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Chapter One
 

Backqround for Theory of computinq
 

Introduction 

Characteristically, computer science is thought of as 

an applied field. Research continues for applications based 

on mathematical models of theories from a variety of 

fields; including biology, psychology, physics, and 

chemistry. Since the applications of computer science are 

so widespread, the limitations of the computer, and the 

knowledge of the type of questions one can ask while 

realistically expecting an answer, becomes of interest. 

There are several questions one might ask in beginning 

to explore computer theory. How did the theory of computer 

science develop? How did the formalisms of computer theory 

evolve? Is there a "standard" computer that can solve any 

problems which might be presented? If not, what types of 

problems are known to be solvable by this "standard" 

computer? Is there a method for determining if a problem 

can be solved by a computer? 

This thesis will contain some background information 

leading to the development of the theory of computing. The 

"standard computer" (Universal Turing Machine) will also be 

considered in an attempt to answer such questions as 



mentioned above. Various types of functions and algorithms 

(defined on p.21), and the ability to recognize these will 

be introduced as a method for determining the type of 

questions for which the machine can find an answer. These 

and other ideas to be presented will lead us to the problem 

of knowing when, or if, the machine will actually reach a 

conclusion. This problem is also known as the decision 

problem or halting problem. 

Historical Background 

Before delving into the theory of computation, the 

historical development of this theory will be outlined. 

The theory of mathematical logic plays an important role in 

computer theory. As the twentieth century began, Georg 

Cantor's (1845-1918) introduction of Set Theory (unions, 

intersections, inclusion, cardinality, etc) presented some 

unusual findings in mathematics that needed to be 

resolved. Cantor uncovered in his work concepts which 

appeared to be contradictions in what had previously been 

considered "rigorously proven mathematical theorems". 

[2,4] Some of his unusual findings were accepted (such as 

that infinity comes in different sizes), although others 

were not readily accepted by his colleagues (such as that 

some set is bigger than the universal set). 

-2­



These and other questions aroused the natural 

inquisitiveness of David Hilbert (1862-1943) who believed 

that all of mathematics could be derived on the same solid 

conditions as Euclidean Geometry. specifically, Hilbert 

believed all of mathematics could be characterized by 

precise definitions, definitive axioms, and rigorous 

proofs. The mathematics that had developed over the 

centuries since Euclid (300 B.C.) did not meet these 

standards of precision. Hilbert implicitely believed that 

if mathematics were put back into a form such as the 

Euclidean standard, the problems Cantor's work had 

presented would simply go away. His two major projects 

were to create this new system and establish that it was 

free of paradoxes; and to find a method which would 

guarantee the ability to construct proofs of all true 

statements in mathematics. Hilbert wanted an approach that 

was clear-cut and without any reliance on mathematical 

insight. He wanted a strictly defined set of rules which, 

if followed, would eventually yield the answer. Hilbert 

thought it possible to develop methods for solving 

mathematical problems; perhaps even g specific method which 

could solve all mathematical problems in some finite number 

of steps. Before looking for such a method, the exact 

notion of what is or what is not a mathematical statement 

had to be developed. There was also the problem of 
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defining precisely what can and what cannot be a step in 

such a method. 

Mathematical logicians, while trying to follow the 

suggestions of Hilbert and straighten out the predicaments 

left by cantor, found they were able to mathematically 

prove some of the desired methods for solving a particular 

problem cannot exist. One of these logicians, Kurt Godel 

(1906-1978), showed that there was no single algorithm 

which would guarantee the ability to provide proofs for all 

the true statements in mathematics. He also proved that 

there exist true statements that could not be proven to be 

correct. In his Inoompleteness Theorem(1931), Godel shows 

that for any consistent formal system (axioms plUS rules of 

inference) whose axioms adequately define addition and 

mUltiplication of natural numbers, there are propositions 

which are true of the system, but which are not provable 

within the system, that is, which are not derivable from 

the axioms using rules of inference. [1, 5] Godel's proof 

shows that a specific mathematical system either contains 

some true statements without any possible proof, or else 

false statements which can be proven true. 

This result caused mathematicians and logicians, who 

were still attempting to fulfill Hilbert's program, to 

wonder about the methods they were trying to find, what the 

fundamental composition of some method was, and if there 
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was a way of finding proof-generating procedures for those 

true statements in mathematics which do have proofs. Using 

Church's definition of this method (termed an algorithm), 

Alonzo Church, stephen Cole Kleene and also, independently, 

Emil Post were able to prove that there were problems which 

no algorithm could solve. While investigating algorithms, 

Church made a proposal,now known as Church's Thesis, about 

algorithms in general and the ability to determine if a 

problem is or is not solvable based on the type of 

algorithm. Church's Thesis may be stated in a variety of 

ways and it is useful to see the statements which will be 

referred to in this paper. 

