
AN ABSTRACT OF THE THESIS OF

Lisa Jo Wagner for the Master of Science

in Mathematics presented on May 9, 1989

Title: THE HALTING PROBLEM

Abstract Approved: j~ C-c-" < ~ c-::.-).:... ""-..

The primary purpose of this thesis is to show the
unsolvability of the Halting problem. To do this, an
introduction of the Turing machine and some basic examples
using the Turing machine are given. Primitive recursion,
Godel numbering, mu-recursion and recursive enumerability
are discussed in relation to Church's thesis and
solvability using a Turing machine. Using this
information, the solvability of the Halting problem is
discussed. Finally, an example of an uncomputable
function, Rado's function, (the Busy Beaver problem) is
presented

THE HALTING PROBLEM

A Thesis

Presented to

The Division of Mathematical and Physical Sciences

EMPORIA STATE UNIVERSITY

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Lisa Jo Wagner

=

May, 1989

''/ (i '" !

/: 1 '<-/
'; ,

w ~_
for the Major ofvision

11;;p~ >'/1 ~)~
I)
~

1, ,. ~ --//~
~

1 . ?~

~/~ L~(~~7>'"
/ --' 'Committee Chairman <

--~/"

Ap

,,~, ~-.: '":' 01 ,ii, q'-1 u 4 • -;;, ~

DP AUG 0 ~ '89

ACKNOWLEDGEMENTS

The completion of this thesis would not have been

possible without the contributions of some very important

people in my life.

I want to thank Dr. James Anderson and Dr. William

Simpson for their patience and understanding throughout the

writing of this paper. I would also like to thank the

entire faculty of Emporia State University for the quality

of education I feel that I have received in the past six

years.

I also want to thank my friends for putting up with me

throughout this last semester.

Finally, I want to express my gratitude to my famnily

for their everlasting encouragement, and their continued

love and support throughout. I have a great deal to be

thankful for, and the accomplishments I have made reflect

the ideals instilled in me by my parents.

CONTENTS

I. BACKGROUND FOR THEORY OF COMPUTING .
 1

1Introduction .

Historical Background. .	 2

II.	 THE TURING MACHINE . • . 7

Description, Definition of a Turing Machine. •• 7

Examples of Basic Turing Machines. • . 9

Extensions of the Turing Machine • 19

III.	 PRIMITIVE RECURSION, GODEL NUMBERING,

AND MU-RECURSION. • • • . • . • 21

Algorithms . 21

Recursion. . . . 23

Mu-Recursive Functions • 30

Recursive Enunurability. • 32

IV.	 THE HALTING PROBLEM. 34

Decidability . • 34

Unsolvability of the Halting Problem • 37

Method of Reduction to Halting Problem . 41

V.	 THE BUSY BEAVER: ONE UNCOMPUTABLE FUNCTION. 46

Summary. 49

Chapter One

Backqround for Theory of computinq

Introduction

Characteristically, computer science is thought of as

an applied field. Research continues for applications based

on mathematical models of theories from a variety of

fields; including biology, psychology, physics, and

chemistry. Since the applications of computer science are

so widespread, the limitations of the computer, and the

knowledge of the type of questions one can ask while

realistically expecting an answer, becomes of interest.

There are several questions one might ask in beginning

to explore computer theory. How did the theory of computer

science develop? How did the formalisms of computer theory

evolve? Is there a "standard" computer that can solve any

problems which might be presented? If not, what types of

problems are known to be solvable by this "standard"

computer? Is there a method for determining if a problem

can be solved by a computer?

This thesis will contain some background information

leading to the development of the theory of computing. The

"standard computer" (Universal Turing Machine) will also be

considered in an attempt to answer such questions as

mentioned above. Various types of functions and algorithms

(defined on p.21), and the ability to recognize these will

be introduced as a method for determining the type of

questions for which the machine can find an answer. These

and other ideas to be presented will lead us to the problem

of knowing when, or if, the machine will actually reach a

conclusion. This problem is also known as the decision

problem or halting problem.

Historical Background

Before delving into the theory of computation, the

historical development of this theory will be outlined.

The theory of mathematical logic plays an important role in

computer theory. As the twentieth century began, Georg

Cantor's (1845-1918) introduction of Set Theory (unions,

intersections, inclusion, cardinality, etc) presented some

unusual findings in mathematics that needed to be

resolved. Cantor uncovered in his work concepts which

appeared to be contradictions in what had previously been

considered "rigorously proven mathematical theorems".

[2,4] Some of his unusual findings were accepted (such as

that infinity comes in different sizes), although others

were not readily accepted by his colleagues (such as that

some set is bigger than the universal set).

-2­

These and other questions aroused the natural

inquisitiveness of David Hilbert (1862-1943) who believed

that all of mathematics could be derived on the same solid

conditions as Euclidean Geometry. specifically, Hilbert

believed all of mathematics could be characterized by

precise definitions, definitive axioms, and rigorous

proofs. The mathematics that had developed over the

centuries since Euclid (300 B.C.) did not meet these

standards of precision. Hilbert implicitely believed that

if mathematics were put back into a form such as the

Euclidean standard, the problems Cantor's work had

presented would simply go away. His two major projects

were to create this new system and establish that it was

free of paradoxes; and to find a method which would

guarantee the ability to construct proofs of all true

statements in mathematics. Hilbert wanted an approach that

was clear-cut and without any reliance on mathematical

insight. He wanted a strictly defined set of rules which,

if followed, would eventually yield the answer. Hilbert

thought it possible to develop methods for solving

mathematical problems; perhaps even g specific method which

could solve all mathematical problems in some finite number

of steps. Before looking for such a method, the exact

notion of what is or what is not a mathematical statement

had to be developed. There was also the problem of

-3­

defining precisely what can and what cannot be a step in

such a method.

