ '2 IlR(r)8(0)d2~1(?¢) + k2R(r)8(O)<I>(¢) = 0 
r Sill 

Dividing by R(r)8(0)<I>(¢) to give 

~_I_.!!..-(r2dR(r)) + 1 _1_.!!..-(sinO d8 (O)) 
r 2R(r)dr dr r 2 sinO 8(0) dO dO 

1 1	 d2 <I> (¢) k2+	 -- + =0 
r 2 sin2 0<I>(¢) d¢2 
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Multiply both sides by r 2 sin2 B to yield, 

sin
2 

0 d (2dR(r)) sinO d ( . Od8(O)) 1 d2<I>(¢» 
R(r) dr r ~ + 8(0) dO sm ~ + <I>(¢» d¢>2 

+k2r2sin20 == a 

and 

sin 
2 

0 ~(2dR(r)) sinO ~(' Od8(O)) k2r2 . 20 1_d2<I>(¢» 
R(r) dr r dr + 8(0) dO sm dO + sm - <I>(¢» d¢>2 

2
L 1 d il> 2 Thet - ~ d,p2 == m . us, 

cf2<I> 2

d¢>2 + m <I> == a (2.2)
 

Then 

sin
2 

0 ~(2dR(r)) sinO ~(' Od8) k2r2 ' 2ll_ 2 
R(r) dr r dr + 8 dO sm dO + sm u - m 

1 d 2dR lId. de 22 m2 
--(r -) + ---(sm 0-) + k r =-­
R dr dr sin 0 8 dO dB sin2 B 
1 d 2dR 2 2 lId. d8 m 2 

--(r -) +r k == ----(smO-) +-­
Rdr dr sin08dO dO sin 2 0 

For 8(0) : 

2lId d8 m 
-----(sinO-) + -- == c 

sin 08 dO dO sin2 (J 

1 d . de m 2 

-;--0 dO(sm 0-'0) - -'-2-8 + c8 = a (2.3)
sm (sm 0 

Let c==n(n+1), n is an integer. 

1 d d8 m 2 

-.--(sin 0-) + [n(n + 1) - -.-]8 = a 
sm (J dO dO sm2 0 

For R(r) : 

1 d 2dR 2 2
R dr (r d;) + r k = c 

d 2dR 2
dr(r dr)+[r e-n(n+1)]R=O (2.4) 
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Let p = kr and define Z = RjP, then dp = kdr, ~: = t and 

dZ _ ~(R/P) 
- - dp 

dp d(RyIP) dr 

dr dp R 1 _k_ 
~ dR ,;r;. + k . "2. Vh­
k dr 

vpdR + R_l 
= k dr 2 jP 

Thus, 
dR _ k (dZ Z) 
d; - .,fP dp - 2p 

With this equation, one can show 

2 dR p3/2 dZ Z 
r- -(- --)

dr k dp 2p 

dpi-[p3/2(dZ -~)].5!.-(r2dR 
)

dr dr dr dp k dp 2p 

~(p3/2dZ _ ~/12 Z) 
dp dp 2 

= /12 dZ + p3/2
d2 

Z _ ~_l_Z 
dp dp2 4 vp 

Substituting in (2.4), one has 

1/2 dZ 3/2 d2Z 1 2 Z
P - + p - - -.- Z + [p - n(n + 1)] - = a

dp dp2 4yIP yIP 
2

dZ 2d Z [2 ) 1] p- + p - + p - n(n + 1 - - Z = a
dp dp2 4 

d dZ 2 1 2]p-(p-) + [p - (n + -) Z = 0 (2.5)
dp dp 2 

This is a Bessel equation of order (n + t); its two linearly independent solutions are 
the Bessel functions of first and second kind JII(p) and YII(p), where v = n+l/2. The 
solutions of (2.4) are called the spherical Bessel functions. They are 

jn(P) = f[p Jn+1 /2(P) (2.6) 
-p 

Yn(P) = f[pYn+1 /2(P) (2.7) 
-p 
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Thus, it is important to be able to accurately compute Bessel functions of frac­
tional order. The details of one algorithm for the computation of these functions are 
presented in chapter 4. Note that once the solutions of (2.2), (2.3) and (2.4) have been 
approximated one can then approximate the solutions of the vector wave equation. 

Similar to the recurrence relations (1.16),(1.17) for first kind, Bessel functions 
there are the following recurrence relations for spherical Bessel functions. See [8]. 

2v + 1 . ( )
--]v x jv-1(X) + jV+1(X) (2.8) 

x 
(2v + l)j~(x) Vjv-l - (v + 1)jv+1(X) (2.9) 

From these two recurrence relations, one can show that the spherical Bessel func­
tion j v( x) satisfies the differential equation 

ZxZK(x) +2xj:(x) + [X - v(v + l)]jv(x) = 0 (2.10) 

The derivation is stated as follows: 
Adding (2.8) x(v + 1) and (2.9), yields 

. (2v+1)(v+1). ./
(2v + 1)]v-1(X) = ]v(x) + (2v + 1bv(x)

x 

Hence, 
. () v + 1 . () ./ ( ) )v-1 X = --]v x +]v x (2.11) 

x 

Subtracting (2.9) from (2.8 ) x v, yields 

) . () (2v + 1) v . ( ) ) ./ ( ) (2v + 1 ]v+1 X = ]v x - (2v + 1 ]v x 
x 

Hence, 

jV+1(X) = ~jv(x) - j~(x) (2.12) 
x 

From (2.11), differentiating with respect to x on both sides, yields 

./ (\ V + 1 ./ () V + 1 . () ./()]v-1 X) = --]v X - -z-]v x + Jv x 
x X 

."() V + 1 ./ () V + 1 . () ./ () 0)v X + --)v X - -z-)v x - )v-1 X = (2.13) 
X X 

Now, rewrite (2.12) by replacing v by v-I 

. () v - 1. () ./ ())v X = --)v-1 X - )v-1 X 
X 

Using this equation and (2.11) to eliminate j:_1(X) and jv-1 (x) from (2.13), yields 

."( V + 1./ ) V + 1. ) [. () v-I ( v + 1. () ./ ( ))])v x) + --]v(x - -z-)v(x + )v x - -- --)v a: +)v x = 0 
x x x x 
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or 
'''() 2., () [ 1/ + 1 v

2 
- 1] . ( ) 

)11 X + -)11 X + 1 - -2- - 2 )11 X = 0 
x x x
 

which reduces to 
'''() 2., () ( v( v + 1) ) . ( ) 

)11 X + -)11 X + 1 - 2 )11 X = 0 
x x
 

Multiplying by x 2
, we finally get the differential equation (2.10).
 