Church's Thesis may be stated as any of the 
following equivalently: 

(1)	 a set is decidable if and only if the set is
 
recursive;
 

(2)	 a function over the nonnegative integers is
 
computable if and only if it is a
 
mu-recursive function;
 

(3) if a set is not recursive, it is not decidable; 

(4)	 there is an effective procedure to solve a 
decision problem if and only if there is 
a Turing machine accepting a recursive 
language [set] which solves the problem; [7, 257] 

(5)	 a decision problem is partially solvable if 
and only if there is a Turing machine 
that accepts precisely the elements of the 
decision problem whose answer is yes.[7, 257] 

-5­



While also solving this problem independently, Alan 

Mathison Turing (1912-1954) developed the concept of a 

theoretical "universal-algorithm machine". In his study of 

what was or was not possible for such a machine to do, 

Turing found some tasks were impossible to solve using this 

abstract machine. Turing's model for this universal 

algorithm machine played an important role in the 

construction of the first computer, which was based on his 

work in abstract logic. In order to explore the theories 

behind the operating computer, the main thrust of the rest 

of this paper will be concerned with Turing's "universal 

algorithm machine", the Turing machine, and this machine's 

ability to solve certain types of problems or answer 

certain types of questions. 
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Chapter Two
 

The Turing Machine
 

Description, Definition of g Turing Machine 

A.M. Turing's formalization of his "universal 

algorithm machine" which will from now on be referred to as 

a Turing machine, remains a standard for computer theory 

today. In its simplest form, a Turing machine consists of 

a finite-state control unit, a tape, and a read/write 

head. The control unit operates in descrete steps; at each 

step it performs two tasks depending on its current state 

and the tape symbol currently scanned by the read/write 

head. In this machine, the tape has a left end but extends 

indefinitely to the right,and is divided into a sequence of 

'cells'. Each cell contains either one character or a 

blank. The input word is presented to the machine one 

letter per cell beginning in the left-most cell. The rest 

of the tape is initially filled with blanks, which will be 

denoted as #. The read/write head may scan any cell along 

the tape, after moving there one cell at a time, and 

consequently change the symbols in the cells of the 

original input string as well as write symbols on the 

unlimited blank portion of the tape to the right. Since 

the machine can move its head only one square at a time, 

after any finite computation only finitely many tape 



squares will have been visited. The tape head can never 

move left off the end of the tape; if the machine attempts 

or is given orders to do so, it ceases to operate (also 

known as "hanging"). At this point, the Turing machine is 

a function of its states and some input string. A program, 

which is the set of rules that guide the Turing machine (or 

function) on the basis of the letter the tape head has just 

read, tells the Turing machine how to change states, what 

to print and where to move the tape head. 

At the beginning of any computation, the tape is 

either initiated with blanks or has the input string 

written on it. If the input word is written on the tape, 

it is written beginning with a blank in the leftmost cell, 

followed by the required string, with another blank at the 

end of the string. The read/write head is initially 

scanning the blank just to the right of the input string. 

Because a Turing machine can write on its tape, it can 

leave an answer on the tape at the end of a computation. 

There is a specific state, known as the halt state, which 

is used to signal the end of a computation. Since for all 

Turing machines the halt state will be the same, it shall 

be denoted by h and this sYmbol will not be used for any 

other purpose. To terminate execution of a program 

successfully on a Turing machine, the input and results 

must lead to a halt state, h. The input word is then said 
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to be accepted by the Turing machine. Land R will denote 

movement of the tape head to the left or to the right. It 

is important to note in the following definition Land R 

are not contained in the input alphabet of the Turing 

machine. 

The formal definition of a standard Turing machine can 

now be presented. 

Definition 2.1: 

A Turing Machine TM, is a 
quintuple TM = (~, Q, qo' 8, f), where 

Q is a finite set of states, not containing the 
halt state, h;

~is an alphabet, containing the blank symbol #, but 
not containing Land R; 

<In E Q is the initial sta~; 
O-is a function from K x L to (K U {h}) x( L U{L, R}); 

fis an alphabet of characters that can be printed 
(which may include 2: ). [6,170] 

Notice that the Turing machine is defined as a 

function and will be used as a method of representing 

functions (see Example 2.24). This machine will be used as 

a check to determine which type of functions can be 

formalized in such a way that these functions can be 

calculated. 

Examples of Basic Turing Machines 

There are several types of basic Turing machines which 
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may be shown at this point. These machines can be used 

within other Turing machines to simplify many aspects of 

what could be a difficult computation. These include 

Turing machines such as a shift right/shift left machine 

(which takes the given input and shifts it one space to the 

right/left) ~ a copy machine (which copies a given input 

directly to the right of the original)~ and also addition, 

subtraction and mUltiplication machines. (See the figures 

which follow.) 

The following symbols will be used in the examples of 
Turing machines which follow and have teh designated 
meaning. 

> ••••••• this indicates where the machine begins 
reading the diagram for the 'program'. 

the read/write head moves left until itL# 
scans a blank symbol 
the read/write head moves right until itR# 
scans a blank sYmbol 

L the read/write head moves left/right until 
Ra it scans	 an a a 

L 2 the read/write head moves to the left/right 
~ until it reaches the second i 

1. 

a- . the read/write head will write a u 

(1" ~ ...	 the arrow designates the direction and rules 
the machine will follow according to the 
sYmbol scanned 
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EXAMPLE: Shift Right Machine I;R 

>L'f c:r:l:.~R (T L # --.J 

~# 
R# h 

Figure 2.11 

EXAMPLE: Shift Left Machine I;L 

>L# ~ R (J" ~~L c:r R 

#
 

L # h 

Figure 2.12 

EXAMPLE: Copy Machine <!l 

>L ~r ". )t# R c:r2 L2 (T ~ 
# ~# # # 

R # h 

p'iqure 2.13 
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EXAMPLE: Addition Machine 

Given two input values, say xl = 2 and x 2 = 3 , 

(i.e., #11# and #111# ) 
the following machine will find the sum of the two inputs 
and leave that sum on the tape as an answer. 

