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The purpose of this thesis is to introduce the 
basic ideas of Lie algebras to the reader with some 
basic knowledge of abstract and elementary linear 
algebra. 

In this study, Lie algebras are considered from a 
purely algebraic point of view, without reference to Lie 
groups and differential geometry. Such a view point has 
the advantage of going immediately into the discussion 
of Lie algebras without first establishing the topo10g­
cal machineries for the sake of defining Lie groups from 
which Lie algebras are introduced. 

In Chapter I we summarize for the reader's conven­
ience rather quickly some of the basic concepts of 
linear algebra with which he is assumed to be familiar. 
In Chapter II we introduce the language of algebras in 
a form designed for material developed in the later 
chapters. 

Chapters III and IV were devoted to the study of 
Lie algebras and the Lie algebra of derivations. Some 
definitions, basic properties, and several examples are 
given. In Chapter II we also study the Lie algebra of 
antisymmetric operators, Ideals and homomorphisms. In 
Chapter III we introduce a Lie algebra structure on 
DerF(A) and study the link between the group of automor­
phisms of A and the Lie algebra of derivations DerF(A). 
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CHAPTER ONE 

INTRODUCTION 

1.1 FUNDAMENTAL CONCEPTS OF VECTOR SPACES 

The object of this introductory chapter is to 

provide a short account of the foundations of Linear 

Algebra that we need in later chapters. Various results 

are given without proofs and others are given with only 

sketchy arguments. 

DEFINITIONS AND EXAMPLES 

DEFINITION 1: Let F be a field. A vector space over F is 

a set V whose elements are called vectors, together with 

two operations. The first operation is called vector 

addition, it assigns to each pair of vectors v,w E V a 

vector, denoted by v+w E V. The second operation called 

scalar multiplication, assigns to each scalar a E F and 

vector v E V a vector denoted by av E V, such that the 

following conditions are satisfied: 
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1.	 (u+v) + w = u + (v+w), for all U,V,w E V. 

(i.e. addition is associative). 

2.	 There is an element of V, denoted by 0 and is 

called zero vector, such that 

o + u = u + 0 = u, for all u E V. 

3.	 For each vector u E V, there exists an element, 

denoted by -u E V such that 

u + (-u) = 0 

4.	 u + v = v + u for all u,v E V. 

(i.e. addition is commutative) 

5. a(u+v) = au + av for all u,v e V and a E F. 

(i.e. scalar multiplication is distributive with 

respect to vector addition). 

6. (a +{J) u = au + fJ ufo r all u E V, and a ,{J E F. 

(i.e. scalar multiplication is distributive with 

respect to scalar addition). 

7.	 (afJ)u = a(fJu) for all u E V, and a ,fJ E F. 

8.	 lu = u for all u E V. 

(1 here is the multiplicative identity of F). 

REMARK 1: In the sequa1 F will be either the field of
 

real numbers or the field of complex numbers.
 

REMARK 2: Conditions 1-4 in the definition of vector
 

space is equivalent to say with respect to vector addit ­


ion, V is an abelian group.
 

REMARK 3: When no confusion is to be feared a vector
 

space over F will be simply called a vector space. 
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EXAMPLE 1: Let F be any field. V = {(a, ,a ): 
1 n 

a EF, 1 <= i <= n }. Define a vector addition in V by: 
i 

(a , ,a ) + (p , ... ,p ) = (a +P , ,a +P ).
1 n 1 n 1 1 n n 

Define a scalar multiplication by: 

Y( a , ••• ,a ) = (ra , ••• ,Ya ) for all YE F • 
1 n 1 n 

Then with respect to these operations, V becomes a 

n 
vector space over F, we denote this vector space by F • 

n n 
In particular R is a vector space over Rand C is a 

vector space over C. 

EXAMPLE 2: Let F be any field. Let Mat (F) be the set 
mxn 

of all mxn matrices with entries in F. Let A = (a ) 
ij 

and B = (b ) be elements in Mat (F). We define their 
ij mxn 

sum A+B to be the matrix C = (c ) where c = a + b 
ij ij ij ij 

for i = 1, 2, ••. , m and j = 1, 2, , n. Then one 

can immediately verify that Mat (F) is an abelian 
mxn 

group under this addi tion. Let a E F. We define aA, the 

scalar multiple of A by a to be the matrix C = (c ), 
ij 

where c = aa Then it can be verified that Mat (F) 
ij ij mxn 

is a vector space over F. 
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DEFINITION 2: Let V be a vector space over F. A subset 

W of V is called a subspace of V if W is itself a vector 

space over F under the same operations of vector 

addition and scalar multiplication of V. 

THEOREM 1: A nonempty subset W of a vector space V is a 

subspace of V if and only w EW,aEF,if for all w , 
21 

we have w +w E Wand Ow EW. 
1 2 1 

1.11 LINEAR INDEPENDENCE AND BASES
 

DEFINITION 1: If v , v , ... , v is a set of vectors 
1 2 n 

in a vector space V over F, an expression of the form 

o	 v + 0 v + ••• + a v
 
1 1 2 2 n n
 

where a EF is called a Linear Combination of the vectors 
i 

v,v, ••• ,v. 
1 2 n 

THEOREM 1: Let 8 be any subset (finite or infinite) of 

a vector space V, then the set L(8) of all linear 

combinations of vectors from 8 is a subspace of V. 

REMARK 1: The subspace L(8) of all linear combinations 

of vectors from 8 is called the subspace spanned or 

generated by the set 8. 

REMARK 2: 8 C L(8) 

REMARK 3: L(8) is the smallest subspace of V that 

contains 8. 
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1 

DEFINITION 2: Let V be a vector space over F. A subset
 

S of vectors in V is said to be linearly dependent if
 

there are distinct vectors v , ... , v in S and scalar 
1 n 

,a not all zero, such that a v + +a v = O.a ' 
nIl n n 

A set S of vectors in V is called linearly independent 

if S is not linearly dependent. 

DEFINITION 3: Let V be a vector space. A basis for V is 

a subset S (finite or infinite) of V, that is linearly 

independent and that spans V, that is V = L(S). 

A vector space V over F is said to be finite 

dimensional if it has a finite basis. 

In spite of the fact that there is no unique 

choice of basis, for a vector space, there is something 

common to all of these choices. It is a property that 

is intrinsic to the space itself. 

THEOREM 2: The number of elements in any basis of a 

finite-dimensional vector space V is the same as any 

other basis. 

DEFINITION 4: The dimension of a finite-dimensional 

vector space V is the number of elements in a basis of 

V. 
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1.111 LINEAR TRANSFORMATIONS
 

DEFINITION 1: Let V and W be vector spaces over the 

same field F. A mapping T: V ---) W is called a 

linear	 transformation if : 

1.	 T(v +v ) = T(v ) + T(v ), for all v ,v EV 
1 2 1 2 1 2 

2.	 T(av ) = aT(v ), for all v E V and a E F. 
1 1 1 

REMARK 1: A linear transformation T : V ---) W is also 

called an F-homomorphism or F-linear mapping. 

REMARK 2: If T is one-to-one and onto linear 

transformation, then it is called an isomorphism. 

DEFINITION 2: If T: V ---) W is a linear transform­

ation, then the kernel of T, denoted by ker(T) is 

defined by: 

ker(T) = {v E V T(v) = O} 

THEOREM 1: Let T V ---) W be a linear transform­

ation, then, 

1. ker(T) is a subspace of V 

2. T(V) is a subspace of W 

Let V and W be vector spaces over the same field F. Let 

Hom (V,W) be the set of all linear transformation of V 
F 

into W. We shall now proceed to introduce operations in 

Hom (V,W) in such a way that make Hom (V,W) a vector 
F F 

space over F. 
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1 

For T , T EHom (V,W), we define their sum T + T by: 
1 2 F 1 2 

(T +T )(v) = T (v) + T (v) for all v E V. 
2 1 2 

For a E F and TEHom (V, W), we define a map aT V ---) W 
F 

by (aT)(v) = a(T(v» for all v E V. 

Then it is easy to verify that T +T E Hom (V,W) and 
1 2 F 

aT E Hom (V,W). Also it can be checked that these 
F 

operations makes Hom (V,W) a vector space over F. Thus 
F 

we have: 

THEOREM 2: Hom (V,W) is a vector space. Moreover if V 
F 

and Ware finite-dimensional vector spaces of dimensions 

m and n respectively then Hom (V,W) is finite-dimension­
F 

al with dimension mn. 

If in particular W = V, we denote Hom (V,V) by End (V) 
F F 

and in this case an element T E End (V) is called an 
F 

endomorphism of V. 

I.IV THE MATRIX OF A LINEAR TRANSFORMATION 

Suppose now that V and Ware finite-dimensional vector 

spaces over the same field F, and let dim V = m, and 

dim W = n. Let T : V ---) W be a linear transformation. 

Let B = {v , ... , v ) and B' = {w , ... , w } be basis 
1 m 1 n 
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for V and W respectively. For each i = 1, 2, ••• , m 

T(v ) = 
n
Law a E F, 

i j=l ij j ij 

then the nxm matrix 
t 

B' 
[A] 

B 
= 

all a 12 

a
21 

a
22 

. a 
2n 

·a 
In 

amI a m2 
. . . a 

mn 

of the elements a of F is called the matrix associated 
ij 

with the linear transformation T with respect to the 

basis B for V and basis B' for W. Of course the matrix 

B' 
[A] depends on our choice of bases for V and W, in the 

B 

sense that any change in the bases Band B' would result 

in a different matrix for T. If these bases are held 

fixed then each T determines a unique matrix and 

conversely to each mxn matrix (a ) over F corresponds a 
ij 

unique linear transformation T determined by: 

n 
T(v ) = WL a 

i j=l ij j 

we summarize formally: 

THEOREM 1: Let V and W be two finite dimensional vector 

spaces over the same field F, and let dim V = m and 

dim W = n. Let Band B' be bases for V and W respect­
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ively. Then for each linear transformation T : V ---> W 

there is an nxm matrix A with entries in F such that 

[Tv] = A[v] , for all v E V 
B' B 

where [v] and [Tv] are the coordinate matrices of v 
B B' 

and Tv relative to the bases Band B' respectively. 

Furthermore, TI---> A is an isomorphism between the 

space of all linear transformations from V into W, 

Hom(V,W) and the space of all nxm matrices over the 

field F. 

In particular we shall be interested in the 

representation by matrices of endomorphisms, that is of 

linear transformations of a vector space V into itself. 

Let B = { v , ... , v } be a basis for V, and T an 
1 n 

endomorphism of V, and let A = (0 ) be the matrix of T 
ij 

relative to the basis B. If a change of basis is made 

in V from B to a new basis B', what is the matrix of T 

relative to this new basis? The following theorem gives 

the answer. 

THEOREM 2: Let V be an n-dimensional vector space 

over the field F, and let B = {v , ... , v and 
1 n 

B'= {v' , ... , v'} be bases for V. If A is the matrix 
1 n 

of T relative to B', then there exists a nonsingular 

-1 
matrix P with columns P = [ v' ] , such that A' = P AP, 

j j B 
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where [v'] is the coordinate matrix of v' relative to 
j B j 

the basis B, and A' is the matrix of T relative to B'. 

I.V TRACE AND TRANSPOSE OF A MATRIX 

Our aim in this short section is to develop the 

concepts of trace and transpose of a matrix and describe 

some of their properties that we need in later chapters. 

DEFINITION 1: Let A be an nxn matrix over the field F. 

The trace of A is the sum of the elements of the main 

diagonal of A. We denote the trace of A by tr A; if 

n 
A = (a ), then tr A = 2: a 

ij i=l ii 

The fundamental properties of the trace are contained 

in the following theorem: 

THEOREM 1: For any nxn matrices A and B over the field 

F and A. e F, we have 

1. tr (A+B) = tr A + tr B 

2. tr (A.A) = A.tr A 

3. tr (AB) = tr (BA) 

REMARK 1: Properties 1 and 2 assert that the trace is 

a linear transformation of the vector space of nxn 

matrices over F to the one-dimensional vector space F. 