Mathematical logicians, while trying to follow the

suggestions of Hilbert and straighten out the predicaments

left by cantor, found they were able to mathematically

prove some of the desired methods for solving a particular

problem cannot exist. One of these logicians, Kurt Godel

(1906-1978), showed that there was no single algorithm

which would guarantee the ability to provide proofs for all

the true statements in mathematics. He also proved that

there exist true statements that could not be proven to be

correct. In his Inoompleteness Theorem(1931), Godel shows

that for any consistent formal system (axioms plUS rules of

inference) whose axioms adequately define addition and

mUltiplication of natural numbers, there are propositions

which are true of the system, but which are not provable

within the system, that is, which are not derivable from

the axioms using rules of inference. [1, 5] Godel's proof

shows that a specific mathematical system either contains

some true statements without any possible proof, or else

false statements which can be proven true.

This result caused mathematicians and logicians, who

were still attempting to fulfill Hilbert's program, to

wonder about the methods they were trying to find, what the

fundamental composition of some method was, and if there

-4­

was a way of finding proof-generating procedures for those

true statements in mathematics which do have proofs. Using

Church's definition of this method (termed an algorithm),

Alonzo Church, stephen Cole Kleene and also, independently,

Emil Post were able to prove that there were problems which

no algorithm could solve. While investigating algorithms,

Church made a proposal,now known as Church's Thesis, about

algorithms in general and the ability to determine if a

problem is or is not solvable based on the type of

algorithm. Church's Thesis may be stated in a variety of

ways and it is useful to see the statements which will be

referred to in this paper.

Church's Thesis may be stated as any of the
following equivalently:

(1)	 a set is decidable if and only if the set is

recursive;

(2)	 a function over the nonnegative integers is

computable if and only if it is a

mu-recursive function;

(3) if a set is not recursive, it is not decidable;

(4)	 there is an effective procedure to solve a
decision problem if and only if there is
a Turing machine accepting a recursive
language [set] which solves the problem; [7, 257]

(5)	 a decision problem is partially solvable if
and only if there is a Turing machine
that accepts precisely the elements of the
decision problem whose answer is yes.[7, 257]

-5­

While also solving this problem independently, Alan

Mathison Turing (1912-1954) developed the concept of a

theoretical "universal-algorithm machine". In his study of

what was or was not possible for such a machine to do,

Turing found some tasks were impossible to solve using this

abstract machine. Turing's model for this universal

algorithm machine played an important role in the

construction of the first computer, which was based on his

work in abstract logic. In order to explore the theories

behind the operating computer, the main thrust of the rest

of this paper will be concerned with Turing's "universal

algorithm machine", the Turing machine, and this machine's

ability to solve certain types of problems or answer

certain types of questions.

-6­

Chapter Two

The Turing Machine

Description, Definition of g Turing Machine

A.M. Turing's formalization of his "universal

algorithm machine" which will from now on be referred to as

a Turing machine, remains a standard for computer theory

today. In its simplest form, a Turing machine consists of

a finite-state control unit, a tape, and a read/write

head. The control unit operates in descrete steps; at each

step it performs two tasks depending on its current state

and the tape symbol currently scanned by the read/write

head. In this machine, the tape has a left end but extends

indefinitely to the right,and is divided into a sequence of

'cells'. Each cell contains either one character or a

blank. The input word is presented to the machine one

letter per cell beginning in the left-most cell. The rest

of the tape is initially filled with blanks, which will be

denoted as #. The read/write head may scan any cell along

the tape, after moving there one cell at a time, and

consequently change the symbols in the cells of the

original input string as well as write symbols on the

unlimited blank portion of the tape to the right. Since

the machine can move its head only one square at a time,

after any finite computation only finitely many tape

squares will have been visited. The tape head can never

move left off the end of the tape; if the machine attempts

or is given orders to do so, it ceases to operate (also

known as "hanging"). At this point, the Turing machine is

a function of its states and some input string. A program,

which is the set of rules that guide the Turing machine (or

function) on the basis of the letter the tape head has just

read, tells the Turing machine how to change states, what

to print and where to move the tape head.

At the beginning of any computation, the tape is

either initiated with blanks or has the input string

written on it. If the input word is written on the tape,

it is written beginning with a blank in the leftmost cell,

followed by the required string, with another blank at the

end of the string. The read/write head is initially

scanning the blank just to the right of the input string.

Because a Turing machine can write on its tape, it can

leave an answer on the tape at the end of a computation.

There is a specific state, known as the halt state, which

is used to signal the end of a computation. Since for all

Turing machines the halt state will be the same, it shall

be denoted by h and this sYmbol will not be used for any

other purpose. To terminate execution of a program

successfully on a Turing machine, the input and results

must lead to a halt state, h. The input word is then said

-8­

to be accepted by the Turing machine. Land R will denote

movement of the tape head to the left or to the right. It

is important to note in the following definition Land R

are not contained in the input alphabet of the Turing

machine.

The formal definition of a standard Turing machine can

now be presented.

Definition 2.1:

A Turing Machine TM, is a
quintuple TM = (~, Q, qo' 8, f), where

Q is a finite set of states, not containing the
halt state, h;

~is an alphabet, containing the blank symbol #, but
not containing Land R;

<In E Q is the initial sta~;
O-is a function from K x L to (K U {h}) x(L U{L, R});

fis an alphabet of characters that can be printed
(which may include 2:). [6,170]

Notice that the Turing machine is defined as a

function and will be used as a method of representing

functions (see Example 2.24). This machine will be used as

a check to determine which type of functions can be

formalized in such a way that these functions can be

calculated.

