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CHAPTER 1 

INTRODUCTION 

Let rand 6 be polar coordinates of the point (x,y) 

which corresponds to a nonzero complex number z = x + iy. 

Since x = rocos6 and W = rosin6. z can be expressed in polar 

ieformas z = r ( cos6 + i s i n6 ) . If we define e = cos6 + 

isin6, then we can represent any nonzero complex number z in 

i9exponential form: z = re . 

Analytic Functions 

DEFINITION 1.1: Let f:A H C. where ACe is an open 

set. Then f is differentiable (in the complex sense) at 

. L> l' f ( Z ) - f ( Zo ) . ~ T h . l' . t· d ~ dZo E A 1 T 1 m Z Z ex 1 S \, S . 1 Ii 1 m1 1 sen 0 \, e 
Z~Zo 0 

by f' ( Zo ), or ~: ( Zo ) . 

DEFINITION 1.2: A function f is analytic on A if f is 

differentiable at each Zo E A. A function is said to be 

analytic at a point Zo if it is analytic on a nei~hborhood 

of zo. 

The term NanalyticN is synonymous with the term 

"holomorphic N. A function that is defined and analytic on 

the whole complex plane C is called an entire function. 

1 
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Differentiation AnQ Integration 

Suppose that w - u + iv is the value of a function f at 

z = x + iy, that is f(z) - f(x + iw) = u + iv. This can be 

written as f(z) = u(x,y) + iv(x,y), where u(x,w) and v(x,y) 

are real-valued functions of the real variables x and y. We 

often denote u as Re wand v as 1m w. 

DEFINITION 1.3: Let w(t) ~ u(t) + iv(t) be a complex-

valued function of a real variable t over a given interval 

a~t~b, where u and v are real-valued piecewise oontinuous 

functions of t and a,b E R. Then I:w<t)dt = I:U<t)dt + 

iI:V( t )dt. It follows that ReI:w<t )d t = I: Re [w ( t )] d t . 

THEOREM 1.1: Given I:w(t)dt in definition 1.3,
 

I:w( t )d t I ~ I: Iw <t >Id t. [3J
 

PROOF: Assume a < b , and that I:w<t)dt is a nonzero
 

~ I• -i·O I· -i·Ocomplex number roe'o So ro = a. w ( t ) d t = Re ae w ( t ) d t .. 

-i·O iI baRe ( e w( t ) ) d t . But Re(e-i.ow( t» ~ le-i.ow( t)1 = I e- • o llw( t)1 = 

i·O
lw ( t ) I. So ro ~ I: lw ( t ) Id t . Since ro .... Iroe I = I:w (t ) dt I, 

the n I I:w( t ) d t I ~ I: Iw ( t ) Id t . 

DEFINITION 1.4: A path in a region Gee is a 

continuous function ')':[a,b] H G for some interval [a,b] in R. 

If ')'I(t) exists for each tin (a,b] and ')":[a,b] H C is 

continuous, then')' is a smooth path. If there is a 

par tit ion 0 f [a, b], a = to < t i < ... < t n = b, 5 Uc h t hat ')' i s 
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smooth on each subinterval [t~1,tJ, 1 ~ j ~ n, then 7 is a 

piecewise smooth path, or a contour. When only the initial 

and final values of z(t) are the same, a contour C is called 

a simple closed contour. In this thesis, the image of 7[a,b] 

will be denoted by 7 when this will not cause any confusion. 

DEFINITION 1.5: Suppose that the eQuation z = z(t) 

(a ~ t ~ b) represents a contour C, extending from a point 

Zi = z(a) to a point z2 = z(b). Let f(z) = u(x,y) +iv(x,y) 

be piecewise continuous on a contour Ci that is, if 

z(t) = x(t) + iy(t), the function f[z(t)] = u[x(t), '::I(t» + 

iv[x(t), y(t)] is piecewise continuous on the interval a~t~b. 

We define the line integral, or contour integral, of f along 

C as follows: Icf(Z)dZ = I~f~z(t)]Z'(t)dt. 

Note that since C is a contour, z'(t) is also piecewise 

continuous on the interval a~t~b, and the existence of 

Jcf(Z)dZ is ensured. 

THEOREM 1.2: IIcf"(Z)dZI ~ MoL, where M = max{If"(z)l:z E C) 

and L = 1engthof the con t 0 u r C (L = I: Iz' ( t ) Id t ). [ 3] 

PROOF: By theorem 1.1 and definition 1.5, 'Icf(z)dzl = 

I I: f [z ( t )] z' ( t ) d t I ~ I: I f[ z ( t )] z' ( t) I d t = 

I: I fez ( t)] I , z' ( t) , d t ~ Mol:' z' ( t) , d t = H L.0 0 

THEOREM 1.3 <Fundamental Theorem of Calculus for 

Contour Integrals): Suppose 7:[a,b] H C is a piecewise 

smooth path and that F is a function defined and 
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analytic on an open set G containing ,. Then 

!7F'(Z)dZ - F(,(a» - F(,(b». In particular, 

if ,(0) = ,(1), then 17 F'(z)dz = O. [4J 

DEFINITION 1.6: A set A is called convex if it 

contains the straight lin. segment b.tween every pair of its 

points. That is, if Zo and Z1 are in A, then so is 

SZ1 + (1-s)zo for every number s between 0 and 1. 

THEOREM 1.4 (Cauchy's Theor.m): Given an open set 

U C C, let f:U H C be continuous on U and analytic on 

U (zo) , where Zo issom e fix e d poi n t 0 f U. If U is convex, 

the n 17 f ( Z ) d z = 0 for everye 1 0 &.d pat h , CU. [2] 

LEt11A 1.1: L. t r be the eire Ie I z - Zo I .. r. Then 

Il'z~\o .. 2'Jt i. [6] 

PROOF: We parametrize r by z = r(6) = Zo + re~, 

0~e~2?t . So by the chain rule, r'(e) = irei·de = dz, and 

2 2'lf
i r ,i'de 

dz = 
'Jt i' = i 0 de = 2?t i .Jr z=zo 10 Zo + re - Zo J

O(zo,r) will be u.ed to repre••nt the open disk with 

center Zo and radius r. O(zo,r) will be used to represent 

the closed disk with center Zo and radius r. 