REMARK 2: If A is invertible, property 3 implies that 

-1 
tr (ABA ) = tr B for any nxn matrix B. 
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DEFINITION 2: Let A = (a ) be an mxn matrix over F. 
ij 

The nxm matrix B = (p ) such that P = a for each i,j 
ij ij ji 

is called the transpose of A. We denote the transpose 

t 
of A by A • In other words, the transpose of A is the 

matrix obtained by interchanging the rows and columns of 

A. 

THEOREM 2: Let A and B be mxn matrices and let C be an 

nxn matrix. Then 

t t 
1.	 (A ) = A
 

t t t
 
2.	 (A+B) = A + B
 

t t
 
3.	 (a A) = aA for any a E F
 

t t t
 
4. (AC) = C A 

DEFINITION 3: A matrix A is said to be a symmetric 

t 
matrix if A = A, and A is called a skew symmetric matrix 

t 
if A = -A. 

REMARI 3: The concept of trace, and transpose of a 

matrix can be extended in the obvious way to any 

linear transformation. 
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I.VI SERIES OF MATRICES
 

This section is concerned with the notion of 

series of matrices, particularly in chapter 4, we need 

A 
the concept of the exponential function e where A 

is a square matrix over the field R of real numbers. 

DEFINITION 1: Let A = (a ) be an mxn matrix over R or 
ij 

C, the norm of A, is denoted by II AII and defined as 

II AII = max la I
 
1(=i(=m ij
 
1(=j(=n
 

The norm has the following properties: 

1. IIAII)= 0 for any matrix A, also IIAII = 0 if 

and only if A = O. 

2 • I lOA I I = 101 I IAI I for any mat r i x A and any 

scalar a. 

3. IIA+BII (= IIAII + IIBII for any A and B. 

REMARK 1: These properties of the norm implies that the 

vector space of mxn matrices over R or C is a normed 

vector space with respect to 11.11. 

DEFINITION 2: Let A , A , ••• to be an infinite sequence 
1 2 

of mxn matrices over R. This sequence is said 

to converge if there exists an mxn matrix A over R such 

that: 

lim II A -A II = O. 
n--)OO n 
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A is called the limit of the sequence and we write 

lim A = A 
n--)OO n 

In order to define convergence of an infinite series of 

mxn matrices 

00
L A 
n=l n 

first we construct the sequence S, S , ••. of partial 
1 2 

sums, S = A , S = A + A , S = A + • •• + A , 
1 1 2 1 2 k 1 k 

we say that the series converges to the mxn matrix S if 

the sequence of partial sums converges to S, 

00 
i.e.	 if lim S = S. In this case we write ~. A = S. 

k--)<X) k k=l k 

Using the notion of the norm of a matrix, we can 

formulate the following test for convergence: 

THEOREM 1: Let A , A , ••• be mxn matrices. If the 
1 2 

series of numbers 

co 
LilA II 

n=l n 
co 

converges, then the series of matrices L A converges. 
n=l n 

We now define the exponential of a square matrix: Let A 

be an nxn matrix. First observe that 
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2 2 
II A II <= n II A II . II A II = n I IA II 

3 2 2 3 
I IA I I <= n I IA I I . I IA I I <= n II A II 

k k-l k-l K
 
II A II <= n II A II . II A II <= n II A II
 

since the series of numbers 

k-l 
ex> n k 

II All~O kl 

converges (as can be shown by the ratio test), the 

series of matrices 

k
 
ex> A
 
2: 

k=O kl 
o 

converges, by the previous theorem, note that A denotes 

A 
the identity matrix I. Now we define e to be the sum, 

i.e. 

A 00 1 k 
e = I A for any square matrix A. 

k=O kl 

Now we are going to consider a very important function, 

At 
the exponential matrix function e where A is square 

matrix over Rand t is a real variable. This is defined 

by the formula 

At 1 2 2 1 k k 
e = I + tA + ---t A + ••• + ---t A + ••• 

2 I kl 
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At 
THEOREM 2: For any matrix A and any real number t, e
 

is nonsingular.
 

To prove this theorem one can look at its eigenvalues;
 

At 
if A is an eigenvalue of A then e is an eigenvalue of 

At At At 
e and since e ~ a for any real number t, then e 

is nonsingular. 
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CHAPTER TWO 

AL.GEBRAS 

In this Chapter, we introduce the language of 

algebras in a form designed for material developed in 

the later chapters. 

We begin with some basic definitions, examples, and 

basic properties of algebras. 

DEFINITION 1: Let F be a field. By F-algebra (or an 

algebra over F) we mean a vector space V over F together 

with a binary operation in V, called multiplication in 

V, the image of an element (x,y)EVXV under the multip­

lication is denoted by xy and is called the product of 

x and y in V. And this satisfies the following 

conditions: 

L (x + y)z = xz + yz 

2. x(y + z) = xy + xz 

3. a(xy) = (ax)y = x(ay) 

for all x, y, and z E V and a E F. 
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REMARK 1: In the sequal F will be the field of real
 

numbers R or the field of complex numbers C.
 

REMARK 2: Conditions 1 - 3 in this definition are
 

equivalent to say the multiplication of the algebra V is
 

F-bilinear mapping of VXV into V.
 

REMARK 3: When no confusion is to be feared an F-alg­


ebra will be simply called an algebra.
 

REMARK 4: It should be noted that we do not require
 

that multiplication in V to be associative nor it should
 

have a unit element.
 

DEINITION 2: 1. An F-algebra V is called an associative 

algebra if multiplication in V is associative, i.e. when 

(xy)z = x(yz) 

for all x, y, and z E V 

2. When multiplication in V admits an identity 

element, i.e. there is an element e E V such that 

ve = ev = v for all v E V 

V is called an algebra with unity or a unital algebra. 

Clearly if V has a unit element then it is unique. 

3. An F-algebra V is called commutative alg­

ebra if the multiplication in V is commutative, i.e. 

when 
xy = yx 

for all x, y E V 
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EXAMPLE 1: Every vector space V can be considered as an 

(associative and commutative) algebra by defining 

multiplication on V by xy = 0 for every x, y EV. 

EXAMPLE 2: The set Mat (F) of all nxn matrices, with 
nxn 

entries from a field F, is an associative algebra over 

the ground field F. The vector space structure on 

Mat (F) is defined by the ordinary matrix addition and 
nxn 

scalar multiplication of a matrix by a scalar. The alg­

ebra multiplication is defined by the ordinary matrix 

multiplication. Note that this algebra is not commuta­

tive, it is called the Matrix algebra over F. (Proofs 

can be found in linear algebra books). 

3 
EXAMPLE 3: Let R be the three-dimensional real 

3 
Euclidean space. The cross product of vectors makes R 

into a non-associative and non-commutative algebra over 

R. (Proof can be found in calculus or linear algebra 

algebra books). 

EXAMPLE 4: Let V be an algebra over F. We can define 

two algebra structures on V by defining new multiplicat­

ion on V by 
x * y = xy + yx 

and the bracket multiplication 

[x,y] = xy - yx 
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with the same underlying vector space structure as the 

algebra V. These multiplication are not in general 

associative, the first multiplication * is always 

commutative. The bracket multiplication will play an 

important role in our study of Lie algebras. In partic­

ular by defining the bracket multiplication on the 

matrix algebra Mat (F), we obtain a new algebra, this 
nxn 

is called the General Linear Algebra of degree n over F, 

we denote this algebra by gl(n,F). Now we show that the 

bracket multiplication defines a multiplication in V. 

1. Show [x+y,z] = [x,z] + [y,z] 

[x+y,z]	 = (x+y)z - z(x+y) 

= xz + yz - zx - zy 

= (xz-zx) + (yz-zy) 

= [x,z] + [ y , z ] 

2. Similarly we can show [x,y+z] = [x,y] + [x,z] 

3.	 The third condition is to showa[x,y]=[ax,y]=[x,ay] 

lets show a[x,y] = [ax,y] 

a[x,y]	 = a(xy-yx) 

= a(xy) -a(yx) 

= (a x ) y - y (a x ) 

= [a x, y] 

similarly we can show a[x,y] = [x,ay] 



20 

In this study we shall be interested mainly in the 

case of algebras over fields which are finite-dimension­

a1 as vector spaces. For such an algebra we have a 

n k 
basis e ,e , ,e and we can write e e = er y..
 

1 2 n i j k=1 1J k 

3 k 
where r's are in F. The n elements yare called the 

ij 

constants of multiplication (or structural constants) of 

the algebra (relative to the chosen basis). They give 

the values of every product e e for i,j = 1, 2, ••• , n. 
i j 

Moreover, by extending this linearly, these products 

determine every product in V. For, if x and yare any 

elements of V, 

and x = 
n 
L 

i=1 
0 

i 
e 

i 
, y = 

n 

~1 
J= 

P. 
J 

e. 
J 

where a , 
i 

P. E 
J 

F, 

then xy = (L 
i 

a . e i)( 
1 

~ 
J 

P. e .) 
J J 

= L (0 e )( Pe ) 
i,j i i j j 

= L 
i,j 

a 
i 

(e (fJ e )) 
i j j 

= L 
i,j 

a p(e e) 
i j i j 

and this is determined by the e e • 
i j 

Thus any finite-dimensional vector space V can be given 

the structure of an algebra over a field F by first 
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selecting a basis e , e , ••• ,e in V. Then for every 

1 2 n 

pair (i,j) we define in any way we please e e as an 
i j 

element in V, sayee = v and extending this linearly 
i j ij 

to a product in V, that is if 

n n 
x = L a e and y = L P e 

i=1 i i j=1 j j 

n 
we define xy = .2:.. a .p. (e. e .> 

1,J=1 1 J 1 J 

n
 
= L P (v )
 

i ·-1 a. j i·,J- 1 J 

One can check immediately that this multiplication is 

bilinear in the sense that conditions (1-3) in definit ­

n k 
ion 1, are valid. Letting e e = v = Lye, 

i j ij k=1 ij k 
k 

we obtain elements (y ) of F which completely determine 
ij 

the product xy, that is to say the choice of e e is 
i j 

k 
equivalent to the choice of the elements 1 in F. 

ij 

Thus, the set of algebras with underlying vector space 

~ 
over F can be identified with the algebra F 

DEFINITION 3: Let V be an F-algebra. By an F-subalgebra 

of V, we mean a vector subspace W of V which is itself 

an F-algebra relative to the multiplication on V. 
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DEFINITION 4: A subset W of an algebra V is called a 

left ideal (respectively right ideal) of V when W is 

a subalgebra of V and for each wE W, v E V we have 

wv E W (respectively vw EW). If W is both a left and 

right ideal of V, then W is called a two-sided ideal 

(or ideal, for short) of V. 

If W is an ideal of an algebra V, then the quotient 

space V/W = {v + W : v E V} is an algebra with respect 

to the following multiplication 

(v + W)(v + W) = v v + W 
1 2 1 2 

It can be easily verified that this definition of the 

product on V/W is well-defined and is bilinear. V/W, 

with this algebra structure, is called the quotient 

algebra of the algebra V by the ideal W. 

EXAMPLES OF SUB-ALGEBRA 

We shall consider now some important sub-algebras of the 

general linear algebra of degree n, gl(n,F). 

EXAMPLE 1: The subalgebra sl(n,F) = {AEgl(n,F):tr(A)=O} 

n 
where tr(A) = L a This algebra is called the 

i=1 ii 

special linear algebra of degree n. 

In order to show that sl(n,F) = (A E gl(n,F)1 tr(A) = O} 

is a sub-algebra of gl(n,F), we have to show sl(n,F) is 
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closed under addition, closed under scalar 

multiplication, and closed under the bracket 

multiplcation. 