Examples of Basic Turing Machines

There are several types of basic Turing machines which

-9­

may be shown at this point. These machines can be used

within other Turing machines to simplify many aspects of

what could be a difficult computation. These include

Turing machines such as a shift right/shift left machine

(which takes the given input and shifts it one space to the

right/left) ~ a copy machine (which copies a given input

directly to the right of the original)~ and also addition,

subtraction and mUltiplication machines. (See the figures

which follow.)

The following symbols will be used in the examples of
Turing machines which follow and have teh designated
meaning.

> ••••••• this indicates where the machine begins
reading the diagram for the 'program'.

the read/write head moves left until itL#
scans a blank symbol
the read/write head moves right until itR#
scans a blank sYmbol

L the read/write head moves left/right until
Ra it scans	 an a a

L 2 the read/write head moves to the left/right
~ until it reaches the second i

1.

a- . the read/write head will write a u

(1" ~ ...	 the arrow designates the direction and rules
the machine will follow according to the
sYmbol scanned

-10­

EXAMPLE: Shift Right Machine I;R

>L'f c:r:l:.~R (T L # --.J

~#
R# h

Figure 2.11

EXAMPLE: Shift Left Machine I;L

>L# ~ R (J" ~~L c:r R

#

L # h

Figure 2.12

EXAMPLE: Copy Machine <!l

>L ~r ".)t# R c:r2 L2 (T ~
~# # #

R # h

p'iqure 2.13

-11­

EXAMPLE: Addition Machine

Given two input values, say xl = 2 and x 2 = 3 ,

(i.e., #11# and #111#)
the following machine will find the sum of the two inputs
and leave that sum on the tape as an answer.

>&L L# 1 R# h

I'iqure 2.14

This machine begins in this position # 11# 1 1 1 # •..

n

and immediately uses the shift left machine to transform
the input to the following # 1 # 1 1 1 #

~

The read/write head then moves one square at a time to the
left until it scans a #. # 1 # 1 1 1 # .•.

o
The head then writes a 1 and moves right until it scans
a #. # 1 1 1 1 1 #

o
The computation is now complete.

-12­

EXAMPLE: Integral Subtraction Machine

Define integral subtraction to be the following:

if x > y
x ~ y = [: - y

otherwise

The Turing machine which performs this operation takes an
input of two numbers, x and y , and 'erases' from the first
input, the second. If the second is larger, the tape will
be left with nothing but blanks when the computation is
complete.

>L:II a L, a
'f R 1"R,
Ra \, .

~L :II

L :II L L­a ,:II

La'~

1~:II~
la

h ~ ..
R

a
,t l~,~

1,
La :II Rh

I'iqure 2.15

-13­

EXAMPLE: MUltiplication Machine

>a L:# aRa:#(!!aL#

* L f a

R a ~! 1 .. :#~

a+
:#L :# h a

a R :# a

La :# R:# h
:# R h a

Figure 2.16

-14­

A Turing machine may be used as an acceptor. This

machine will reach the halt state h, if and only if the

input string is contained in the set of strings produced by

the defined function. If the input string is not accepted

by the given Turing machine, the machine never halts; it

will loop infinitely. An example of this type of machine

follows.

EXAMPLE: Accepting Machine

The following machine accepts the strings over the alphabet
~ = {a, b} which start with a and loops infinitely on

alyStrings which so not.

(iJ _>L# RfR# h # a
(ii)

b a a #

~

Figure 2.17
The read/write head begins i~he above position (ii).
According to (i), the head moves left one square at a time
until it reaches a blank and then moves one square to the
right.

(iii)
a b a a # ..• The head either ~eads an 'a' or somet other sYmbol in 2J. If an 'a' is in

the square, (i) requires that the head move right one
square at a time until it reaches a blank and then halts.
The Turing machine has accepted the string.

(iv)	 otherwise (iv), the read/write head
#	 b a # writes a blank in the square and

loops infinitely writing a blank int
(v)	 this square repeatedly. The Turing

+
a # machine does not accept this input

string.

-15­

A Turing machine may also emulate a fUDctioD. Let~1

and 2:2 be alphabets not containing #. Let f be a function

from L to L . A Turing machine TM is said to compute f

if L 1 , 2:2 C ~ and for w € 2: 1 if f (w) = u then the machine

TM begins in the start state qo' reads w, and ends in the

halt state, h, with u on the tape. An example of this

follows.

EXAMPLE:

Consider the successor function, S(n), where

~ (0) = 1
e(n) = n + 1 for all n € N.

This function, S, can be emulated by the following TM.

Given input n, such as for n = 3 # 1 1 1 # •••

S(n) is computed by

I> 1 R # h I

Fiqure 2.18

Another function, f(w) = wwr where w is some arbitrary
string and w is the palindrome for this string, is
computed as follows.

>1 er+~# R# er L# er:oJ
~#
R# h (for example, f(#ab#) = #abba#

Figure 2.19

-16­

A qeneratinq machine is a Turing machine which

initially begins operation with a blank tape and after some

operation prints a string from the set defined by the some

function. The machine continues in this manner. The order

in which the strings occur does not matter and any string

may be repeated. This method of generating a set is also

known as enumerating a set. An example of a generating

machine follows.

EXAMPLE: Generating Machine

The following Turing machine generates string of the form

{aibi : i >= O} given the input i. (An example of i
would be for i=3 i would be represented on the tape in the
following manner:

111 # •.•)

I.~
b r!'~. z

> SR L# L c R~ A ~a R# b:J

c

R~ SL h

'tr ~ # R~t ~# LtT R
L~ L # R S# L

Fiqure 2.20

-17­

A decision machine is a Turing machine which given any

input string, eventually erases the input string and writes

"YES" or "NO" on the tape depending on whether or not the

input would be accepted by a machine defined on the same

function. In other words, the machine answers the question

of whether or not the input string is in the set of strings

produced by a given function. An example of a decision

machine follows.

