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CHAPTER I 

For a square matrix A the question arises whether or not there is 

a nonzero vector x which, on multiplication by A, is transformed into 

a multiple of itself. That is, if A is an rum matrix and R
n 

denotes the 

n-dimensional vector space over the real numbers R, define the linear 

n n
transformation L:Rn 

~ R by L(x) = Ax for x in R . A fairly important 

task in many applied probless is the seeking of vectors x Sucn that x 

and L(x) are parallel. This situation Occurs in all applications in

volving vi"orations: aerodyna.Tfdcs, elasticity, m~clear physics, :1je':~G.nics, 

che~ical engineering, biology, and differential equations. 

Consider a system of n first order linear differential equatio~s 

;,.-itLl CC'l1stant coefficients to be solved simultaneously; 

(1.1) ul'(t) = allul(t) + a I2u2 (t) + + a u (t)
l n n 

ll/ (t) a (t) + a (t) + ... + (t)2I u I 22u 2 a 2nun 

II '(t) a IUI(t) + a Zu (t) + ... + a u (t)
n n n 2 nn n 

In standard form, the system (1.1) may be ~ritten as 

(1. 2) du/dt Au 

where u = (u (t), u (t), ... ,un(t»T a:1J du/dt = (ul'(t), u/(t),
l 2 

At . l' (1 2) . /d ·,t .u '(t»'. If u = xe 15 a so utlon to . ,thell au t = J,xe = ;\',J 

n 
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At At .and Axe = Axe . Thus, Ax = AX. Conversely, if there ex1StS A and 

At At At 
x ; 0 such that Ax = AX, then d!dt(xe ) = Axe = Axe • and we select 

At 
u to be xe . The practical importance of studying these particular 

transfcrmations is now realized. DeterQining A and x ; 0 which satisfy 

Ax = AX will give rise to a solution for the system (1.2). 

\)-2 now officially :cr::-.1.11ate tile algebraic eigenvalue-eiger.vectcr 

':):-(j=-:e~. Let A oe a matrix of ~rder n with con?~ex entries. Find a 

tx·'-le:·: r,:...:~ber 1 such tnat t~ere exists a cor.,?lex \-ector x, x f 0, whe::-e 

rt...x = ',:-:. l'ii2 _eige':1V6l1JLS of i~ are definc.:i to je those n:.lZlbeys f ,:)r 

'.,'.-,':";ll. the: equ2.t::...on A:.... = )x has a solutio;l x :f 0. [aC~l nonzero vector x 

~.Jt:'~,:·~.·~- ;.....v;, = ',:-: :or a g:'ye'l eiger.\·alu2 is calleJ an ~L\cct~r of 

(:'rr,:;::s:":~ctn;; tc :l"!2 ·...'crd 1!eigenv21ue lt is a :tvbrid one (I:eit;e:l1' 

in Ger:::2r. mea:1S I'proper"). [ige~values are also called pro?er values, 

c ~13r ac ter is t values, and latent values; eigenvectors are corresponi

ingly called proper vectors, etc. In this study the ter8i~ology used 

",-ill be eigenvalue and eige:lvectC'r. 

~~i-l€~l deterr:ining the valuE's of I, for .......~hich the equatiC'n A....... = )x hes 

nc.ltrivial solutions, AJ.;. .~x can be written in the equivalent forms: 

(1. 3) (A - AI)x o 

and 
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0.4) (all - AI) a Xla l2 ln 

(a - A ) a Xla 21 22 2 2n 

~ o. 

a (a - A ) X 

L 
anI n2 nn n n 

~ 

The matrix equation (1.4) represents a homogeneous system of linear alge

braic equations. An obvious solutiun is the zero vector. Since this is 

seldom of interest, we call X = 0 the trivial solution and seek x F 0 

SUCil that Ax := ).x. 