1.	 Show it is closed under addition 

let A, B E sl(n,F), 

we need to show that A+B E sl(n,F) 

we know tr(A) = 0 and tr(B) = 0, 

tr(A+B) = tr(A) + tr(B) 

=	 0 + 0 = 0 

therefore A+B E sl(n,F) 

2.	 Show it is closed under the scalar multiplication 

let A E sl(n,F), and 0 EF. 

we need to show that aA E sl(n,F) 

tr(aA)	 = Otr(A)
 

= a(o)
 

= 0
 

3.	 Show it is closed under the bracket multiplication 

let A, B e sl(n,F) 

we need to show that [A,B] E sl(n,F) 

tr[A,B] = tr(AB-BA) 

= tr(AB) - tr(BA)
 

= tr(AB) - tr(AB)
 

= 0 

therefore [A,B] E sl(n,F) 
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EXAMPLE 2: The sub-algebra of skew-symmetric matrices. 

t t 
so(n,F) = {A E gl(n,F) I A = -A}, where A is the 

transpose of A. 

As in example one we need to show so(n,F) is closed 

under addition, closed under scalar multiplication, and 

closed under the bracket multiplication. 

1.	 Show it is closed under addition 

let A, B E so(n,F) 
t 

we need to show (A+B) E so(n,F) 

t t 
we know A = -A, and B = -B 

t t t 
(A+B)	 = A + B
 

= (-A) + (-B)
 

= -(A+B)
 

2.	 Show it is closed under scalar multiplication 

let A E so(n,F), and aE F 

need to show aA E so(n,F) 

t t
 
(aA) = a(A)
 

= a(-A)
 

= -(aA)
 

3.	 Show it is closed under the bracket multiplication 

let A, B E so(n,F) 

need to show [A,B] E so(n,F). 
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t t
 
[A,B] = (AB-BA)
 

t t
 
= (AB) - (BA)
 

t t t t
 
= B A - A B
 

= (-B)(-A) - (-A)(-B)
 

= BA - AB
 

= -(AB-BA)
 

= -[A,B]
 

EXAMPLE 3: For n=2m, the symplectic sub-algebra sp(n,F), 

t 
formed by the matrices AEgl(n,F) such that A J + JA = 0 

where J has the form: 

o I I 
m 

J = 
-I o 

m 

where I is the identity matrix of order m, and 0 is 
m 

the zero matrix of order m.
 

To show that sp(n,F) is a sub-algebra, we need to show
 

it is closed under addition, closed under scalar multip­

lication, and closed under the bracket mulitplication.
 

1.	 Show it is closed under addition 

let A, B E sp(n,F) 

we need to show that A+B E sp(n,F) 

t t
 
we have A J + JA = 0, and B J + JB = 0
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let C = A + B then 

t t
 
C J + JC = (A+B) J + J(A+B)
 

t t 
= (A +B )J + JA + JB 

t t 
= A J + B J + JA + JB 

t t 
= (A J+JA) + (B J+JB) = 0 

2. Show it is closed under scalar multiplication 

let A E sp(n,F), and 0 E F. 

we need to show that OA e sp(n,F) 

t
 
A J + JA = 0
 

t t
 
(OA) J + J(OA) = O(A J) + O(JA)
 

t 
= O(A J+JA) 

= 0(0) 

= 0 

3. Show it is closed under the bracket multiplication 

Let A,B E sp(n,F),
 
t
 

we need to show that [A,B] J + J[A,B] = 0
 

t t
 
[A,B] J + J[A,B] = (AB-BA) J + J(AB-BA)
 

t t 
= (AB) J - (BA) J + J(AB) - J(BA) 

t t t t 
= (B A )J - (A B )J + J(AB) - J(BA) 
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t t t t 
= B A J - A B J + J(AB) - J(BA) 

t t t t 
+ B	 JA - B JA + A JB - A JB 

t t t t t t 
= (B A J + B JA) - (A B J + A JB) 

t	 t 
+ (JAB + A JB) - (JBA + B JA) 

t t t t 
= B (A J + JA) - A (B J + JB) 

t	 t 
+ (JA + A J)B - (JB + B J)A 

t t 
= B	 (0) - A (0) + (O)B - (O)A 

= 0 

EXAMPLE 4: The sub-algebra of upper triangular matrices 

ut(n,F) = {A E gl(n,F) : a = 0 for i)j}. 
ij 

1.	 Show it is closed under addition 

let A = [a ], and let B = [b ] be in ut(n,F), 
ij ij
 

let C = A + B
 

we need to show that A + B eut(n,F)
 

we know that c = a + b
 
ij ij ij 

for i)j, we have a = 0, and b = 0
 
ij ij
 

therefore c = 0
 
ij
 

therefore it is closed under addition. 

2.	 Show it is closed under the scalar mulitplication 
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let AE ut(n,F),aeF.
 

we need to show that aA E ut(n,F)
 

let C = aA, then
 

c = aa 
ij ij 

for i>j, we have a = 0, and hence 
ij 

c = a(a ) 
ij ij 

= a(O) 

= 0 

therefore it is closed under scalar multiplication. 

3.	 Show it is closed under the bracket mutliplication 

let A = [a ], and B = [b ] be in ut(n,F) 
ij ij 

let AB = [c ], first we are going to show 
ij 

AB E ut(n,F). 

n
 
c a b
= L 
ij r=l ir rj 

Now, a = 0 for i>r and b = 0 for r>j, hence for 
ir rj 

i>r>j we have a b = O. Thus if i>j, then
 
ir rj
 

n
 
c = Lab = o. Hence AB E ut(n,F).
 
ij r=l ir rj
 

Similarly it can be shown that BA E ut(n,F). Thus 

[A,B] E ut(n,F), therefore it is closed under the 

bracket multiplication. 
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DEFINITION 1: Let V and V' be algebras over the same 

field F. By an algebra homomorphism of V into V' we mean 

a mapping f: V ---) V' which is F-1inear and has the 

property that f(v v ) = f(v )f(v ) for every v , v E V. 
1 2 1 2 1 2 

If f is also one-to-one and onto, then it is called an 

isomorphism. 

THEOREM 1: Let V and V' be two F-a1gebras and 

f : V ---) V' an algebra homomorphism. The image fey) 

is a sub-algebra of V' and the kernel of f, 

-1 
ker f = f (O),(the inverse image of 0) is an ideal in V. 

The fundamental homomorphism theorems of group and ring 

theory have their counterparts for algebras we cite: 

THEOREM 2: If f: V ---) V' is an algebra homomorphism 

then V/ker f is isomorphic to Im(f). If I is any ideal 

of V included in ker f, there exists a unique homomor­

phism g: VII ---) V' making the following diagram 

commute. f 
V V' 

TT 1/
\:I 

VII 

Where the mapping TT : V ---) VII is the natural 

homomorphism vl---) v + I. 
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THEOREM 3: If I and J are ideals of an algebra V such 

that I C J, then J/I is an ideal of ViI and (V/I)/(J/I) 

is isomorphic to V/J. 

THEOREM 4: If W is a sub-algebra of an algebra V and if 

I is an ideal in V, then W + I is a sub-algebra of V, 

Wn I is an ideal in W, and there is a unique isomorphism 

'II: W/(WnI) ---> (W + 1)/1 such that the following 

diagram commutes. 

i 
W ~ (W + I) 

11 11 

,W/(WnI) 'II > (W + i)/I 

Where the mapping i of W into W + I is the inclusion 

mapping. (The proofs of the above four theorems can be 

found in). [1] 

EXAMPLE 5: Consider the sub-algebra sl(n,F) of gl(n,F),
 

it can be easily shown that sl(n,F) is in fact an ideal
 

in gl(n,F).
 

For let A E sl(n,F), and let BE gl(n,F)
 

we need to show that [A,B] E sl(n,F)
 

[A,B] = AB - BA
 

tr[A,B] = tr(AB-BA)
 

= tr(AB) - tr(BA)
 

= tr(AB) - tr(AB) = 0
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r' 

" 

therefore sl(n,F) is an ideal in gl(n,F). Now we can 

consider the quotient algebra gl(n,F)/sl(n,F). Also F 

is an F-algebra with respect to the bracket multiplica­

tion. Consider the map tr: gl(n,F) ---> F given by 

AI---> tr(A). Now, we show the map tr is an algebra 

homomorphism. 

1.	 tr is linear, means
 

a) tr(A+B) = tr(A) + tr(B)
 

b) tr(aA) = atr(A)
 

2. tr([A,B]) = [tr(A),tr(B)] 

The first condition of linearity follows from properties 

of the trace. 

For condition (2) we have tr([A,B]) = tr(AB-BA) = 0 

and [tr(A),tr(B)] = tr(A)tr(B) - tr(B)tr(A) = O. 

3.	 Moreover tr is onto, for let a E F be any scalar, 

consider the matrix A = [a ], where 
ij 

for i = j = 1 
a = 
ij ~ otherwise 

then tr A = a • 

Also we have ker(tr) = {A E gl(n,F)ltr(A) = OJ= sl(n,F), 

hence by the Fundamental Homomorphism Theorem 2 we have: 

gl(n,F)/sl(n,F) ~ F. 
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EXAMPLE 6: (Algebra of Endomorphisms). Let V be any 

vector space over a field F. The set of all F-linear 

transformations of V into itself denoted by End (V) is a 
F 

vector space over the ground field F. The vector space 

structure in End (V) is defined by ordinary addition of 
F 

linear transformation and the scalar multiplication of a 

linear transformation by a scalar. Recall that if 

T, T' E End (V) and a E F, then T + T' and aT are 
F 

defined by: 

(T+T')(v) = T(v) + T'(V) 

(aT)(v) = a(T(v» 

for every v e V. 

If we define a multiplication on End (V) by 
F 

(ToT')(v) = T(T'(v» 

then it can be shown that this multiplication is 

bilinear and associative. This algebra is called the 

algebra of endomorphisms of V. 

It is well known that if V is finite-dimensional vector 

space of dimension n, then End (V) is finite-dimensional 
F 

2 
of dimension n over F. If e,e, ,e is a basis 

1 2 n 

for V, then the linear transformations E such that: 
ij 
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if r = i 

E (e ) 1 <= i, j <= n 
ij r 

=[j 
if r :t/= i 

form a basis for End (V) over F. If TEEnd (V) then 
F F 

n
we can write T(e ) = L a e , i = 1, 2, ••• , n and 

i j=1 ij j 

t 
the matrix A = [a ] is the matrix of T relative to the 

ij 

basis (e ), 1<=i<=n. The correspondence TI---> A is an 
i 

algebra isomorphism of the endomorphism algebra End (V) 
F 

onto the matrix algebra Mat (F) of nxn matrices with 
nxn 

entries in F. Thus we have: 

THEOREM 4: The Matrix Algebra Mat (F) is isomorphic 
nxn 

to the algebra of endomorphisms End (V), where n = dim ~ 

F 

(Note that the isomorphism depends upon a choice 

of basis for V. 

Let us consider for any algebra V over F, the algebra 

of endomorphism End (V) of the vector space V. For any 
F 

vEV define a map T : V ---> V by T (x)=vx for all xEV. 
v v 

T is called the left multiplication by v. Then it can 
v 
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be shown that T is an endomorphism of V and hence an 
v 

element of End (V). Also if the algebra V is associative 
F 

then T (xy) = T (x) T (y) for every x,y EV, and in this 
v v v 

case, the mapping 'J!: v 1---> T is an algebra homomor­
v 

phism of V into the algebra End (V) of endomorphism 
F 

of the vector space V. Now if V has an identity 

element 1, then the mapping 0/: v 1---> T is an 
v 

isomorphism of V into End (V). Hence V is isomorphic 
F 

to an algebra of endomorphism, on the other hand if V 

does not have an identity, we can adjoin one in a simple 

way to get an algebra V with an identity such that 

dim V = 1 + dim V since V is isomorphic to an algebra 

of endomorphism, the same is true for V. Thus we have: 

THEOREM 5: If V is a finite-dimensional associative 

algebra then V is isomorphic to an algebra of endomor­

phism of a finite-dimensional vector space. 

DEFINITION 6: A homomorphism of an algebra A over F 

into an algebra End (V) of endomorphisms of a vector 
F 

space V over F is called a representation of A. The 

particular representation ~: v 1---> T in the above 
v 

discussion is called the regular represntation of V. 
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CHAPTER THREE 

LIE ALGEBRAS 

111.1 BASIC DEFINITIONS AND EXAMPLES: 

Some basic concepts and definitions of Lie algebras 

are discussed in this chapter from an algebraic view­

point. 

