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CHAPTER 1

INTRODUCT ION

Let r and & be polar coordinates of the point (x,4)

which corresponds to a nonzero complex number z = x 4+ 1y.
Since ¥ = r«cos® and 4 = r-siné, z can be expressed in polar
form as z = r{cos® 4+ isiné). [f we define ele = c0s® +

igind, then we can represent any nonzero complex number z in

exponential form: zZ = rele.

Analytic Functions

DEFINITION 1 .1: Let f:A = €, where A C L is an open

set . Then f is differentiable (in the complex sense) at

zo € A if 1im HZI2F %0} oyicts. This limit is denoted
Z4Zp 0

by f/(z5), or %g(zo).

DEFINITION 1.2: A function f is analgtic on A if f is
differentiable at each zp € A. A function is said to be
analytic at a point 2z if it is analytic on a neighborhood

of zg.

The term “analytic” is synonumous with the term
*holomorphic”. A function that is defined and analytic on
the whole complex plane € is called an entire function.
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Differenti ion and Integration

Suppose that w = u + iv is the value of a function f at
z = x + iy, that is f(z) = f{x + iy) = u + iv. This can be
written as f(z) = u(x,y) + ivix,y), where u(x,y) and vi(x,y)
are real-valued functions of the real variables x and y. We

often denote u as Ra w and v as Im w.

DEFINITIDN 1.3: Let w(t) = u(t) 4 ivi(t) be a complex~
valued function of a real variable t over a given interval
alt<b, where u and v are real-valued piecewise continuous

. (% b
functions of t and a,b € R. Then I.w(t)dt = Ilu(t)dt +

. b . b . (™
ifivttidt. 1t follows that Re [iwctrdt = [% Re [wetilat.

THEOREM 1 .1: Given I:w(t)dt in definition 1.3,
| [iwetrde 1 <[5 wetonat. (3

PROOF: Assume a < b , and that I:w(t)dt is a nonzero
complex number r‘oe"o. So rg = J.:e'wow(t)dt. = Re J‘:eﬁ.ow(t)dt =

J‘:Re(e-ioow(t))dt. But Re(e Ow(t)) < e Pwit) =1 e "° [wit)] =

(L0

Wit). So rp £ [} m(tildt. Since rp = Irpe 0l = | [Tw(tidt |,

then | jwctrde | < [ mct)ndt.

DEFINITION 1 .4: A path in a region G C C is a
continuous function 7:[a, bl » G for some interval [a,b] in R.
If 7"(t) exists for each t in [a,b] and 7 :[a,b]l] » € is
continuous, then 7 is a smooth path. If there is a

partition of [a,b], a = tg < t; < ... € th = b, such that 7 is



smooth on each subinterval [t,.;,t], £ £ j { n, then 7 is a
piecewise smooth path, or a8 contour. When only the initial
and final values of z(t) are the same, a contour C is called
a simple closed contour. In this thesis, the image of 7[a,b]

Wwill be denoted by 7 when this will not cause any confusion.

DEFINITION 1.5: Suppose that the equation z = z(t)
(a £t € b) represents a contour C, extending from a point
z, = z(a) to a point zz = z(b). Let f(z) = ulx,y) +ivix,y)
be piecewise continuous on a contour C; that is, if
z(t) = x(t) + iy(t), the function flz(t)] = ulx(t), gl(t)] +
ivix(t), y(t)) is piecewise continuous on the interval aft<b.
We define the line inteagral, or contour integral, of f along
C as follows: [cf(z)dz = J’:ﬁ[zu)]z'(t)dt.

Mote that since C is a contour, 2'(t) is also piecewise
continuous on the interval aft{b, and the existence of

Icf(z)dz is ensured.

THEOREM 1 .2: Ucf(z)dzlg ML, where M = max{|f(z)]:z € C)
and L = length of the contour C (L = I:R'(tﬂdt).[S]

PROOF: By theorem 1.1 and definition 1.3, Ucf(z)dﬂ =
| [} frzee zctode 1 < ) flzet] z(t) | dt =

a
j"lf[z(tnl-lz'(t):dt < M-j::z'<t>:dt=m-1_.

a
THEOREM 1.3 (Fundamental Theorem of Calculus for
Contour Integrals): Suppose T:[a,b] » € is a piecewise

smooth path and that F is a function defined and



analytic on an open set G containing 7. Then
I7F’(z)dz = F(7(a)) = F(T(b)). In particular,

if 7(0) = 7(1), then [, F/(z)dz = 0. [4]

DEFINITION 1.6: A set A is called convex if it
cantaine the straight line segment batween every pair of its
points. That is, if z5 and z; are in A, then so is

sz, + (1-s)zy for every number s between D and 1.

THEOREM 1 .4 (Cauchy’'s Theorem): Given an open set
UCC, let f:U - € be continuous on U and analytic on
U - {zp), where z; is some fixed point of U. 1# U is convex,

then [,#(z)dz = O for avery closed path 7 C U. [2]

LEMMA 1.1: Lat T be the circle | z - z, | = r. Then

I‘”id?z"z'a = 2mi. [6]

PROOF: We parametrize I' by z = T'(8) = z5 + re,

0<£6<2n. So by the chain rule, T’'(§) = ire®de = dz, and

27 L an
Jr 535~ = "i:"e = i I 40 = 2xi.
o 0 2o + re® — z; )
D(zp,r) will be used to represant the open disk with

center z, and radius r. D(z;,r) will be used to represent

the closed disk with center z; and radius r.