l~ontri,,'ial solutions exist for equations such as (1.4) if, and only 

if, t:1E cOEfficient matrix is singularj in other words, if, and only if, 

the determinant of the coefficient matrix vanisnes. Since (A - AI) ccn

tains the parar..eter A, we can find nonzero vectors to satisfy (1.4) if, 

and only if, we can find values of A satisfying det(A - AI) = O. The 

definition of a deterQinant implies tn2t A Satisfies a polynorr.ial equat~on 

(1. 5) (all - AI) a l2 a ln 

a 21 (an - A2) a 2n 

f(~) = det(A - AI) = 

(a - I, )anI an." nn n 

( l) n"n + ,n-l ,n-2 -'- + ' )'= - \1, al" + a , '. . . al"' + a = d:: n- n 
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yhich has exactly n roots AI' A2 , •.. ,An' The equation (1.5) is known 

as the characteristic equation of A. The polynomial determined by the 

det(A - AI) is the characteristic polynomial of A. Also, the spectrum 

of A is defined as a(A) $ {AjAx $ Ax for some X ~ a}. In other words, 

a(A) is the set of distinct roots of the c~aracteristic equation of the 

matrix A. Consequently, seA) does not reveal the multiplicity of each 

root. 

Althougn the alge~raic eigen~alue-eige~vector probl€~ occurs in 

waIIY practical situations, the scope of t~~s study is lim:'tecl to present-

frog metilOcls to aetermine the spectru:ru of a real matrix A. ·:;eneral pro

rerties of eigenvalues are stated in Chapter II to lay the groundwork 

ior t.1E study. Before ac:tu211y c.Eterminin; eigenvaluEs of the ~atrix A, 

t.lE usual initial procedurE is a reauction step \"Tbe:re A is trans for-Qed 

to a II s ir.1ilar ll matrix h w'nich has the sanE eigenvalues as A. The matrix 

B has a simpler structure than A, tnereby reaucing the number of cowputa

tions necessary to deterEine t~e eigenvalues. Reduction ~etnods are ue5

C'!:::'-De.C.l in Chapter III. Tr.e algoriLm.: to actually compute the eigeTI\"a.lucs, 

prese,.. ::e.J in Chapters Ir an::..: V, is t!~€' pm..'erful QR algC'rit!1T':"J of Franc~s 

~ " LJ, p. ')},)J. Re=-,eIilber, y,,'t- s1oal1 restrict our attention to real squarE:. 

matrices only. 



CHAPTeR II 

In order to form a oasis for further study, in t~is chapter we will 

consider some basic eigenvalue properties and also define terminology to 

be used. Again, this study is restricted to real matrices because co~pu-

tations for real matrices are simpler than for matrices with complex 

eTitrie: , and results can easily be adapted. 

At tnis point we have not yet placeJ any restrictions on t~e struc

ture of a rJ.atrix other tilan requiring that it is a real nxn matrix. 7ne 

form an e:benvalue takes, given a certain structure for the matrix to 

'.~' '.lell it is asso.:iated, is not unex.pecteG. For exa8;'11e, ·....;e can deter::.ine 

".,;J",::Cler t::e eigenvalues of a sy!Tlr.Jetric r.Jatrix arc real or cooplex. f~ecall 

t_:at ~\. is ~,=rr.Jitia!1 if it is equal to tllE t!'ons;:)Qse of its conjugate !~i.e., 

* =' ~ 1 = .;.). 

T'ME:i)~~:: .l. .1 Tne eigenvalues of a ~ermitian TIatrix are real. 

Procf. Let A be a Hernitian matrix ~it~ t~e eige~value~. Then there 

exists a vector x ". 0 such t;lat 

(2.2) Ax I,X. 

I:IUS, ta~~iEg conjugates and transposing both sides, \..~e have 

(2.3) x*A \x* , 

';:lerE x* d~nctes the vector wl.osE. ell2:-:ents are L"le respective conju~a ~ES 

of tile €lem2nts of ttle vector x an~ ~ is t~le conjugate of~. because A 

is i:er~itian, t~le conjugate transpos€ cf A is A. Pre~ultiply (2.2) b~ 
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x* whicn result.s in x*Ax ),x*x. Postmultiply (2.3) by x which resultsIE: 

in x*A:h. = Xx*x. We find that Ax*x = Ax*". Since x ~ 0, x*x > 0 and it 

follows toat A = A.• 

because the set. of symmetric matrices is a subset of the set of 

r;er:r.:itian 1!iatrices~ we nO\~T knm..' the roots of syTIIllletric matrices are real. 