DEFINITION 1: Let F be a field. A Lie algebra over F is 

a (non associative) F-algebra, L whose multiplication, 

denoted by [x,y] for x and y in L, and satisfies in 

addition the following conditions: 

1. [x,x] = 0, for all x in L 

2. [[x,y],z] + [[y,z],x] + [[z,x],y] = 0 

for all x,y, and z in L. 

Condition 2 is called the Jacobi identity. The product 

[x,y] is often called the Lie bracket or the commutator 

of x and y. 
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PROPOSITION 1: In any Lie algebra L we have [x,y]=-[y,x]
 

for all x,y E L. Conversely, if [x,y] = -[y,x] for all
 

x,y E L, then [x,x] = 0 provided that the characteristic
 

of F is not 2.
 

Proof: From 1 and the bilinearity of multiplication we
 

have 0 = [x+y,x+Y]
 

= [x,x] + [x,y] + [y,x] + [y,y] 

= [x,y] + [y,x] 

thus [x,y] = -[y,x] 

conversely, if [x,y] = -[y,x] then [x,x] = -[x,x], 

hence 2[x,x] = 0, but since the characteristic of F is 

not 2, then [x, x] = O. 

Note that the above proposition implies that the 

multiplication in any Lie algebra is anticommutative. 

EXAMPLE 1: Any vector space Lover F can be considered 

as a Lie algebra over F by defining [x,y] = 0, for all 

x,y E L. Those are the abelian or commutative Lie 

algebras. 

EXAMPLE 2: Let gl(n,F) be the vector space of nxn 

matrices with entries from field F. Define a Lie 

product by [A,B] = AB - BA, A,B E gl(n,F), where AB is 

the ordinary matrix multiplication. We have shown in 

Chapter II that gl(n,F) with respect to the bracket 

multiplication is an algebra. Now we are going to prove 

that the Lie product [A,B] satisfies conditions 1 and 2 

in defintion (1) of Lie algebra. 
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Proof: 1. Show that [A,A] = 0
 

the proof of this condition is very easy,
 

[A,A] = AA - AA = 0
 

2. The second condition to be proved is:
 

[[A,B],C] + [[B,C],A] + [[C,A],B] = 0
 

[AB-BA,C] + [BC-CB,A] + [CA-AC,B] = (AB-BA)C - C(AB-BA)
 

+ (BC-CB)A - A(BC-CB) 

+ (CA-AC)B - B(CA-AC) 

= ABC - BAC -CAB + CBA 

+ BCA -CBA -ABC + ACB 

+ CAB -ACB -BCA + BAC 

= (ABC-ABC) -(BAC-BAC) 

-(CAB-CAB) -(BCA-BCA) 

-(ACB-ACB) -(CBA-CBA) 

= 0 

The Lie algebra obtained in this way is called the 

general linear Lie algebra of degree n over F. For 

convenience it will be called the linear Lie algebra of 

degree n over F. 

EXAMPLE 3: Example 2 above can be generalized. Let A 

be any associative algebra over a field F. We can always 

make A into a Lie algebra by defining a Lie mult­

iplication [x,y] = xy - yx for all x, yEA. One 

verifies at once that this definition of [x,y] gives A 

the structure of F-a1gebra. Clearly [x,x] = 0 for any 

x E A, and the Jacobi identity follows from the 

associative law in A, 
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)"l '} [[x,y],z] + [[y,z],x] + [[z,x],y] = (xy-yx)z - z(xy-yx)+ 

+ (yz-zy)x - x(yz-zy) + (zx-xz)y - y(zx-xz) = 0 

,j Thus the product [x,y] satisfies all the conditions of 

.S: the product in a Lie algebra. The Lie algebra obtained 

in this way is called the Lie algebra of the associative 

l algebra A, and we shall denote this Lie algebra by A • J 

L 

REMARK 1: The fact that every associative algebra can 

be turned into a Lie algebra by means of the bracket 

operation is very important in many aspects of the 

theory of Lie algebras since it establishes a direct 

connection between an associative algebra and a Lie 

algebra. In fact, every Lie algebra is isomorphic to a 

suba1gebra of a Lie algebra A, where A is an associat­
L 

ive algebra [2]. 

EXAMPLE 4: Let V be a finite-dimensional vector space 

over a field F. Since the set of all F-1inear endomorph­

isms of V, End (V) forms an associative algebra, we can 
j' F 

make End (V) a Lie algebra by the bracket operation, we 
F 

write (End (V» for End (V) viewed as Lie algebra and 
F L F 

call it the Lie algebra of endomorphisms of V. When no 

confusion is to be feared we will denoted (End (V» 
F L 

simply by End (V). Any suba1gebra B of a Lie algebra 
F 

End (V) is called a Lie algebra of linear transformation. 
F 
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In view of the previous remark every Lie algebra is 

isomorphic to a Lie algebra of linear transformation. 

In particular the general linear Lie algebra gl(n,F) is 

isomorphic to the Lie algebra of linear transformation 

End (V), 
F 

when n = dim V. 

111.11 STRUCTURE CONSTANTS 

Let L be a Lie algebra over a field F and let 

{e , 
1 

••• , e} 
n 

be a basis for the vector space L. 

••• 

Expanding the elements [e ,e 
i j 

inations of the basis e , 
1 

, 

] 

e 
n 

of 

we obtain 

L as a linear comb­

[e 
i 

,e 
j 

] = 
n 

L 
k=l 

k 
r 
ij 

e 
k 

where the 
k 

scalars y E 
ij 

F are called the structure 

these products determine every product in L. The 

,e}. Moreover, we have seen in Chapter II, 
n 

{e ,e , 
1 2 

constants of the Lie algebra L with respect to the basis I•t 
I';' 

t.:., 

following theorem characterize Lie algebras in terms of 

structure constants and basis elements. 

THEOREM 1: Let L be a (nonassociative) algebra over a 

field F with basis {e ,e , 
1 2 

,e } 
n 

and let 
k 

Y 
ij 

be the 

structure constants of L relative to the basis. For L 

to be a Lie algebra, it is necessary and sufficient that 

the basis elements satisfies the following conditions: 
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a) [e ,e ] = 0
 
i i
 

b) [e ,e ] = - [e ,e ]
 
i j j i
 

c) [[e ,e ],e ] + [[e ,e ],e ] + [[e ,e ],e ] = 0 
i j k j k i k i j 

for all i, j, k = 1, 2, ••• , n. 

These conditions are equivalent to say that the 

constants Y	
k 

satisfies: 
ij 

k 
a') Y = 0
 

ii
 

k k 
b') Y =-Y'
 

ij ji
 

r s r s r s 
c' ) r cr I +Y Y +Y r ) = 0 

r ij rk jk ri ki rj 

for all i, j, k, and s = 1, 2, ••• , n. 

Proof: Clearly if L is a Lie algebra then the conditions 

(a)-(c) are satisfied. Conversely, assume that L 

is an F-algebra such that (a)-(c) are satisfied. 

n n n 
For let x = rae , y = L Pe , and z = L r e 

i=1 i i i=1 i i i=1 i i 

1.	 First we need to show: [x,x] = 0 

n n 
[x,x] = [ L a e , 2: a e ] 

i=1 i i j=1 j j 

= 2:
n

a [e , 2:
n

a e ]
 
i=1 i i j=1 j j
 

n n
 
= L L a a [e ,e ]
 

i=1 j=1 i j i j
 



41 

n n n 
= 2: L a a [e ,e ]+ L L a a [e ,e ]+ L, L a a [e ,e] 

i=1 j=1 i j i j i=1 j)i i j i j j=1 i)j i j i j
J=i 

n 2 n n 
= 2: a [e ,e ]+.L L a a [e ,e ]+ L r a a [e ,e ] 

i=1 i i i i=1 j)i i j i j j=1 i)j i j i j 

n 2 n n 
=Ia [e ,e ]+ L L a a [e ,e ]- L ~ a a [e ,e ] 

i=1 i i i i=1 j)i i j i j j=1 i)j i j i j 

(by condition b) 

n 2 
= }: a [e ,e ] + 0 

i=1 iii 

n 2 
= I a [e ,e ] 

i=1 iii 

= 0	 (by condition a) 

2.	 The second condition to be satisfied is 

[x,y] = -[y,x] 

n n 
[x,y]=[ rae, 'L{3e] 

i=1 i i j=1 j j : i 

I,...',, 
n	 n t ../,= L 2: a {J [e ,e ] ,. ,""

i=1 j=1 i j i j .. 
n n
 

= 2: La {3 (-[e ,e ])
 
i=1 j=1 i j j i
 

n	 n 
= -;b ~ a p [e ,e ]
 

i=1 j=1 i j j i
 

= - [	 L 
n 

Pe ,-2:
n 

a e ]
 
j=1 j j i=1 i i
 

= -[y,x] 
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3. The third condition to be satisfied is 

[[x,y],z] + [[y,z],x] + [[z,x],y] = 0 

[[x,y],z] + [[y,z],x] + [[z,x],y] 

n n n n 
= [[ L a e , L fJ e ], Lye ]+[ [ L {J e , Lye ], I a e 

i=1 i i j=1 j j k=1 k k j j j k k k iii 

+	 [[ Lye, La e ], I fJe ] 
k k k iii j j j 

= [2: 2: a P[e ,e ], I Y e ] + [L L P Y[e ,e ], L a e ] 
i j i j i j k k k j k jk j k iii 

=L L 2: a p Y[ [e ,e ], e ] + L 2: '2: P ya [[ e ,e ], e ] 
i j k i j k i j k j k i j k i j k i 

+L L L ya {J[[e ,e],e] 
k i j k i j k i j 

Now since addition is commutative and associative and 

the a n 1. =n. yo =ya {J for all i,j,k = 1,2, ••• ,n,
i~j k ~ k i k i j 

then the last expression can be written as: 

= L L Lap Y {[ [e ,e ], e ] + [ [e ,e ], e ] + [ [e ,e ], e ]} 
i j k i j k i j k j k i k i j 

Condition (c) implies each term in the last summation is 

zero, and this complete the prove of Jacobi's identity. 

As an application to Theorem 1, we have: 

EXAMPLE 1: Let V be a 2-dimensional vector space over a 

field F. Pick a basis {e ,e } for V, by defining a 
1 2 

multiplication table for the base elements by: 

[e ,e ] = e , [e ,e ] = -e , and [e ,e ] = [e ,e ] = 0 
1 2 121 1 1 1 2 2 

and extending this linearly to a product in V. We are 

going to show the multiplication satisfies the 
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conditions of theorem 1, and hence this multiplication
 

turns V into a two-dimensional Lie algebra.
 

Conditions 1 & 2 follows directly from the definition.
 

For condition 3 we have,
 

[[e ,e ],e ] + [[e ,e ],e ] + [[e ,e ],e ]
 
121 211 112 

= [e ,e ] + [-e ,e ] + [[e ,e ],e ] 
11 11 112 

= 0 + 0 + [O,e ] 
2 

= 0 

therefore the multiplication satisfies the conditions of 

theorem 1. 

REMARK 1: There are couple of simplifying remarks. 

First, we note that if [e ,e ] = 0 and [e ,e ]=-[e ,e ], 
iii j j i 

then the validity of 

[[e ,e ],e ] + [[e ,e ],e ] + [[e ,e ],e ] = 0 
i j k j k i k i j 

for a particular triple i, j, k implies 

[[e ,e ],e ] + [[e ,e ],e ] + [[e ,e ],e ] = 0 
j i k i k j k j i 

Since cyclic permutation of i, j, k are clearly 

allowed, it follows that the Jacobi identity for 

[[e ,e 
0"'( i) cr( j ) 

],e 
0"( k) 

] is valid, where rr is a per­

mutation of i, j, k. Next let i = j. Then the Jacobi 

identity becomes: 

[[e ,e ],e ] + [[e ,e ],e ] + [[e ,e ],e ] 
i i k i k i k i i 
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= ° + [[e ,e ],e ] - [[e ,e ],e ] 
i k i i k i 

= ° 
Hence [e ,e ] = ° and [e ,e ] = - [ e ,e ] implies that 

i i i j j i 

the Jacobi identities are satisfied for e , e , e. In 
i i k 

particular, the Jacobi identity for a Lie algebra L, 

with dim L <= 2 is a consequence of [x,x] = 0, and if 

dim L = 3, the only identity we have to check is: 

[[e ,e ],e ] + [[e ,e ],e ] + [[e ,e ],e ] = 0. 
12323 1 312 

3 
EXAMPLE 2: Let R be the 3-dimensional real Euclidean 

3 
space. We can make R into a Lie algebra by defining a 

3 
Lie multiplication [a,b] = aXb for all a,b E R , where 

aXb is the usual cross product of a and b. 