THEOREM 1.5 (Cauchy's Integral Formula): Let f be 

analytic on an open set U containing the circle 
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e = {Z : Iz-zol = r) and its i nteri or. Then for any 

zED ( Zo , r ) , f ( z) - 2; i Je ~~; dw. [2] 

PROOF: Let ~(w) -~ if w E U and w ~ z, and 

g(z) = f'(z). Since f is analytic on U, g is continuous on U 

and analytic on U-{z) , and by theorem 1.4, Icg(W)dW = Oi 

that is, ~ Je t(~idw - ~~~) Je wd~2 By lemma 1.1, the 

integral on the right is eaual to 2~i, and we have 

1 I f (w )d - f ( )
2~ i C w=Y w - z. 

THEOREM 1.6 (Cauchy's Integral Formula for 

Derivatives): Let f be analwtic on an open set U containing 

the circle e = { Z : Iz-zol - r) and its interior. Then f has 

derivatives of all orders for anw z E D(zo,r), and 

(K) K! f(w)Jf (z) = 2--:- C 1<+.1 dw , for K - 1, 2, 3,... [2]
~l (w-z) 

PROOF: We will prove this usin~ induction. We first 

prove it for k = 1. We will do this by showing that 

lim ff(Z+h) - f(z) ....LJ f (w) dWJ = O . By theorem 1.5, 
h-+O l 2~i e (W_Z)2h 

f(z+h) - f(z) -......LJ f ( w ) 1 J fJ.r!1 So
h - 2~ i h e w- z - h dw - 2~ i heW- z dw. 

f(z+h)-f(z) 1 J f (w) dw = _l_J r f (w) _ f (H) hf (H) JdH 
h - 2~i C(w_Z)2 2~ i h CLw-z-h w-z (w_z)2 

= 2h .Je ~(w) dw. We know f is bounded on ei and if 
~l (w-z) (w-z-h) 

wEe, z is a fixed element of D(zo,r), and h is small enough 

so that D(z,h) C D( zo, r), t hen I (w_Z)2 (w-z-h), is bounded 

away from O. So ...h.,.J f (w ) dw ~ 0 as h ~ O.
2~1 e (w-z)2(w-z-h) 
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Assume the theorem is true for n - k. Then 

f (Ie) ( z+h) - f (I( ) ( z ) -K..L f(w) - £(11'4)
h = 2~ih JC L(

r
w-z-h )1(+1 (w-z )1(+1Jdw I and 

f(K)(z+h) _ f(K)(Z) (K+1)! J few) 
h 2'J(i C ( w-z )1(+2 dw ­

1K! J .[ 1 (w-i')"i<+1 - h (k +1) ]2'1tih C few) (W_Z_h)K+1 (w-z )K+2 dw. 

CLAIM: The expression in brackets is of order hZ, 50 the 

integral approaches 0 as h -+ D. 

PROOF OF CLAIM: The expression in brack.ts, when combined 

into a single fraction by use of the common denominator, 

becomes 

K+2 K+1 K+1(w-z) - <w-z)(w-z-h) - h<kt1)(w-z-h) 
(w-z-h )K+i <w-z )I(+z 

By use of the binomial theorem, the numerator becomes 

<w-z )1<+2 _ (w-z) [( w-z )1<+1 + (K/l) <-h) (w_z)1< + ... + (-h )1<+1J 

h(k+1)[<W_Z)K+1 + (Kt1)<_h)<W_Z)K + .,. + (_h)l<+l], and the 

fraction can be simplified to 

h2 (k +1 )2 (w_z)K + [z-w-h (k +1 )][(K2+1) <_h)z (w-z )1<-1+ +(-h )1(+1J 

(w-z-h )I<+i (w-z )K+2 

The expression in brackets is of order h2 
, and so the 

integral approaches 0 as h -+ O. Thus the formula holds for 

n = k + 1, and the theorem holds for an':ll K = 1,2, ... , 
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DEFINITION 1.7: A subset K of a metric space (X,d) is 

compact if for everw collection G of opan sets in (X,d) with 

the property K C { G : G E G ), there is a finite number of 

sets G,1' ... , Gn in G such that K C 0 1 U G2 U .. · U Gn · 

THEOREM 1.7: Let 1 be a path, and let 9:1 Hebe a 

continuous map. Define, for each z e C-I, f(Z)=z.:rI,~~Widw. 
(i) Then all derivatives of f exist at z, and 

f(K)(z) =zK!.J, g(W~+ldw. Thus f and all its derivatives are 
~1 (w-z) 

analytic on C-I. (ii) Furthermore, f(K)(z) -+ 0 as z -+ ~ 

for each K. [2] 

PROOF: The argument for part (i) is the same argument 

used in theorem 1.6, except that f is replaced bW 9 in the 

integrands, and will not be repeated. The only time we used 

the fact that f was analwtic (and that C was a circle) was 

when we used theorem 1.5 to express f(z) in terms of f(w), 

wEe. For part (i), this step is provided in the 

hypothesis. To prove (ii), we have 1 a compact set, so 1 is 

bounded. That is, Iz\ ~ r for any z Eland for r some 

nonnegative real number. So 1 C 15(O,r). Since 9 is 

continuous, Ig(z)1 ~ M for any z Eland for M some 

nonnega t i ve rea 1 number, so by theorem 1. Z, for Izi > r then 

If(K)(z)1 :s: ZK! 
~ 

H ........ ·(length
(Izl-r) 

of I) -+ 0 as z -+ 00 

THEOREM 1.8 (Analytic Conv.rganoe Theorem): ( i) Le t 

f.1, f 2 , ... be anal yt icon the open set U C C, and assume 

f n -+ f, uniformly on compact subsets. Then f is analytic 
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on V. <ii) For aach p = 1, 2, ...	 , f~") -+ f(") on V, 

uniforml'::l on compact subsets. [2] 

PROOF: (i) Let z e O(zo,r) where 15(zo,r) C V. Let 

r = (z': Iz'-zol = r). By theorem 1.5, fn(z) = ~ JrfD('1)dW. 