CO:ltinuing to exa'J.ine t~le structure of eigenvalues under spec-ifie 

C~::L ~ :':i.'-'t:~, \\1'2: cl)l1sider thE' relatior,srtir. of t~1e ei~l·n\!a.iUcs of 1'. to t~e 

o , - f .f:.. ~~\::~-,-\-'::::'_l;'~'5 ,.'f or ,-'£ LIe iti.\"crS2 o. .-\. l)r tnt> questi':--;-j ariS'2.5 as to" 

..,.io.:t...:l\· i·c..if'S are c:.if~ctt.':': .J..I tile sa;c.C' constant is 3wdeC: tL' eZ"lc1J Jia

_.2 i ~t2~.'~ .'...t ::,'f .~. 

_d If l.:e. ::-.<itr .:..:.~ A is nO;l:::;i::;-:.J. r .2:-.u :: ....:.... " '£ cr ): ~ ,! , 

i. _ <;"., •• = ~ 1,' ):.... 

. = .-L' 't. '. "I..' '-..[<2 t:~ve:l •. 1.:.. ... :-...'>. '.X fe.n" x 1: 0. If ij, :':1E.:l J-;.... oj • 

S~;" -= :;-: f:. J, LLbl A ::-.\.:St be si:-,gt..:lar t contradictir,g tbe h:,'p..)t -jE:sis. l.Lert::: 

10:_ ,. J. ~ile:1 p~esLl1t.i?licdtio~1 cf A..."'{ = 1. X lJy t.he i;1ve~!:.e Qf ,\ re:s\...I1Ls 

-, -I -I , 1 / \ ) __ - \- I ...:..'1. .:•• . ;-; or x ...., ..".. T:1Ub, \ " ..... - ~ ....• 
J.. • ..L.~ ..:.-::'c.Le.:3 Llat the watrix A u~Hi tdoO.' In--<2rsc G1 ~1;:'1.·-.." rt:'l':::'~r~lc21 

t.' ..i.;,,;;:r,Ti::._l:":.·, IL1teresrin~:y, :';'.O'Jg;l, tlll~' eiF2T"!·.'c-C [or C'f co r r € ~:JLI:1.... i n~ 

.-1 
[U ~s t.lt:' sa~.~' 8S L'IE' eige,',vi'ctor of correSFO:I~i.1t: to 1,1 -..." 

.' ( 2.!J If t.lere 12XlStS sue;'! that Ax = I.X for SOI:jL x # 0,
 

. il f t:1t:::1 .-:. :.;; x \Jr x 'f u. 

Proof. 1 ) ',,:E:' are gi\.·t2:l that ~_" = :'.:'-; for sor.;e x # u. 

n-l ~ u-1 , . ~-I 
.'~ .,
 

1;-1 .n 1 _ :1- 1 
~ n
 

- ) ;.ssur.le tZ18r :" x for some h # O. J...-Jen r~'-:' x 

.. X = I,n- '., }., .>: , x. '  ,A. x;~ x.':.:;.:.... ~~'. by mat.l inc..uetio:l, if ;-:.... . 



7 

n n-l
for some x .,. 0, then A x = A x for x.,. 0 for all ,·>tural numbers n._ 

Thus, A, the eigenvalue of the matrix A, ",hen squared, becomes the 

2
corresponding eigenvalue of the matrix A . Again, the eigenvector of A 

. 2
corresponding to A is the same as the eigenvector of A corresponding to 

o 
I, .... 

T'JEO?.E~: 2.6 If the matrix A has an eigenvalue) for SOl:le x l' J, 

then the ~~trix A + kI has an eigenvalue ~ ~ k with corresponding eigen

vee tor .-.. 