>&L L# 1 R# h 

I'iqure 2.14 

This machine begins in this position # 11# 1 1 1 # •.. 

n
 
and immediately uses the shift left machine to transform 
the input to the following # 1 # 1 1 1 # 

~
 
The read/write head then moves one square at a time to the 
left until it scans a #. # 1 # 1 1 1 # .•. 

o 
The head then writes a 1 and moves right until it scans 
a #. # 1 1 1 1 1 # 

o 
The computation is now complete. 
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EXAMPLE: Integral Subtraction Machine 

Define integral subtraction to be the following: 

if x > y 
x ~ y = [: - y 

otherwise 

The Turing machine which performs this operation takes an 
input of two numbers, x and y , and 'erases' from the first 
input, the second. If the second is larger, the tape will 
be left with nothing but blanks when the computation is 
complete. 

>L:II a L, a 
'f R 1"R,
Ra \, . 

~L :II 

L :II L L­a ,:II 

La'~ 

1~:II~ 
la 

h ~ .. 
R 

a 
,t l~,~

1, 
La :II Rh 

I'iqure 2.15 
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EXAMPLE: MUltiplication Machine 

>a L:# aRa:#(!!aL# 

* L f a 

R a ~! 1 .. :#~ 

a+ 
:#L :# h a 

a R :# a 

La :# R:# h 
:# R h a 

Figure 2.16 
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A Turing machine may be used as an acceptor. This 

machine will reach the halt state h, if and only if the 

input string is contained in the set of strings produced by 

the defined function. If the input string is not accepted 

by the given Turing machine, the machine never halts; it 

will loop infinitely. An example of this type of machine 

follows. 

EXAMPLE: Accepting Machine 

The following machine accepts the strings over the alphabet 
~ = {a, b} which start with a and loops infinitely on 

alyStrings which so not. 

(iJ _>L# RfR# h # a 
( ii) 

b a a # 

~
 
# 

Figure 2.17 
The read/write head begins i~he above position (ii). 
According to (i), the head moves left one square at a time 
until it reaches a blank and then moves one square to the 
right. 

(iii) 
# a b a a # ..• The head either ~eads an 'a' or somet other sYmbol in 2J. If an 'a' is in 

the square, (i) requires that the head move right one 
square at a time until it reaches a blank and then halts. 
The Turing machine has accepted the string. 

(iv)	 otherwise (iv), the read/write head 
#	 b a # writes a blank in the square and 

loops infinitely writing a blank int 
(v)	 this square repeatedly. The Turing 

+ 
# # a # machine does not accept this input 

string. 
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A Turing machine may also emulate a fUDctioD. Let~1 

and 2:2 be alphabets not containing #. Let f be a function 

from L to L . A Turing machine TM is said to compute f 

if L 1 , 2:2 C ~ and for w € 2: 1 if f (w) = u then the machine 

TM begins in the start state qo' reads w, and ends in the 

halt state, h, with u on the tape. An example of this 

follows. 

EXAMPLE:
 
Consider the successor function, S(n), where
 

~ (0) = 1 
e(n) = n + 1 for all n € N. 

This function, S, can be emulated by the following TM. 

Given input n, such as for n = 3 # 1 1 1 # ••• 

S(n) is computed by 

I> 1 R # h I 

Fiqure 2.18 

Another function, f(w) = wwr where w is some arbitrary 
string and w is the palindrome for this string, is 
computed as follows. 

>1 er+~# R# er L# er:oJ 
~# 
R# h (for example, f(#ab#) = #abba# 

Figure 2.19 
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A qeneratinq machine is a Turing machine which 

initially begins operation with a blank tape and after some 

operation prints a string from the set defined by the some 

function. The machine continues in this manner. The order 

in which the strings occur does not matter and any string 

may be repeated. This method of generating a set is also 

known as enumerating a set. An example of a generating 

machine follows. 

EXAMPLE: Generating Machine 

The following Turing machine generates string of the form 

{aibi : i >= O} given the input i. (An example of i 
would be for i=3 i would be represented on the tape in the 
following manner: 

# 111 # •.• ) 

I.~ 
b r!'~. z 

> SR L# L c R~ A ~a R# b:J 

c 

R~ SL h 

'tr ~ # R~t ~# LtT R 
L~ L # R S# L 

Fiqure 2.20 
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A decision machine is a Turing machine which given any 

input string, eventually erases the input string and writes 

"YES" or "NO" on the tape depending on whether or not the 

input would be accepted by a machine defined on the same 

function. In other words, the machine answers the question 

of whether or not the input string is in the set of strings 

produced by a given function. An example of a decision 

machine follows. 

EXAMPLE: Decision Machine 

The following Turing machine decides whether or not the 
given input is of even length. If the input is of even 
length, the TM writes a (Y) on the tape. If the input is 
odd, the TM writes a (N) on the tape. 

f ~~ 
> J#a ~ J! "R (N) R # h 

R (Y) R # h 

Fiqure 2.21 

This TM begins with the read/write head scanning the 
squares and checking for multiples of two a's. When it 
reaches a blank at an odd interval, the head is directed to 
answer (N). If the input is even, the head will write (Y) 
as an answer. 
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The similarity within these definitions yields a 

result which will be useful in chapter three but should be 

noted at this time. Given a set of strings which are 

accepted by some Turing machine, there exists another 

Turing machine which will generate the same set of 

strings. The converse is also true: given a Turing 

machine which will generate a set of strings, there is 

another Turing machine which will accept this same set of 

strings. (for constructive proof see [2,797-8]) This 

implies that any set of strings which is accepted by a 

Turing machine is a set which is enumerable, and any set of 

strings that is enumerable is a set which will be accepted 

by some Turing machine. Therefore, if it can be determined 

that a set is enumerable, then the set is also acceptable 

by some machine and the Turing machine will reach a halt 

state when computing on this set. 

The previous examples illustrate that Turing machines 

can perform powerful computations. How powerful the Turing 

machine actually is will be treated later in the 

development of various types of functions which are 

acceptable or decidable by a Turing machine. 