Since r is compac t and I w-z lis bounded awa'::l from 0 on r, 
fn(w) f(w)· r	 1 J few)... - -+ w-z unlforml'::l on . So fez) = 21fi r w=zdw. (Note 

that f is continuous on r because of the uniform convergence 

of (Tn), so that the integral exists. B'::I theorem 1.7, f is 

anal'::ltic at z, and since z is an arbitr.r'::l point of V, f is 

anal'::ltic on V. 

f (w)(ii) B'::I theorem 1.6, f(")(z) - ~!i Jr (W_Z)p+!dW, for 

(p )	 fn(w)
z e 0 ( Zo , r) and f n ( z) =	 So

21f ~ 1 Jr (w-z )1"+1 dw. 

fn(w)-f(w) df;'P ) ( Z ) -f (p ) ( z) = p! J	 I f zeD ( Zo , r 1 ) ,2'1{ i r (W_Z)I"+1 W. 

(p) (I")
for r1 < r, then by theorem 1.2, I f n (z) - f (z) I ~ 

~ m~xl fn(w)-f(w)I' 21fr _.L. -+ 0 as n -+ 00 Th.r.fore, 
1f wEr (r-r1) 

f~P) -+ f(P) uniformly on any closed 5ubdisk of O(zo,r). 

Since Zo is an arbitrary point of U, f~l") -+ f(l")uniformly on 

compact subsets of U. 

Po"er Series 

DEFINITION 1.8: The power series	 j8anwn, with an and w 
n=O 

complex, is said to converge at the point Wo if and only if 
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:Eakw~ approaches a complex number B as n -+ClO The series 
k=O 

converges absolutelw at Wo if and only if tlanwrl < co The 
n=O 

series converges uniTormly on the set S iT and only iT there 

is a Tunction B:S H C with the property that for each (, > 0 

there is an integer N such that 1 !akwk - B(w) 1<(, for all 

w E S and all n ~ N. 

THEOREM 1.9: If ~an(z-Zo)n converges at the point z, 
n=O 

where Iz-zol = r, the .eri es converges absol utel y on D(zo, r) , 

uniformly on each closed subdisk of D(zo,r), hence uniformly 

on compact subsets oT D(zo,r). [2] 

1 n n n;-:0PROOF: 'an(z -zo) , = 'an(z-zo) '" - 0 I . Assume 

~ an (z-zo)n converges a t the poi nt z, where Iz-zol .... r. Then 
n=O 

an ( z-zo ) n -+ 0, and (an (z-zo) n)~..o i so bounded. Le t M = 
ZI_Z 1 

suP(lan ( z-zo ) nl)~=o. If Iz'-zol ~ r ' < r, the n 1~ I :S; 'F- < 1. 

Since ~H(~)n is a convergent geometric series, we use the 
n=O 

comparison test for power series, and' an(z'_zo)n I = 
n Z'_ZO n r nIan ( z - zo) H 2=2(j I ~ M ( r ' ) tells us t hat tan ( Zl - Zo ) n 

n=O 

converges absolutely For ~ e D(zo,~), the Weierstrass 

M-test [4] tells us that ~an(zl_zo)n converges uniformly on 
n=O 

that closed disk, and hence uniformly on compact subsets of 

D (zo, r) . 

THEOREM 1.10 (Taylor's Theorem): Let f be analytic on 
f(n)(Z )

D( Zo , r ) . Then f ( z) = I 0 (z - Zo ) n, for zeD ( Zo , r ) . The~ n= n.
 

series converges absolutely on D(zo,r), and converges
 

uniformly on compact subsets of D(zo,r). [2] 
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PROOF: Let. Iz-zol < rl < r, r -= (z Iz-zol = r1)' By 

theorem 1.5, fez) =..1....Jf..1.!1Jr~dw few) 1z-zo ]dW2'Jfi	 = 2'Jf~ 1 Jrw- zo [ 1 - w-zo 

nz-zo )
= ~ r L4» 

f ( w ) 
( n+1 dw. There exist.s an M such t.hat 

2'Jf 1 J n-O (w-zo ) 

If(w)1 !:: M for all w e r, since f is cont.inuous and r is 
n 

. ~ I _ I,;' < If (w) (z-zo) I ,;' 1:1. ( ~ )ncompac t. . So 1 T Z Zo .30 r:z r 1 , n+l.30 r r .
Iw-zol 1 1 

00 (z_z)n
Then	 Lf(w) 0 ........ converges uniformly for w e r. We 

n=O (w-zo) 

... ~(n)( )
_"C'T zo( )nfez) .:Jl.,. n 1 J few) dobt.ain = L ( z-zo) 2---:- r n+l w - LJ I z-zO' 

n=O 'Jf 1 (w-zo ) n=O n. 

by t.heorem 1.6. By t.heorem 1.9, t.he series converges 

absolut.ely on D(zo,r), and converges uniformly on compact. 

subset.s of D(zo,r). 

THEOREM 1.11: If a funct.ion 51 can be represent.ed by a 

power series expansion ~an(z-Zo)n in a neighborhood of zo, 
n=O 

t. hen	 51 i sana 1 y t. i cat. zo. [2J 

PROOF: Assume a funct.ion 51 can be represent.ed by a 

power series expansion ~an(z-zo)n in a neighborhood of zo0 
nzO 

Let. 9n(z) - ~ak(Z-zo)k. Since ~ak(Z-zo)k is a polynomial, 
k=O k=O 

it. is analyt.ic on C. Then (gn(z») converges t.o g(z) on some 

disk	 D(zo,r), and by theorem 1.9, it. converges uniformly on 

compact. subset.s of D(zo,r). By t.heorem 1.8, 51 is analyt.ic on 

D (zo, r ) . 
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DEFINITION 1.9: Let f be analytic at Zo with power 

series expansion f(z) - ~an(Z-zo)n. Then f is said to have 
n=O 

a zero of order m at Zo if and only if an = 0 for n < m and 

am ¢ O. ("Multiplicity" is sometimes used as a synonym for 

" 0 r d e r" .) This mea n s t hat f ( z) = (z - Zo ) mg ( Z ) I W here (b y 

theorem 1.11) g is analytic at Zo and g(zo) ¢ O. A zero of 

order 1 is sometimes called a simple zero. 

DEFINITION 1.10: A space U is connected if and only if 

the only subsets of U that are both open and closed in U are 

the empty set and U itself. 