THEOREM 1.5 (Cauchy’s Integral Formula): Let f be

analytic on an open set U containing the circle



C=1{z : |lz—25| = r}) and its interior. Then for any
z € Dizp,r), f(z) = Z%TJC £) aw. (2

PROOF: Let g(nw) = £ = { if w €U and w # z, and
g(z) = f’(z). Since f is analytic on U, g is continuous on U

and analytic on U-{z), and by theorem 1.4, Icg(w)dw = 0;

i (z)
that is, i%? IC %éﬂgdw = — IC ﬁ&& . By lemma 1.1, the

integral on the right is equal to 2ni, and we have

i flw) _
mJC W:-z—dw = f(z).
THEOREM 1.6 (Cauchy’s Integral Formula for
Derivatives): Let f be analytic on an open set U containing
the circle C = { z : |z—zyl = r) and its interior. Then f has
derivatives of all orders for any z € D(zy,r), and
(k) Kt £ )
£ (z) = ST J (w—z)"+‘dw , for K = L, 2, 3, ... . [2]

PROOF : We will prove this using induction. HWe first

prove it for k = 1. HWe will do this by showing that

m l:“z*'h’ = flz) _ —LI Flw) dwj] = 0. By theorem {.5,

li -
h=0 h Zri (Ww—2z)2
flz+h) — f(z) _ i £ (W) _ i finw)
h = Zﬂihjc W—2Z—h aw Prin|C wW-2 dw. So
flzthi—f(z) _ 4 fiw) dw = i flw) _flw) _hflw) dw
h f{w) ; ;
= dw . We know f is bounded on C; and if
2ﬂ1JC (W—2)2(w—2z—h)

Ww E€C, z is a fixed element of D(zy,r), and h is small enough

so that D(z,h) C D(zg,r1}, then [(w—z)2(w—~z—h)| is bounded

f i) dw — D as h — 0.

away from 0. So D
2ni)C (W=—2)(w~—2z=h)



Assume the theorem is true for n = k. Then

(K) (x)
f K (z+h) - f (Z) = 5.5 - fin) — fiw) gw, and
h 2Znin |C |(u—z—h)KH (w—z )K*

() ()
£ (z+h) — § (z) _ (K4+1)! (W)
= —f;r—Jcri—wﬂd” =

w—z )%+

K! . i - 1 _ hik+i)
Znih JC Fow [(w—z—h)"“ (w—z)KH <w-z)"+2]dw'

CLAIM: The expression in brackets is of order h?, so the
integral approaches 0 as h — 0.

PROOF OF CLAIM: The expression in brackeats, when combined
into a single fraction by use of the common denominator,

becomes

K42 _ =z (w—z2—h )M h(k41) (w—z—h)*

(W—z—h )’ (=2 )K*2

(W—2)

By use of the binomial theorem, the numerator becomes
(w—2)*2 (w—z)[(w-z>““ + (¢Yc—m =2 + .+ (—h)““]
h(k+1)|:(w-z)"“ + (Y e-mm-2 + .+ (-h)‘“‘], and the

fraction can be simplified to

R (k+1)2(w=2)% 4 [z-w—h(k+ 0] (§)(=n)T w=z)%s +(—h>"“]

(Ww—z—-h)(pyz K$2

The expression in brackets is of order hz, and so the
integral approaches 0 as h — 0. Thus the formula holds for

n =k + 1, and the theorem holds for any K = 1, 2,



DEFINITION £.7: A subset K of a metric space (X,d) is
compact if for every collection © of opan sets in (X,d) with
the property K C {( G : G € € }, there is a finite number of

sets G;, ..., Gn in © such that K C 6, U G2 U ... U Gn.

THEOREM 1.7: Let 7Y be a path, and let g:7 » C be a
. . (i)
continuous map. Define, for each z € C-7, F(z)=i%T17%F:idw.

(i) Then all derivatives of f exist at z, and

F(K)(z) =liL 7-—2151—-dw. Thus f and all its derivatives are
Zmi | f(y—z)KH
analytic on C-7. (ii) Furthermore, F(K)(z) — 0 as z 4 o

for each K. [2]

PROOF: The argument for part (i) is the same argument
used in theorem 1.6, except that f is replaced by g in the
integrands, and will not be repeated. The only time we used
the fact that f was analytic (and that C was a circle) was
when we used theorem 1.5 to express f(2) in terms of f(w),

w € C. For part (i), this step is provided in the
hypothesis. To prove (ii), we have 7 a compact set, so 7 is
bounded. That is, |z| £ r for any z € Y and for r some
nonnegative real number. So 7Y C D(D,r). Since g is
continuous, la(z)] £ M for any z € 7 and for M some
nonnegative real number, so by theorem 1.2, for Jz| > r than
£z g K ke (lensth of 1) 4 0 as z - .

THEOREM 1.8 (Analytic Convergence Theorem): (i) Let
fy, fz2, ... be analytic on the open set U C €L, and assume

fn — f, uniformly on compact subsets. Then f is analytic
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on U. (ii) For each p =1, 2, ... , F:') — F(P)

on U,
uniformly on compact subsets. [2]

PROOF: (i) Let z € D(zy,r) where D(z;,r) C U. Let

= {z': ’ = _ 1 friw)
' = ({(z': |2/=25l = r}. By theorem 1.5, fpl(z) = 557 Jr 3 dw

Since ' is compact and | w—2z | is bounded away from 0 on T,

fnlw) fim) ; i fiw)
=7 — J—% uniformly onT. So f(z) = 521 |7 =z dw. (Mote

that f is continuous on I' because of the uniform convergence
of {fn), so that the integral exists.) By theorem 1.7, f is
analytic at z, and since z is an arbitrary point of U, f is
analytic on U.