18
 

--~ 



Chapter 3 

Continued Fractions 

Using the recurrence formula (1.17), t.here is an easy way to evaluate the Bessel 
function of the first kind. However, the error of computation may grow very quickly, 
and the process of computation may become unstable. For example, if one chooses 
to compute J2(2), J3(2), ... J7 (2), with the recurrence formula 

2v 
JII - 1(x) + .111 +1(x) = -.1II(x) 

x 

given the initial values Jo(2) = 0.223890, J1 (2) = 0..576724, one obtains (where error 
is relative to the table results from [1] within 10-6 

) 

error 
2· 1

J2(2) = -2-J1 (2) - Jo(2) = 0.352834 0 

2·2
J3(2) = -2-J2(2) - J1(2) = 0.128944 4 x 10-6 

2·3 
J4(2) = -2-J3(2) - J2(2) = 0.033998 2 x 10-6 

2·4 
J5 (2) = -2-J4(2) - .13(2) = 0.007048 8.4 x 10-6 

2·5
J6(2) = 2J5(2) - J4(2) = 0.001242 39.6 x 10-6 

2·6
J7 (2) = -2-J6(2) - J5(2) = 0.000404 229.06 x 10-6 

In this example, the error of .11I(x) is always multipled by 2//jx in the next step. 
For our value of x, (especially, when x « v), the coefficient 2//jx is very large, and 
the process thus becomes unstable; see [2, p22] . For more discussion on the topic 
of the stability of the recurrence formula, the reader is referred to ( [10], §5.5 ). 
Therefore, we use techniques that involve continued fraction expressions to evaluate 
Bessel functions. Hence this section is devoted to some background information on 
continued fractions. 

A fraction of the form 

a1
b + (3.1 ) a21=0 b+ ~ 

1 b2+ b 
3+ 
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is called a continued fraction. In general ba, bI , b2,'" and aI, a2, a3,'" can be real or 
complex numbers. Continued fractions are an effective representation of computation 
for many functions. There are two basic types of continued fractions. First, consider 
the following example: 

75 1 
5 + 14 14 5" 

1 
5 + 2 + \" 

4 

1 
,5+2+~ 

1+. 

The number of terms is finite. Thus, an expression of the form 

aI 
(3.2)b + a2a3o	 bI + 62-+­

°3+ 
On-l 

bn - 1+%;:­

is called a finite continued fraction, and an, bn are called the nth partial numerator 
and the nth partial denominator, respectively, [12, p14J. As another example of a 
continued fraction consider the quadratic equation: 

x 2 
- 2:r - 1 = 0 

Then 
1 

x=2+­
x 

On the right-hand side of the equation, x can be replaced by 2 + ;; this gives 

1 
x = ') +	 --1­- .)

-
+ -

x 

1 
= 2+.)+ Ii 

- 2+ 2+. 

The number of the terms is infinite. 
It is a convenience to write the continued fraction (3.1) using the notation: 

a a2 a31 _	 (3.3)
bo + b1+ b2+ b3 + ... 

Note in the	 second example, if 

aj a2 _an 
en = bo + b + b + ... b 

i 2 n 
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then 

C4 

Cs ~ 2.41428 

n = 0, 1,2,3, ... 

it is easy to find that fl 
Q) 

Then with initial values 

= 

( 
Po 
Qo 

bo + ~ 
b) 

P- 1 ) = 
Q-l 

= bob] +a).
bl 

(bO 1)
1 0 

Hence in matrix form 
' 

( 
PI 
Ql 

) = ( bob1 + al ) 
b1 

= ( PObl + P- 1 al 
QObl + Q-l al 

) = (Po 
Qo 

P- 1 

Q-l 
) ( b1 

al 
) 

and 

P2 

Q- 2 
= 

-

al 
bo + b + a2 

1 b2 

b2 (bob1 + ad + bOa2 

b1b2 + a2 
b2 P1 + bOa2 

b1 1>2 + a2 

and 

Hence, 

( 

P3 

Q3 

P2 
Q2 

) = 
( 

PI Po) ( b2 

Ql Qo a2 

al 
bo +-­

b1 + b :2~ 
2 b

3 

b3(bob1b2 + l>oa2 + al b2) + (l3(bob1 + aI) 
b3(b1 b2 + a2) + b1 (l3 

b3P2 + a3 Pl 

b3Q2 + a3Ql 

( b2P1 + a2PO ) 

b2Ql + a2Qo 
) 
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Hence, 

P3 ) = ( b3P2+ a3Pl ) = (P2 PI) ( b3 )
( Q3 b3Q2 + a3Ql Q2 Ql a3 

It can be shown that Pn, Qn satisfy the following recurrence relations: 

Pn bnPn- 1 + anPn- 2 

Qn bnQn-1 + anQn-2 n = 1,2,3··· (3.4) 

which may be expressed in matrix notation as: 

Pn ) = ( Pn- 1 Pn - 2 
( Qn Qn-l Qn-2 ) (~: ) 

We now state two important definitions in the area of continued fractions [5]. 

Definition 1 The continued fraction I is said to converge if the sequence of nth 
convergents In tends to a limit f. The limit I is then the value of the continued 
fraction. 

Definition 2 Let two sequences Pn and Qn satisfy the two-term recurrence relations 

Pn ) = (Pn-l Pn-2) ( bn )( Qn Qn-l Qn-2 an 

with the initial values 

( 
1)Po P-1 ) = (bo 

Qo Q-l 1 0 

Then the continued fraction defined by the sequences an, bn has nth convergent, 

Pn

In = Qn 

These definitions may be found in [12, p14J. 
With this forward recurrence scheme (3.4), the continued fraction can be evalu­

ated. However, this method also has some drawbacks. This method may generate 
very small or very large values of Pn and Qn, with the possibility of overflow of 
floating-point representation. Also, if any Qn tends to zero, it will be a problem to 
compute Pn/Qn' 

In order to avoid the overflow problem, a very good algorithm which is called the 
modified Lentz's method is proposed for evaluating continued fractions. This method 
avoids the use Pn and Qn explicitly by instead considering the ratios 

C = Pj Do- Qj- 1 
J , J ­

Pj- 1 Qj 

and calculating Ij by 

Ij = Ij-1 CjDj 
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From the recurrence relation (3.4), it IS easy to show that the ratios satisfy the 
followi ng recurrence relations 

1j a)
D = (bj + ajDj_ ) C· == bj + -C. 

l ,) )-1 

The details of this method can be found in appendix (C). 
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Chapter 4 

Evaluation of Bessel functions of 
fractional order 

Many algorithms have been proposed for the evaluation of Bessel functions. For 
integer orders, as mentioned in the previous section, there are several good methods. 
In this section the algorithm which is 'state of the art' for approximating the fractional 
order Bessel functions will be described. This algorithm and its implementation in 
FORTRAN appears in Numerical Recipes [10, p236-239].A copy of this code appears 
in Appendix E. 