That the Lie multiplication satisfies [a,a] = 0, for 

3 
all a in R is evident, and by taking advantage of the 

above remark it suffices to prove the Jacobi identity 

3 
holds for the orthonormal standard basis of R. 

Let e = <1,0,0> , e = <0,1,0> , and e = <0,0,1>, then 
1 2 3 

[e ,e ] = e , [e ,e ] = e , and [e ,e ] = e • Hence we 
2 323 131 2 

have [[e ,e ],e ] + [[e ,e ],e ] + [[e ,e ],e ] 
12323 1 312 

= [e ,e ] + [e ,e ] + [e ,e ]
 
3 3 1 1 2 2
 

= ° . and the Jacobi identity holds. 

1 
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Before proceeding with more examples of Lie 

algebras we need to study some interesting facts about 

3 
the Lie algebra structure of R • First we are going to 

give a geometric interpretation of the Jacobi identity. 

A three-dimensional analog of the triangle is the 

trihedron, i.e. the figure formed by the noncop1anar 

vectors a,b,c. These vectors correspond to the vertices 

of the triangle, and the faces of the trihedron 

correspond to the sides of the triangle. The faces of 

the trihedron are planes for which we may substitute 

their normal vectors, i.e. the vectors, bXc, cXa, and 

aXb. Using the same correspondence between planes and 

vectors, we see that the vectors, aX(bXc), bX(cXa), and 

aX(bXc) correspond to the altitudes of the trihedron, 

i.e. the planes containing an edge and perpendicular to 

the opposite face. 
., 

If the sum of three vectors is the zero vector, the ;.'. 
'" r ..,,­
". 

three vectors must be coplanar. The normal vectors of 

three planes having a point in common are coplanar if 

and only if, the planes also have a line in common. 

Hence the geometric interpretation of the Jacobi ident­

ity is: The altitudes of the trihedron are three planes 

having a line in common. This is a generalization of the 

familiar theorem from plane geometry asserting that the 

altitudes of the triangle are three lines having a point 

( the orthocenter ) in common. 
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It is customary to talk about the "Paradox" of 

linear algebra: while every vector space can be 

converted to an inner product space by endowing it 

with a dot product, regardless of its dimension, only 

the three-dimensional vector space can be converted into 

a Lie algebra by the introduction of the cross 

product. This implies the cross product seems to 

lack a higher-dimensional generalization. This 

Paradox is the result of a vicious formulation of the 

problem, as we shall see in the next section. 

111.111 THE LIE ALGEBRA OF ANTISYMMETRIC OPERATORS 

First let us consider the special case of the three 

dimensional vector space 
3 

R. Let a be a fixed vector, 

v E 

the 
a 

f : 

3 
R is 

map ---) R 
3 

R 

linear. 

given 

3 
Let A(R 

3 

) 

f 

a 

by 

= {f 

3 

a 
aXv 

3 
a E R } 

(v) = for 

be the 

all 

3 

set 

of all such linear operators on R • For f , g E A(R ) 
a b 

define the sum f + g and scalar multiplication f as 
a b a 

usua1,i.e. (f +g )(v) = f (v)+g (v)= (axv) + (bxv) = and 
a b a b 

(af )(v) = a(f (v)) = a(axv). Then it can be easily 
a a 

3 3 
shown that A(R ) is a vector subspace of End (R). By 

R 

introducing the Lie bracket multiplication we have: 
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3 
THEOREM 1: A(R ) is a Lie algebra with respect to the 

multiplication [f ,g ] = f og - g of • Moreover there 
a b a b b a 

3 
is a natural Lie algebra isomorphism between R with the 

3 
cross product and A(R ). 

3 
Proof: It is routine to show that A(R ) is a Lie a1g­

bra. To show there is a Lie algebra isomorphism between 

3 3 
Rand A(R ), 

3 3 
define ~: R ---> A(R ). 

3 
by '1J: a 1---> f , where f (v) = aXv for all v e R 

a a 

We claim ~ is a Lie algebra isomorphism. 

1. To show ~ is linear 

First we need to show that 'I' (a+b) = 'IJ(a) + ~(b) 

'l1(a+b) (v) = f (v) 
a+b
 

= (a+b)Xv
 

= (aXv) + (bXv)
 

= f (v) + f (v)
 
a b 

= 'f'(a)(v) + ~ (b) (v) 

Second we must show 

'/I(A,a) = A,~(a), where A,e R 

~(Aa)(v) = f (v) = A(aXv) =Af (v)

A,a a
 

= A( '1'(a)(v)) 
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2. To show that 'II is one-to-one we need the following 

3 
REMARK If a E R is a fixed vector such that aXv = 0 

3 
for all v E R , then a = O. 

Proof: 

let a = a i+a j+a k and v = li+Oj+Ok be vectors in 
123 

3 
R then the cross product aXv is: 

i j k 
a a a, , a I I a a 

aXv = I a a a 1 = i 1 2 3 - j 1 31 +k 1 1 2 
1 2 3 

0 o I I 1 01 10 0 
1 0 0 

= Oi - a j - a k ===> (0, -a , -a ) = (0, 0, 0) 
3 2 3 2 

therefore a = a = 0, 
3 2 

similarly we find a = 0 when v = (0, 0, 1 ) 
1 

hence a = a = a = 0, and a = O. 
123 

3 
Now, ker'll= {a E R I ~(a) = O} 

3 
= {a E R I f = O} 

a 
3 3 

= {a E R I f (v) = 0, for all v E R } 
a 

3 3 
= {a E R I aXv = 0, for all v E R } 

= {O}, 

Hence'll is one-to-one. 

3. It is clear that ~ is onto. 
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4. Finally we show 'f preserves product, this means we 

need to show that'J!([a,b]) = [o/(a),o/(b)] 

o/([a,b])(v) = ~(aXb)(v) 

= f (v) = (aXb)Xv = aX(bXv) - bX(aXv) 
aXb 

= f (bXv) - f (aXv) = f (f )(v) - f (f )(v) 
a b a b b a 

= (f of -f of )(v) 
a b b a 

= [~(a),o/(b)](v) 

therefore 0/ preserves product. 

3 
Let	 f EA(R); The matrix of f relative to the standard 

a a 

basis in 
3 

R is I 

0 

a 
3 

-a 
3 

0 

a 
2 

-a 
1 

-a 
2 

a 
1 

0 

where a = <a ,a ,a ). 
123 

Note that this matrix is antisymmetric, in this case we 

say the linear operator f is antisymmetric operator. 
a 

In general we define antisymmetric operators on the 

n 
n-Euclidean space R as: 

n 
DEFINITION 1: Let V = R be the n-dimensional Euclidean 

space. A linear operator f: V ---) V is called 

t t 
antisymmetric if f = -f, where f is the transpose of f 

Let f : V ---) V be antisymmetric. Select a basis B 
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for V, and let [M] be the matrix associated with f 
B 

relative to B. Then we have [M] is antisymmetric 
B 

matrix. This notation is independent of the choice of 

B
the basis, i.e. if [M] is the matrix of f relative to 

t 

another basis Bt
, then it is known that there exists 

-1 
invertible matrix N such that [M] = N [M] N, and 

B t B 

t t [ -1 rhence = N [M]B~MJB.r - [N-\M1BNr N 

= /(-rMJJ[N-1 Jt 

-1 Jt = - ( N [M]B N 

= -[M] 
Bt 

B
Le. [M] is antisymmetric if [M] is antisymmetric. 

t B 

The entries of the matrix M must satisfy m = -m , 
ij ji 

and in particular, the diagonal entries of M must be O. 

Now we want to show that antisymmetric operators of 

R are precisely the cross product by a fixed vector n. 

3 3 
THEOREM 2: Let f: R ---) R be antisymmetric operator. 

Then there exists a unique vector n such that f(v) = nXv 

3 
for all v in R. The converse of this also true. 

3 
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3 
Proof: Every antisymmetric operator of R has a matrix 

0 a a 
12 13 

-a 0 a 
of the form: A = I 12 23 

-a -a 0 
13 23 

and hence fCv) = nXv, for all v with 

n = -a e + a e - a e 
23 1 13 2 12 3 

where e , e , and e is the standard orthonormal basis 
1 2 3 

3 
for R • Conversely we have seen the matrix of the linear 

operator fCv) = nXv is antisymmetric. 

This theorem brings out the importance of the antisymm­

etric operators; they are distinct to generalize the 

cross product to higher dimensions. 

n 
In the sequal let V = R • 

t 
Let AO(V) = {f e End(V) f = -f}. Under the usual 

addition and scalar multiplication AO(V) is a vector 

subspace of End(V). The product gof of two antisymmetric 

operators f and g in general fails to be anti symmetric 

but by introducing a bracket multiplication we have 

THEOREM 3: AO(V) is a Lie subalgebra of (End(V» • 
L 

Proof: To show that AO(V) is closed under the bracket 

multiplication, [f,g] = fog - gof, 
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t t 
let f,g E AO(V), then f = -f and g = -g 

t t t t 
[f,g] = (fog - gof) = (fog) - (gof) 

t t t t 
= (g of ) - (f og ) 

= (-g)o(-f) - (-f)o(-g) 

= (gof) - (fog) 

= -[f,g] 

this implies [f,g] E AO(V). 

Now we are going to find the dimension of AO(V) by 

costructing a basis for it as follows: 

Let B = {e ,e , ... , e } be an arbitrary basis of V. 
1 2 n 

* * * Consider the dual basis {e , e , ... , e } for the dual 
1 2 n 

* space V of V. Recall that the dual basis satisfy 

the following condition: 

* 
e (e ) = 8 ( Kronecker's delta)
 

i j ij
 

* Now we define s (v) = e (v)e (i,j = 1,2, ••• , n), 
ij j i 

for each v E V. 

It is easy to check that s e= End(V), and satisfy the 
ij 

following conditions: 

2 
1. s (v) = s (v)	 8 

ij	 ij ij 
iff j = rand i = s 

2. [s , s 1 = ["ij
ij rs 

0 otherwise 

3. {s i,j = 1, ••• , n} form a basis for End(V) 
ij 
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2 
In fact this proves that dim(End(V)) = n 

If the basis e , e , ... , e } is orthonormal, it 
1 2 n 

* coincides with its dual, i.e. e = e, i = 1, 2, ••• , n 
i i 

t 
in this case s = s for i, j = 1, 2, • •• , n. 

ij ji 

i+j t 
Define t = (-1) (s - s ), i,j = 1, 2, • •• ,n • 

ij ij ij 

One can show the set {t .. I 1 <= i < j <= n } satisfies 
lJ 

the following conditions: 

n(n-l) 
1.	 The set has elements and each 

2 

element is antisymmetric operator. 

2.	 [ t t ] = t .S
 
ij rs is jr
 

3. The set is linearly independent in AO(V) 

4. The set spans AO(V). 

Now let us pull things together, we have shown that 

if dim	 V = n, then the Lie algebra of antisymmetric 

n(n-l) 
operators AO(V) has dimension ------. Therefore if 

2 
n i= 0, then 

n(n-l) 
------ = n <===> n = 3 

2 

Since there is a natural Lie algebra isomorphism 

3 3
 
between R and AO(R ), we have the following theorem:
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THEOREM 4: There is a natural Lie algebra isomorphism 

n 
between R and the Lie algebra of antisymmetric operators 

One final remark 

n 
AO(R ) if and only 

about 

if n 

the 

= 3. 