Extensions of the Turing Machine 

This simple machine's ability to perform such powerful 
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operations as those previously shown warrants consideration 

of the effects of extending the Turing machine in various 

ways. For example, the addition of extra tapes, the 

addition of extra heads on those tapes, allowing the tape 

to be infinite in both directions instead of to the right 

only, or considering a multi-dimensional tape are all 

extensions of a standard Turing machine. It can be shown 

that in any case, the operation of any extended machine 

does not add to the capabilities of the standard Turing 

machine. Any extended machine can be imitated by a 

standard Turing machine. [6, 192-204] [7, 221-227] This is 

an advantage as these results allow use of the additional 

features or not according to which would be more beneficial 

in finding a solution to the type of problem being solved. 

The knowledge of how a Turing machine operates, and 

that any computing machine is equivalent to the standard 

Turing machine, leads to the question of which types of 

problems a Turing machine can be used to emulate and which 

types will lead to a solution on the machine. Exploration 

into this question, as well as whether or not a Turing 

machine is capable of emulating every formalized procedure, 

is the SUbject of the next chapter. 
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Chapter Three
 

Primitive Recursion, Gode1 Numberinq, and XU-Recursion
 

Algorithms 

The following describes a formal procedure which a 

Turing machine can represent. This procedure, called an 

algorithm, will be used as a method of specifying functions 

to be emulated by the Turing machine. 

Definition 3.1: 

"An effective procedure is a finite, unambiguous 
description of a finite set of operations. The 
operations must be effective in the sense that 
there is a strictly mechanical procedure for 
completing them. 

An effective procedure which specifies a sequence of 
operations which always halts is called an 
algorithm. [Any] program which always halts for any 
input is an algorithm. The point at which an 
algorithm will halt is not necessarily calculable 
in advance." [1, 2] 

The following are implications of the conditions of 

this definition. l)Only a limited amount of information is 

added as a result of each step in the sequence of 

operations. 2)The fact that the input is finite implies 

that after any finite number of steps there is only a 

finite amount of information (in particular, upon 

termination). An output of infinite size is therefore 

impossible. 3)Once the algorithm, input values, and mode 

of implementation have been chosen, there are no other 



choices relevant to execution available. (This is the 

condition of determinism). 

One classic example of an algorithm is the Euclidean 

algorithm for finding the greatest common divisor of two 

positive integers. This algorithm has components which 

typify many algorithms. 

EXAMPLE: Euclidean Algorithm; Remainder Version. 

Compute integers x1 ,x2 ' ... , as follows. xl 

and x are, respectively, the first and second2 

inputs. For each i >= 2, when the sequence has 

been computed as far as x.: 
1 

i) If xi = 0, halt and take x. 1 as output.
1­

ii) Otherwise, if x. 1 < x.,
1- 1 

let x i +1 ­ Xi - 1 · 

iii) Let x'+ l = Remainder (x. l/x.)
1 1- 1 

For example, consider
 

Xl = 352 and x2 = 154.
 

Then x = 352 - 308 = 443 

x = 154 - 132 = 224 

x = 05 

The output would be = 22.x4 

since the definition states that any execution of an 

algorithm terminates, this implies that the question asked 

of the algorithm is always answered. The difficulty in 
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verifying that an specific algorithm satisfies this 

condition is also known as the Halting Problem. 

Definition 3.2: 

The halting problem for Turing machines is the 
problem of determining, given an arbitrary Turing 
machine with an arbitrary input string, whether 
or not the Turing machine will eventually reach 
a halt state. [6, 277] 

However, in order to determine if a specific algorithm will 

terminate, the exploration into the classes of problems for 

which an algorithm exists, must continue. 

Recursion 

One of the methods which readily conforms to the 

concept of an algorithm is that of defining sets or 

functions using a recursive definition. A recursive 

definition must require: 

l)specification of the beginning cases; 

2)rules for construction of more objects in the 

set from the beginning cases, and; 

3)the self-referential sense that no objects 

except those constructed in this way are 

allowed in the set. 
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Definition 3.3: 
Given two n-argument functions, g and h, another 
n-argument function f may be obtained recursively 
in the following manner: 

f (x1 ' ... , xn-1' 0) = g (x1 ' ... , xn-1 ) 

f (xl' .•. , xl' S (x » = n- n 

h(x1 ,···,x ,f(x1 ,···,x »·n n

Recall the successor function, Sex), defined in the 

example on page 16. The following functions are defined 

using the successor function and a recursive definition: 

addition ========> a + 0 = a 

[ a + S(b) = Sea + b); 

mUltiplication ==> a * 0=0 

[ a * S(b) = a*b + a 

Oand exponential => a = 1 

bas(b) = a * a. 

Definition 3.4: 

A primitive-recursive function is a mapping of 
k-tuples of natural numbers(denoted N) into natural 
numbers using composition or recursion on the initial 
functions. The initial functions are as follows: 

i)the surcessor function, s:N-tN, where 
s(O) = 1; 
sen) = n + 1, for all n~N. 
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ii)the k-place projection function, ~~ :Nk~N, 
where k >= 1, 1 <= i <= k, and 

.~~. (n" ..• ,n k ) = nl for all n E N. 

iii) the zero,..function, e:N°-+N ), where 
l:>( ) = o. [6, 232-3] 

MUltiplication can be shown as an example of a 

primitive recursive function. 

EXAMPLE: 

The product of m and n, *(m, n) is as follows: 

*(m, 0) = 0
 

*(m, (s(n» = +(m, *(m, n»
 

A function is primitive recursive if and only if its 

characteristic function is primitive recursive. 