This algorithm is based on the idea of Steed's method [5] which was developed 
for evaluating Coulomb wave functions. Instead of calculating Jv , J~, Yv , Y: by series 
expansion, the method uses two continued fractions CF1, CF2, and one Wronskian 
relation of Bessel functions (their definitions will be given later ), which provides a 
very useful routine for computing Bessel functions Jv , J~, Yv , and }/; simultaneously. 

The first continued fraction, CF1, is defined by 

J~(x ) // JV +1 (x) 
Iv == Jv(x) x Jv ( x) 

// 1 1 

X 2(// + l)/x - 2(// + 2)/x -'" 

which can be derived from the Bessel function recurrence relations of (1.17) and (1.1.5) 

2//
Jv+d x ) = - - Jv-d x )

x 

and 
J~(x) = ~Jv(x) - Jv+1(.r) 

x 
From the second equation, dividing by Jv(x), one finds 

Iv = J~(x) = ~ _ JV+l(x) (4.1 )
- Jv(x) X Jv(x) 

From the first equation, divided by Jv , one has 

Jv-1(x) 2// Jv+1(x) 
Jv(x) X Jv(x) 
Jv(x) 1 

(4.2)
2v Jv+1 (x)Jv - 1 (x) -;- - J..,(x) 
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- -

In the denominator of (4.2), using the relation of (4.2) again with v replaced by v+ 1 
yields 

Jv(x) 1 
= 2v 1

J v - 1(X) --;- - 2(1'+1)_ Jv+2(r) 
r JV+1(r) 

In the same way in (4.1), it can be easily shown that 

J~(x) V Jv+1(x)
--=:--Iv ­ Jv(x) x Jv(x) 
v 1 

X 2(v+1) _ J V +2(X) 

x JV +1(X) 

V 1 

X 2(v+1} _ 1 
x 2(V+ 2 ) _ J v + 3 ir j 

:r J V +2 :x 

V 1 1 1 
= - - (4.3) 

X 2(v+1} _ 2(v+2}_ 2(v+3} _ 
x x x 

The other relations needed in Steed's method are the Wronskian relation 

, y.' 2W == JvYv - vJv = ­ (4.4) 
7rX 

and a complex continued fraction of the two linearly independent solutions J v and Yv 

of the Bessel function of order v, which is defined by 

. J' + iY' 1 . i (1.)2 - v 2 (~)2 - v 2 

P + qz = v . v = __ + z+ _ 2. 2 . (4.5)
Jv+zYv 2x x 2(x+z)+ 2(x+2z)+ 

and denoted by CF2. The derivations of CF2 and Wronskian relation are given in 
Appendix (A) and (B). 

In the algorithm, both continued fractions CF1 and CF2 are evaluated by the 
modified Lentz's method with double precision. The modified Lentz's method is 
described in Appendix (C). 

A special point which is called the turning point Xtp = viv( v + 1)(~ v for largev) 
plays an important role in determining the interval of convergence for the continued 
fractions CF1 and CF2. The explanation of the importance of the quantity Vv(v + 1) 
is as follows. 

From (2.10), the differential equation satisfied by the spherical functions jv(x) and 
Yv( x) is 

U~(x) + ~U~(x) + (1 - v(v ~ 1) )Uv(x) = 0 
x x 

Making a transformation defined by Vv(x) = xUv(x), the differential equation will be 
reduced to the form 

V;'(x) + (1 - v(v;- l))V,,(x) = 0 (4.6 ) 
x 
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When x is sufficiently large, the solutions of (4.6) are similar to V;'(x) + Vv(x) = 0 
whose general solution is \;~(x) = Acosx+Bsinx. Hence, if x 2 

;::: v(v+ 1), or 
x ;::: Xtp = vv(v + 1) ~ v, Bessel's equation has oscillatory solutions. In the nth 
partial denominator of (4.3) bn = 2(v + n)jx, so the series L: I bn I is divergent as 
n --+ 00. A necessary condition for the continued fraction with the form 

1 

b1 + b2+~ 

to be convergent is that the infinite series L: I bn I diverges ( [1.2, p122] ). For CF1 the 
convergence is rapid when x S Xtp' In the denominator of CF1, v is always increased 
by one, so the algorithm uses iteration of the continued fraction to increase 1/ by one 
until x S Xtp. 

Since CF2 does not converge as x --+ 0, the algorithm is divided into two situations: 
one in which x is not too small, and the other case is for small x. The algorithm 
adopts a special method for small x , which will be described in Appendix(D). 

In order to calculate the four functionsJv , J~, Yv, Y; , the routine uses (4.3), (4.4), 
and (4.5) to get four relations among these functions. Three relations come from CF1 
and CF2, and the fourth one is provided by the Wronskian relation. The routine 
first evaluates the four functions at a lower value It of v, then calculates them at the 
original value of v. 

Now, assume that x is not too small and x ;::: Xtp' Arbitrarily set the initial value 
of Jv 

Jv = arbitrary = k[Jv(x)], [Jv(x)] = the true value of Jv(x) 

Then CF1 is determined by Lentz's method, Iv is known. Set 

J~ = IvJv = k[J~(x)], [J~(x)] = the true value of J~(x) 

Then by using the recurrence relations (1.14) (1.15) downwards to a value v = fl S x, 
one will find the ratio Iw The recurrence relations are 

V ,
Jv- 1 = -.Iv + Jv (4.7) 

x 
1/ - 1 

J~_1 = --Jv- 1 - Jv (4.8) 
x 

then 

v - 1 
Jv- 2 = --Jv- 1 + J~_1 

X 

v-2 
J~_2 - --Jv- 2 - Jv- 1 

X 
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down to a small order 11 

J ~ k· [JJl(x)] 
{ ~ ~ k . [J~( x)] k is a real number 

Thus, 
J~ k[J~(x)] [J~(x)]"'" "'" -....,----:-::­f ""'-rv rv 

Jl JJl k[JJl(x)] 
rv~

[JJl(x)] 

CF2 is evaluated at 1/ = 11 by the modified Lentz's method. Since CF2 is defined 
by p + qi, p and q are known. Also fJl and the Wronskian relation lrV = 2 provide1r X' 

another two relations to solve for JJl' J~, YJl , and Y~. In terms of the known quantities 
fJl' p, q, TV, it will be shown that 

JJl = ± {lrVI[q + I(p - fJl)]} 1/2 

J~ = f~JJl 

YJl = IJJl
 

Y~ = YJl(p + ql,)
 

where I is defined by ,= p - f Jl 
q 

The procedure is stated as follows. 
Since 

J' + iY'Jl Jl 
p + qi 

JJl + iYJl 
(J~ + iY~)( JJl - iYJl ) 

j2 + Y2Jl Jl 
JJlJ~ + YJlY~ + i( JJlY~ - J~YJl) 

J2 + yzJl Jl 

Thus, 
J~JJl + Y~YJl 

P = J2 + yz
Jl Jl 

and using the definition of the Wronskian (4.4) 

w 
q = j2 + Y2

Jl Jl 

hence 

J~JJl + Y~YJl J'Jl 
p ­ J2 +Y2f Jl JJlJl Jl 
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J~J~ + Y~YJ1.JJ1. - J~(J~ + Y;) 
JJ1.(J; + Y]) 

YJ1.(Y~JJ1. - J~YJ1.) 