. (p) p! flw)
(ii) By theorem 1.6, f (z) = Sxi Ir (w—z)P*lde for

z € D(zp,r) and FAP)(z) = é%% Ir Fni) aw So

(w=z)F*
(p) (p) _ p! fRiw)—Ff(w) =
fpn (z)-f (z) = Sxi Jr PP dw. If z € D(zg,ry),
(p) {(p)
for ry < r, then by theorem 1.2, | fn "(z) -~ ¢ (z) | £

|
B maxi fnlw)—F )l - (—2% —+ 0 as n — ®. Therafore,
wWer r—ry

(p)

I3 (p)

uniformly on any closed subdisk of D{(z5,r).

Since 2zg is an arbitrary point of U, F:') — F(')

- f
uniformly on

compact subsets of U.

Power Series

DEFINITION 1£.8: The power saries 5§anwn, with an and w

n=0

complex, is said to converge at the point wy; if and only if



n
Z‘akwg approaches a complex number B as n — o, The series
k=0

converges absolutely at wy if and only if '§|anw9| €< . The

series converges uniformly on the set S if and only if there
is a function B:S » € with the property that for each ¢ > D
there is an integer N such that Ikzngakwk — B(w) | < ¢ for all

w € S and all n 2 N.

THEOREM 1.9: [f ian(z—zo)n converges at the point 2z,
n=0
where |z—z53] = r, the saeries converges absolutely on D(zy,r),

uniformly on each closed subdisk of D(z5,r), hence uniformly

on compact subsats of D(zy,r). [2]

PROOF: jap(z'—2o)" = lapn(z—20) 1l ;T—;'og (", Assume

ian(z—zo)n converges at the point z, where |z—-25] = r. Then
n=0
an(z—zg)" — 0, and {ap{z—2g) Mo is bounded. Let M =

o , , 2~z ‘
sup(lan(z-20)Dpwo. 1f I1Z'~2ol < ~ < r, then I3=321 ¢ & < 1.

Since i‘;H("T‘:)n is a convergent geometric series, we use the
n=
comparison test for power series, and |} an(z’—zo)n | =
lap(z—2¢) "I ;'_'—2239 " < M('%')” tells us that gan(z'-zo)n
converges absolutely . For z/ € D(z5,r’), the Weierstrass
M-test (4] tells us that i;an(z’—-zo)n converges uniformly on
n=

that closed disk, and hence uniformly on compact subsets of

D(zg,r).

THEUREM 1 .10 (Taylor's Theorem): Let f be analytic on
(n)
D(zg,r). Then £(z) = fgf—nﬁ(z-zo)", for z € D(zg,r). The
n= :
series converges absolutely on D(zy,r), and converges

uniformly on compact subsets of D(zy,r). [Z]



PROOF: Let |z—2zgl < ry < r, T = {z : lz—25] = r;}. By

= 1 fiw) fiw) i
theorem 1.5, f(z) = 522 Jriﬁgid” = f%? Irﬁ:73 { = ]dw

W—=2g

n
= J F ) (z-z )+1 dw. There exists an M such that
2"” ns0 (W—2g)

IF{w)l € M for all w €T, since f is continuous and T is

If(w)(z—29) [ rz \n

compact. So if |z—2zpl £ rz < ry, ' s
W—Zg

Then E;F(w)
n=0 (W—2q

convergaes uniformly for w € T. We

(n)

. (2Zp) n
obtain f(z) = (z—2zo)" i.j flw) dw = ———————-(z—z )
2z20" gfro st = :

by theorem 1.6. By theorem 1.9, the series converges
absolutely on D(z5,r), and converges uniformly on compact

subsets of D(zg,r).

THEOREM 1 .11: I1f a function g can be represented by a

08
power series expansion E:an(z—zo)n in a neighborhood of z;,
n=0

then g is analytic at zp. [2]
PROOF: Assume a function g can be represented by a

o
powar series expansion }Ean(z—zo)n in a neighborhood of z;.
nz0

Let gn(z) = };ak(z ~20)%. Since Eaak(z —2z0)% is a polynomial,
k=0 =0

it is analytic on €. Than {gn(z))} converges to g(z) on some

disk D(zg,r), and by theorem 1.9, it converges uniformly on

i0

compact subsets of D{(z5,r). By theorem 1.8, g is analytic on

D(zg,r).



DEFINITION 1.9: Let f be analytic at zp with power

series expansion f(z) = sban(z—zo)n. Then f is said to have

n=0
a zero of order m at zp if and only if an = 0 for N < m and
am # 0. ("Multiplicity” is sometimes used as a synonym for
"order”.) This means that f(z) = (z—zo)mg(z). where (by

theorem 1.11) g is analytic at z; and g(z;) # 0. A zero of

order 1 is sometimes called a simple zero.

DEFINITION 1.10: A space U is connected if and only if
the only subsets of U that are both cpen and closed in U are

the empty set and U itself.