EXAMPLE: Decision Machine

The following Turing machine decides whether or not the
given input is of even length. If the input is of even
length, the TM writes a (Y) on the tape. If the input is
odd, the TM writes a (N) on the tape.

f ~~
> J#a ~ J! "R (N) R # h

R (Y) R # h

Fiqure 2.21

This TM begins with the read/write head scanning the
squares and checking for multiples of two a's. When it
reaches a blank at an odd interval, the head is directed to
answer (N). If the input is even, the head will write (Y)
as an answer.

-18­

The similarity within these definitions yields a

result which will be useful in chapter three but should be

noted at this time. Given a set of strings which are

accepted by some Turing machine, there exists another

Turing machine which will generate the same set of

strings. The converse is also true: given a Turing

machine which will generate a set of strings, there is

another Turing machine which will accept this same set of

strings. (for constructive proof see [2,797-8]) This

implies that any set of strings which is accepted by a

Turing machine is a set which is enumerable, and any set of

strings that is enumerable is a set which will be accepted

by some Turing machine. Therefore, if it can be determined

that a set is enumerable, then the set is also acceptable

by some machine and the Turing machine will reach a halt

state when computing on this set.

The previous examples illustrate that Turing machines

can perform powerful computations. How powerful the Turing

machine actually is will be treated later in the

development of various types of functions which are

acceptable or decidable by a Turing machine.

Extensions of the Turing Machine

This simple machine's ability to perform such powerful

-19­

operations as those previously shown warrants consideration

of the effects of extending the Turing machine in various

ways. For example, the addition of extra tapes, the

addition of extra heads on those tapes, allowing the tape

to be infinite in both directions instead of to the right

only, or considering a multi-dimensional tape are all

extensions of a standard Turing machine. It can be shown

that in any case, the operation of any extended machine

does not add to the capabilities of the standard Turing

machine. Any extended machine can be imitated by a

standard Turing machine. [6, 192-204] [7, 221-227] This is

an advantage as these results allow use of the additional

features or not according to which would be more beneficial

in finding a solution to the type of problem being solved.

The knowledge of how a Turing machine operates, and

that any computing machine is equivalent to the standard

Turing machine, leads to the question of which types of

problems a Turing machine can be used to emulate and which

types will lead to a solution on the machine. Exploration

into this question, as well as whether or not a Turing

machine is capable of emulating every formalized procedure,

is the SUbject of the next chapter.

-20­

Chapter Three

Primitive Recursion, Gode1 Numberinq, and XU-Recursion

Algorithms

The following describes a formal procedure which a

Turing machine can represent. This procedure, called an

algorithm, will be used as a method of specifying functions

to be emulated by the Turing machine.

Definition 3.1:

"An effective procedure is a finite, unambiguous
description of a finite set of operations. The
operations must be effective in the sense that
there is a strictly mechanical procedure for
completing them.

An effective procedure which specifies a sequence of
operations which always halts is called an
algorithm. [Any] program which always halts for any
input is an algorithm. The point at which an
algorithm will halt is not necessarily calculable
in advance." [1, 2]

The following are implications of the conditions of

this definition. l)Only a limited amount of information is

added as a result of each step in the sequence of

operations. 2)The fact that the input is finite implies

that after any finite number of steps there is only a

finite amount of information (in particular, upon

termination). An output of infinite size is therefore

impossible. 3)Once the algorithm, input values, and mode

of implementation have been chosen, there are no other

choices relevant to execution available. (This is the

condition of determinism).

One classic example of an algorithm is the Euclidean

algorithm for finding the greatest common divisor of two

positive integers. This algorithm has components which

typify many algorithms.

EXAMPLE: Euclidean Algorithm; Remainder Version.

Compute integers x1 ,x2 ' ... , as follows. xl

and x are, respectively, the first and second2

inputs. For each i >= 2, when the sequence has

been computed as far as x.:
1

i) If xi = 0, halt and take x. 1 as output.
1­

ii) Otherwise, if x. 1 < x.,
1- 1

let x i +1 ­ Xi - 1 ·

iii) Let x'+ l = Remainder (x. l/x.)
1 1- 1

For example, consider

Xl = 352 and x2 = 154.

Then x = 352 - 308 = 443

x = 154 - 132 = 224

x = 05

The output would be = 22.x4

since the definition states that any execution of an

algorithm terminates, this implies that the question asked

of the algorithm is always answered. The difficulty in

-22­

verifying that an specific algorithm satisfies this

condition is also known as the Halting Problem.

Definition 3.2:

The halting problem for Turing machines is the
problem of determining, given an arbitrary Turing
machine with an arbitrary input string, whether
or not the Turing machine will eventually reach
a halt state. [6, 277]

However, in order to determine if a specific algorithm will

terminate, the exploration into the classes of problems for

which an algorithm exists, must continue.

Recursion

One of the methods which readily conforms to the

concept of an algorithm is that of defining sets or

functions using a recursive definition. A recursive

definition must require:

l)specification of the beginning cases;

2)rules for construction of more objects in the

set from the beginning cases, and;

3)the self-referential sense that no objects

except those constructed in this way are

allowed in the set.

-23­

Definition 3.3:
Given two n-argument functions, g and h, another
n-argument function f may be obtained recursively
in the following manner:

f (x1 ' ... , xn-1' 0) = g (x1 ' ... , xn-1)

f (xl' .•. , xl' S (x » = n- n

h(x1 ,···,x ,f(x1 ,···,x »·n n

Recall the successor function, Sex), defined in the

example on page 16. The following functions are defined

using the successor function and a recursive definition:

addition ========> a + 0 = a

[a + S(b) = Sea + b);

mUltiplication ==> a * 0=0

[a * S(b) = a*b + a

Oand exponential => a = 1

bas(b) = a * a.