THEOREM 1.12: Let f be analytic on the open connected 

set U C C. Suppose that f has a limit point of zeros in U, 

that is, there is a point Zo e U and a .eQuence of points 

zn E U, Zn ¢ zo, 5 U c h t hat Zn -+ Zo and f ( zn) = 0 for all n 

( hen c e f ( zo) = 0). The n f i side n ticall y Don U. [2] 

PROOF: By theorem 1.10, we can expand f in a Taylor 

- ns e r i e s abo u t zo, say f ( z) = Lan ( z - Zo) , I z - Zo I < r. We 
n=O 

show that all an = 0 by assuming this is not so. Let m be 

the smallest integer such that am ¢ O. By definition 1.9, 

fez) = (z-zo)mg(z), where 9 is analytic at Zo and g(zoJ ¢ O. 

By continuity, g is nonzero in a neighborhood of zo, 

contradicting the fact that Zo is a limit point of zeros. 

Let A = (z E U: there is a seQuence of points zn E V, 

z n ¢ z, z n -+ z, wit h f ( z n) = 0 for all n}. Since Zo E A by 

hypothesis, A is not empty. If z E A, then by the above 
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argument f is zero on a disk D(z,~) and it follows that 

D(z,~) C A. Thus A is open (in C, and 50 in V). If we can 

show that A is also closed in V, the fact that V is 

connected gives A = V, and we will be done. 

Let (wn) C A, such tha t wn -+ wand w E V. If any of 

the wn = w, then w E A and we're done; so assume wn ~ w, 

n = 1,2, ... But since wn e A and f(wn) ... 0, then W e A 

by definition of A. Thus A is closed in V. 

THEOREM 1.13 (Iden~i~y Theorem): Let f and 9 be 

analytic on the open connected set vee. Let S be a subset 

of V having a limit point in U. If f and 9 agree on S, they 

agree everywhere on V. [2] 

PROOF: Let h = f g. Then the hypothesis of theorem 

1.12 is satisfied, and h is identically 0 on V, which says 

that f = 9 everywhere on V. 



CHAPTER 2 

THE SPACE OF ANALYTIC FUNCTIONS: A(U) 

DEFINITION 2.1: Let C be the set of complex numbers 

and V be an open subset of C. Let A(V> be the set of all 

analytic functions on V, and C(V> the set of all continuous 

functions from V to C. 

Cons~ruc~ion of A He~ric on A1YL 

We will define a metric d on C(V>, prove that it is a 

metric, and thus show that (C(V> Id) is a metric space. It 

follows that (A(V>,d) is a150 a metric space. 

DEF INIT ION 2. 2 : Let Kn = (z e C: Iz I ~ nand I z -w I ~ 

1/n for all w e C-V). 

The K n are compact sets, since they are closed and 

bounded. Moreover, K n C K n+ 1 C... and Uc;=1 K n = V. ForI 

any compact subset K of V, K has a positive Euclidean 

distance from C-V. To make K C K n we only have to make nI 

sufficiently large. 

DEFINITION 2.3: Let Uf - 91IKn = sup (\ f ( z ) - 9 ( Z >I : z e Kn) . 
00 

II f-9 nKnWe define d(f/g> = ~ ~ 1 + II f -9 IIK n for f 19 e C (V) . 
n=1 2 

13
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Note: since II ,-g ~n is a continuous real-valued 

'unction on a compact set, the 'unction has a maximum value. 

To show that d is a metric on C(U), we need to show 

that d satis'ies the 'ollowing properties: 

(1 ) d(',g) ~ 0 'or all ',9 e C(V)j d(',9) = 0 

i' and onlw i' , = g. 

( 2 ) d(',g) = d(g,') 'or all ',g e C(V). 

( 3 ) d(',g) + d(g,h) ~ d(',h) 'or all "g,h e C(V). 

(1) Since I '(z)-g(z) I ~ 0 'or all z E U, then d(',g) ~ 0 

'or all ',g E C(V). (ii) Since I '(z)-g(z) I = g(z)-'(z) 

'or all z E V, the property that d(',g) = d(g,') is 'airly 

easy to show, and will not be proved here. (iii) It takes a 

bit more work to show that d satis'ies the third property. 

We will use the 'act that 'or P,Q nonnegative real numbers 

p ~ _Cl_and p ~ Q, then 1+p l+Q 

~ 1 II '-h III<n ~.l. II '-g+g-h IIKnd(',h) = L 2n 1 + U ,-h UKn = L 2n 1 + II '-g+g-h UKn
n=l	 n:lll 

~	 ~.!. II ,-g I/I<n + II g-h IIKn

L 2n 1 + II , - 9 UKn + n g-h I/I<n

n=1 

_	 ~ .!. n '-g OKo + 
-	 L 20 1 + II , - 9 11K0 + U 9 - h IIKnn=l 

~ 1 /I g-h IIKo

L 20 1 + II , - 9 UKn + II 9 -h IIKn
n=l 
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U f-g nKn + ~ 1 II g-h IIKn~ 2::, ~ 1 + II f-g UKn L iii 1 + II g-h IIKn

n=l n-l 

- d(f,g) + d(g,h). 

We have shown that d is a metric, and therefore (C(V),d) 

is a metric space. We use the fact that subspaces of metric 

spaces are also metric spaces, and have immediately that 

(A ( V ) , d), a sub spaceof (C ( V ) , d), i s also arne t ric spac e . When 

we discuss (C(V) ,d) and (A(V) ,d) in the remainder of this 

thesis, we will represent them as C(V) and A(V), 

respectively. 

Convergence 

DEFINITION 2.4: A seQuence of functions {f n) is said to 

converge uniformly on V if there is a function f:V H C such 

that for each ~ > 0, there is a J such that for each positive 

integer j, if j ~ J then I f j(z)-f(z) I < ~ for all z e V. We 

denote this by "f j -+ f uniformly on V". 