Proof. (A + kl)x = Ax + klx I,X + klx = l.x + k" = n + k)x .• 

l~ote that i~cre:r.enting each diaE:onal ele:Jent of the matrix A 'uy the 

value of k also incre~ents t~e eigenvalues of A by the value k. 

As statEd in Cnarter I, the spectrum of the natrix A does not reveal 

LIe Qu::tiplicity of. t~e eigenvalues of A. FollmJing is t:1€ delineation 

bet~een t~e algebraic multiplicity and the geo~etric multiplicity of an 

eigenvalue of the :::latrix A. The cnaracteristic polynomial of the til2trix 

.J... can be written as a function of )..:; f(,..i) = detCA - ~!) which is an r:.th

degree pclynonial of the fo~ 

n n n-J
(2.7) f (~) (-1) (~ + Cl lJ + ... + Cl ).

n- 0 

If a(A) = 0. ' ... , )'k)' tnen f can De representee in the foro
1 

)c 1 ' ,)~2) n " ")0"() ( -1 \fJ - \fJ -'2 (I-' : •(2.8) fe = '1 ••• - • 
K 

Tr:e inter,er c,. is called tlle algebraic nulti;olicitv of the ei.l;enval'Je 
. l 
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A.• Along with	 the zero vector, the eigenvectors (not uniquely deter
1 

mined) corresponding with the eigenvalue A fill the linear subspace of 

eigenvectors associated with A. If x and yare eigenvectors belonging 

to the eigenvalue A, then so is every linear combination ax + yy f O. 

The maximuTI number of linearly independent eigenvectors associated with 

the eigenvalue A	 (in other words, the dimensions of the subspace) is the 

geoQetric mu:tiplicitv bf the eigEnvalue~. The geometric multiplicity 

of / can also be	 described as the dimension of the null space oI A - c.1. 

\~ner. beginning the process of determining the spectrum cf the rratrix 

.. , .....Te \I;ill pro6uce a matrix B whose eigenvalues are the samE as ;". The 

~atrix B ~i11 take one of two forws. One possibility will be a tTidia

b~'n<:.: ::2trix T ...-itht 
lJ
.. o if Ii-j ! > 2. ~~e alternate form that t~e 

r.Jatrix B L~kes is eitt-ler a lower liessenDer.& :rr:.atrix H with h .. = 0 if
lJ 

j :.: i + 2 or an upper !lessenberg matrix E with 11, . = 0 if i > j + 2. 
lJ 

\.,Tl1en every 5ubdiagonal element of &n upper Hessenberg matrix is nonzero, 

ttle ~atrix is an	 irreducible lIessenberg matrix. 

\---e can .....Trite the n eigenvr=.lue eque.tions of t~e nxn rJatrix A as 

Ax(1) = )(1)(2.9)	 \I}'
 

Ax(2) _' (2)
 
- A 2X 

Ax (n) ) x(n) 
n 
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, " (l ) . (2) ( 0)
If x ~s the matr~x whose 0 columns are x • x ••••• x • then (2.9) 

can be written as the single matrix equation 

(2.10) AX = x.~. 

where ~ is the diagonal matrix of the eigenvalues of A, 

i (Z.ll) I Al 0 

\z 1 
;, = I 

I , 

I 

! 0 !, 

L n J
 

If t~e columns of X in (Z.lO) form a set of 0 linearly independent 

eigenvectors, tnen X is nonsingular and we can ~rite (2.10) as 

..-1 '" (2.1~) An.\. !, • 

In orJer to proceed with this discussion, we need two definitions. 

The matrix B is said to be sir:.ilar to the matrix A if, and only if, there 

1exists a nonsingular matrix P suc~ that PAP- = B. This is defined as 

a si~ilaritv transformation on A. 

Producing a matrix E whose eigenvalues are the same as a given ~dtrix 

A is accoItplis;H::.J. b:.' a finite nunber ('If similarity transforl7l8tions 
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A = AO -+ Al -+ A2 -+ ••• -+ '\, 

-J .
(Ai = P.A. JP' ,	 1=J ,2, .•. ,k)

1 1.- 1. 

yhere B = Ak = PAP-
J

, P = PkPk- ••. P2PJ' The spectrum of B is, in fact,1 

the sane as the spectrum of A. 