THEOREM 1 .12: Let f be analytic on the open connected
set U C C. Suppose that f has a limit point of zeros in U,
that is, there iz a point z; € U and a sequence of points
zZn € U, zn # 2o, such that zn — zp and f(zp) = 0 for all n
{hence f(zg) = 0). Then f is identically 0 on U. [2]

PROOF: By theorem 1.10, we can expand f in a Taylor

series about zp, say f(z) = jéan(z—zo)n,l z—2zp | < r. WHe
n=0
show that all ap = 0 by assuming this is not so. Let m be

the smallest integer such that ap # 0. By definition 1.9,
f{z) = (z—zo)mg(z), where g is analytic at 2o and g(zgy) # 0.
By continuity, g is nonzero in a neighborhood of 2z,
contradicting the fact that zy; is a 1limit point of zeros.
Let A = {z € U: there is a sequence of points zp € U,
Zn ¥ Z, Zn — 2, with flzr) = 0 for all n}). Since z; € A by

hypothesis, A is not empty. If 2z € A, then by the above

i1
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argument f is zero on a disk D(z,e) and it follows that
D(z,e>) C A. Thus A is open (in €, and so in U). If we can
show that A is also closed in U, the fact that U is
connected gives A = U, and we will be done.

Let {wn} €T A, such that wn - w and W € U, If any of
the wn = w, then w € A and we're done; S0 assume W # W,
n =1, 2, ... . But since wp € A and f(wp) = 0, then w € A

by definition of A. Thus A is closed in U.

THEOREM 1 .13 (ldentity Theorem): Let f and g be
analytic on the open connected set U C C. Let S be a subset
of U having a limit point in U. If § and g agree on S, they
agree everywhere on U. [2]

PROOF: Let h = f — g. Then the hypothesis of theorem
1.12 is satisfied, and h is identically 0 on U, which says

that f = g everuwhere on U.



CHAPTER 2
THE SPACE OF ANALYTIC FUNCTIONS: A(U)

DEFINITION 2.4: Let € be the set of complex numbers
and U be an open subset of €. Let A(U) be the set of all
analytic functions on U, and C(U) the set of all continuous

functions from U to C.
Construction of a Metric on A(UY)

We will define a metric d on C(U), prove that it is a
metric, and thus show that (C{U),d) is a metric space. It

follows that (A{U),d) is alsc a metric space.

DEFINITION 2.2: Let Kn = {z € C:lz| { n and | z—w | 2

1/n for all w € C-U)}.

The Kp are compact sets, since thew are closed and
bounded. Moreover, Kn € Ko,y € ... , and URF_4 Kn = U. For
any compact subset K of U, K has a positive Euclidean
distance from €C-U. To make K C Kp , we only have to make n

csufficiently large.

DEFINITION 2.3: Let |If-glk, = sup {(f(z)—g(2Zz)]| : z € Kp)

o0

; _ Z 1 | f—9 Wxn
We defina d{(f,ag) = P 2” T+ 7 F-9 irn for f£,9 € C(U).
==

13
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Note: since || f-g Ik, is a continuous real-valued

function on a compact set, the function hae a maximum value.

To show that d is a metric on C(U), we need to show
that d satisfies the following properties:

(1) d(f,g) 2 0 for all f,g € C(U); d(f,g) =0

if and only if f = g.

(2) d(f,g) = d(g,f) for all f,g € C(U).

(3) d(f,g) + d(g,h) 2 d(f,h) for all f,a,h € C(U).
(i) Since | f(z)—g(z) | 2 0O for all z € U, then d(f,g) 2 O
for all f,g € C(U). (ii) Since | f{z)—g(z) | = | g(z)-f(2) |
for all z € U, the property that d(f,g) = d{(g,f) is fairly
easy to show, and will not be proved here. (iii) It takes a
bit more work to show that d satisfies the third property.

We will use the fact that for p,a nonnegative real numbers

-SRI
and p £ g, then T+p £ iT+a
1 W F=h Ky i 1 I f-a+3a—h Ik,
d(f.h) = i T+ 01 Foh ik, ~ T+ 1 f—ota=h Ix,
n=4 n=i

< i 1 Il £-3 Iky + Il a—h Iy
L 271 + T F-a o+ T 9-h Ikn

i 1 I f—9 fkn +
v 2" 4 + Il f—g Ikn + | 9-h Ik,

i I a~h likp
2" 4L + | f—g kn + | a-h |k,

=1

3
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4 U f—g lkn 2 i g—h lkn
$ 2" L+ 1 f‘—gllxn+ 151"‘1+|| g-h ik,

n=1 Nx=

= d(f,g) 4+ d(g,h).

We have shown that d is a metric, and therefore (C(U),d)
is a metric space. We use the fact that subspaces of metric
spaces are also metric spaces, and have immediately that
(A(U),d), a subspace of (C(U),d), is alsoc a metric space. When
we discuss (C(U),d) and (A(U),d) in the remainder of this
thesis, we will represent them as C(U) and A(U),

respectively.

Convergence

DEFINITION 2. 4: A sequence of functions {fp} is said to
converge uniformly on U if there is a function f:U = € such
that for each ¢ » 0, there is a J such that for esach positive
integer j, if 3 2 7 then |Fj(z)—F(z) | < e for all z € U. MWe
denote this by "?i — f uniformly on U”.