Lie algebra structure of 
3 

R , 

it is compatible with the usual inner product on 
3 

R. By 

this we mean that 

2 2 2 2 
laXbl = Ial Ib I - (a.b) 

i.e. the length ofaXb equal to the area of the parall ­

elogram spanned by a and b. 

In fact n = 3 is the only case in which it is possible 

3 
to convert R into a noncommutative Lie algebra over R 

so that the Lie product is compatible with the inner 

3 
product on R • This is rather a deep result and its 

proof is beyond the scope of this thesis. 
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III.IV IDEALS AND HOMOMORPHISMS
 

In this section we study analogues, for Lie 

algebras, of some of the concepts we encountered in 

algebras, concerning quotient algebras and algebra 

homomorphisms. 

DEFINITION 1: Let L be a Lie algebra. By a sub-Lie 

algebra of L we mean a subalgebra L' of L which is 

itself a Lie algebra relative to the multiplication on 

L. 

DEFINITION 2: A sub-Lie algebra B of a Lie algebra L is 

called an ideal of L if [b,a] E B, for every b E Band 

a e L. 

REMARK 1: Since [b,a] = -[a,b], the condition in the 

definition could just as well be written [a,b] E B. 

Thus in the case of Lie algebras "left ideal" coincides 

with" right ideal ". 

Ideals play the role in Lie algebra theory which 

are played by normal subgroups in group theory, and by 

two sided ideals in ring theory; They arise as kernels 

of homomorphisms. 

DEFINITION 3: Let L be a Lie algebra. The center of L 

is defined by Z(L) = {x E L : [x,y] = 0 for all y e L}. 
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THEOREM 1: Z(L) is an ideal of L.
 

Proof: To show Z(L) is an ideal we need to show
 

1.	 Z(L) is a vector subspace of L. 

2.	 for all zEZ(L), and for all x EL, then 

[z,x] E Z(L). 

1.	 To show Z(L) is a vector subspace of L, let x,x'eZ(L) 

then [x,y] = [x' ,y] = a for all y E L. 

The bilinearity of multiplication implies: 

[x+x' ,y] = [x,y] + [x' ,y] = a for all y E L. 

[ a x, y] = [x, y] = (a) = a f or all a E F and y 6: L. 

Hence Z(L) is a vector subspace of L. 

2.	 Let z E Z(L) and x E L, we need to show [z,x] e: Z(L). 

For any y e L, Jacobi's identity implies: 

[[z,x],y] = -[[x,y],z] - [[y,z],x] 

= -[a,z] - [a,x]
 

= a
 

Hence [z,x] E Z(L). This complete the proof.
 

THEOREM 2: If A and B are two ideals of a Lie algebra 

L, then A + B = {a + b I a E A, b E B} and 

n 
[A, B] = { I- [a ,b ] a E A, b e B} are 

i=1 i i i i 

ideals of L. 

Proof: Let a E A, b 6 B, and x E L. 

If a E A means [a,x] E A, and if be B means [b,x] E B, 

[a + b,x] = [a,x] + [b,x] 

but [a,x] + [b,x] e: A + B, therefore A + B is an ideal. 
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To prove [A,B] is an ideal of L we follow the same 

steps of the proof of the first part of this theorem. 

Let aEA, and bE B. Then [a,x] E A and [b,x] E B for 

every x L. Then we have the following 

[ [ a, b ] , x ] = [a',x] E A where [a,b] = a', 

[[a,b],x] = [b',x] E B where [a,b] = b', 

therefore [A,B] is an ideal of L 

By using this theorem we can define the ideal 

2 
L = [L,L] which is called the derived algebra or 

commutator algebra of L. 

EXAMPLE 1: Let L = gl(n,F), the general linear Lie 

algebra. The center of L is the set of all nxn scalar 

matrices, i.e. Z(gl(n,F)) = {dI : d e F and r is the 
n n 

identity matrix of order n}. 

Clearly the set of all nxn scalar matrices is contained 

in the center, since [dI ,A] = (dr )A - A(dI ) 
n n n 

= dA - Ad 

= 0 

To see the reverse inclusion, let A = (a ) be an 
ij 

element in the center of L and consider the matrix 

E = (s .s ) for any p and q with 1 <= p,q <= n, 
pq ip qj i,j 

where as usual 8 is the Kronecker's delta. Now, 
ij 

A E Z(L) implies [A, E ] = 0, which implies AE = E A, 
pq pq pq 
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which in turn implies a 8 = 8 a for all i, j with 
ip qj ip qj 

1 <= i,j <= n. Given i and j, and choose p = q = j to 

obtain a = 8 a which implies a = 0 if i = j and 
ij ij jj ij 

also a =a for any i and j. Thus A is a scalar matrix. 
ii jj 

Note that L is abelian if and only if L = 0, and in this 

case 2(L) = L. 

EXAMPLE 2: In this example we are going to show that if 

2 2 
L = gl(n,f), then L = [L,L] = sl(n,F). Let X e L , then 

m 
X = L [A ,B ], where A , B Egl(n,F) for alII <=i <=m. 

i=1 iii i 

Since Tr ( [A ,B ] ) = Tr ( A B -B A ) = 0 for each 
iii iii 

2 
i = 1, 2, ••• , m, then L C sl(n,F). 

In order to show the reverse inclusion we will make use 

of the matrices E introduced in the previous example. 
pq 

First note that every element of sl(n,F) can be written 

in the form: 
n n 

diag (0 , 0 , ... , o ) + a E where L a = o.1
1 2 n i=j ij ij i=1 i 

n-l 
diag (0 , , 0 ) = L 0 (E -E ) • 

1 n i=1 i ii nn 

Since [E ,E ] = E for i #= j it follows that 
ik kj ij 

i: a E belongs to [L,L]; and since [E ,E ]=E -E 
i:l=j ij ij in ni ii nn 
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for all i, it follows that diag (a , ,a ) belongs to 
1 n 

[L,L]. Hence sl(n,F) C [L,L], and thus sl(n,F) = [L,L]. 

DEFINITION 4: Let L be a Lie algebra. If L has no ideals 

2 
except itself and {OJ, and if moreover L = [L,L] ~ {OJ, 

then L is called simple. 

2 
The condition L + 0, which is equivalent to saying L is 

non abelian, is imposed in order to avoid giving over 

prominence to the one-dimensional Lie algebra. 

3 
EXAMPLE 3: The three-dimensional Lie algebra R with 

multiplication defined by the cross product is a simple 

3 
Lie algebra. R has no proper subalgebras other than 

the one-dimensional subalgebras, which are clearly not 

3 
ideals. To see that R has no two-dimensional Lie sub-

algebras, assume the contrary, i.e. assume S is a two 

3 
dimensional Lie subalgebra of R Then S contain two 

Linearly independent vectors e and e, then it would 
1 2 

follow that a = [e ,e ] would have to be distinct from 
1 2 

o and perpendicular to the plane S, which is impossible 

since	 a = [e ,e ] e S. 
1 2 

The construction of a quotient Lie algebra LIB, where
 

B is an ideal of L is formally the same as the const­

ruction of a quotient algebra: as a vector space LIB is 
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just the quotient space, while its Lie multiplication is 

defined by [x+B,y+B] = [x,y] + B. This multiplication is 

well-defined, since if x+B = x'+B and y+B = y'+B , then 

we have x' = x+b I(b e B), and y'= y+b I(b EB), whence 
112 2 

[x',y'] = [x+b ,y+b ] = [x,y] + ([b ,y]+[x,b ]+[b ,b ]) 
1 2 1 2 1 2 

and therefore [x',y']+B = [x,y]+B, since the terms in 

the parenthesis are all in B. 

DEFINITION 5: Let Land L' be Lie algebras over a field 

F. A Linear transformation t: L --->L' is called a Lie 

algebra homomorphism if t([x,y]) = [t(x), t(y)], for 

all x,y e L. 

If 0/ is also one-to-one, then it is called an 

isomorphism. 

THEOREM 3: Let Land L' be Lie algebras over F. And 

t : L ---> L' a Lie algebra homomorphism, then the 

image of 0/, o/(L) is a sub-Lie algebra of L', and the 

kernel of t, ker(t) = {x EL : t(x)=O} is an ideal. 

Proof: 1. We need to show that t (L) is closed under 

the bracket multiplication. That is let a', a' et(L), 
1 2 

then we need to show [a', a '] E t (L) 
1 2 

we know [a', a ' ] 
1 2 

= [t( a ), 0/ (a )] 
1 2 

=O/[a ,a] 
1 2 

therefore [a',a']-,*,(L) 
1 2 
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2.	 First we show, 'IJ (L) = Im('IJ) is a verctor subspace. 

'IJ( L ) = {'IJ (a) I a E L } = { a' e L' I a' = 'IJ (a ) for 

some a E L}. 

1.	 Show teL) is closed under addition. 

Let a',a'e'IJ(L), we need to show a' + a'e'IJ(L). 
1 2 1 2 

a' = 'IJ( a ) and a' = 'IJ( a ) for some a ,a E L 
1 1 2 2 1 2 

then a' + a' = 'IJ( a ) + tea )
 
121 2
 

= 'IJ( a + a ) 
1 2 

therefore	 a' + a' E 'IJ(L)
 
1 2
 

2.	 Show'IJ(L) is closed under scalar multiplication. 

Let a' E 'IJ(L) and a E F. What we need to show 
1 

aa' E 'IJ(L) 
1 

aa' = 'IJ(aa )
1 1 

= a 'IJ( a ) 
1
 

but 'IJ(a )E 'IJ(L)
 
1 

therefore aa' E 'IJ(L)
 
1
 

3.	 We need to show that ker ('IJ) = {x e LI 'IJ(x) = O} is 

an ideal of L. 

First we need to show ker ('IJ) is a vector subspace 

of L. 

1.	 Show ker ('IJ) is closed under addition. 

Let a, be ker ('IJ) we need to show a + b E Ker ('IJ) 
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o/(a + b)	 = ~(a) + ~(b) 

= 0 

therefore	 a + b e ker (~). 

2. Show	 ker (~) closed under scalar multiplication. 

Let a e ker (~), a E F. We need to show 

aa e ker (~) 

~(Cla) = a~(a) 

= 0 

therefore a a e ker (~) 

3.	 If a E ker (~) and beL, we need to show that 

[ a , b ] Eke r (~) 

~([a,b]) = [o/(a) , o/(b)] 

= [O,b'] 

= 0 

theref ore [a, b] E ker (0/). 

The standard homomorphism theorems of algebras have 

their counterparts for Lie algebras we cite: 

THEOREM 4: If~: L ---> L' is a homomorphism of Lie 

algebras, then L/ker(o/) is isomorphic to Im( ~ ). If I is 

any ideal of L included in ker(~h there exists a unique 

homomorphism t: L/I ---> L' making the following 

diagram commute: L 

n
 
L7I 

~ L' 

Here n: L ---> L/I is the natural homomorphism 

x 1---> x + 1. 
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THEOREM 5: If I and J are ideals of L such that Ie J 

then J/I is an ideal of L/I and (L/I)/(J/I) is isomor­

phic to L/J. 

THEOREM 6: Let B be a sub-algebra and I an ideal of a 

Lie algebra L; then B+I is a subalgebra of L, B nI is an 

ideal of Band B/(B nI) is isomorphic to (B+I)/I as Lie 

algebras. 

Here we shall recall the sub-Lie algebras of the 

general Linear Lie algebra gl(n,F), 

1. The special Linear sub-Lie algebra sl(n,F) = 

{ A E gl(n,F):trace(A)=O}. In fact sl(n,F) is 

an ideal of gl(n,F). 

2. The sub-Lie algebra of skew-symmetric matrices 

t 
so(n,F) = { A E gl(n,F) : A = -A } 

3.	 Let n=2m, the symplectic sub-Lie algebra 

sp(n,F), which by definition consists of all 

t 
matrices AE gl(n,F) such that A J + JA = 0, 

for some matrix J, which has the form: 

o : I 

J = 1-----. m. ----­
-I 

m: 0 

where I is the identity matrix of order m, and 

o is the zero matrix of order m. 