THEOREM 2.1: If f 1 , f 2 , ... , f e C(V), then d(fj,f) -+ 0 

if and only if f j -+ f uniformly on compact subsets of V. [2] 

PROOF: Assume d (f j , f) -+ O. Then II f j-f IIKn -+ 0 as 

j -+ co for each n. If K is a compact subset of V, then K is 

contai ned in some Kn , and II f j-f 11K ~ II f j-f IlKn -+ O. Then as 

j -+ co, II f j - f IIKn -+ 0, whiehimpI i esthat fj(z)-f(z) 1-+0 

for z e K, and f j -+ f uniformly on K. 
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We assume that f j -+ f uniformlw on compact subsets of 

U. Given ~ > 0, choose N so that ~ 2- n < ~/2. To find this 
n=N+l 

N, we do the following: 

... .. eoL Z-n = f Z-n + L Z-n .. 1 - z-N + L Z-n =: 1. 
n=1 n=l n=N+l n-N+l 

.. -n -NSo to make L Z < ~/z, choose N 50 that Z < ~/2. We 
n=N+1 

II f ·-f IIKN 
choose J so that if j ~ JJ then 1 + IIJf _ ~N < ~/2, or thatfj 

" f j-f IIKN < _ f. This is possible since f j -+ f uniformly 

on compact subsets of U. (The previous ineQuality actually 

holds for all natural numbers n < N, since K i C K j for 

i < j, and we will use this fact to finish the proof.) So 

given ~ > 0, and having chosen the appropriate Nand J, we 

have d(fj,f) = 

00 1 II fj-f IIKn N 1 "f j-f IIKn 
=: +1 + II f j - f IIKn2: 2n 2: 2n 1 + " f j-f /IKn

n=l n=l 

N 
00 1 II f j-f IIKn 

00 

- < "'.J...~+'" ...L~<f.+~=€.2: 2n 1 + " f ·-f IIKn £-, 2 n 2 £-, 2 n 2 ~ 2 . 
n=N+l J n=l n=N+l 

DEFINITION 2.5: Let (X, d) be am. t ric spac e . A 

seQuence (Xj};':o of points of X is a Cauchy seQuence in (X,d) 

if given £ > 0, there is an integer N such that d(xn,xm) < ~ 

whenever n,m ~ N. 
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DEFINITION 2.6: The metric space (X,d) is complete if 

every Cauchy sequence in X converges. 

An argument similar to that used to prove Theorem 2.1 

could be used to show that {f n} is a Cauchy sequence in C(U) 

if and only if f i - f j -+ 0 uniformly on compact subsets of 

U. We will use this result to prove the following theorem. 

THEOREM 2.2: (i) C(U) is a complete metric spacej 

(ii) A(U) is a closed subset of C(U)j (iii) A(U) is a 

comp 1et e metr i c space. [2] 

PROOF: (i) let (fi' f 2 , ...) be a Cauchy sequenoe in C(U). 

Then d(fi,f j ) < £ whenever i,i ~ some J, or d(fi,f j ) -+ 0 as 

i ,j -+ 00. The n s u pC I f i ( z ) - f i ( z) I : z e Kn } -+ O. 5 ince 

this is true for any n, then for each z e u, (fi(z),f2 (z), .. .) 

is a Cauchy sequence in the complete metric space of complex 

numbers. 50 fj(z) approaches a limit f(z). We need to show 

that f i -+ f uniformly on K. Given any compact subset K of U 

and £ / 2 > 0, the n for s om e J, I f i ( Z ) - f j ( z) I < £ / 2 for a 11 

z e K when i,i ~ J. If z is arbitrary in K but fixed, then 

there is an integer j ~ J so thatl fj(z)-f(z) 1<£/2. But 

then I fi(z)-f(z) I ~ I fi(z)-fj(z) I + I fj(z)-f(z) 1<£ for 

all z e K when i ~ J. Thus f i -+ f uniformly on K. By the 

uniform limit theorem [5], f is a continuous function. Thus 

f e C(U), and C(U) is complete. 

(ii) By theorem 1.B, if a sequence of analytic 

functions on U converges to a function f uniformly on 
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compact subsets, then f is analytic on V. Therefore, 

A(lJ) is closed in C(V). 

(iii) A(V) is complete since it is a closed subset of a 

complete space 

THEOREM 2.3 (HurHitz' Theorem): Let f 1 ,f2 , ... e A(V), 

and let f n -+ f uniformly on compact subsets of V. Suppose 

that ~(z~r) is a subset of V, and f is not zero on 

(z : I z-zo I = r). Then there is a posi t i ve integer N such 

that if n ~ N, then f n and f have the same number of zeros 

i n D ( zo' r ). [ 2] 

PROOF: Let L = min ( If(z)1 : z-zo I = r ). This is 

possible since f is continuous on a compact set. Then for n 

1 a r geen 0 ugh I I f ( z ) - f n ( z) I < L for a 11 z e ~ (zo' r ), sinc e 

f n -+ f uniformly on compact subsets of V. Now I f(z)-fn(z) 

< L ~ If(z>l for I z-zo I .. r. Rouche's Theorem [1] states that 

given a simple closed curve I with f and 9 analytic inside 

and on I, with I passing through no zeros of g, and assuming 

I f(z)-g(z) 1< f ( z) Ion I, the n fan d 9 h a vet he sam e 

number of zeros inside ,. We use this theorem to conclude 

that f n and f have the same number of zeros in D(zo,r). 

THEOREM 2. 4 : Let f l' f 2' . . . e A( V ), and 1e t f n -+ f 

uniformly on compact subsets of V. If V is connected and 

the f n are never 0 on V, then f is either never 0 or 

ide n ticall y 0 0 n V. [2] 

PROOF: We will prove this by proving the 
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cont.raposit.ive. Let. U be a connect.ed subset. of C. Assume 

f(zo) = 0 and f is not. ident.ically 0 on U. We will use t.he 

co n t. rap 0 sit. i ve 0 f t. he 0 rem 1. 12 . I t. s t. a t. e s: 1 e t. f be 

analyt.ic on the open connect.ed set. U C Cj suppose t.her. is a 

point. Zo E U and a seQuence of point.s zn E U, zn ¢ zo, such 

t.hat. zn -+ Zo and f(zn) = 0 for all n (hence f(zo) = O)j 

t.hen f is ident.ically 0 on U. Since we're assuming f is not. 

ident.ically 0 on U, t.hen t.here doesn't. exist. a seQuence of 

points converging t.o Zo such t.hat. f(zn) = 0 for all n. This 

imp 1 i est. hat. t. here ex i s t saclose d dis k D ( zo' r) C U 5 U c h t. hat. 

f is not. 0 on ( z : I z-zo I == r ). From t.heorem 2.3, t.here 

is a posit.ive int.eger N such t.hat. for n ~ N, f n and f have 

t.he same number of zeros in D(z~r). Since f has a zero in 

D( zo' r ).. t. he f n mus t. ha ve a z e r 0 i n D( zo' r ) . 