THEOREM 2.1: If f,, f2, ..., £ € C(U), then d(f,;,f) 9 0
if and only if Fj — f uniformly on compact subsets of U. [2]

PROOF: Assume d(Fj,F) — 0. Then | Fj—F Ikn &+ 0O as
i — o for each n. If K is a compact subset of U, then K is
contained in some Kp, and | fj—F I £ | fj—F Ikn— 0. Then as
i — oo, | Fj—F ikn & 0, which implies that | Fj(z)—F(z) | 4 0

for z € K, and Fj — f uniformly on K.



i6

We assume that fj — f uniformly on compact subsets of
U. Given e > 0, choose N so that 3 2" < e/2. To find this
n=N+4
N, we do the following:

Pz $2"4 $ 2N ag 2N 20 ooy
n=4 n=4

So to make 5§ 27" < ¢/2, choose N so that 27 ¢ e/2. We
n=N+4

I f—F ey
TF 0 F—F Ty

choose J so that if jJ 2 J, then < ¢/2, or that

j 5 E - This is possible since fj — f uniformly

on compact subsets of U. (The previous ineguality actually
holds for all natural numbers n < N. since K; C Kj for

i ¢ j, and we will use this fact to finish the proof.) So

given ¢ » 0O, and having chosen the appropriate N and J, we

have d(FJ,F) =

221+ 1 F—F Ik,

Mz
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DEFINITION 2.5: Let (X,d) be a matric space. A
sequence (xﬁ;O of points of X is a Cauchy sequence in (X,d)
if given ¢ > 0, there is an integer N such that dixp,xm? < ¢

whenever n,m 2 N.



17
DEFINITION 2 .6: The metric space (X,d) is complete if

every Cauchy sequence in X converges.

An argument similar to that used to prove Theorem 2.1
could be used to show that {fp} is a Cauchy sequence in C(U)
if and only if Fi - Fj — 0 uniformly on compact subsets of

U. We will use this result to prove the fellowing theorem.

THEOREM 2.2: (i) C(U) is a complete metric space;
(ii) A(U) is a closed subset of C(U); (iii) A(U) is a
complete metric space. [Z2]

PROOF: (i) Let {f;, fz, ..} be a Cauchy sequence in C{U).
Then d(Fi,Fj) < ¢ whenever i,j 2 some J, or d(Fi,Fj) — 0 as
i,} 5 o. Then supl | Fi(z)—Fj(z) Il : 2z € Kn } 4 0. Since
this is true for any n, then for each z € U, {[f;(z),f3(2),..}
is a Cauchy sequence in the complete metric space of complex
numbers. So Fj(z) approaches a limit f(2). We need to show
that f; 9 f uniformly on K. Given any compact subset K of U
and ¢/2 » 0, then for some J, Ifi(z)—Fj(z)l £ e&/2 for all
z € K when 1,j 2 J. 1f 2z is arbitrary in K but fixed, than
there is an integer j 2 J so thatlfj(z)—F(z)| € e€/2. But
then | f;(2)—f(2) | £ |Fi(z)—Fj(z)I + IFj(z)—F(z) | < ¢ for
all z € K when i 2 J. Thus f; 4 f uniformly on K. By the
uniform limit theorem [3], f is a continuous function. Thus
f € C(U), and C(U) is complete.

(ii) By theorem 1.8, if a sequence of analytic

functions on U converges to a function f uniformly on
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compact subsets, then f is analytic on U. Therefore,
A(UJ) is closed in C(U).
(iii) A(VU) is complete since it is a closed subset of a

complete space

THEOREM 2.3 (Hurwitz’ Theorem): Let f;,f2,... € A(U),
and let fnp & f uniformly on compact subsets of U. Suppose
that D(zy,r) is a subset of U, and f is not zero on
{z : | 2z—25 | = r). Then there is a positive integer N such
that if n 2 N, then fn and f have the same number of zeros

in D{zy,r). [2]

PROOF: Let ¢ = min { [f(2z)] : | z2=25 | = r ). This is
possible since f is continuous on a compact set. Then for n
large enough, | f(z)—fpr(2) | ¢ ¢ for all z € D(z,r), since

fn & f uniformly on compact subsets of U. Now | f{z)—Ffpr{z) |
<e £ 1f(2)) for | z—2z5 | = r. Rouche’s Theorem [1i] states that
given a2 simple closed curve ¥ with f and g analytic inside
and on 7, with 7 passing through no zeros of g, and assuming
| f(2z)—g(2) | < | f(z) | on 7, then f and g have the same
number of zeros inside 7. We use this theorem to conclude

that fn and f have the same number of zeros in D(z,,r).

THEOREM 2.4: Let f;, fz, ... € A(U), and let fn 4 ¢
uniformly on compact subsets of U. If U is connected and
the f are never 0 on VU, then f is either never 0 or
identically 0 on U. [2]

PROOF: We will prove this by proving the
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contrapositive. Let U be a connected subset of €. Assume
f(zg) = 0 and f is not identically 0 on U. We will use the
contrapositive of theorem 1.12. It states: let f be
analytic on the open connected set U C £; suppose there is a
point z; € U and a seguence of points zn € U, z2n # 2, such
that zn = 2z, and f(zp?) = 0 for all n (hence f{(z;) = 0);
then f is identically 0 on U. Since we’'re assuming f is not
identically 0 on U, then there doesn’t exist a sequence of
paoints converging te zp; such that f{(zp) = 0 for all n. This
implies that there exists a closed disk D(z,r) C U such that
f isnot Don{ z : | z—2p | =r 3} From theorem 2.3, there
is a positive integer N such that for n > N, fn and f have
the same number of zeros in D(zg,r). Since f has a zero in

D(zyr), the fn must have a zero in D(zy,r).