Definition 3.5: 

A function, c, is a characteristic function if 
and only if it completely describes another function, f, in 
the following manner: 

C(x) = if x range f[: otherwise. 

The definition of primitive recursion specifies a 

method for describing all elements of the function and can 

be considered an algorithmic process. The Turing machine 

is capable of computing the values of a function using the 

successor function as was shown on page 16, but the 
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question is if it is capable of computing all functions 

which can be generated by using composition or primitive 

recursion on the initial functions. 

since the Turing machine is encoded with strings 

(numerical or alphabetical), and primitive recursion is 

defined over a formal nUmbering system, it is of interest 

to adopt a method for representing strings over an 

alphabet. This would enable a correlation between the 

strings and the natural numbers which in turn would be a 

form for representing the strings as primitive recursive 

functions. This method is known as G6del numberinq. 

Gadel showed that all primitive recursive functions 

are expressible in the formal theory of numbers. His 

technique to show this consisted of assigning numbers to 

logical formulas and proofs. He could then define as a 

primitive recursive function, some function B, 

where 

B(x,Y) = if x is the Gadel number of 
a proof of the formula with 
Gadel number y,[: otherwise. 

Gadel numbers, then, can always be assigned to a 

computational system so that, regardless of SUbject matter, 

the procedure can be computed as a primitive recursive 

function over the nonnegative integers. The uniqueness of 

the G6del nUmbering system relies on a fundamental theorem 
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of arithmetic: a positive integer can be decomposed in only 

one way, as a product of primes. 

It is possible to use Gadel nUmbering to determine 

whether every computable function can be written as a 

primitive recursive function. The definitions of primitive 

recursive functions can be listed sequentially. In other 

words, choose a Gadel nUmbering system to represent the 

initial functions and the equations which define functions 

in terms of other functions by composition and primitive 

recursion. List all the strings over this set eliminating 

those which do not represent the definitions of primitive 

recursive functions. The infinite list which is left, say 

A1 , A2 , A3 , •.. , has each member representing the 

definition of some primitive recursive function. Every 

definition of a primitive recursive function appears 

somewhere on the list. If f i is the primitive recursive 

function defined by Ai' consider the 1-place function f 

to be evaluated on an argument n by finding the nth 

string defining a primitive recursive function. Then apply 

that definition to as many arguments as f requires and n 

add 1. This algorithm will evaluate f, so f must be 

computable. But f cannot be primitive recursive. If it 

were, then f must be f i for some i; that is, some Ai 

represents a definition of f. But when evaluated with 

argument i, f and f i will differ in value by 1, and so f 
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cannot be fie 

Therefore, a computable function can be found that is 

not in the list of primitive recursive functions. Some 

extension must be made to the method of defining functions 

in order to obtain all computable functions. 

One example of a function which has been shown to be 

computable and yet not in the class of primitive recursive 

functions is Ackermann's Function. For a discussion of 

this function, see [1, 252-9], [7, 104-9]. 

An example of Godel nUmbering follows. 

Let I = {i1 , i 2 , ••. , in} be a sequence of 

positive integers. 

Let P = {2, 3, 5, ••• , Pn} where Pn is the nth 

prime number. 

Then the Gadel number of I is denoted as: 
n ik

G(i1 ,i2 ,···,i ) = IT (Pk)n k::1 

For example, consider the sequence 

{2, 1, 3, 1 }. 

This sequence has Godel number 

22 * 31 * 53 * 71 = 10,500. 

As, for longer sequences, a Godel number will quickly 

become very large, the computation of these numbers is not 

as relevent as the ability to assign such a number. If a 
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G6del number can be assigned to any positive integer value, 

then similarly they can be assigned to any numerical value 

by considering it a sequence of positive integers. since 

there are many integers which will not be the G~del number 

of a sequence of nUmbers, then any mathematical symbols, 

and any written text can be assigned a unique Godel 

number. (G is a Godel number if and only if the following 

is true: for all m and n, if m < n and the prime 

factorization of n divides G, then the prime factorization 

of m divides G.[7,150]) 

One method of assigning a Godel number to written text 

is as follows: blank, 1; small a through z, 2 through 27; 

capital A through Z, 28 through 53, comma, 55; and so on. 

Then the Godel number of any text is simply the Godel 

number of the corresponding sequence of integers. Consider 

the phrase: 

So be it. 

The sequence for this phrase is 

{46, 16, 1, 3, 6, 1, 10, 21, 54} 

Its GBdel number is 

246*316*51*73*116*131*1710*1921*2354 

10144 •~ 5.88 * 

In a similar way one can assign G6del numbers to strings 

over any alphabet or to any set of symbols. 
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Mu-recursive Functions 

As an extension of the primitive recursive functions, 

some method of extending the class must be described other 

than by composition or primitive recursion itself. The 

method to be employed is that of unbounded minimalization. 

Definition 3.6: 

First, define m = min(A ) 
(the smallest memb~r of Ax with 

AX = (y:f(x,y) = 0 and f(X'Y')f~~ ~~f~n;d}) 

If f is a (k + l)-place function for k >= 0, 
the unbounded minimalization of f is that 
k-place function g such that for any n€ Nk 

, 

g(n) = [the least m such that f(n,m) = 0, if such 
an m exists, 

o otherwise. 
[6,249] 

In general, the unbounded minimalization of a 

primitive recursive function need not be primitive 

recursive. There is no method for determining whether an m 

of the required type exists. To avoid this problem, a 

restriction will be placed on the application of unbounded 

minimalization so that it is to regular functions only. 