THEOREM 2. 5 : Let. f l' f 2' ... E A( U), and 1e t. f n -+ f 

uniformly on compact. subset.s of U. If U is connect.ed and 

all t.he f n are one-t.o-one, t.hen f is eit.her one-t.o-one or 

iden t. i cally cons t. ant. 0 n U. [2] 

PROOF: Let. Zo E U, and set. gn(z) = fn(z) - fn(zo)' 

Since f n E A(U) and since t.he difference of t.wo analyt.ic 

fun c t. ionsis a n a 1 y t. i c, g n E A( U-(zo) ) . A1 so, 9 n -+ f - f ( Zo ) 

uniformly on compact. subset.s of U-(zo), and U-(zo) is 

connect.ed. For all n, gn is never 0 on U-(zo) (since f n is 

one-t.o-one). So by t.heorem 2.4, f - f(zo) is eit.her always 

o or never 0 on U-(zo). Since Zo is arbit.rary, f is eit.her 

ident.ically const.ant. or one-t.o-one. 
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Eguicon~inuity and Bound.dness 

DEFINITION 2.7: The functions in a familw F of 

functions are said to be equicontinuou5 on a set U C C 

if and only if, for each £ > 0, there exists a 6 > 0 such 

t hat I f ( z )- f ( zo) I < £ when eve r I z - Zo I < 6 and zo, z E U, 

simultaneously for all functions f E F. 

DEFINITION 2.8: The set F C C<U) is bounded 

if and only if for each compact K C U, 

sup{ IIflh< : f E F ) < co. 

THEOREM 2.6: Let F be a bounded subset of A(U). Then 

F is equicontinuous at each point Zo E U. [2] 

PROOF: Let D ( zo' r) CU. I f zED ( zo' r 12) and f E F, 

then theorem 1.5 (Cauchy Integral Formula) says that 

W 2 f (w )) ( dwf (z ) -f (zo) -- 1 J~ ~ w=z1 1Jdw = z-zo )J ( .2---:- T 
( ) - w=z;; .J....-. ('Jf 1 I' 0 'Jf 1 I' w-z w-zo 

wher e r = { z : I z - Zo I = r ). Let M = s u p{ II fill' : f E F ). M
 

exists since r is a compact subset of U, and bw hwpothesis,
 

M < 00. By the 0 r em 1. 2, I JI' f ( Z )d z ~ H(r) . length r, where
 

M(r) = max{ I f(z) I ; z E r). From this, we have
 

I f ( z ) - f ( zo) I ~ 2;' z-zo I . [ M/(i)2 ] ·2'Jfr. Simplifying,
 

we get I f(z)-f(zo) ~ I z-zo I . 4H/r. If we have
 

6 < min{r/2, (r·£)/4H), then for I z-zo < 6, I f ( z ) - f ( zo) I < £
 

for all f E F.
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DEFINITION 2.9: Suppose {fn)~.o is a seQuenc. of 

functions and that V is a subset of C such that V lies in 

the domain of f n for each integer n ~ o. I f ( f n ( z »~=o 

converges for each z E V, then (fn)~=o conv.rges pointwise on 

V. If (fn);:'=o converges pointwise on V, we define f:V H C by 

fez) = lim fn(z) for .ach z E V. w. say that f n converges 
n~-

pointwise to f on V. 

THEOREM 2.7: Let F C C(V), and assume F is 

eQuicontinuous at each point of V. If f n E F and f n 

converges pointwise to f on V, then f E C(V) and f n 

converges to f uniformly on compact subsets of V. [2] 

PROOF: Choose ~ > o. Let K b. any compact subset of 

u. If z E K, there is a disk 0(z,6) C V such that if 

Z' E 0 ( z ,6 ), the n I g ( Z' ) - g ( z) I < ~ / 5 for all g E F , 5 ince F 

is eQuicontinuous. 1n par t i 0 u 1 a r, I f n ( Z' ) - f n ( z ) < (../5 for 

n=1, 2, ... T h u s If ( z ) - f ( Z' ) I - I f ( z ) fn(z) + fr,(z) 

f n ( Z/) + f n ( Z/) - f ( Z/) I ~ I f ( z ) - f n ( z) I + I f n ( z ) - f n ( Z/) I + 

I f n ( Z' ) - f ( Z/) I. Since f n converges pointwis. to f, there 

exist Ni and ~ such that for n ~ Ni , I f(z)-fn(z) I < ~/5, 

and I fn(z/)-f(z/) I <(../5 for n > No.2. Choose N max{Ni ,N0.2).::II 

The n I f ( z ) - f ( Z/) I < IE.. 
We have proved that f is continuous. Let K be any 

compact subset of V. So K C U;=i 0(zj,6 j ) for som. z1,z2, ... ,zm 

and for 6 j < 6. Also, I f(z)-fn(z) I ~ I f(z)-f(zj) 1+ 

I f(zj)-fn(zj) I + I fn(zj)-fn(z) I. 1f z E K, then 

z E 0(zj,6 j ) for some j. By continuity, the first term on 
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the right (above) is less than 1£. By eQuicontinuity, the
 

third term is less than £/5 By pointwise convergence,
 

for each 0(zj,6 j ) the second term is less than £/5 for
 

sufficiently large n, say n ~ nj. If we choose
 

N = max(nj' j = 1,2, ... , m), then for n ~ N,
 

I f(zj)-fn(zj) 1< (,/5 for all Zj' and also I f(z)-fn(z) 1<(.
 

for all Z E K. We have proved that f n converges to f
 

uniformly on compact subsets of U.
 

THEOREM 2.8: Let F C C(U), and assume F is 

eQuicontinucus at each point of U. If f n E F and fn(z) 

converges to a limit function f only for z in a dense subset 

of U, then f n converges to a limit function f for all z E U. 

Also, f E C(U>, and f n converges to f uniformly on compact 

subsets of U. [2] 

PROOF: Let S be a dense subset of U. We assume f n 

converges pointwise on S. Choose (. > 0, and any Z E U. 