Definition 3.4:

A primitive-recursive function is a mapping of
k-tuples of natural numbers(denoted N) into natural
numbers using composition or recursion on the initial
functions. The initial functions are as follows:

i)the surcessor function, s:N-tN, where
s(O) = 1;
sen) = n + 1, for all n~N.

-24­

ii)the k-place projection function, ~~ :Nk~N,
where k >= 1, 1 <= i <= k, and

.~~. (n" ..• ,n k) = nl for all n E N.

iii) the zero,..function, e:N°-+N), where
l:>() = o. [6, 232-3]

MUltiplication can be shown as an example of a

primitive recursive function.

EXAMPLE:

The product of m and n, *(m, n) is as follows:

*(m, 0) = 0

*(m, (s(n» = +(m, *(m, n»

A function is primitive recursive if and only if its

characteristic function is primitive recursive.

Definition 3.5:

A function, c, is a characteristic function if
and only if it completely describes another function, f, in
the following manner:

C(x) = if x range f[: otherwise.

The definition of primitive recursion specifies a

method for describing all elements of the function and can

be considered an algorithmic process. The Turing machine

is capable of computing the values of a function using the

successor function as was shown on page 16, but the

-25­

question is if it is capable of computing all functions

which can be generated by using composition or primitive

recursion on the initial functions.

since the Turing machine is encoded with strings

(numerical or alphabetical), and primitive recursion is

defined over a formal nUmbering system, it is of interest

to adopt a method for representing strings over an

alphabet. This would enable a correlation between the

strings and the natural numbers which in turn would be a

form for representing the strings as primitive recursive

functions. This method is known as G6del numberinq.

Gadel showed that all primitive recursive functions

are expressible in the formal theory of numbers. His

technique to show this consisted of assigning numbers to

logical formulas and proofs. He could then define as a

primitive recursive function, some function B,

where

B(x,Y) = if x is the Gadel number of
a proof of the formula with
Gadel number y,[: otherwise.

Gadel numbers, then, can always be assigned to a

computational system so that, regardless of SUbject matter,

the procedure can be computed as a primitive recursive

function over the nonnegative integers. The uniqueness of

the G6del nUmbering system relies on a fundamental theorem

-26­

of arithmetic: a positive integer can be decomposed in only

one way, as a product of primes.

It is possible to use Gadel nUmbering to determine

whether every computable function can be written as a

primitive recursive function. The definitions of primitive

recursive functions can be listed sequentially. In other

words, choose a Gadel nUmbering system to represent the

initial functions and the equations which define functions

in terms of other functions by composition and primitive

recursion. List all the strings over this set eliminating

those which do not represent the definitions of primitive

recursive functions. The infinite list which is left, say

A1 , A2 , A3 , •.. , has each member representing the

definition of some primitive recursive function. Every

definition of a primitive recursive function appears

somewhere on the list. If f i is the primitive recursive

function defined by Ai' consider the 1-place function f

to be evaluated on an argument n by finding the nth

string defining a primitive recursive function. Then apply

that definition to as many arguments as f requires and n

add 1. This algorithm will evaluate f, so f must be

computable. But f cannot be primitive recursive. If it

were, then f must be f i for some i; that is, some Ai

represents a definition of f. But when evaluated with

argument i, f and f i will differ in value by 1, and so f

-27­

cannot be fie

Therefore, a computable function can be found that is

not in the list of primitive recursive functions. Some

extension must be made to the method of defining functions

in order to obtain all computable functions.

One example of a function which has been shown to be

computable and yet not in the class of primitive recursive

functions is Ackermann's Function. For a discussion of

this function, see [1, 252-9], [7, 104-9].

An example of Godel nUmbering follows.

Let I = {i1 , i 2 , ••. , in} be a sequence of

positive integers.

Let P = {2, 3, 5, ••• , Pn} where Pn is the nth

prime number.

Then the Gadel number of I is denoted as:
n ik

G(i1 ,i2 ,···,i) = IT (Pk)n k::1

For example, consider the sequence

{2, 1, 3, 1 }.

This sequence has Godel number

22 * 31 * 53 * 71 = 10,500.

As, for longer sequences, a Godel number will quickly

become very large, the computation of these numbers is not

as relevent as the ability to assign such a number. If a

-28­

G6del number can be assigned to any positive integer value,

then similarly they can be assigned to any numerical value

by considering it a sequence of positive integers. since

there are many integers which will not be the G~del number

of a sequence of nUmbers, then any mathematical symbols,

and any written text can be assigned a unique Godel

number. (G is a Godel number if and only if the following

is true: for all m and n, if m < n and the prime

factorization of n divides G, then the prime factorization

of m divides G.[7,150])

One method of assigning a Godel number to written text

is as follows: blank, 1; small a through z, 2 through 27;

capital A through Z, 28 through 53, comma, 55; and so on.

Then the Godel number of any text is simply the Godel

number of the corresponding sequence of integers. Consider

the phrase:

So be it.

The sequence for this phrase is

{46, 16, 1, 3, 6, 1, 10, 21, 54}

Its GBdel number is

246*316*51*73*116*131*1710*1921*2354

10144 •~ 5.88 *

In a similar way one can assign G6del numbers to strings

over any alphabet or to any set of symbols.

-29­

Mu-recursive Functions

As an extension of the primitive recursive functions,

some method of extending the class must be described other

than by composition or primitive recursion itself. The

method to be employed is that of unbounded minimalization.

Definition 3.6:

First, define m = min(A)
(the smallest memb~r of Ax with

AX = (y:f(x,y) = 0 and f(X'Y')f~~ ~~f~n;d})

If f is a (k + l)-place function for k >= 0,
the unbounded minimalization of f is that
k-place function g such that for any n€ Nk

,

g(n) = [the least m such that f(n,m) = 0, if such
an m exists,

o otherwise.
[6,249]

In general, the unbounded minimalization of a

primitive recursive function need not be primitive

recursive. There is no method for determining whether an m

of the required type exists. To avoid this problem, a

restriction will be placed on the application of unbounded

minimalization so that it is to regular functions only.