Definition 3.7: 

A regular function is a ik + l)-place function 
such that for every n€ N , there is an m such 
that f(n,m) = o. 
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Finally, the extension of the primitive recursive 

functions, the au-recursive functions can be defined. 

Definition 3.8: 

A function is mu-recursive if and only if it can 
be obtained from the initial functions by 

composition, 
primitive recursion, or 
unbounded minimalization to regular 

functions 

(Recall the initial functions are 
1.the zero function, 
2.the projection function, and 
3.the successor function, 

which are defined for nonnegative integers 
only.) [6, 249] 

The class of primitive recursive functions then, by 

definition, is contained in the class of mu-recursive 

functions. Recall Church's thesis in the form stating that 

a function over the nonnegative integers is computable if 

and only if it is a mu-recursive function. s.C. Kleene 

verified that every mu-recursive function is 

Turing-computable and vice-versa. {Kleene cited in [6,271]) 

This gives a basis for determining solvability for the 

Turing machine and a great many functions. Then the class 

of primitive recursive functions, as well as the class of 

mu-recursive functions, are computable. 
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Recursiye Enumerability 

From chapter two/the four types of Turing machines 

discussed were: the accepting machine, the generating 

machine, the decision machine, and the emulating machine. 

It was stated that any set of strings which is accepted by 

a Turing machine is a set which is enumerable and any set 

of strings that is enumerable will be accepted by some 

Turing machine. This property is known as recursive 

enumerability. 

Definition 3.9: 

A set 5 is recursively enumerable if either it is 
the empty set or else there is an algorithmically 
computable function, f, mapping the set of positive 
integers onto the set 5, that is, 

5 = (f(i): i is a positive integer}. [7, 10] 

The recursively enumerable sets or functions have 

certain characteristics which aid in the ability to 

determine if and when a function is recursive. If a set is 

recursively enumerable, and the set's compliment is 

recursively enumerable, then the set is recursive. Thus, 

if a set is recursive, then it is recursively 

enumerable. [7,11] However, there exist recursively 

enumerable sets which are not recursive; that is, recalling 

the generating and the decision machines from chapter two, 

there is no Turing machine which can decide if an object 
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will be in the recursively enumerable set. [6, 276] 

A characteristic of the recursively enumerable sets 

that affects its membership in the class of recursive 

functions is that some of the methods for computing them 

may never be completed. Not all recursively enumerable 

sets are recursive, but if the restriction is placed on the 

recursively enumerable sets that it must be finite, then it 

will be recursive. [1, 142] 

The problem of deciding which functions a Turing 

machine can solve, and if there is a method for determining 

if a function is of the correct type, present another 

question. What is an example of a problem a Turing machine 

cannot solve? Are mu-recursion and recursive enumerability 

the only requirements for solvability? The next chapter 

will present an undecidable problem for Turing machines and 

a method for determining if a problem is equivalent to this 

known undecidable problem. 
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Chapter J'our
 

The Baltinq Problem
 

Decidability 

The problem of calculating the characteristic function 

of a particular set is called the decision problem for that 

set. Another way of stating this is, the decision problem 

for a particular set is the problem of effectively 

establishing whether or not an arbitrary element x is 

contained in the set. Church's thesis states that a set is 

decidable if and only if the set is recursive(see p. 5). 

Then, by Church's thesis, if a set is not recursive, it is 

undecidable. But what does this say about a Turing machine 

and the algorithm for deciding if a Turing machine halts on 

input x? 

A solution to a decision problem requires the 

computation to return an answer for every instance of the 

problem. Relaxing this restriction, the notion of a 

partial solution can be obtained. 

Definition 4.0: 

A partial solution to a decision problem, P, is 
an effective procedure which returns a po.it~ 
response for every pEp whose answer is ye•• If 
the answer to p is negative, however, the 
procedure may return no or fail to prodUce an 
answer. [7, 257] 



Just as a solution to a decision problem can be formulated 

as a question of membership in a recursive set, a partial 

solution to a decision problem is equivalent to the 

question of membership in a recursively enumerable set. 

The Church-Turing thesis for decision problems 

states, "There is an effective procedure to solve a 

decision problem if, and only if, there is 

a Turing Machine accepting a recursive 

language [set] which solves the problem." 

[7, 257] 

The extended Church-Turing thesis for decision problems, 

which uses the notion of a partial solution, states, 

"A decision problem P is partially solvable 

if, and only if, there is a Turing machine 

that accepts precisely the elements of P 

whose answer is yes" [7, 257]. 

Keeping these things in mind, define the set H, such 

that, 

H = (x: 'x(X) oj, }. 

In other words, H is the set containing all x such that the 

value of the function ;x(x) is decidable, denoted +. 
The decision problem for H(x) is one method of stating the 

halting problem (defined on p. 23). 
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Next, consider the function: 

=L 
if fx(X).!­

hex) 

otherwise. 

Note that the function hex) = 1 for input x if the Turing 

machine T = T(x) halts on input x .. That is, T halts on 
1 

an input consisting of its own description x. This h 

describes a function and a set which are not recursive. To 

show this, assume that h is recursive. 

fX(X) +1 if h(x)=l
 

Define g(x) =
 
[ 

o if hex) = o. 

Now notice that if hex) is recursive, so is g(x), as 

~x(X) will always be defined when hex) = 1. 

Let m be an index for g so that g = ~m. 

Then hem) = 1 since g is recursive, and 

'm(m) = gem) = fm(m) + 1 

which is a contradiction. 

Therefore, the assumption that hex) is recursive 

must be false. 