JJ1.(J; + Y]) 
YJ1. W 
JJ1. (J; + Y]) 
YJ1. -.q 
JJ1. 

Hence, 
,= p- fJ1. =YJ1. 

q JJ1. 

and 
YJ1. = ,Jw 

Since 

JJ1.J~ + Y~YJ1. 
p 

]2 + Y2J1. J1. 
JJ1.Y~ - YJ1.J~ 

q = 
j2 +Y2J1. J1. 

multiplying p by YJ1.1 q by JJ1.' and adding, one gets 

p.y +q.J _ (JJ1.J~+Y~YJ1.)YJ1.+(JY'-YJ')JJ1. J1. J1. J1. J1. J1. J1. 
.12 + Y~J1. J1. 

(y 2 + ]2)Y'J1. J1. J1. Y' 
j2 Y2 - J1.'J1.+ J1. 

So 

Y' 
~ 

= pYJ1. + qJJ1. 

JJ1. )YJ1.(p +qy
J1. 

y~ = YJ1.(p +q/,)SInce, = J~' 

Using the definition of fll' we now have the following three relationships, 

J'J1. fJ1. JJ1. (4.9) 

YJ1. ,JJ1. (4.10) 

YJ1.(p +q/,) (4.11)Y'J1. 
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Substitnting these results into the Wronskian relation 

W =	 J/,Y: - Y/,J: 
J/,(Y/,(p +q/,)) - (,J/,)(1/,J/,) 

J/,(,J/,)(p +q/,) - ,f/,J~ 

J~(,p + q -,f/') 
J~(q + ,(p - fit)) 

we find that 
J/, = ± {~V/[q + ,(p - fit)]} 1/2 . (4.12) 

The sign of J/, is chosen to be the same as the sign of Jv in the initial value. 
After having all the relation formulas for J/" Y/" J~, and Y:, one must go back to 

compute the four quantities at the original values of order v. In the FORTRAN code 
this is accomplished by first storing the initial values Jv and J~ in rjl1 and rjp1, 
respectively, i.e, 

rjl1 = Jv k[Jv(x)] 

rjp1 = J' k[J~(x)]v 

Then the original values of Jv and J~ are scaled by taking the ratio of (4.12) to rj1 
which is the value found after using the recurrence relation, i.e, rj1 = J/, = k[J/,(x)]. 
Then, let 

[J/,(x)] 1 
! act = k[J /' (X )] = k 

The original values of Jv(x) and J~(x) are 

1
fact * rjl1 k· k[Jv(x)] = [Jv(x)] 

!act*rjp1 ~ . k[J~ (x )] = [J~ (x )] 

With (4.10) and (4.11) as the initial values, one may find the original values of Yv 

and Y: by using the stable recurrence, 

Y/,+l 2/1 Yv - Y/,-l	 (4.13) 
X 

Y' 
/'	 

!!.- Y/' - Y/,+l (4.14) 
X 

However, when x is close to zero, CF2 is not suitable. There is a good method 
provided by Temme [11] to handle this case. It is a complicated method but it deals 
with the problem well as x -----+ o. It uses the series expansions for evaluating Yv and
Y:+ ll and hence one can get Y: from (4.14). But the series expansions work only for 
I v I:::; 1/2. By using the recurrences (4.7) and (4.8), one finds the value of fv at 
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II = J.1 in this interval. J J-L can be calculated from the Wronskian relation. It is easy 
to see that 

w = JJ-LY~ - J~YJ-L 

J' 
JIL[}'~ - ; YJ-L]

J-L 
JJ-L[Y~ - fJ-LYJ-L] 

Hence, 
W 

JJ-L = v' - fJ-LYJ-LJ-L 

and by the definition of fJ-L = !f-, we know J~ = fJ-LJw Just like the method used 
I' 

before, the original values for the quantities at the order II can be determined by 
scaling. 

The only thing left to explain is Temme's series. They are 

CX) 

YIJ = - LCm9m 
m=O 

2 CX) 

where C = (_x 
2 
/4)mYIJ+1 -; L cmhm m 

m=O m' 

the coefficients 9m and hm are defined in terms of quanti ties Pm' qm, and f m which 
will be shown in [10] (see §6.7), and they are 

2 . 2 111r 
9m fm + -SIll (-2 )qm 

x 
hm -m9m + Pm 

pm-l
Pm 

m - II 

qm-l 
qm 

m + II 

mfm-l + pm-l + qm-l
fm 

m 2 - 11 2 

The initial values for these recurrences are 

1 x 
Po -( - t IJ r(l + II) 

1r 2 
1 x 

qo -( - tr(l - II) 
1r 2 
2 111r sinh mu 2 

fo --.-[cosJ.1f1(1I) + In(-)f2 (1I)] 
1r SIll 111r J.1 x 
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with 

I-'­ = 2 
vln(-) 

x 

f 1 (v) = 
1 1 
2)q1-v) 

_ 1 ] 
Q1+v) 

f 2 (v) = 
1 1 1] 
"2[q1-v)+q1+v) 

The derivation of this representation is the subject of appendix (D). 
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Appendix A: The Confluent Hypergeometric Function 

In this section, we discuss a special function called the confluent hypergeometric func­
tion. By making suitable choices of the parameters in the confluent hypergeometric 
function, many special functions can be expressed in a simple and compact form. In 
particular this function is useful in the derivation of the continued fraction, CF2. 

The confluent hypergeometric function is defined by ( [8] §9.9 ) 

00 (a)m zm
~(a,,;z) = L b)mm! I z 1< 00" =I- 0,-1,-2,,,, 

m=O 

Here z can be a complex variable, a and, are arbitrary real or complex parameters, 
and (a)m is an abbreviation. 