THEOREM 2.3: Let f;, fz, ... € A(U), and let fn — f
uniformly on compact subsets of U. If U is connected and
all the fp are one-to-one, then f is either one-to-one or
identically constant on U. [Z]

PROOF: Let z;, € U, and set agn(z) = fp(z) — fRrzy).
Since fp € A(U) and since the difference of two analytic
functions is analytic, an € A(U—{z5)). Also, an 4 f — f(zy)

uniformly on compact subsets of U—{zg}, and U—{z,) is

connected. For all n, gn is never D on U-{z;} (since f is
one-to-one). So by theorem 2.4, f — f(23) is either alwayus
0O or never 0 on U—{zy). Since 2z; is arbitrary, f is either

identically constant or one-toc-cne.
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Equicontinuity and Boundedness

DEFINITION 2.7: The functions in a family F of
functions are said to be equicontinuous on a set U C C
if and only if, for sach e¢ > 0, there exists a § > 0 such
that | f(2)—Ff(2p) | € ¢ whenever | z—2zp, | < § and 25,z € U,

simultaneouslu for all functions f € F.

DEFINITION 2.8: The set F C C(U) ig bounded
if and only if for esach compact K C U,

sup{ Iflk : f € F ) < oo,

THEOREM 2.6: Let F be a bounded subset of A(U). Then
F is equicontinuous at each point 2z € U. [2]
PROOF: Let D(zor) C U. If 2z € D(zy,r/2) and £ € F,

then theorem 1.5 (Cauchuy Integral Formula) saus that

- = 1 1 _ A (- flw)dw
Flz)—Fl29) = sz“"“’[w—z gl = sz z°>Jr(N_z)(w_z°)

where ' ={ z : | z—2p | = r }. Let M = sup{ |iflilr:f € F ). ]
exists since I' is a compact subset of U, and by hypothesis,

M ¢ . By theorem 1.2, ljpf(z)dz | £ M(I') «» length I', where

M(F) = max{ | f{z) | : z € ') From this, we have
| f(2)=Ff(25) | £ %i" z2—25 | - [ M/(gﬂ ]« 2nr. Simplifying,
we get | f(z)—Ff(Zzp> | £ )| Z2—25 | + 4M/Pr. 1¥f we have

§ < minfr/2, (re)/4M), then for | z—2zp | € &, | fF(Z)=Ff(25) | < ¢

for all f € F.
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DEFINITION 2.9: Suppose {fply iS & sequence of
functions and that U is a subset of € such that U lies in
the domain of fp for each integer n 2 0. If {(fr(z))n,
converges for each z € U, then {fply, converaes pointwise on
U. If {fplzp converges pointwise on U, we define f:U » C by
f(z) = lég fhr(z) for each z € U. We say that fn converges

pointwise to f on U.

THEOREM 2.7: Let F C C(U), and assume F is
egquicontinuous at each point of U. 1f fn € F and fn
converges pointwise to f on U, then £ € C(U) and fp
converges to f uniformly on compact subsets of U. [2]

PROOF: Choose ¢ >» 0. Let K be any compact subset of
U, I1f z € K, there is a disk D(z,§) C U such that if
z’ € D(z,8), then | glz’)-g(z) | ¢ ¢/5 for all g € F , since F
is eguicontinuous. In particular, | fR(2')—fR(2Z2) | € ¢/5 for
n =14, 2, ... Thus |[f(z)—f(2')| = | f(2) — fplz) + fplz) —
fR(z’) + fp(2's — F(2) | S | fFlZz)=FfR(z) | + | fRp(z)—FfRr(2') | +
| fr(z)—f(2’) |\. Since fn converges pointwise to f, there
exist Ny and N such that for n 2 Ny, | f(z)=-FfRr(z) | ¢ /5T,
and | fr(z’)=Ff(2") | <e/5 for n > Np. Choose N = max{N; ,N;}.
Then | f(z)—f(z’) | < e.

We have proved that f is continuous. Let K be any
compact subset of U. So K C UL, D(z;,8;) for some 2z;,23,..,2n
and for &§; < 8. Also, | flz)—-Ffn(z) | £ | F(z)—F(zj) I +
]F(zj)—Fn(zj)l + an(zj)—Fn(z) |. 1f z € K, then

z € D(zj,Sj) for some j. By continuity, the first term on
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the right (above) is less than %e. By equicontinuity, the
third term is less than ¢/5 . By pointwise convergence,

for each D(zj.sj) the second term is less than ¢/5 for

sufficiently large n, say n 2 nj. 1f we choose
N = max{nj, i =1, 2, ... , m}, then for n 2 N,
] P(zj)—Fn(zj)I < &/5 for all z;, and also | f(z)=Ffp(2z) | < ¢

for all z € K. We have proved that fp converges to f

uniformly on compact subsets of U.