4.	 The sub-Lie algebra of upper triangular 

matrices,ut(n,F)	 = {Aegl(n,F) : a =0 for i>j}. 
ij 
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CHAPTER FOUR 

LXE ALGEBRA OF DERXVATXONS 

IV.I DERIVATION ALGEBRA 

Some Lie algebras of linear transformations arise 

most naturally as derivations of algebras. In this 

section we will study the Lie algebra of derivations. 

DEFINITION 1: Let A be any algebra over F ( not 

necessarily associative). A derivation D in A is 

a linear mapping D : A ---) A satisfying: 

D(xy) = D(x).y + x.D(y) 

for all x, yEA. 

EXAMPLE 1: Let A be the R-algebra of functions of 

R into R which have derivatives of all orders. Let D be 

the differential operator. Then the mapping D: A ---) A 

given by D(f) = f' (the derivative of f) is a 

derivation A. 
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We denote the set of all derivation of an F-algebra 

A by Der (A). Since derivation mappings are F-endomor-
F 

phisms of A we can define the sum of two derivations 

D and D by: (D +D )(x) = D (x) + D (x) 
1 2 1 2 1 2 

for every x e A and the multiplication of derivation 

D by a scalar a by: 

(a D) (x) = a (D ( x ) ) for every x E A. 

With respect to these operations we have the following: 

THEOREM 1: Der (A) is a vector subspace of End (A). 
F F 

Proof: We need to show if D , D E Der (A) and a ,a E F 
1 2 F 1 2 

then a D + a D E Der (A). That is we must show 
1 1 2 2 F 

(a D +a D )(xy) = (a D +a D )(x).y + x(O D +a D )(y) 
1122 1122 1122 

(a D +a D )(xy) = (a D )(xy) + (a D )(xy) 
1122 11 22 

= a D (xy) + a D (xy)
 
1 1 2 2
 

= a (D (x).y + xD (y)) + a (D (x).y + xD (y) 
1 1 122 2 

= a D (x). y + a xD (y) + a D (x). y + a xD (y) 
11 11 22 22 

= (a D (x) + a D (x)).y + x(a D (y) + a D (y)) 
11 22 11 22 

= (a D + a D )(x). y + x(a D + a D )(y) 
11 22 11 22 

which completes the proof. 
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On Der (A) it is possible to define an algebraic 
F 

composition of two derivation D and D by D o D , the 
1 2 1 2 

composition of D and D in the ordinary sense. Then 
1 2 

for	 every x,y E A, we have 

(D oD )(xy) = D (D (xy» = D (D (x)y + xD (y» 
1 2 1 2 1 2 2 

= (D (D (x»(y) + D (x)D (y) 
1 2 2 1 

+	 (D (x»(D (y» + xeD (D (y») 
1 2 1 2 

=	 ((D oD )(x»(y) + (D (x»(D (y» 
1 2 2 1 

+	 (D (x»(D (y» + x((D oD )(y» 
1 2 1 2 

which, in general, is not equal to 

((D	 oD )(x»(y) + x((D oD )(y» because the sum 
1 2 1 2 

(D (x» (D (y» + (D (x» (D (y» ~ 0, generally. 
2 1 1 2 

Hence Der (A) is not closed under this operation. 
F 

However, we shall see that Der (A) can be made into a 
F 

Lie	 algebra if we define the bracket multiplicaion by: 

[D ,D ] = D oD - D oD •
 
1 2 1 2 2 1
 

To see that Der (A) is a Lie algebra with respect to the 
F 

bracket operation we first show the following property: 
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LEMMA 1: For every D , 
1 

D 
2 

e Der (A), 
F 

[D ,D 
1 

] 
2 

Der 
F 

(A). 

i.e. the bracket multiplication is closed in Der 
F 

(A). 

Proof: For any x and y in Der (A) 
F 

we have 

[D ,D ](
1 2 

x.y) = (D oD 
1 2 

- D oD )(x.y) 
2 1 

= (D oD )(x.y) - (D oD )(x.y) 
1 2 2 1 

= (D (D »(x.y) - (D (D »(x.y) 
1 2 2 1 

= D ((D x).y + x.(D y» 
1 2 2 

- D ((D x).y - x.(D y» 
2 1 1 

= ((D oD )x).y + x.((D oD )y 
1 2 1 2 

- ((D oD )x).y + x.((D oD )y) 
2 1 2 1 

= ([D ,D ]x).y + x.([D ,D ]y) 
1 2 1 2 

Thus [D ,D ] e Der (A). 
1 2 F 

Hence it follows that Der (A) is a subalgebra of the 
F 

algebra End (A) of endomorphism of the vector space A. 
F 

Finally we state the following: 

THEOREM 2: Der (A) is a Lie algebra with respect to the 
F 

bracket multiplication. 
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We shall call Der (A) the Lie algebra of derivations in 
F 

A or simply the derivation algebra of A. 

Next we are going to study the link between the Lie 

algebra of derivations Der (A) and the group of auto­
R 

morphisms of A, where A is finite-dimensional algebra 

over the field R of real numbers. First, we state 

several useful properties of derivation mappings. 

THEOREM 3: (Leibniz Rule) Let A be an algebra. 

For any D E Der (A) and x,y E A, we have: 
F 

j n-jn n (n,
D (xy) = L j) D (x).D (y),
 

j=O
 
o i+1 i 

where D is the identity map on A, D = DoD for all i, 

and (~) is the binomial coefficient, 

Proof: Using mathematical induction 

for n=l, 

1 
D (xy)	 = (6) xD( y) + (D D( x) • y 

= x(D(y» + y(D(x» 

n 
next we assume that D (xy) is true for n=m, i.e. 

m m (m) j m-j 
D (xy) = L j D (x).D (y) 

j=O 

Now we are going to show the formula is true for n=m+1, 

m+1 m m (m) j m-j
D (xy) = D(D (xy» = L j D(D (x).D (y» 

j=O 
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j m-j j m-j j m-j 
but D(D (x).D (y» = D(D (x».D (y)+D (x).D(D (y» 

j+1 m-j j m-j+1
 
= D (x).D (y) + D (x).D (y)
 

m+1 j m-j+1m (m) j+1 m-j m (m)
D (xy) = L j D (x).D (y)+ L j D (x).D (y) 

j=O j=O 

By changing the subscripts j to i-I for the first sum 

above, and j to i for the second sum above, we obtain 

m+1 m+l( m) i m-i+1 m (m) i m-i+1 
D (xy)= L i-I D (x).D (y)+ LiD (x).D (y) 

i=1 i=O 

m+l U( m ) (m~ i m-i+l o m+l 
= L Oi-l + i~D (x).D (y) +(~) D (x).D (y) 

i=1 

m+l)
since (~) = (m;l)and (i~l) + (~) = ( i ,the above 

expression can be written into: 

m+l m+l o m+lm+l) i m-i+l (m+l)
D (xy)= 2: ( i D (x).D (y) + 0 D (x).D (y) 

i=1 

m+1 (m+l) i m-i+l 
= LiD (x).D (y)
 

i=O
 

now change i to j and m+l to n we get the following: 

n n (n) j n-j
D (xy) = L j D (x).D (y) 

j=O 

which completes the proof. 

THEOREM 4: Let A be a commutative and associative 

algebra with identity element 1. For any D E Der (A) 
F 

we have: 
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1) D(a.1) = 0 for all a E F 

n n-1 
2) D(x ) = nx D(x), for any x e A, and n >= 0 where 

o 
x =1. 

Proof: (1) To show D(a.1) = 0, first we need to show 

D(l) = 0, 

D(l) = D(l.l) 

= 1.D(1) + D(l).l, but 1 is identity element 

= D(l) + D(l) 

D(l) - D(l) = D(l) + D(l) - D(l) 

o = D(l) 

but	 D(a.1) =aD(l) 

= a.o 

= 0 

(2) The proof is by using mathematical induction 

on n. For n = 0, it is always true. 

suppose it is true for n = k. That is assume 

k k-1 
D(x ) = kx D(x) is true 

for n = k+1 

k+1 k k k 
D(x ) = D(x.x ) = D(x).x + x.D(x ) 

k k-1 
= D(x)x + x.kx D(x) 

k k 
= D(x).x + kx D(x) 

k k 
= (l+k).x D(x) = (k+1)x D(x) 

n n-1 
Thus D(x ) = fiX D(x), for all n)=O. 

-
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We now assume F = R, the field of real numbers. Since 

char R = 0, we can divide both sides of 

n j n-j 
D (xy) = I (~) D (x) D (y) by n! and obtain 

1 n j=O n [1 j 1 n- j ~j~
 
D (xy) = I ---- D (x ------ D (y)
 

n! j=O j! n-j)!
 

Therefore, we can write down formally the series: 

n 2 3
 
00 D D D
 

I ---- = I + D + ---- + ---- + ...
 
n=O n! 2 ! 3 ! 

where I is the identity map on A. 

We want to show that in the case of A is a finite-

dimensional algebra over the field R of reals the 

series converges for every derivation mapping D. To see ... 

this let dim A = m, and select a basis B for A, then for 

every D E Der (A), there is an mxm matrix with entries 
R 

in R associated with D relative to B. Denote this 

matrix by [M] . Then the series above has the form: 
D 

n 2
 
00 M M
 
L ---- = I + M + ---- + ...
 

n=O n! 2 ! 

where M stands for [M] and I is the mxm identity 
D 

matrix. 

We have seen in chapter I that this series 

converges for any square matrix M. Moreover if N is the 

n 

matrix of D relative to another basis B', then 
OJ
I

N 

n=O n! 
converges to the same limit. 
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n 
CD D 

Hence we shall write L -- = exp D. 
n=O n! 

THEOREM 5: Let A be a finite-dimensional algebra over 

R. Then for every D ~ Der (A), exp D is an algebra 
R 

automorphism of A. 

Proof: Clearly exp D is linear. For every x, yeA, we 

= 

have (I (~:~~~](I (~:~~~](exp D)(x)(exp D)(y) 
~=o k! J~=o l~! j 

00 1 n nl k n-k 
= I --- L --------D (x)D (y) 

n=O n 1 k=O kl(n-k)1 

..00 1 n k n-k 
= 2: --- L (~) D (x).D (y) 

n=O nl k=O 

By Leibniz Rule 
00 1 n 

= l: --- D (xy) 
n=O n! 

= (exp D)(xy) 

Therefore exp D is an algebra homomorphism for every 

DE Der (A). Now, we need to show that exp D is a 
R 

one-to-one map. If A , ... ,A is the set of all 
1 m 

A A Am
distinct eigenvalues of D then e I ,e 1, ... , e is the 

set of all distinct eigenvalues of exp D with the same 

multiplicities. Hence the exponential of any matrix 

of D is non-singular. Therefore exp D is one-to-one. 
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COROLLARY The Lie algebra of derivations Der (A) is 
R 

isomorphic to the Lie algebra of automorphisms of A, 

Aut(A). 

IV.II	 INNER DERIVATIONS OF ASSOCIATIVE 
AND LIE ALGEBRAS--· 

Let A be an associative algebra over a field F. 

If a is any element of A, then a determines two mappings 

a	 : x 1---> ax and a: x 1---> xa of A into A. These 
L R 

are called the left multiplication and the right multip­

lication by a. The bilinearity conditions for the 

algebra multiplication in A, implies that a and a are 
,. 

L R 

linear mappings. Let D = a - a • Hence, D is a 
a R L a 

linear mapping of A into A. We also have 

D (xy) = xya - axy 
a 

= xya - axy + xay - xay 

= (xa - ax)y + x(ya - ay) 

= D (x)y + xD (y) 
a a 

hence D is a derivation in A. We call D the inner 
a a 

derivation determined by a. 