(a)m a(a+l)(a+2)"'(a+m) m = 1,2,3,'" 
f(a + m) 

f(a) 
(a)O = 1 

This function, ~(a,,; z), is a particular solution of the linear differential equation 

zy" + b - z )y' - ay = 0 (A.l) 

for details see [3, p388]. Similar to Bessel's equation, there is a second linearly 
independent solution of (A.l), called the confluent hypergeometric function of the 
second kind, which is defined by 

U(a,,;z) = f(1-,) ~(a,,;z)+
 
f(1+a-,)
 

f(, - 1) z 1-"(~ (1 + a - " 2 - ,; z) , =I- 0, ±1, ±2,· .. 

Like Bessel functions, U( a,,; z) also has some useful recurrence formulas such as 

dz 
d 

U(a,,; z) -aU(1 +a, 1 +,; z) (A.2) 

zU(a,,+I;z) U(a -I,,; z) +b - a)U(a,,; z) (A.3) 

U(a-l,,;z) (z +2a -,)U(a,,; z) + 

ab - a -1)U(a +1,,;z) (A.4) 

Now, we start with the Hankel function and the confluent hypergeometric function 
to discuss the derivation for the expression of CF2. 

H~l)(X) = Jv(x) + iYv(x) where v is not an integer 
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There is relation between H~l)(X) and the confluent hypergeometric (see [8, p274]), 
which is 

( ) -?i '() 1	 "/2H}(x) =	 ;;relX-I/1f(2x)"U(v+2,2v+l;2xe-1fl ) 

-2i " 1 
= yl7rel(X-I/1f\2x)"U(v + 2' 2v + 1; -2xi) 

Let zn(x) = U(v + t + n, 2v + 1; -2xi); then zo(x) = U(v + ~,2v + 1; -2xi) and 
Zl(X) = U(v + t+ 1,2v + 1; -2xi). By the differential formula of U(a,,; z) (A.2), 
one has 

d 2i '( )!!.-H~l)(X)	 _ _[__e l X-I/1f (2x )"U(v + 1/2, 2v + 1; -2xi)]
dx dx yI7r 

?' 
= - ~[ei(X-I/1f)i(2X )"U(v + 1/2, 2v + 1; -2xi) 

+ei(x-I/1f)2v(2x)"-lU(v + 1/2, 2v + 1; -2xi) 

+e i (X-I/1f) (2x)" d~ U(v + 1/2, 2v + 1; -2xi)] 

2i " ,2v d 
- -el(x-I/1f)(2x)"[(z + -)zo(x) + -U(v + 1/2,

yI7r 2x dx 
2v + 1; -2xi)] 

Then, let z =	 -2xi 

d . dz d	 ,
-dU(v + 1/2, 2v + 1; -2Xl) = -d -dU(v + 1/2, 2v + 1; -2xz)

:r	 x Z 

= (-2i) :z U(v + 1/2, 2v + 1; -2xi) 

= 2i(v + 1/2)U(v + 1 + 1/2, 2v + 1 + 1; 

-2xi) 

where, by (A.3) the above equation, d:U(v + ~, 2v + 1; -2xi) becomes 

d 1 
-dU(v+l+-,2v+l;-2xi) 

x 2
 
2i(v + 1) 1
 

.2 (-2xi)U(v + -2 + 1, (2v + 1) + 1; -2xi)
- 2xz
 

2i(v + 1) 1
 
-----',2=----[U(v + -, 2v + 1; -2xi)

-2xz 2 

+((2v + 1) - (v + ~ + 1))U(v + ~ + 1, 2v + 1; -2xi)] 

= 2i(v +~)	 {zo(x) + (v - ~)Zl(X)} 
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Thus, 

!£H~l)(X) = -2i ei(X-'l1r) (2 xt {(i + 2v)zo(x) 
dx ~ 2x 

2i(v +~) ( 2i(v + t)(v - ~) }+ '). Zo x) + '). Zl (X) 
- XZ -~XZ 

and 

.!L H(l)( )
dx " X = (i+~)- (v+~) + (O)2_ V2)Zl(X)
 

H~l) X X x ZO( X)
 

1 . ((~)2_V2)Zl(X) 
= --+Z+ -- (A.5)

2x x zo(x) 

Next, one needs to know Zl(X)/ZO(x). By using a process similar to CF1 and (A.4), 
one finds 

Zn_l(X) = U(v+~+(n-1)12v+1;-2Xi) 

[-2xi + 2(v + ~ + n) - (2v + l)]U(v + ~ + n, 2v + 1;
2 2 
111 

-2xi) + (v +:2 + n)(2v + 1 - (v + :2 + n) - l)U(v +:2 + n 

+1, 2v + 1; -2xi) 

(-2xi + 2n)U(v + ~ + n, 2v + 1; -2xi) + (v + ~ + n) . 

(v - ~ - n)U(v + ~ + 17, + 1, 2v + 1; -2xi) 

= bnzn(x) + an+lZn+l(X) 

where 

2
bn = 2( -xi + 17,) = -:-(x + ni) 

z 
2 1 2)an+l = (v -(17,+-)

2 

Therefore, 

Zn-l (x) = hnzn(x) + an+lZn+l 
Zn-l (x) b Zn+l (x)

= n + an ()zn(x) Zn X 
zn(x) 1 

-
Zn-l(X) b 

n 
+ Zn+l (x)

an+l zn(X) 
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---

- ---

1 
b + an±1 

n 
bn±1+an±2 zn±2(z)

zn±l(z) 

1 an+1 a n +2 a n +3 

bn + bn + 1 + bn + 2 + bn + 3 + ... 

So 

ZI (X) 1 a2 a3 

Zo(X) bl + b2+ b3+'" 
1 

1I2_(t)2
.)+ -- ,,2-(9Y~(x + z ~(x+2i)+ 1(z±3.)+..' . . 

(A.6) 

From (A.5) and (A.6), one has 

f;HY\x) _ J~(x) + iY:(x) 
p + qi = 

HY) - JlI(x) + iYlI(x) 

-1 . 0)2 - 1/2 ZI(X)
-+z+ -­
2x x zo(x) 

-1 + i +!.- (0)2 - 1/2) ((~)2 - 1/2) ((~)2 _ 1/2) 
2x X 2(x + i)+ 2(x + 2i)+ 2(x + 3i) + ... 

r.?' 