THEOREM 2.8: Let F C C(U), and assume F is
equicontinucus at each point of U. If fn € F and fp(2)
converges to a limit function f only for z in a dense subset
of U, then fp converges to a limit function f for all z € U.
Also, f € C(U), and fn converges to f uniformly on compact
subsets of U. [2Z]

PROOF: Let S be a dense subset of U. WHe assume fp
converges pointwise on 8. Choose ¢ » 0O, and any 2 € U.
There is a disk D(z,8) € U such that if z' € D(z,8), then
| g(z’)—a(z) | € ¢/3 for all g € F. Since § is dense, we can
find w € {S ] D(z,8)). Hence | fplz)—=Ffnr(z) | £ Ifm(Z)—Fpiw)| +
Fniw)—=Ffalw)| 4+ Ifplu)—Ffp(z)] < /3 + fnln)—Ffpin)] + ¢/3 = ¢
for n and m sufficiently large (since a convergent sequence
in a metric space must be a Cauchy sequeance). Because
{(fr(2)) is a Cauchy sequence for any z € U, therefore (fp)
converaes pointwise on V. Using theorem 2.7, we find that
{fn} converges to a continuous function f on U, and fpn

converges to f uniformly on compact subsats of U.
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THEOREM 2.9 (Montel'’'’'s Theorem): Let F be a bounded

subset of A(U). I1f {fp) is a sequence of functions in F,
there is a subsequence {Fnk, k = 1, 2, ..} converging
uniformly on compact subsets to f € A(U). [4]

PROOF: Let {z,,2;,..) be a countable dense subset of U
(for example, all points of U whose real and imaginary parts
are rational numbers). Let F be a bounded subset of A(U),
and choose {f;, f, ..} CF. Since F is bounded, {fnh(2z;)} is a

bounded sequence of complex numbers, and by the Bolzano-

Weierstrass theorem [1] it has a convergent subsequence. So
we can extract a subsequence { f (2;), f2(24), ... } converging
to wy. Then {f;;(zz), fi(23), ...} ie a bounded sequence of

complex numbers, and we can extract a subsequence
{fa3(23), faa(zz), ... )} converging to wy. Continuing this

process, we produce an array:

{fy3025), fial24), fizl2y), } 9 Wy
{FQ“(ZQ), faal2Za), ‘F23(22), ) e J W2
{fz3¢(25), faa(25), fza(2Zy), } 9 Wa

in which the k'™ horizontal row converges to some complex
number w;, and the functions used in each row are selected
from those in the row above. Let gn = fpn for n =1, 2,
{9n) is a subsequence of the original sequence of functions,
and {an)yy is a subsequence of {f, ., f,,, .. }. So

}32 gj(zk) = W, for each k = 1, 2, .. . By theorem 2.6, F is

equicontinuous at each point of U. And by theorem 2.8,
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{an} converges uniformly on compact subsets of U. By theorem

1.8, {gn) converges to f € A(U).

Compactness

Compactness for subsets of A(U) is the next property wne
will investigate. By using our notion of boundedness, we
Will show that (like the real number line) a subset of A(L)

is compact if and only if it is closed and bounded.

DEFINITION 2.10: Y is sequentially compact if every

sequence in Y has a convergent subsequence.

THEOREM 2.10: Let F C A(U). F is compact
if and only if F is closed and bounded. [2]

PROOF: Let F C A(U), and let F be closed and bounded.
If {fpn) C F, then by theorem 2.9, there is a subsequence
converging to f € A(U), uniformly on compact subsets. Since
F is closed, f € F. S0 F is sequentially compact, and since
F is a metric space it follows that F is compact. To prove
the converse, assume F is compact. Any compact subset of a
metric space is closed, so all we need to show is
boundedness. We will first prove that the map f = |flx from
CU) to the reals (for K a fixed compact subset of U) is
continuous. 1 d(fp,f) —- 0, then by theorem 2.1, fn — f
uniformly on K. This says that for each ¢ > 0O,

[friz)=Ff(2)] < ¢ for every n 2 some N and for all z € K.
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This implies that || fp—f Ik @ 0. From the property that

| lal=Ibl | £ (a~b} for a,b € R, | Ifplk — Iflk | £ 0| fn—Ff Ik = O,
and the map is continuous. Since F is compact, the image

{ Ifl : £ € F } under the above continuous map is compact,
and in this case must be bounded. Thus sup{lfik : f € F} € o,

which proves that F is bounded.

THEOREM 2.11i: Let F be a nonempty compact subset of
A(U) . If z5p € U, there is a function g such that
| 9'(zg) | 2| £f/(zp) | for all £ € F. [2]

PROOF: By theorem 1.8, if a sequence of analytic
functions f,, fz, ... (on the open set U C C) converges to f
uniformly on compact subsets, then f is analutic, and
fh & £ on U, uniformly on compact subsets. We need to show
that the map f = | f'{25) | of F into the reals is continuous.
By theorem 2.1, if {fp) C F and d{fpn,f) - 0, then fn — f and
{by theorem 1.8) f'n & f’, uniformly on compact subsets of U.

For ¢ > 0O, there exists a &§ such that for | fp—Ff | ¢ 8,

[f'nlzg) — f'(zp)| € ¢ for zg € K (compact) C U. So our map is
continuous. Since the continuous image of a compact set is
compact, { | f'(z) | : £ € F ) is compact. Since a compact

subset of R is closed and bounded, { If’(z3)] : £ € F )
centains its supremum, which we call | g'(z;) {. Therefore,

there exists a function g € F such that | @' (z5) | 2 | £ (2z5) |.