There is a disk 0(z,6) C U such that if ZI E 0(z,6), then 

I g ( Zl ) - g ( z) I < (./3 for all g E F. 8 ince 8 i s dens e, weea n 

find w E (8 n 0(z,6». Hence I fm(z)-fn(z) I ~ Ifm(z)-fm(w)1 + 

Ifm(w)-fn(w)1 + Ifn(w)-fn(z)1 < (./3 + Ifm(w)-fn(w)1 + (./3 = (. 

for nand m sufficiently large (since a convergent seQuence 

in a metric space must be a Cauchy seQuence). Because 

(fn(z») is a Cauchy seQuence for any z E U, therefore (f n) 

converges pointwise on U. Using theorem 2.7, we find that 

(f n) converges to a continuous function f on U, and f n 

converges to f uniformly on compact subsets of U. 
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THEOREM 2.9 (Mon~el·. Theor.m): Let F be a bounded 

subset of A(U). If (f n) is a seQuence of functions in F, 

therei s a subseQ u e n c e (f n' k == 1, 2, ...) con verg i n 9 
k 

uniformly on compact subsets to f E A(U). [4] 

PROOF: Let (zJ. , Z2 , .. .) be a co u n tab 1 e den s e subset 0 f U 

(for example, all points of U whose real and imaginary parts 

are rational numbers). Let F be a bounded subset of A(U), 

and c h 0 0 s e (f l' f 2' ...) C F. Since F is bounded, (fn(zJ.» is a 

bounded seQuence of complex numbers, and by the Bolzano-

Weierstrass theorem [1] it has a convergent subseQuence. So 

we can ex tract a subseQuence ( f u (zJ.), f J.2 (zJ.), ... ) convergi ng 

to Wl' Then (fu (z2)' f 12 (Z2), ... } is a bounded seQuence of 

complex numbers, and we can extract a subseQuence 

{f2l ( Z2), f 22 (Z2), ... ) convergi ng to ~. Continuing this 

process, we produce an array: 

(fu (zJ.) , f 12 ( zJ. ) , f la ( zJ. ) , ) -+ wJ. 

{f2J. ( Z2) , f 22 ( Z2 ) , f 2a ( Z2 ) , ) -+ W2 

{fal ( za ) , f a2 ( za ) , faa ( Z3 ) , ) -+ W3 

kthin which the horizontal row converges to some complex 

number wk and the functions used in each row are selected 

from those in the row above. Let gn = f nn for n = 1, 2, ...
 

(gn) is a subseQuence of the original seQuence of functions,
 

and {gn};=k is a subseQuence of {fki' f k2' ... }. So
 

1-!~ gj(zk) = wk for each k = 1, 2, .... By theorem 2.6, F is
 

eQuicontinuous at each point of U. And by theorem 2.8, 
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(gn) converges uniformlw on compact subsets of U. By theorem 

1.8 , (gn) converges to f E A(U). 

Compact.ness 

Compactness for subsets of A(U) is the next property we 

will investigate. By using our notion of boundedness, we 

will show that (like the real number line) a subset of A(U) 

is compact if and only if it is closed and bounded. 

DEFINITION 2.10: Y is seQuentiallw compact if every 

seQuence in Y has a convergent subseQuence. 
,I 

,­
ft'.,.

THEOREM 2.10: Let F C A(U). F is compact 
; 

._, 

if and onl y ifF is closed and bounded. [2) :11, 
I 

..PROOF: Let F C A(U), and let F be closed and bounded. 

If (f n) C F, then by theorem 2.9, there is a subseQuence ~ 
.i,., ..converging to f E A(U), uniformly on compact subsets. Since 
-., 
'f 

F is closed, f E F. So F is seQuentially compact, and since ~J 
'I 

rl 
F is a metric space it follows that F is compact. To prove 

the converse, assume F is compact. Any compact subset of a 

metric space is closed, so all we need to show is 

boundedness. We will first prove that the map f H "f~ from 

C(U) to the reals (for K a fixed compact subset of U) is 

continuous. If d(fn,f) -+ 0, then by theorem 2.1, f n -+ f 

uniformly on K. This says that for each £ > 0, 

Ifn(z)-f(z)1 < £ for every n ~ some N and for all z e K. 
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This implies t.hat. II fn-f 11K ..... O. From t.he propert.'::l t.hat.
 

I lal-Ibl I ~ la-bl for a, b E R, I IIf n llt< - IIfliK I ~ II fn-f 11K ..... 0 J
 

and t.he map is cont.inuous. Since F is compact., t.he image
 

( IIf 11K : f e F ) under t.he above con t. i nuous map is compac t. ,
 

and i n t. his casemus t. be b 0 u n d e d . T h u Ii S U p( II f 11K : f e F) < 00,
 

which proves t.hat. F is bounded.
 

THEOREM 2.11: Let. F be a nonempt.'::l compact. subset. of 

A ( U > . I f Zo E U, t. here i s a fun c t. ion 9 5 U c h t. hat. 

g'(ZO) I ~ I fl(ZO> I for all f E F. [2] 

PROOF: B'::l t.heorem 1.8, if a seQuence of analyt.ic 

funct.ions f 1 , f 2 , ... (on t.he open set. U C C) converges t.o f 

uniformly on compact. subset.s J t.hen f is analyt.ic, and 

f n ..... f' on U J uniformly on compact. subset.s. We need t.o show 

t. hat. t. hema p f .... I f I ( Zo > I 0 f Fin t. 0 t. here a 1 sis con t. i n u 0 us.
 

By t.heorem 2.1, if (fn) C F and d(fn,f> ..... 0, t.hen f n ..... f and
 

(b'::l t.heorem 1.8> fIn ..... f', uniforml'::l on compact. subset.s of U.
 

For Eo > OJ t.here exist.s a 6 such t.hat. for I fn-f 1<6,
 

If'n(zo> - fl(zo>1 < Eo for zo E K (compact.> C U. So our map is
 

cont.inuous. Since t.he cont.inuous image of a compact. set. is
 

compact., ( I fl(ZO> I : f E F ) is compact.. Since a compact.
 

sub set. 0 f R i scI 0 sed and b 0 u n d ed, ( If I ( Zo >I : f E F )
 

cont.ains it.s supremum, which we call I g'(ZO> I. Therefore,
 

t.here exist.s a funct.ion 9 E F such t.hat. I g'(ZO> I ~ I fl(ZO> I.
 