(~ 

</'"
.J" 
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Appendix B: Wronskian Relation
 

In this appendix, we will discuss the derivation of the Wronskian relation of Bessel 
functions. Suppose Ul, Uz are two solutions of Bessel's equation: 

" 1 I V ZY + -y + (1 - (-) )y = 0 x =I- 0 
x 

Then 

" 1 I
U 1 + -U1 + (1 ­

X 

" 1 I (U z + -Uz + 1 ­
x 

x 

(v Z-) )Ul = 0 
X 

(v )Z)- Uz = 0 
x 

Multipling the first equation by -Uz, the second by Ul, and adding yields 

" 1 I " 1 I
UZUl + -UzUl - u 1Uz - -u1uz 

X X 

( " ") 1( I ')UZUl - U1Uz + - UZUl - U1Uz 
X 

o 

o (B.l) 

Let 

W(Ul' uz) = I 
Ul 
u~ UzI 

Uz 
I = IU1U z 

I- UZU 1 

Then (B.l) becomes 

Ul Uz 1 ~",,+
U 1 U z X 

I Ul Uz 1- 0,,­
U 1 U z 

That is 

I"'; 
-:1. 
~ .... 
o 
\/I 
V 

dW 1 
-+-W=O 
dx x 

Jx 1 
vV = C exp[­ idt] 

This is known as Abel's identity 

J
x 1 

C = Wexp[ idt] 

where C is a constant independent of x. If one chooses Ul 

where v is not an integer, then 
= J,,(x) and Uz = J_,,(x), 

C = xW {JlI(x), LlI(x)} 
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With the series expressions of Jv(x) and J_v(x) 

~ (_1)m (~)2m+vJv(x) 
6 m!f( v + m + 1) 2 
m=O 

~ (_l)m (~)2m-VJ-v(x) 
6 m !f(-v+m+1) 2 
m=O 

it is clear that 

Jv(x) 1 (t -1 ()2+V
f(l + v) 2 + f(2 - v) 2 + ... 

(1) x -v -1 x 2-vJ_v(x) '1-v)(2) +f(2-v)(2) + ... 

v/2 (~t-1 -(1+v/2)(~)l+v ...
J~(x) 

f(l+v) 2 + f(2+v) 2 + 
-v/2 (::t V - 1+ -1+v/2(::)1_v ...

J~v(x) = 
f(l-v) 2 f(2-v) 2 

Then one may find a value with a simple form for C: 

x~V {Jv ( x), J- v ( X ) } 

= x(Jv(:r)J~v(x) - J_v(x)J~(x)) 

-2v 
= [1+0(x)2] 

Since C is a parameter that depends on the particular Bessel functions U1 and U2, 

and C is independent of x, it may be identified at any convenient point such as x = 0, 
then 

':L"" C lim xW{Jv(x),J_v(x)} 
~ x-o+
""ll 
o -2v 
'JI 
V f(1 + v)f(l - v)
 

Next, from the Gamma function formulas (see[3]):
 

f(x + 1) = xf(x)
 
7r 

f(x)f(l - x) = -.-
SIll 7rX 

it is easy to see that 

7r V7r 

f(1 + v)f(l-v) = vf(v)· f(v)sin7rv = SIll7rV 
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('. 

":lo 
~ .... 
~ 
II' 

Thus, 
c = -2v -2vsin7rv -2sinv7r 

f( 1 + v) f( 1 - v) V7r 7r 

which implies 

W {Jv(x),J-v(x)} = _ 2sin7rv 
7rX 

Jv(x) and Yv(x) is another pair of solutions of Bessel's equation, a.nd 

Jv ( x ) cos V 7r - J_v ( X )
Yv(x) 

SIn V7r 
J~(x) cos V7r - J~v(x)

Y;(x) 
SIn V7r 

Hence, 

VV {Jv(x), Yv(x)} JvY; - YvJ~ 

Jv(x)J~(x)COSV7r - Jv(x)J~v(x) 

SIn V7r 
J~(x)Jv(x) cos V7r - J~(x)J_Ax) 

SIn V7r 
J~(x)J-Ax) - Jv(x)J~v(x) 

SIn V7r 
-W {Jv(x),J_v(x)} 

SIn V7r 
-2 sin V7r 

7rX SIn V7r 
2 

7r 1~ 

So one has 
'J 

vV == Jv Y: - Yv J~ = ~ 
7rX 

V 
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Appendix C: The Modified Lentz's Method
 

There are several general methods for computing continued fractions, but the best 
method seems to be the Modified Lentz's method. It uses two ratios defined by 

C - Pj D - Qj-1
)- p. - ' and )- ­

)-1 Qj 

to calcula.te the continued fraction !J: 
p

j ). 
)= 

Qj 

P j Pj-1 Qj-1 

P j - 1 Qj-1 Qj 

jj- 1 Cj Dj 

From (3.4), one knows that Pj and Q j satisfy the following recurrence relations 

p
) P j - 1 bj + P j - 2aj
 

Qj Qj-1bj + Qj-2 a j j = 1,2,3""
 

Dividing by P j - 1 and Qj-1 respectively, one finds 

p.
) P'- 2b· + )-aj

) Pj ­Pj - 1 1 

Qj Qj-2 .b· + - a) 
Qj-1 ) Qj-1 

Ice,
 
1
 

C j = bj + aj/Cj _ 1 and D j = b D

) + j-1 a j
 

r 
?­ ~ver, there is still a problem for these two equations; the denominator of D j or 
~..,. uantity Cj might approach zero. To avoid division by zero, one can shift them 
o 
Ii' very small amount, e.g., 10- 50 if necessary. This yields a very accurate result 
..... 

\-1' The details of this algori thm can be found in [10]. 
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Appendix D: Temme's Series 
In Chapter 4, the analysis based on the use of CF2 is not appropriate when x is 
small. For this case, Temme [11] provides a very good method for evaluating the four 
quantities Jv , J~, Yv , and Y;, which uses series expansions to handle the singularity 
as x ----+ O. The goal of this appendix is to explain Temme's series. 

From the series expansion for Jv and the definition of Yv (see section 1.2 ), one 
may find that 

Yv(x) = cos l/7rJv(x) - J_v(x) 
sIn 117r 

(1- 2sin2 T)Jv(x) - J-v(x) 
SIll l/7r 

-._l_[(Jv(x) - J-v(x)) - 2sin2 V1r Jv(x)] 
SIll V1r 2 
-v 1 2. V7r 

-.-[-(J-v(x) - JAx)) + - SIll
2 
~Jv(x)] 

SIll V1r v V L, 

-v {1 [00 (~)-V(_x42)m 00 (~t(_x42)m ] 
sinv7r -;; ~ m!f(m - v + 1) - ~ m!f(m + v + 1) 

2 00 (X)V( x2)m }
• 2 V7r I: "2 -7+- SIll ­

v 2 m=O m!f(m - v + 1) 

00 (_ x:)m {1 [V (~tv v (~t] 
- ~ m! -;; sin V1r f(m - v + 1) - sin V1r f(m + v + 1) 

2 . 2 ( V7r) V (~t }+- SIll - . -- -------'=-----­
v 2 sin V7r f( m + v + 1) 

t 

(_ ~2)m 
-Cm (D.1 ) 

r', m! 
~ v (~)-v 
~ ..... Pm = --. (D.2) 
:..J SIll V7r f(m-v+1)
..f'
 
lor V (~ )V
 

qm = --. (D.3)
 