THEOREM 2 .12: Let U be a connected and open subset of

C. let F ={ f € A(U) : ¢ is a one-to-one map of U into
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D(D,1) and | f'(25) | 2 b}, where b is a fixed positive
real number and z; is some fixed pcocint of U. Then F is
compact. [Z]

PROOF: We will prove F is closed and bounded. F is
clearly bounded, since sup{liflik : f € F} £ 1 for each compact
K C U. 1f {fp) C F and d{(fp,f) 4 0, we need to show that
f € F, which would mean that F is closed. Since
d(fp.f) 4 0, fpn = f uniformly on compact subsets of U by
theorem 2.1, and |f(z)] £ L for all z € U. By theorem 1.8,
f € A(U) and also f'n, =& f’ uniformly on compact subsets of U.
It follows from this that | f(zg) | 2 b (since f'n(2zy) 2 b).
From theorem 2.5, we know that f is either identically
constant or one-to-one. Since D < b £ | f'{2s) |, f can’'t be
identically constant. So f is one-to-one, and f € F. MWe
now know that F is closed and bounded, and by theorem 2.10,

F is compact.

THEOREM 2.13: Let {fn) be a bounded sequence in A(U).
I1f {fRn)} is not convergent relative to d, then there are two
subsequences of {fp} converging relative toc d to different
limit functions. [2]

PROOF : 1¥ {fn)} does not converge uniformly on K, then
there exists an ¢ > 0 such that for all n, there is an m > n
such that | fp—fm ik 2 ¢. Choose any positive integer ng;
choose my > n; such that § fn,—fm, Ik 2 €. Now pick an
nz > my, and choose mg > nz such that | frog—fm, Ik 2 €.

Continue in this manner to obtain subsequences { fnj) and
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{ fm; J such that | an—fmjﬂg 2 ¢ for all j.

By applying theorem 2.9 to ( Fnj) and { ij), we can
obtain subsequences { fp )} of { ‘n;3 and { fg ) of { ij) such
that | fr.—fg Ik 2 ¢ for all i; and { fr, } converges to some
f € A(U) and { fg )} converges to some g € A(U) relative to d.
Now ¢ £ |} fr—Ffg Ik £l fr,—Ff Ik + 1| f—9 Ik + | 9—~fg5, Ik, and so
i f~9 Ik 2 ¢€. This says that f does not eqgual g, and we have
two subsequences of {fp)} converging to different limit

functions.

THEOREM 2 .14 (Vitali’'s Theorem): Let {fp) be a bounded
sequence in A(U), where U is connected. Suppose that the
sequence converges pointwise on 5 C U, where S has a limit
point in U. Then the sequence converges uniformly on
compact subsets of U. [2]

PROOF: Given the hypotheses, assume that {(fp) does not
converge uniformly on compact subsets of U. By theorem
2.13, there exist two subsequences of {fp) converging to
different limit functions f and g. Since {fp)} converges
pointwise on S, each subsequence of {fp} must converge at
each point of S to the same limit, so f and 9 must agree on
S. Theorem 41.43 (ldentity Theorem) tells us that f and g
must agree everuywhere on U. We have arrived at a
contradiction, and can conclude that {fp) must converge

uniformly on compact subsets aof U.

DEFINITION 2.11: A family F of funotions is normal in
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U if every sequence (fp} of functions fn € F contains a
subsequence which converges uniformly on every compact
subset of U. This definition does not require the limit

functions of the convergent subsequences to be members of F.

DEFINITION 2.12: The family F C C(U) is relatively

compact if and only if the closure F is compact.

Problems

PROBLEM 2.1: A family F C C(U) is normal
if and only if F is relatively compact.

SOLUTION: Assume that F is normal. Then the
convergent subsequence converges to a limit in F. 8o F is
sequentially compact. Since F is a metric space (subspace
of C(U)), F is compact, and F is relatively compact.

Assume that F is relatively compact. This says that F
is compact. So F is sequentially compact, and each sequence

in F C F has a convergent subsequence. Therefore, F is

normal .

PROBLEM 2.2: 1f F C A(U), F is relatively compact
if and only if F is bounded.

SOLUTION: Assume F is relatively compact. Then F is
compact, and by theorem 2.10, F is bounded. So F must be
bounded, since F C F.

Assume F is bounded. By theorems 2.9 and 2.1, F is



29

sequentially compact, so F is compact. Then F is compact,

and F is relatively compact.

PROBLEM 2.3: Let L be a multiplicative linear

functional on A(U); that is, L:A(U) 4 €, L(af+bg) = aL(f) <+

bL(g), and L(fg) = L(f)L(g) for all a,b € €, and f,g € A(U).
{Exclude the case L = 0.) Then L is a point evaluation;
that is, L(f) = f(2zy) for some 25 € U.

SOLUTION: Let f = k. Then L(f9) = L(kg) = kL(g).
Also, L(fg) = L(f)L(g), and sc for f & k, L(f) = k. Let z
= L(I), where I is the identity map on U. Assume 2o € U.
Then if g(z) = iéia' then g € A(U). Then glz)(z—23) = 1 =

g (I—25). And L(@)(L(I)=L(Zp)) = L(g)(2Zp=—2Zp) = L(1) = 1. MWe

hava L(g)(0) = 0 = 1, a contradiction, and thus 2z € U.
Let £ € ACU), and lat z, = L(1). Dafine ag(z) = ”2)_"_:0("0’

for 2 # Zzp, and g(zg) = f(zg). Then g € A(U), and
g(z)(1—2p) = f(z)—Ff(2Zg). So L(a)(L(I)=L(2Zz5)) = 0 =

L{f)—L(f(25)) = L(F)=-F(2p), and L(f) = fl2z5), where z € U,
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