THEOREM	 1: If A is an associative algebra then the 

inner derivations in A is an ideal of Der (A). 
F 

Proof: Let D E Inn(A) and D E Der (A) 
a F 
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where Inn(A) = {D a E A} 
a 

= {a - a I aE A}
R L 

Show that [D ,D] E Inn(A). That is we must show 
a 

[D ,D] = b - b for some b E A. 
a R L 

[D ,D](x) = (D oD - DoD )(x) 
a a a 

= «a - a )oD - (Do(a - a )))(x) 
R L R L 

= «a - a )oD)(x) - (Do(a -a ))(x) 
R L R L 

= a (D)(x) - a (D)(x) - (D(a (x)) + D(a (x)) 
R L R L 

= D(x)a - aD(x) - D(xa) + D(ax) • 

= D(x)a - aD(x) - D(x)a - xD(a) + D(a)x + aD(x) 

= D(a)x - xD(a) 

= xC-DCa)) - (-D(a)x) 

= (-D(a)) - (-D(a)) 
R L 

= b - b by letting b = -D(a) 
R L 

therefore [D ,D] is an inner derivation, hence the inner 
a 

~il"', 

derivations in A is an ideal in Der (A). 
F 

Next let L be a Lie algebra, with the algebra 

multiplication in L denoted by [x,y] for all x,y e L. 

Now we are going to study the concept of inner 

derivations in L. We first introduce the very useful 

concept of ~ adjoint mappings ~ 
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DEFINITION 1: Let L be a Lie algebra and a an element
 

of L. The linear mapping x 1---> [a,x] of L into L is
 

called the adjoint mapping of a and is denoted by
 

ad a.
 

THEOREM 2: If L is a Lie algebra, then ad a is a
 

derivation in L, for each a e L.
 

Proof: Evidently ad a is an endomorphism of L. Moreover
 

(ad a)[x,y] = [a,[x,y]]
 

=-[y,[a,x]]-[x,[y,a]] by the Jacobi Identity 

Since multiplication in a Lie algebra is anticommutative 

we have 

(ad a)[x,y] = [[a,x],y] + [x,[a,y]] • 

= [(ad a)(x),y] + [x,(ad a)(y)] 

Thus ad a is a derivation in L. 

DEFINITION 2: The mapping ad a is also called the inner
 

derivation determined by a E L.
 

Let L be a Lie algebra, let Adj (L) = {ad a : a E L}
 

denote the set of all adjoint mappings in L (i.e the set
 

of all inner derivations in L). E!
 
~ 

THEOREM 3: If L is a Lie algebra over a field F, then 

Adj (L) is an ideal in Der (L). 
F 

Proof: We first show that Adj(L) is a vector subspace 

of Der (L), by showing 
F 

ad a + ad b = ad(a+b) and 

Oad a = ad(Oa), for all a,b E L andaEF. 

...., 
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This follows immediately from the identities below: 

ad (a+b)(x) = [a+b,x] = [a,x] + [b,x] 

= (ad a)(x) + (ad b)(x) 

and (ad aa)(x) = [aa,x] = a[a,x] 

=a(ad a)(x) 

Next we show that [D,ad a] E Adj(L) for any a e; L 

and DE Der (L), thus establishing the fact that Adj (L) 
F 

is closed under multiplication of elements from Der (L). 
F 

Consider: 

[D,ad alex)	 = (Doad a - ad a 0 D)(x)
 

= Do[a,x] - [a,D(x)]
 

= [D(a),x] + [a,D(x)] - [a,D(x)]
 

= [D(a),x]
 

= (ad D(a))(x)
 

Therefore Adj(L) is an ideal in Der (L). 
F 

Now since Adj(L) is an ideal in Der (L) we can construct 
F 

the quotient Lie algebra of Der (L) by Adj(L). We call 
F 

it the Lie algebra of outer derivations on L and we 

denoted by	 
I" 

Out(L) = Der (L)/Adj(L) 
F 

THEOREM 4: Out(L) is an ideal of L. 

The proof follows immediately from the following lemma. 

LEMMA 1: If L is a Lie algebra and J an ideal of L then 

L/J is an ideal of L. 
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Proof: Let a+J be an element in L/J where a E L, then
 

for any a' E L, [(a+J),a'] = [a,a'] + J E L/J.
 

Hence L/J is an ideal of L.
 

THEOREM 5: Let L be a Lie algebra.
 

Then ad : L ---) End (L) is a Lie algebra homomorphism.
 
F 

Proof: We have seen that ad (a+b) = ad (a) + ad (b) 

and ad (Oa) =aad (a) for all a,bEL and aEF, hence 

ad is a vector space homomorphism of L into End (L). 
F 

It remains to show ad preserves multiplication. 

Let a,b E L, then we must show 

ad [a,b] = (ad a 0 ad b) - (ad b 0 ad a) 

That is we must show for any x EL, 
HI'~l

ad [a,b](x) = (ad a 0 ad b)(x) - (ad b 0 ad a)(x) • 
ad [a,b](x) = [[a,b],x] i

= - [[b,x],a] - [[x,a],b] by Jacobi's identity •R 
.~= [a,[b,x]] - [b,[a,x]] 

= (ad a)([b,x]) - (ad b)([a,x]) 
••,. 
U= (ad a)(ad b(x» - (ad b)(ad a(x» 
4 ... 

= (ad a 0 ad b)(x) - (ad b 0 ad a)(x). :1
.". 

Therefore ad is a Lie algebra homomorphism. = 
The kernel of this homomorphism, 

ker(ad) = ( x E L : [x,y] = a for all y e L ) 

is an ideal of L. This ideal is called the center of L. 

DEFINITION 3: Let L be a Lie algebra over F.
 

A subspace B of L is called a characteristic ideal
 

of L if B is stable under every derivation of L.
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i.e.	 D(b) E B for every D e Der (L) and b e B. 
F 

THEOREM 6: Let L be a Lie algebra, then the center 2(L) 

is a characteristic ideal of L. 

Proof: Firts recall that 2(L) is an ideal of L (Theorem 

1 chapter 3). It remains to show 2(L) is stable under 

every D e Der(L). 

Let z e 2(L) and D E Der (L), we need to show 

D(z) e 2(L), this means we must show 

[D(z),y] = 0 for any y6 L. 

Now since z E L, then [z,y] = 0 for all y E L, then 

D([z,y]) = 0, also we have 

D([z,y]) = [D(z),y] + [z,D(y)] • 
!~ 
011111 

= [D(z),y] + 0,	 II 
II 

thus [D(z),y] = 0 and hence D(z) e 2(L).	 i ..
Therefore 2(L) is a characteristic ideal of L. g 

... ".
DEFINITION 4: A Lie algebra L is said to be complete if	 .. 

If.. 
1. 2(L) = (O} il 
2. Der (L) = Adj (L).	 It

F	 ;:1'.
lIill 

.:1 

THEOREM 7: Let L be a Lie algebra and I an ideal of L.
 

If I is complete, there is an ideal J of L such that
 

L = I(VJ.
 

Proof: Consider the set J = ( x e L [x,a] = 0, for
 

every a E I).
 

Claim: J is an ideal in L.
 

Evidently J is a subspace of L. Let b E J and x E L,
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then by Jacobi identity [a,[b,x]] = -[x,[a,b]]-[b,[x,a]] 

= 0 - [b,a'], where 

a' = [x,a] E I; hence [a, [b,x]] = 0 for all a e I, and 

[b,x] E J. Hence J is an ideal. 

Next we will show that I n J = (Ole For let c E I n J, 

then [c,a] = 0 for all a E L, hence c is in the center 

of I, but since I is complete Z(I) = {OJ, and thus c = 0 

Hence I n J = (Ole 

Now let x e L, since I is an ideal of L, we define a 

derivation ad x which maps I into itself and hence by 

restricting ad x to I induces a derivation D in I. This 

is inner and so we have an element a E I such that 

EXAMPLE 1: Let us consider the two-dimenisional Lie-

Fe • 
1 

Then b = x - a e J 

where [e ,e ] = e , 
121 

= [L,L] = rae :aEF} = 
1 

other products of base elements 

{e ,e }, 
1 2 

basis 

and all 

2 
O. The derived algebra L 

[e ,e ] = -e 
211 

are 

algebras with 

and x = b + a, thus L = I + J and since I n J = {OJ then 

we have L = I 0 J. 

D(y) = [y,x] = [y,a] for all ye 1. 

it 
".::1 
·f 

1 

I~ 
".HI 

II 
i 
I 

I 
<II 

'" II 

i 

If D is a derivation in L then D(e ) 
1 

= a e 
1 

for some 

a e F • Al so a d (a e ) 
2 

has the pro per t y 

(ad (a e » (e ) 
2 1 

= [a e ,e ] 
2 1 

= a [e ,e ] = - a e • 
211 

Hence 

if E = D + ad (CZ e) 
2 

the n E is a de r i vat ion in Land 
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E(e ) = D(e ) + ad (ae )(e ) = ae + [Qe ,e ] 
1 1 2 1 121 

= ae - ae = O. 
1 1 

Then [e ,e ] = e implies E(e ) = E([e ,e ]) ===> 0 
1 2 1 1 1 2 

= [E(e ),e ] + [e ,E([e )] = 0 + [e ,E(e )]
 
1 2 1 2 1 2
 

= [e ,E(e )] 
1 2 

which implies E(e ) =ye for some yEF. 
2 1 

Now consider ad (Ye )(e ) = [Ye ,e ] = 0, and 
1 1 1 1 

ad (ye )(e ) = [Ye ,e ] = ie . 
1 2 121 

Hence E = ad (ye ) is an inner derivation and 
~L1 

••
D = E - ad (ae) is also inner derivation thus we have ~

2 i ,I 

II •
shown that every derivation in L is inner. 

Now let us find the center of L, 

•".,,'i2(L) = { x E L : [x,y] = 0 for all y E L } " 
:1'= {a e +a e L : [a e +a e +p'e +pe ]=O} 

1 1 2 2 1 1 2 2 1 1 2 2 rt 
:1'. 
f = {a e +a e L : a {J [e ,e ] +a P[e ,e ] =0 } 
I

1 1 2 2 121 2 212 1 '.
= {a e +0 e L : a p. e -a {Je = 0 }
 

1 1 2 2 12122 1
 

= {a e +a e L : (a (J - a p.) e = 0
 
1 1 2 2 1 2 221 

= {O} since { e ,e } is a basis. 
1 2 

Thus L is a complete Lie algebra. 
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CHAPTER FIVE 

SUKKARY AND CONCLUSION 

The subject of Lie algebras has much to recommend 

it as a subject for study immediately following courses 

on general abstract algebra and linear algebra, both 

because of the beauty of its results and its structure, 

and because of its many contacts with other branches of 

mathematics. 

In this thesis I have tried not to make the 

treatment too abstract and have consistently followed 

the point of view of treating the theory as a branch of 

liear algebra. No attempt has been made to indicate 

the historical development of the subject. I just want 

to point out that the theory of Lie algebras is an 

outgrowth of the Lie theory of continuous groups. 

The purpose of this thesis is to introduce the 

basic ideas of Lie algebras to the reader with some 

basic knowledge of abstract and elementary linear 

algebra. 

In this study, Lie algebras are considered from a 

I 

I

i 
I

f 
"

•
I
•
1
f

: 

•
'.

•

.. 

purely algebraic point of view, without reference to Lie 
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groups and differential geometry. Such a view point has 

the advantage of going immediately into the discussion 

of Lie algebras without first establishing the topo10gi­

cal machineries for the sake of defining Lie groups from 

which Lie algebras are introduced. 

In Chapter I we summarize for the reader's conven­

ience rather quickly some of the basic concepts of 

linear algebra with which he is assumed to be familiar. 

In Chapter II we introduce the language of algebras in 

a form designed for material developed in the later 

chapters. 

Chapters III and IV were devoted to the study of 

Lie algebras and the Lie algebra of derivations. Some 

definitions, basic properties, and several examples are 

given. In Chapter II we also study the Lie algebra of 

antisymmetric operators, Ideals and homomorphisms. In 

Chapter III we introduce a Lie algebra structure on 

I 

I
j
I

I 
I
I

I 

DerF(A) and study the link between the group of automor­ •
II 

phisms of A and the Lie algebra of derivations Der (A).
F 

Some of the materials introduced in this thesis 

consists mainly of materials of fairly recent origin, 

including some material on the general structure of Lie 

algebras. 

Finally, through out this thesis I made a lot of 

efforts to only introduce the very basic concepts of 

this very extensive topic, and study the relationship 
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between different concepts. Some important theorems are 

proved in details, and most of the examples are worked 

out completely. 
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