SIll V1r f(m+v+1) 

1m = (Pm - qm)/V (D.4 ) 

gm = 1m + ~ sin2 (?7r )qm
V ~
 

hm = -mgm + pm
 

Then 00 00 
" 2 . 2 V7r " Yv(X) = - L Cm(Jm + -;; SIll (2 )qm) = - L Cmgm 
m=O m=O 
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One may have an expression for Yv+1(x) with a similar process which replaces // by 
// + 1 in the series expansion of Yv (x) and uses the recurrence formula (1.17) such 
that 

1 
Yv+l (x) sin(// + l)7r[cos(// + l) 7rJV+l(X) - J_(v+l)(x)] 

1 2// 
sin(// + 1)7r[-cos//7rJV +1 + (--;J- v - J-v+d] 

And substituting the series expansion for the Bessel functions will yield 

2 
Yv+1(x) = -- L00 

Cmhm 
x 

m=O 

In the formulas (D.2), (D.3), it is easy to find the recurrence relations: 

Pm = Pm-tl(m - //), qm = qm-tl(m + //) 

Then (D.4) becomes 

1m = (m1m-l +Pm-l + qm_d/(m2 
- //2) 

From the relations of gamma function it is known that 

7r 
f(x)f(l - x) = sin7rx 

and
 
f(1 + x) = xf(x).
 

then 
7r x 

f(1 - x) = sin7rx x f(1 + x) 

Since 
_ // (~tv 

r 
?o Pm - -·-f( 1)sm //7r m - // + 
~ 
,-} one finds 
v 

// (~)-V 
Po 

sin //7r f( -// + 1) 
1-(-x t V f(1 + //)
7r 2 

'-
\ .<trly, since 

// U:yq _ __ ---:----'-'2"--_--:­

m - sin //7r f( m + // + 1) 
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then 

~ (~)V 
qo = 

sin 1l1f f(v + 1) 

- ~(~tf(l-v) 
7r 2 

Next, one needs to know the expression for fa. Since 

fm	 = (Pm - qm)/v 
_ V 1 (~)-V (~t ] 
- -sin-v-7r [~ (-f(-m---:""=""--v-+ 1) 

then 

V [ 1 (i tv 1 ( i)V ]
 
fa = sin V7r ~ f( 1 - v) - ~ f( 1 + v)
 

v [1 (~t 1 (~tv ] 
= sin V7r ~ f(1 - v) - ~ f( 1 + v) 

= _v_ [ 1 ((~Y + (~tv + (~t - (~tV) 
sin V7r vf( 1 - v) 2 2 

_ 1 ((~)V + (~)-V _ (~)V - (~tV)] 
vf(l + v) 2 2 

= ~~{~[((~)v+(~tv)( 1 _ 1 )] 
7r sin V7r v 2 f( 1 - v) f( 1 + v) 

l[((~Y-(~tV)( 1 1 )]}
+~ 2 f(1 - v) + f(1 + v) 

= ~ (V7r) {~( cosh f-l) ( 1 _ 1 ) 
7r sin V7r 2v f(1 - v) f(1 + v) 

1 
r . + 2 v (sinh p) (f(1 ~ v) + f( 1 ~ v)) } .,. 
~ 
..; _ ~ _( {(coSh It) [_1 ( 1 _V7r) ----,-----1------:-)]
..,)

JI 7r sin V7r 2v [(1 - v) [(1 + v)
 
V 

sinh It [1 (1 1)] }
+-v- 2" f(1 - v) + f(l + v) 

wht. ~ v In( ~) and hence 

1 1 2 2 
cosh f-l = -(ell + e-Il ) = -((-)" + (-tV)

2 2 x x 

sinh f-l = ~(ell- e-Il ) = ~((~t - (~tV) 
2 2 x x 
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Let 

1 [1 1]f1(v) 
2v f(1 - v) f(1 + v) 
111

f 2 (v) 2[nt1 \ + nt" J 

Hence, 
2 (V7f) { sinh 11 2 }fa = --.- (cosh Il)f1(v) + --In(- )f2 (v)
7f sm V7f 11 x 

The advantage of writing fa in such complicated form is that as v --t 0, fa can be 
controlled by evaluating v7f/sin(v7f),sinhll/ll, and f 1 (see [10], §6.7). 

,r, ..,. 
~ 
~ 
..JI 
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Appendix (E) 
FORTRAN routines found in Numerical Recipes for the evaluation of Bessel 
functions of fractional order 

SUBROUTINE bessjy(x,xnu,rj,ry,rjp,ryp)
 
INTEGER MAXIT
 
REAL rj,rjp,ry,ryp,x,xnu,XMIN
 
DOUBLE PRECISION EPS,FPMIN,PI
 
PARAMETER (EPS=1.e-10,FPMIN=1.e-30,MAXIT=lOOOO,XMIN=2.,
 

* PI=3.141592653589793dO) 
C USES beschb 

Returns the Bessel functions rj = lv. ry = Yv and their derivatives rjp = l~, ryp = Y~, 
for positive x and for xnu = 1/ 2 O. The relative accuracy is within one or two significant 
digits of EPS, except near a zero of one of the functions, where EPS controls its absolute 
accuracy. FPMIN is a number close to the machine's smallest floating-point number. All 
internal arithmetic is in double precision. To convert the entire routine to double precision. 
change the REAL declaration above and decrease EPS to 10- 16 . Also convert the subroutine 
beschb. 

INTEGER i,isign,l,nl
 
IDOUBLE PRECISION a,b,br,bi,c,cr,ci,d,del,dell,den,di,dlr,dli,
 

* dr,e,f,fact,fact2,fact3,ff,gam,gaml,gam2,gammi,gampl,h, 
* p,pimu,pimu2,q,r,rjl,rjll,rjmu,rjpl,rjp1,rjtemp,ryl, 
*	 rymu,rymup,rytemp,sum,suml,temp,v,x2,xi,xi2,xmu,xmu2 

if(x.le.O .. or.xnu.lt.O.) pause 'bad arguments in bessjy' 
if(x.lt.XMIN)then nl is the number of downward recurrences of the J's and 

nl=int (xnu+. 5dO) upward recurrences of Y's. xmu lies between -1/2 and 
else 1/2 for x < XMIN, while it is chosen so that x is greater 

nl=a:x(O, int (xnu-x+l. 5dO)) than the turning point for x 2 XMIN.
 
endif
 
xmu=xnu-nl
 
xmu2=xmu*xmu
 
xi=l.dO/x
 
xi2=2.dO*xi
 
\.l=xi2/PI The Wronskian.
 
isign=l Evaluate CF1 by modified Lentz's method (§5.2). 
h=xnu*xi 

r· isign keeps track of sign changes in. tne denominator. 
'-;). if(h.lt.FPMIN)h=FPMIN 