"[HEaRP'l 2.13 If A anG. B are both l1J\;1 matrices T,.,;ith real entries and 

ther~ exists a real, ~xn nonsingular ~atrix P such that p~p-l = B, t~en 

A an~~ b La-:e the samE set of eigenvalues. 

Proof. let j be an eigenvalue of A and x be an associated eigenvectcr 

. .	 p-l
SD t~.i1t Ax = !...x. Let y = Px \o.T;llC:1 r.1.ea71S x == y. If W~ substitute for 

-1 -1 -1 -1.-0.. .. I;; ~-; b :: ,; -:. n ;.r	 y = .\.P y ....,::-tich Iliay 02 w"Titten Pt\}' y = FiP ~,,~:-: 

1=',;)-1 := R~- = .•• .is eigenvalue ofSiTi.2'2 _ _ l..l,':l	 
~.' 

)y ~1l"J S • an E. 5il:.-:"1:3.r1:: ! l E: t 

bc: aa eigenvalue	 of E ano let y be an associated eigenvector so tr,at 

-1 .., P
1y = 'y Let x = P Y wnlC;l means y = x. If we substitute for y, ~e 

-1 ,
o6tain BPx = ~Px	 w~ich may b~ written P-1BPx P f,PX = I,X. Since A 

-1 'T' A" = •p .t,' •••'"\.1\ J):.	 T~'1us, A is an eigenvalue of A.• 

It ","'ill be our goal in the next three cnapters to s~o~\' nm,Y tc C~12(1S~ 

a :i.5trix b w:-Iose eige.:1values are the same as a given dense (re12;:ively 

fe~ zeros) matrix A. The matrix D shall be selected in such a way that 

1) the structure of the matrix B is " s impler ll than the structure of the 

matrix A (i.e., ilas Ci greater number of zero entries); 2) the dete:r:r:i:12
• 

tion of the eigenvalues ()f the matrix B is as "simple" as possible (i.e., 

requires as fe'.~· operations as possible) and 3) the eige.nvalue proLle::-, for 

the r;atrix B is not substantially worse conditioned than that for A (i.e., 

s~all changes in the matrix L do not perturb th~ eigenvalues of B su~-
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stantially more than small changes in the matrix A). Chapter III pre

sents methods for producing the all important similar matrix B. The out

line describing the two-case approach to obtaining the eigenvalues for a 

square matrix, whose presentations are included in Chapters III, IV and 

V, may be illustrated by the following diagram. 

real uta t rix A 

~ 

~~ 
'-;J 

sy:':U<let ric I!l3 tr ices nons:rrm8lri.:: matrices 
I 

I 
, 1 

s:TImetric, tridiagonal u?per Lessen"::ierg matrix 
maLrix T ojtai~eQ througn obtained throug"'l sirr,i
Rousell01der reflectors 1arit: transfornations 

! 
v 1 

ei~envalues determineci eigenvalues cieteroin2d 
t.:-j(ougn Qt'... &lgorit~m ..... ith t~rough doujle s~ift Q~ 

a siu!-:le origin shift (0~, algorithr::l (QR decQl:1:<'si
deccmpositions obtained tions obtained using 
using Givens rotations, louseholder reflectors) 
origin shift by ~il~inson) 



OlAPTER III 

Because of the structure of the eigenvalue problem, it might appear 

that a good method for finding the eigenvalues of a matrix A would be to 

compute the zeros of the characteristic polynomial 

(3.1 ) det(A - AI) = (_l)nl\n - an_1A
n

-
1 - ... - alA - aol. 