Definition 3.7:

A regular function is a ik + l)-place function
such that for every n€ N , there is an m such
that f(n,m) = o.

-30­

Finally, the extension of the primitive recursive

functions, the au-recursive functions can be defined.

Definition 3.8:

A function is mu-recursive if and only if it can
be obtained from the initial functions by

composition,
primitive recursion, or
unbounded minimalization to regular

functions

(Recall the initial functions are
1.the zero function,
2.the projection function, and
3.the successor function,

which are defined for nonnegative integers
only.) [6, 249]

The class of primitive recursive functions then, by

definition, is contained in the class of mu-recursive

functions. Recall Church's thesis in the form stating that

a function over the nonnegative integers is computable if

and only if it is a mu-recursive function. s.C. Kleene

verified that every mu-recursive function is

Turing-computable and vice-versa. {Kleene cited in [6,271])

This gives a basis for determining solvability for the

Turing machine and a great many functions. Then the class

of primitive recursive functions, as well as the class of

mu-recursive functions, are computable.

-31­

Recursiye Enumerability

From chapter two/the four types of Turing machines

discussed were: the accepting machine, the generating

machine, the decision machine, and the emulating machine.

It was stated that any set of strings which is accepted by

a Turing machine is a set which is enumerable and any set

of strings that is enumerable will be accepted by some

Turing machine. This property is known as recursive

enumerability.

Definition 3.9:

A set 5 is recursively enumerable if either it is
the empty set or else there is an algorithmically
computable function, f, mapping the set of positive
integers onto the set 5, that is,

5 = (f(i): i is a positive integer}. [7, 10]

The recursively enumerable sets or functions have

certain characteristics which aid in the ability to

determine if and when a function is recursive. If a set is

recursively enumerable, and the set's compliment is

recursively enumerable, then the set is recursive. Thus,

if a set is recursive, then it is recursively

enumerable. [7,11] However, there exist recursively

enumerable sets which are not recursive; that is, recalling

the generating and the decision machines from chapter two,

there is no Turing machine which can decide if an object

-32­

will be in the recursively enumerable set. [6, 276]

A characteristic of the recursively enumerable sets

that affects its membership in the class of recursive

functions is that some of the methods for computing them

may never be completed. Not all recursively enumerable

sets are recursive, but if the restriction is placed on the

recursively enumerable sets that it must be finite, then it

will be recursive. [1, 142]

The problem of deciding which functions a Turing

machine can solve, and if there is a method for determining

if a function is of the correct type, present another

question. What is an example of a problem a Turing machine

cannot solve? Are mu-recursion and recursive enumerability

the only requirements for solvability? The next chapter

will present an undecidable problem for Turing machines and

a method for determining if a problem is equivalent to this

known undecidable problem.

-33­

Chapter J'our

The Baltinq Problem

Decidability

The problem of calculating the characteristic function

of a particular set is called the decision problem for that

set. Another way of stating this is, the decision problem

for a particular set is the problem of effectively

establishing whether or not an arbitrary element x is

contained in the set. Church's thesis states that a set is

decidable if and only if the set is recursive(see p. 5).

Then, by Church's thesis, if a set is not recursive, it is

undecidable. But what does this say about a Turing machine

and the algorithm for deciding if a Turing machine halts on

input x?

A solution to a decision problem requires the

computation to return an answer for every instance of the

problem. Relaxing this restriction, the notion of a

partial solution can be obtained.

Definition 4.0:

A partial solution to a decision problem, P, is
an effective procedure which returns a po.it~
response for every pEp whose answer is ye•• If
the answer to p is negative, however, the
procedure may return no or fail to prodUce an
answer. [7, 257]

Just as a solution to a decision problem can be formulated

as a question of membership in a recursive set, a partial

solution to a decision problem is equivalent to the

question of membership in a recursively enumerable set.

The Church-Turing thesis for decision problems

states, "There is an effective procedure to solve a

decision problem if, and only if, there is

a Turing Machine accepting a recursive

language [set] which solves the problem."

[7, 257]

The extended Church-Turing thesis for decision problems,

which uses the notion of a partial solution, states,

"A decision problem P is partially solvable

if, and only if, there is a Turing machine

that accepts precisely the elements of P

whose answer is yes" [7, 257].

Keeping these things in mind, define the set H, such

that,

H = (x: 'x(X) oj, }.

In other words, H is the set containing all x such that the

value of the function ;x(x) is decidable, denoted +.
The decision problem for H(x) is one method of stating the

halting problem (defined on p. 23).

-35­

Next, consider the function:

=L
if fx(X).!­

hex)

otherwise.

Note that the function hex) = 1 for input x if the Turing

machine T = T(x) halts on input x .. That is, T halts on
1

an input consisting of its own description x. This h

describes a function and a set which are not recursive. To

show this, assume that h is recursive.

fX(X) +1 if h(x)=l

Define g(x) =

[

o if hex) = o.

Now notice that if hex) is recursive, so is g(x), as

~x(X) will always be defined when hex) = 1.

Let m be an index for g so that g = ~m.

Then hem) = 1 since g is recursive, and

'm(m) = gem) = fm(m) + 1

which is a contradiction.

Therefore, the assumption that hex) is recursive

must be false.

One result of this, using the function h, is to show that

H = {x: fx(X) ~ } is not recursive by noticing that

-36­

1 if ~x(X)!
hex) =

o otherwise

is the characteristic function of H. The question of

solvability given a nonrecursive function suggests that

there is no algorithm which will accept some program x with

input y, and decide whether or not program x will halt

using input y.