<;0.­ b=xi2*xnu 
'-'t 
';.) d=O.dO
 
,-,'"'
 c=h 

:1011 i=l, MAXIT
 
b=b+xi2
 
d=b-d
 
if(abs(d).lt.FPMIN)d=FPMIN
 
c=b-l.dO/c
 
if(abs(c).lt.FPMIN)c=FPMIN
 
i=l.dO/d
 
del=C'''d
 
h=del*h
 
if(d.lt.O.dO)isign=-isign
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if(abs(del-1.dO).lt.EPS)goto 1
 
enddo II
 

pause 'x too large in bessjy; try asymptotic expansion'
 
1	 continue 

rjl=isign*FPMIN Initialize J v and J~ for downward recurrence. 
rjpl=h*rjl 
rjl1=rjl Store values for later rescaling. 
rjp1=rjpl 
fact==u*xi 
do 12 l=nl, 1 , -1 

rjtemp=fact*rjl+rjpl
 
fact=fact-xi
 
rjpl=fact*rjtemp-rjl
 
rjl=rjtemp
 

enddo 12
 

if(rjl.eq.O.dO)rjl=EPS
 
f=rjpl/rjl Now have unnormalized J ~ and J~.
 

if(x.lt.XMIN) then Use series.
 
x2=.5dO*x
 
pimu=PI*xmu
 
if(abs(pimu).lt.EPS)then
 

fact=l.dO
 
else
 

fact=pimu/sin(pimu)
 
endit
 
d=-log(x2)
 
e=xmu*d
 
if(abs(e).lt.EPS)then
 

fact2=1.dO
 
else
 

fact2=sinh(e)/e 
endif 
call beschb(xmu, gam1 ,gam2, gampl, gammi) Chebyshev evaluation of f 1 and f2. 
ff=2.dO/PI*fact*(gam1*cosh(e)+gam2*fact2*d)!o. 
e=exp(e) 
p=e/ (gampl*PI) Po· 
q=l.dO/(e*PI*gammi) qo·
 
pimu2=O.5dO*pimu
 
if(abs(pimu2).lt.EPS)then
 

fact3=1.dO
 
else
 

fact3=sin(pimu2)/pimu2
 
endit
 
-=PI*pimu2*fact3*fact3
 

=1. dO
 
=-x2*x2
 
lID=ff +r*q
 
m1=p 

d	 ,..." t ,MAXIT
 
'::L :i*ff+p+q)/(i*i-xmu2)

;;;... ..... d/i
 
U (i-xmu)

U' :i+xmu)lor
 

* (ff+r*q)
 
um+del
 
:*p-i*del
 
um1+dell
 
(del) .It. (l.dO+abs(sum»*EPS)goto 2
 

endd
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2 
pause 'bessy series failed to converge'
 
continue
 
rymu:-sum
 
ryl=-suml*xi2
 
rymup=xmu*xi*rymu-ryl
 

Equation (6.7.13).
rjmu=~/(rymup-f*rymu) 

Evaluate CF2 by modified Lentz's methodelse 
(§5.2).a=.25dO-xmu2
 

p=-.5dO*xi
 
q=l.dO
 
br=2.dO*x
 
bi=2.dO
 
fact=a*xi/(p*p+q*q)
 
cr=br+q*fact
 
ci=bi+p*fact
 
den=br*br+bi*bi
 
dr=br/den
 
di=-bi/den
 
dlr=cr*dr-ci*di
 
dli=cr*di+ci*dr
 
temp=p*dlr-q*dli
 
q=p*dli+q*dlr
 
p=temp
 
do 14 i=2,MAXIT
 

a=a+2* (i-1)
 
bi=bi+2.dO
 
dr=a*dr+br
 
di=a*di+bi
 
if(abs(dr)+abs(di).lt.FPMIN)dr=FPMIN
 
fact=a/(cr*cr+ci*ci)
 
cr=br+cr*fact
 
ci=bi-ci*fact
 
if(abs(cr)+abs(ci).lt.FPMIN)cr=FPMIN
 
den=dr*dr+di*di
 
dr=dr/den
 
di=-di/den
 
dlr=cr*dr-ci*di
 
dli=cr*di+ci*dr
 
temp=p*dlr-q*dli
 
q=p*dli+q*dlr
 
p=temp
 
if(abs(dlr-l.dO)+abs(dli).lt.EPS)goto 3
 

enddo 14 

n~use 'cf2 failed in bessjy'
 
tinue
 
=(p-f)/q Equations (6.7.6) - (6.7.10).
 
l=sqrt(~/((p-f)*gam+q)) 

t=sign(rjmu,rjl)
 
=rjmu*gam
 
p=rymu*(p+q/gam)
"" ~ 
~u*xi*rymu-rymupCi­

en, -;
 

fa, ::.J l/ril
U' 
lot- ill*fact Scale original J v and J~. 

'jpl*fact
 
i=l,nl Upward recurrence of Y v .
 

{temp=(xmu+i)*xi2*ryl-rymu
 
rmu=ryl
 
l=ryter:Jp
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C 

ry=rymu
 
ryp=xnu*xi*rymu-ryl
 
return
 
END
 

SUBROUTINE beschb(x,gaml,gam2,gampl,gammi)
 
INTEGER NUSE1,NUSE2
 
DOUBLE PRECISION gaml ,gam2 ,gammi ,gampl,x
 
PARAMETER (NUSE1=5,NUSE2=5)
 
USES chebev 

Evaluates f1 and f 2 by Chebyshev expansion for Ixl :s; 1/2. Also returns 1/[(1 + x) and 
l/f(l - x). If converting to double precision, set NUSEl = 7, NUSE2 = 8.
 

REAL xx,cl(7) ,c2(8),chebev
 
SAVE cl,c2
 
DATA cl/-l.142022680371172dO,6.516511267076d-3,
 

* 3.08709017308d-4,-3.470626964d-6,6.943764d-9, 
*	 3.6780d-ll,-1.36d-13/ 

DATA c2/1.843740587300906dO,-.076852840844786dO, 
* 1.271927136655d-3,-4.971736704d-6,-3.3126120d-8, 
*	 2.42310d-l0,-1.70d-13,-1.d-15/ 

xx=8.dO*x*x-1.dO Multiply x by 2 to make range be -1 to I, and then 
gaml=chebev(-1. ,1. ,c1,NUSE1,xx) apply transformation for evaluating even Cheby­
gam2=chebev (-1. ,1. , c2, NUSE2, xx) shev series. 
gampl=gam2-x*gaml 
gammi=gam2+x*gaml 
return 
END 

.~ 

::l. 
'L. 
~ 
~ 

l.­
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