~o~ever, if the polynomial is ill-conditioned ~ith respect to tile con?u

t2~i~;1 of its zeros, the results can ~e extrene~y poor. Consider tlle 

?C'~_. ~;(\::-jicl 

\. .) .-) F2u (x) (x-I) (:<-2) (;.-3) ... (x-2J) 

..•.;j( !-;-::- zeros are x_ = 1, x = 2, •.. , x::.) = 20. In cQ171parison, t!1E::
2 

slig~tlv perturbed polynomial Q,n(x) defined by
_u 

(3.3) ',1 (x) PZO(X)-Z-23X19 
Z0 

.las ou.ly ten real zeros. The re:-::aining [en are five complex conjugate 

pairs, four of which lie in the complex plane between 1.6 and Z.9 units 

awc:y trom the real axis [5, Cha?ter 2, S,;.-ction 7J. 

J:. is possible. for rounding errors to occur during the computation 

of t:loO: coefficients a O' aI' ... , an- 1 in (3.1) . These co~putations 

~i;~t introduce perturbations in the characteristic polynomiaJ which can, 

as see~ in "·HlkinsC'n IS exanple, drastically alter the resul ts. There

fore, tile procedure for finding thE' eigenvalues of a square matrix by 
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first deterQining the characteristic polyno~ial and, subsequently, 

determining its zeros is not a viable option. 

As stated in Chapters 1 and II, the usual initial step for deter

mining tne spectrun of a real, square matrix A is to construct (through 

similarity transformations) a matrix B that is similar to A. Po natural 

way to categorize matrices for the purpose of finding eigenvalues is to 

group matrices as s~~etric or n0ns:hL~etric. Constructing &lgorithrns 

for cO:.J?uting eige;lvalues for sym.'1letric '-..atrices is a sinpler p!-ocess 

t1-:&:1 for nonsy"TIlm€tric matrices because every sy::unetric rr;atrix is diagonal

izab~e unQeT a real orthogonal (AT = A) sir.-.ilarity traTIsfon,wtion. T:1at 

is, foY every real s;":-:mIetric r..2.trix A there exists a real oTth.cgO:1a: 

r..::,tr:"""x ~ sue:; (nat 

(3.") I Al 0 

I 

), 2 

-1
Pc APe=!, 

i 
I 

l 0 ") 

n 

I, 
I 
J 

y,,"here the eigenvalues AI' \2' ••• , ~'n are real. In addition, real s::'""7!l

netrie matrices are well-conditioned *ith respect to co~puting eigen

values. In other words, small perturbations in the matrix elements pro

duce only small perturbations in the eigenvalues. ~eitner of these facts 

holos for an arbitrary nonsy::unetric matrix '\-:i,ich t,..'e will consider later. 
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1 shall denote the identity matrix of order n. 
n 

In the process of studying real symmetric matrices, we define a 

Householder matrix H. For each vector u we will construct H such that 

2 T
(3.5) H 1  T"u 

u u 

Given that x = (x ,x , ... ,x )T, u shall be define.j CiS the ,,'ector u
l 2 n 

T" ~ IHle l "Clerc e = 0.0 •... ,0) . It is valua~le to consider the result
I 

.....~hen tne vee to!' x is multiplied on t~e left (transformed) ~v E ( trle 
u 

~a~rix defined in 3.5 as 2 function of u): 

13.0) E x = (1 - ( :. )uuT)x
u 1uu 

2(x ± Ilxllel)(x :': \lxlle l)Tx 
x-

(x ± II xlh)T(x ± IIxlh) 
2(x ± IHle l)(xTx ~ xlIHI)

x
xTx = ~xJlxll + IlxW 

2(x ± Ilxlle l)qHI~ :: xll/xljJx 
~lxW = Lxlllxli 

2(x ± IIxlh) Qjxll2 ± xIIHI) 
= x 

2Qlxl1 2 
:: Xlllxll) 

x - (x ± IHle l) 
~Ixllel 

TnD.t is, E maps x into a vector all of whose components, except t~E 
u 

-_. -_. 
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Zfirst) are zero. Since H requires a division by uTu = Ilull , the sign 

is chosen so that Ilul' is maximum, which maximizes numerical stability. 

Using Householder matrices to transform a real symmetric matrix A 

to a similar matrix B appears to be useful. However, stability or the 

lack of stability oust be considered. If a transformation by a House

holder Thatrix results in a well-conaitioned matrix, then we have a method 

to be reckoned ~ith. 