One result of this, using the function h, is to show that 

H = {x: fx(X) ~ } is not recursive by noticing that 
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1 if ~x(X)! 
hex) = 

o otherwise 

is the characteristic function of H. The question of 

solvability given a nonrecursive function suggests that 

there is no algorithm which will accept some program x with 

input y, and decide whether or not program x will halt 

using input y. 

Unsolvability of the Halting Problem 

To this point, various background information has been 

presented. All of these facts will allow a more in-depth 

discussion of the decision problem and its ramifications 

when applied to the Turing machine. Questions on the 

solvability of various functions and algorithms in terms of 

each of the following can now be approached: 

l)given a Turing machine and a specific 

algorithm, whether or not the Turing machine 

will halt; 

2)given specific input whether or not the Turing 

machine will ever halt, or; 

3)whether the Turing machine will loop infinitely 

or just hang on a given input. 
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These questions are of legitimate concern to 

mathematicians and computer scientists because of the 

implications in these fields. If various problems are 

known to be solvable - or it is known that a Turing machine 

will halt (find answer to the given question), then any 

equivalent problem also is solvable. 

To this point the discussion has been in terms of 

decidability and the ability to determine if a decision 

procedure exists in relation to some given countably 

infinite set of problems. The problem of solvability 

requires a different approach and statement of the halting 

problem in terms of the infinite sets of problems. [5, 247] 

Another method of defining the halting problem in 

terms of an algorithmic procedure is, 

lithe halting problem for a given algorithm is the 
problem of determining whether or not a 
procedure exists which will determine if a given 
machine when executed with a given input 
eventually terminates." [7, 169] 

Theorem: Given some arbitrary Turing machine, T, and some 

arbitrary string, w, there is no algorithm to decide 

whether T halts when given the input w. 
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PROOF:	 Assume there were some Turing machine 

called BPA (halting-problem-answer) that takes 

as input the code (recall Godel nUmbering) for 

any Turing machine, T, and any string, w, and 

leaves an answer on its tape yes or no. Assume 

BPA reaches h if w halts on T and BPA loops or 

hangs if w does not halt on T: 

INPUT 

code for TJ ~halt.•• if w halts on T 

and ~~crash... if w does not 

the word w halt on T. 

Using this BPA, construct a different Turing 

machine called NASTY. The input into NASTY is 

the code of any Turing machine. NASTY then asks 

whether the Turing machine can accept it's own 

code word as input. NASTY will act like BPA with 

the input. The input is the code of the Turing 

machine and the code of the string w to be 

tested. Now, change the halt state of BPA into 

an infinite loop and change all of the crashes in 

BPA into successful halts. 

NASTY will do this: 
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INPUT ~TY LOoP.•.. if the TM 
accepts its 

code fOr] run the own code name 
Turing .. string code 
machine for the TM HALT.... if TM does not 

on the TM accept its own 
itself code name 

Now feed NASTY to itself. 

INPUT 
code }
for 

I C ~LOOP ...• if J;lASTY halts 
~ NASTY on 1ts code 

NASTY name as input 

HALT .... if NASTY does 
accept its own 
code name 

From this, notice that NASTY will halt when fed 

its own code name as input if NASTY does not halt 

when fed its code name as input. NASTY will loop 

when fed its code name if NASTY halts when fed 

its own code name as input. 

This paradox is similar to Russell's paradox, 

(simply stated, does the set that contains all sets 

contain itself), and no such Turing machine as NASTY 

can exist. Therefore, no Turing machine such as HPA 

can exist and the halting problem for Turing machines 

is unsolvable. 

Church's thesis states that there is an effective 

procedure to solve a decision problem if and only if there 
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is a Turing machine accepting a recursive set that solves 

the problem. Church's thesis then, implies that the 

halting problem for Turing machines is undecidable. This 

follows since all recursive functions are computable by 

Turing machines and the halting problem itself is not 

recursive (p. 37). The undecidabilty of the halting 

problem is significant considering how valuable such a
I 

decison procedure would be if, in fact, there was one. 

Method of Reduction to Halting Problem 

I Recall the set H = (x: ~x(x)+} and the decison 

problem for this set. Since it has been previously 

determined that H is not recursive, and hence undecidable 

by Church's thesis, one may use the undecidability of the 

set H (or equivalent statements implied by Church's thesis) 

to prove that other problems are also undecidable. This 

may be accomplished by demonstrating that the decidability 

of a given problem implies the decidability of the halting 

problem. Since the halting problem is undecidable, the 

other problem must also be undecidable. This method of 

reducing the halting problem to another problem, in order 

to prove the undecidability of the latter, is one of the 

most important methods for proving undecidability. In 

order to discuss the halting problem in terms of 
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Turing-decidability, once having established that a 

particular set is not Turing-decidable, the unsolvability 

of a great variety of problems follows. These results can 

be proven using the method of reduction; it can be shown 

that if some set, say Ll , were Turing-decidable, then so 

would be some other set L2 already known not to be 

Turing-decidable. In order to show that if Ll were 

Turing-decidable, then L2 would be as well, it suffices 

to show any algorithm for deciding membership in Ll could 

be used, with some modification, to decide membership in 

L2 • 

In this method of reduction, it is of utmost 

importance to understand the "direction" in which the 

reduction is to be applied. To show that a set Ll is not 

Turing-decidable, a set L2 which is not Turing-decidable 

must be identified and then L2 reduced to Ll . To 

reduce in the other direction would achieve nothing. 

The method of reduction can be used to prove some 

statements which are examples of unsolvable problems. 

Given a Turing machine, TM, and an input string w, it is 

not possible to determine if TM will halt on input w. 