Unsolvability of the Halting Problem

To this point, various background information has been

presented. All of these facts will allow a more in-depth

discussion of the decision problem and its ramifications

when applied to the Turing machine. Questions on the

solvability of various functions and algorithms in terms of

each of the following can now be approached:

l)given a Turing machine and a specific

algorithm, whether or not the Turing machine

will halt;

2)given specific input whether or not the Turing

machine will ever halt, or;

3)whether the Turing machine will loop infinitely

or just hang on a given input.

-37­

These questions are of legitimate concern to

mathematicians and computer scientists because of the

implications in these fields. If various problems are

known to be solvable - or it is known that a Turing machine

will halt (find answer to the given question), then any

equivalent problem also is solvable.

To this point the discussion has been in terms of

decidability and the ability to determine if a decision

procedure exists in relation to some given countably

infinite set of problems. The problem of solvability

requires a different approach and statement of the halting

problem in terms of the infinite sets of problems. [5, 247]

Another method of defining the halting problem in

terms of an algorithmic procedure is,

lithe halting problem for a given algorithm is the
problem of determining whether or not a
procedure exists which will determine if a given
machine when executed with a given input
eventually terminates." [7, 169]

Theorem: Given some arbitrary Turing machine, T, and some

arbitrary string, w, there is no algorithm to decide

whether T halts when given the input w.

-38­

PROOF:	 Assume there were some Turing machine

called BPA (halting-problem-answer) that takes

as input the code (recall Godel nUmbering) for

any Turing machine, T, and any string, w, and

leaves an answer on its tape yes or no. Assume

BPA reaches h if w halts on T and BPA loops or

hangs if w does not halt on T:

INPUT

code for TJ ~halt.•• if w halts on T

and ~~crash... if w does not

the word w halt on T.

Using this BPA, construct a different Turing

machine called NASTY. The input into NASTY is

the code of any Turing machine. NASTY then asks

whether the Turing machine can accept it's own

code word as input. NASTY will act like BPA with

the input. The input is the code of the Turing

machine and the code of the string w to be

tested. Now, change the halt state of BPA into

an infinite loop and change all of the crashes in

BPA into successful halts.

NASTY will do this:

-39­

INPUT ~TY LOoP.•.. if the TM
accepts its

code fOr] run the own code name
Turing .. string code
machine for the TM HALT.... if TM does not

on the TM accept its own
itself code name

Now feed NASTY to itself.

INPUT
code }
for

I C ~LOOP ...• if J;lASTY halts
~ NASTY on 1ts code

NASTY name as input

HALT if NASTY does
accept its own
code name

From this, notice that NASTY will halt when fed

its own code name as input if NASTY does not halt

when fed its code name as input. NASTY will loop

when fed its code name if NASTY halts when fed

its own code name as input.

This paradox is similar to Russell's paradox,

(simply stated, does the set that contains all sets

contain itself), and no such Turing machine as NASTY

can exist. Therefore, no Turing machine such as HPA

can exist and the halting problem for Turing machines

is unsolvable.

Church's thesis states that there is an effective

procedure to solve a decision problem if and only if there

-40­

fiJIJ.'

is a Turing machine accepting a recursive set that solves

the problem. Church's thesis then, implies that the

halting problem for Turing machines is undecidable. This

follows since all recursive functions are computable by

Turing machines and the halting problem itself is not

recursive (p. 37). The undecidabilty of the halting

problem is significant considering how valuable such a
I

decison procedure would be if, in fact, there was one.

Method of Reduction to Halting Problem

I Recall the set H = (x: ~x(x)+} and the decison

problem for this set. Since it has been previously

determined that H is not recursive, and hence undecidable

by Church's thesis, one may use the undecidability of the

set H (or equivalent statements implied by Church's thesis)

to prove that other problems are also undecidable. This

may be accomplished by demonstrating that the decidability

of a given problem implies the decidability of the halting

problem. Since the halting problem is undecidable, the

other problem must also be undecidable. This method of

reducing the halting problem to another problem, in order

to prove the undecidability of the latter, is one of the

most important methods for proving undecidability. In

order to discuss the halting problem in terms of

-41­

Turing-decidability, once having established that a

particular set is not Turing-decidable, the unsolvability

of a great variety of problems follows. These results can

be proven using the method of reduction; it can be shown

that if some set, say Ll , were Turing-decidable, then so

would be some other set L2 already known not to be

Turing-decidable. In order to show that if Ll were

Turing-decidable, then L2 would be as well, it suffices

to show any algorithm for deciding membership in Ll could

be used, with some modification, to decide membership in

L2 •

In this method of reduction, it is of utmost

importance to understand the "direction" in which the

reduction is to be applied. To show that a set Ll is not

Turing-decidable, a set L2 which is not Turing-decidable

must be identified and then L2 reduced to Ll . To

reduce in the other direction would achieve nothing.

The method of reduction can be used to prove some

statements which are examples of unsolvable problems.

Given a Turing machine, TM, and an input string w, it is

not possible to determine if TM will halt on input w.

Certainly with only a minor adjustment in the proof, it

could similarly be shown that for a certain fixed machine

TMO' given an input string w, it is an undecidable

problem to determine if TMo will halt on input w. with

-42­

the knowledge that these two similar statements are

undecidable, other statements of problems for Turing

machines can be considered, such as:

(a)	 Given a Turing machine M, does

M halt on the empty tape(A)? and

(b)	 Given a Turing machine M, does M halt

on every input string?

Using known undecidable problems, proceed by reducing one

of these to (a) or (b).

For (a), begin with MO' a Turing machine that

decides the set {L(M):M accepts A}. Given any Turing

machine TM and input string w, produce the Turing machine

TM which will operate in the following manner. w

Starting on the empty tape, TM writes w on its tapew

and then simulates M.

Choose some w' E L(TM) as an input for MO. w

If M halts with yes on its tape, then TMo w
accepts A, and therefore M accepts w.