~;,cn;U:.'l 3.7 If Ii is defined as above, then i) Ii = HI and ii) H Ii-1 

Proof. i) By ~efinition. HI = (1 
Z ~ I

(--)uu")
I 

= 
I

1  (~)(uUI)I 
u u u u 

,-::--)uu
1 

= Ii. 
u U 

,
2 

ii) li~: (I - (-;;:--)uu") (I (T)uUI) 
u "u U U 

4 T 4 T T 
I - (r)uu + I ZU(u u)u 

U u (u u) 

4 I 4 I
I - (--)uu + (--)uu

I I 
U U U U 

1. 

J
rlence, H F- J 

Therefore, H. liT = r- and I, is symmetric and ortLo

gOD.::.l •• 

.:....~ estat:lisllec. in Chapter II, pre- and post-n:ultip:"'icatic.n III a 

D:E.tri:-: A hy a matrix E and its inverse, respectively, (H~1-1) result i~ 

a matri:.;: .....··ilUSe- spectrum is identical to the spectru!:'j of A. Because of 

the syIW.iCtry of tne matrix At t:hatever zeros f:re introduced in U1E.' first 
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column of Al ( A = A ->- Al ->- A2 ->- '.' ->- A;.; = B) will be introduced in the
O 

first row of Al by the same Householder transformation. By constructing 

matrices with the correct dimensions, using the identity natrix, the 

zero ~atTix, and a Householder matrix constructed from the appropriate 

vectoT, we obtain an orthogonal similarity transformation (a most stable 

prOC€::lure) thc.t introduces n-k-l zeros in th kth TO'.: and n-k-l zeros in 

"ti1t: kth colu::m of a s;''1!1!'.letric matrix A (i.e .• in tnc off-tridiagonal pc~,-

i~i,)n5). Tridiagonalization or tnt? matrix A is CQ';7, 1eted after n-2 House

nc,~uer transformations. This procedure is strongl~ endorsed by 1~ilkinson 

,.
, 4 

GiVE~ an ~~~ real s:.'IT....-:;,e t r ic iliatrix A = ra ..-", i-:.ouse:'101cer transrorL.'i3.
... 1J'"
 

t1.e·;lS to t:-ic:iabonalize A are constructEd in tne fo1':o·.r::.. n£, I:ldnner. Re-


T
 
:Lle:-:-'~Jering LIt; sy:::u.'"7Ietr, 0: A, let Xl = (812.aU.814.··· .8 1n ) . Then =u 1 

T 
(812 = "1 '813 '814 ..... 81,,) . HI is cDnstructed 8S 

Tne first l.'i tite transfcrmations v.'ill be 

, _
I 
I l I

r 

GIl 8 a 8 1,:, · .. 8
I 12 13 1n 
I I

T I I 8I u 8 a o ' ·..-1 I I 12 
8 22 23 "-+ 

8 2nI 
I 
I ________J ________ 
I 

II I
I 

I I 
I 

I 0 
I
I
I 

HI 

I I 
I 
I 
I 
1 
I 
I 
Il J
 

I 
I 

8J -+ · ..i 8
13 

8
2J 

8
JJ 

a
Jn 

2 a 3 <:1 44 · .. a14 24 34 4n 

. 

2 T
HI I - (-T-)u u 

I 

I

I 

I 

I 

J 
II ~ 8 8 a ·.. I

I~nn JLIe. ZrJ Jn 4n 
~ I
I 

1
.

1
u1u 1 

I, I 

! I
I 

I 011 I 
I
 
I
 
I I - ______~_-------l 

I 
I I 

I 
I 
I 
1 

0 I
I ~; 1 
I 
I II 
I I
I I 
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an 0 0 ·.. 0bI2 

b ·.. bbI2 b22 23 b Z4 2n 

·..0 bZ3 b33 b34 b3n 

0 · .. I .b 24 b34 b44 b4n 

! 
b b D o ILo 2n 3n 4n nn .J 

T:-;ext, Xz = (023,b Z4 " .. ,b 2n) and u 2 = (bo3~llxzll.to , .. 0 ,b ) T. H) "'ill 
~ ~q n 

2 T
be I - The second transformation \"Til be(~)u2u2' 

u::u 2 

I l 0 0 000.