Certainly with only a minor adjustment in the proof, it 

could similarly be shown that for a certain fixed machine 

TMO' given an input string w, it is an undecidable 

problem to determine if TMo will halt on input w. with 
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the knowledge that these two similar statements are 

undecidable, other statements of problems for Turing 

machines can be considered, such as: 

(a)	 Given a Turing machine M, does 

M halt on the empty tape(A)? and 

(b)	 Given a Turing machine M, does M halt 

on every input string? 

Using known undecidable problems, proceed by reducing one 

of these to (a) or (b). 

For (a), begin with MO' a Turing machine that 

decides the set {L(M):M accepts A}. Given any Turing 

machine TM and input string w, produce the Turing machine 

TM which will operate in the following manner. w 

Starting on the empty tape, TM writes w on its tapew 

and then simulates M. 

Choose some w' E L(TM ) as an input for MO. w

If M halts with yes on its tape, then TMo w 
accepts A, and therefore M accepts w.

I	 If MO halts with no on its tape, then TM does not w ,
,I 

accept A, and therefore M does not accept w.I 
.~ 
~ 
1 So M could be used to answer the general question of 
i 

whether an arbitrary Turing machine accepts an arbitrary 

string, and this contradicts the original statement. 

Therefore, by reduction, it has been shown that (a) is 

undecidable. 
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similarly the use of reduction can show that if (b) 

were a solvable problem, then (a) would be solvable as 

well. If one could tell whether there were any input on 

which a Turing machine halted, then one could tell whether 

a Turing machine halted on the empty string as follows. 

Given a Turing machine TM, to tell whether TM halts on the 

empty string, first modify TM so that it erases any input 

given to it and then proceeds to compute as though it had 

actually been given the empty string. This modified 

machine TM' halts for no input string or it halts for every 

input string. So, if TM' halts for any input string, then 

TM' halts for all input strings, and TM halts on the empty 

string. There is only a need to check whether TM' accepts 

some string. Therefore (b) is also undecidable. 

Almost all undecidability proofs either directly or 

indirectly involve a reduction of the halting problem to 

some other problem. Some equivalent unsolvable problems 

for Turing machines can be stated at this point. The 

method of reduction can be used to show their respective 

undecidabilities also (see [6, 283-5]). These are: 

(1)	 Given two Turing machines TM1 and TM2 , 

do they halt on the same input string? 

and 

(2)	 Given a Turing machine TM, is there any 

string at all on which TM halts? 

-44­



since the method of reduction has been illustrated, and 

similar problems for Turing machine have been stated, the 

question of how to apply the undecidability of these 

problems to other mathematical problems may be approached. 

~ 
~ 

j 
~ 
~ 
.~ 

I
I 
1
 

,
i 
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Chapt:er Five
 

The Busy Beaver: AD uDcomput:able FUDct:ioD
 

Chapters one through four dealt with the idea of 

solvability, computability, and methods for determining 

which functions are computable. This chapter examines a 

function which is uncomputable. 

One of the early examples of an uncomputable function 

was created by Tibor Rado of Ohio state University in 

1962. Rado's uncomputable function involves the search for 

a specific Turing machine (now called the "busy beaver") 

which satisfies the following requirements: l)Collect all 

Turing machines with some fixed number of states N. 

2)These machines begin operation on a tape initially filled 

with blanks. Suppose that all the Turing machines which do 

not halt are excluded from this set of machines. 3)From 

the remaining machines, the set of "busy beavers" are the 

machines that print the largest number of distinct ones for 

a given N in succession, before halting. This number of 

ones, for each value of N, is the value of Rado's function; 

usually designated (f' (N). The constructive proof that (f' (N) 

is not computable proceeds by assuming it can be computed 

and then deriving a contradiction. 

This construction seems defective as it is based on 

the assumption that all the N-state Turing machines which 



do not halt may be sorted out in advance. As it has been 

shown, this may not be possible. consider, then, how an 

attempt could be made to compute U{N) by brute force. All 

possible N-state Turing machines could be listed in some 

numerical order (perhaps using Godel numbering) and each 

one then simulated on a universal Turing machine (a TM that 

is capable of solving any problem which is solvable). Then 

the machine or machines that print the most distinct ones 

is the set of "busy beavers." 

This does not seem to avoid the defect in the original 

construction. Although some of the N-state machines that 

do not halt may be eliminated by simple algorithms, there 

will be other machines for which a decision can not be 

made. Since one cannot determine that a particular machine 

does not halt, the machine cannot be eliminated from the 

list of N-state machines and the simulation must continue. 

For this reason, the machine may actually never halt, and 

there is no guarantee the computation of ~(N) can be 

carried through to completion. 

A one-state busy beaver can write only lone, and a 

two-state busy beaver will write three distinct ones before 

halting. It is now known that a three-state busy beaver 

writes six distinct ones before it halts; a four-state busy 

beaver writes thirteen distinct ones. Until late 1984, the 

top candidate for a five-state bUsy beaver printed 501 
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distinct ones. An amateur mathematician interested in the 

problem of the five-state busy beaver, George Uhing, built 

a small computer which tested sequentially the selection of 

64,403,380,965,376 different possible five-state Turing 

machines. [Science News, 89] Uhing let his computer run 

for about three weeks sifting through several million 

possibilities and found one five-state Turing machine that 

printed 1,915 distinct ones as it went through more than 

two million moves. It is not yet known if there is a 

machine which will print out even more distinct ones, but 

the jump in the value ofU(N) from a four-state busy beaver 

to a five-state busy beaver is already very large. The 

ability to distinguish between machines which halt and 

machines which do not halt diminishes quickly with the 

addition of just one more state. This is just one example 

of an uncomputable function and there is ongoing research 

to determine the largest value of N for which~(N) can be 

found. 
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