I	 If MO halts with no on its tape, then TM does not w ,
,I

accept A, and therefore M does not accept w.I
.~
~
1 So M could be used to answer the general question of
i

whether an arbitrary Turing machine accepts an arbitrary

string, and this contradicts the original statement.

Therefore, by reduction, it has been shown that (a) is

undecidable.

-43­

...

similarly the use of reduction can show that if (b)

were a solvable problem, then (a) would be solvable as

well. If one could tell whether there were any input on

which a Turing machine halted, then one could tell whether

a Turing machine halted on the empty string as follows.

Given a Turing machine TM, to tell whether TM halts on the

empty string, first modify TM so that it erases any input

given to it and then proceeds to compute as though it had

actually been given the empty string. This modified

machine TM' halts for no input string or it halts for every

input string. So, if TM' halts for any input string, then

TM' halts for all input strings, and TM halts on the empty

string. There is only a need to check whether TM' accepts

some string. Therefore (b) is also undecidable.

Almost all undecidability proofs either directly or

indirectly involve a reduction of the halting problem to

some other problem. Some equivalent unsolvable problems

for Turing machines can be stated at this point. The

method of reduction can be used to show their respective

undecidabilities also (see [6, 283-5]). These are:

(1)	 Given two Turing machines TM1 and TM2 ,

do they halt on the same input string?

and

(2)	 Given a Turing machine TM, is there any

string at all on which TM halts?

-44­

since the method of reduction has been illustrated, and

similar problems for Turing machine have been stated, the

question of how to apply the undecidability of these

problems to other mathematical problems may be approached.

~
~

j
~
~
.~

I
I
1

,
i

-45­

...

Chapt:er Five

The Busy Beaver: AD uDcomput:able FUDct:ioD

Chapters one through four dealt with the idea of

solvability, computability, and methods for determining

which functions are computable. This chapter examines a

function which is uncomputable.

One of the early examples of an uncomputable function

was created by Tibor Rado of Ohio state University in

1962. Rado's uncomputable function involves the search for

a specific Turing machine (now called the "busy beaver")

which satisfies the following requirements: l)Collect all

Turing machines with some fixed number of states N.

2)These machines begin operation on a tape initially filled

with blanks. Suppose that all the Turing machines which do

not halt are excluded from this set of machines. 3)From

the remaining machines, the set of "busy beavers" are the

machines that print the largest number of distinct ones for

a given N in succession, before halting. This number of

ones, for each value of N, is the value of Rado's function;

usually designated (f' (N). The constructive proof that (f' (N)

is not computable proceeds by assuming it can be computed

and then deriving a contradiction.

This construction seems defective as it is based on

the assumption that all the N-state Turing machines which

do not halt may be sorted out in advance. As it has been

shown, this may not be possible. consider, then, how an

attempt could be made to compute U{N) by brute force. All

possible N-state Turing machines could be listed in some

numerical order (perhaps using Godel numbering) and each

one then simulated on a universal Turing machine (a TM that

is capable of solving any problem which is solvable). Then

the machine or machines that print the most distinct ones

is the set of "busy beavers."

This does not seem to avoid the defect in the original

construction. Although some of the N-state machines that

do not halt may be eliminated by simple algorithms, there

will be other machines for which a decision can not be

made. Since one cannot determine that a particular machine

does not halt, the machine cannot be eliminated from the

list of N-state machines and the simulation must continue.

For this reason, the machine may actually never halt, and

there is no guarantee the computation of ~(N) can be

carried through to completion.

A one-state busy beaver can write only lone, and a

two-state busy beaver will write three distinct ones before

halting. It is now known that a three-state busy beaver

writes six distinct ones before it halts; a four-state busy

beaver writes thirteen distinct ones. Until late 1984, the

top candidate for a five-state bUsy beaver printed 501

-47­

..

distinct ones. An amateur mathematician interested in the

problem of the five-state busy beaver, George Uhing, built

a small computer which tested sequentially the selection of

64,403,380,965,376 different possible five-state Turing

machines. [Science News, 89] Uhing let his computer run

for about three weeks sifting through several million

possibilities and found one five-state Turing machine that

printed 1,915 distinct ones as it went through more than

two million moves. It is not yet known if there is a

machine which will print out even more distinct ones, but

the jump in the value ofU(N) from a four-state busy beaver

to a five-state busy beaver is already very large. The

ability to distinguish between machines which halt and

machines which do not halt diminishes quickly with the

addition of just one more state. This is just one example

of an uncomputable function and there is ongoing research

to determine the largest value of N for which~(N) can be

found.

-48­

...

BIBLIOGRAPHY

[1J	 Brainerd, Walter and Landweber, Lawrence. Theory of
Computation. John Wiley and Sons, Inc.: 1974.

[2]	 Cohen, Daniel. Introduction to computer Theory. John
Wiley and Sons, Inc.: 1986.

[3J	 Copi, Irving. Symbolic Logic. Macmillan Publishing
Co., Inc.: 1979.

[4J	 Hopcroft, John. "Turing Machines". Scientific
American. May, 1984, pp. 94-96.

[5J	 Kleene, Stephen Cole. Mathematical Logic. John Wiley
and Sons, Inc.: 1967.

[6]	 Lewis, Harry and Pappadimitriou, Christos. Elements
of the Theory of Computation. Prentice-Hall, Inc.:
1981.

[7]	 McNaughton, Robert. Elementary Computability. Formal
Languages. and Automata. Prentice-Hall, Inc.: 1982.

[8J	 Science News. "Looking for a Busy Beaver", February
9, 1985, p. 89.

[7J	 Sudkamp, Thomas. Languages and Machines: An
Introduction to the Theory of Computer Science.
Addison-Wesley PUblishing Company, Inc.: 1988.