THEOREM 2.12: Let. U be a connect.ed and open subset. of 

C. Let. F = ( f E A(U> : f is a one-t.o-one map of U int.o 
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D(O,1) and I flCz O ) I ~ b}, where b is a fixed positive 

real number and Zo is some fixed point of U. Then F is 

compac t. [2] 

PROOF: We will prove F is closed and bounded. F is 

clearly bounded, since sup(lIfllK : f e F} ~ 1 for each compact 

K C U. If (Tn) C F and dCfn,f) ~ 0, we need to show that 

f e F, which would mean that F is closed. Since 

dCfn,f) ~ 0, f n ~ f uniformly on compact subsets of U by 

theorem 2.1, and If(z)1 ~ 1 for all z e u. By theorem 1.8, 

f e ACU) and also fIn ~ f' uniformly on compact subsets of U. 

It follows from this that I fl(ZO) 1 ~ b (since fln(zo) ~ b). 

From theorem 2.5, we know that f is either identically 

constant or one-to-one. Since 0 < b ~ I fl(ZO) I, f can't be 

identically constant. So f is one-to-one, and f e F. We 

now know that F is closed and bounded, and by theorem 2.10, 

F is compact. 

THEOREM 2.13: Let (f n) be a bounded seQuence in ACU). 

If (f n) is not convergent relative to d, then there are two 

subseQuences of (f n) converging relative to d to different 

1 imi t funct ions. [2] 

PROOF: If (f n) does not converge uniformly on K, then 

there exists an ~ > 0 such that for all n, there is an m > n 

such that II fn-f m 11K ~ ~. Choose any positive integer n!; 

choose m! > n! such tha t H f n! -fm! 11K ~ ~. Now pi ck an 

n2 > m!, and c h 0 0 s e m2 > n2 sue h t hat II f n2 - f m2 11K ~ ~. 

Continue in this manner to obtain subseQuences ( fn. ) and 
J 



27 

{ f m· } such that U fn.-f m. 11K ~ €. for all j.
J J J 

By applying theorem 2.9 to { f n . } and { f m. }, we can 
J J 

o b t a insu b seQ u e nees { f r. ) 0 f { f n. ) and { f s. ) 0 f { f m. } s u c h 
I J I J 

that II fr.-f s . 11K ~ €. for all i i and { fro ) converges to some 
I I , 

f e A(U) and { f~ ) converges to some g e A(U) relative to d. 
I 

Now €. ~ II fr·-f s · 11K ~ II 
I 

11K + II f-g 11K + II g-f s . 11K' and so
I t 

fr·-f 
I 

II f-g 11K ~ f.. This says that f does not eQual g, and we have 

two subseQuences of {f n} converging to different limit 

functions. 

THEOREM 2.14 (Vitali's Theorem): Let {f n) be a bounded 

seQuence in A(U), where U is connected. Suppose that the 

seQuence converges pointwise on S C U, where S has a limit 

point in U. Then the seQuence converges uniformly on 

compact subsets of U. [2] 

PROOF: Given the hypotheses, assume that {fN does not 

converge uniformly on compact subsets of U. By theorem 

2.13, there exist two subseQuences of {f n} converging to 

different limit functions f and g. Since {f n) converges 

pointwise on S, each subseQuence of {f n) must converge at 

each point of S to the same limit, so f and g must agree on 

S. Theorem 1.13 (Identity Theorem) tells us that f and g 

must agree everywhere on U. We have arrived at a 

contradiction, and can conclude that {f n) must converge 

uniformly on compact subsets of U. 

DEFINITION 2.11: A family F of funotions is normal in 
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U if every seQuence (f n) of functions f n E F contains a 

subseQuence which converges uniformly on every compact 

subset of U. This definition does not reQuire the limit 

functions of the convergent subseQuences to be members of F. 

DEFINITION 2.12: The f.mil~ F C C(U) is relatively 

compact if and only if the closure ~ is compact. 

Problems 

PROBLEM 2.1: A family F C C(U) is normal 

if and only if F is relatively compact. 

SOLUTION: Assume that F is normal. Then the 

convergent subseQuence converges to • limit in~. So F is 

seQuentially compact. Since F is a metric space (subspace 

of C(U», F is compact, and F is relatively compact. 

Assume that F is relatively compact. This says that F 

is compact. So F is seQuentially compact, and each seQuence 

in F C F has a convergent subseQuence. Therefore, F is 

normal. 

PROBLEM 2.2: If F C A(U), F is relatively compact 

if and only if F is bounded. 

SOLUTION: Assume F is relatively compact. Then F is 

compact, and by theorem 2.10, ~ is bounded. So F must be 

bounded, since F C F. 

Assume F is bounded. By theorems 2.9 and 2.1, F is 
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seQuentially compact, so F is compact. Then F is compact, 

and F is relatively compact. 

PROBLEM 2.3: Let L be a multiplicative linear 

functional on A(U)j that is, L:A(U) -+ C, L(af+bg) = aL(f) + 

bL(g), and L(fg) = L(f)L(g) for all a,b e C, and f,g e A(U). 

<Exclude the ca5e L =0.) Then L is a point evaluation; 

that is, L(f) = f(zo) for some Zo e u. 

SOLUTION: Let f E k. Then L<f·g) - L<kg) - kL(g). 

A1so, L ( f· g) = L( f ). L ( 9 ), and so for f II! k, L ( f) = k. Let Zo 

= L(l), where I is the identity map on U. Assume Zo e u. 

Then if g(z) = Z!Zo' then 9 e A(U). Then g(z)(z-zo) = 1 = 
g. ( I -zo) . And L( g) ( L ( I ) -L (zo » =­ L( g) (zo-zo) = L( 1) = 1. We 

have L(g)(O) = 0 = 1, a contradiction, and thus Zo e u. ;1 

Let f' E A( U), and 1. t Zo = L ( I ) . .De f' 1 neg ( z) = 
f(z)-f(Zo)=_ 

I 

I 

for z "J: zo, and 9 ( zo) "'"' f I ( Zo ) . Then 9 e A( U), and 

9 (z ) ( I -zo) - f (z )-f (zo) . So L (g) (L< I ) -L< zo» = 0 = 

L( f ) - L ( f ( Zo » = L ( f ) - f ( Zo ), and L( f) = f ( Zo ), wher e Zo e u. ti 
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