I I I all bIZ 
I 

1 I
I 

0Z I,, 
I I

I 

--------~--------
I 
I 
I 
I 
1

0 I 
I Hz 
I 
I 
I 
I 
I 
I 

I 
b 12 °22 °23 b24 · .. °2n 

I 0 b
• 0 0I 

b23 b33 34 °3n 
I 

b3 L. ·..0 b24 b 44 °4n 
I .I 
I 

I 

I I 

l 

I 

I 
i 

I 

Z L 

r ..,
I 
I 
I 

1 I 0! 2 
I 

1 
1 

--------1--------1
1 

0 I H I
I 2, 

I,
I 

1 II I 

I 
0 b2n b 3n b,

"n 
b

nn J I 
I
I00'

J L L J 
0 0 0

• • 0all bl2 1 
I 

b l2 b22 c 23 Ci · .. 0
 

= I 
0 c c c ·.. 0
23 33 34
 

0 0 c
 · ..34 c 44 c4n 

l ~ o Ic3n c 4n C 
n;, -l 
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In like manner we continue until tridiagonalization is completed after 

n-2 Householder transformations. Consider the 4x4 real symmetric matrix 

2 6 3I 2 

A = ! 2 1 2 1 

I 0 2 1 1 

L3 1 1 3 ! 
-' 

~e will employ Householder reflectors to transforc A to a tridiagonal 

~atyix 7. To obtain zeros in the last two positio~s of the first ro~ 

ane the first column, let x = (2,6,3)T. Ther; u = d,6,3)T and the House

llolder reflector is 

0 0 0"1 
I 

2 6 3 I 
7 7 - 7 I ", l 

- =6 3 o i 
7 7 I 

3 
- 7

2 - ~ 
• 

I
Il: 7 

7 I ..J 

Thus, 

-7 0 o i 

163 97 -25 
H ~~ 1-:=1 1 49 49 49 

97 -3 -26 , 
49 49 

~9 Jl 0 

-25 -26 05
0 49 49 .,9 
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97 -25 TFor the next iteration, let X Then u = (4.02387,~0.51020)T= (49' 49) . 

and 

r1 l0 0 0 

1 0 0 IHZ = I 0 

-0.96835 0.24957 \ 

0 0.24957 0.96836 Il: 0 

..J 

Thus, the syr;Jnetric, tridiagonal matrix transforIted fro~ A is 

I 2 -7 0 0 1 

l
H2H1Ah 1H2 = I -7 3.32653 -Z.04427 -0.0001 

0 -2.04427 .30711 .89854 

0 -G.OOOI .89844 1.36637 J 

Again, it is the symmetry which permits a synQetric matrix A to be trans

for~ed t~ a tridiagonal matrix by an orthogonal similarity transformation. 

Householder transformations can also De applied to nons~a€tric matrices. 

However, rather than obtaining a tridiagonal matrix, one obtains an upper 

Hessenberg matrix. But, the required nunber of multiplications for plac

ing a nons)-r:u:\€tric matrix in upper Hessenberg form using Householder 

transfornations is 5n3 /3, as opposed to 5n3/6 multiplications to achieve 

the saIr:t2 fCTIiJ using elementary similarity transformations. The trade-

off, though, is that elementary similarity transformations are not always 

stable; pivotal growth is a possibility (although not a high probability). 
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Tne choice between the two methods is similar to the choice between 

partial and complete pivoting in Gaussian elimination. The higher rate 

of stability comes with complete pivoting, but most choose partial pivot

ing because the stability factor is satisfactory and the number of cal

culations is much less. Concerning elementary similarity transfoITJations, 

when pivotal grov..,.th does nut exist and dot.:.":Jle precision arithnetic is 

used, elementary similarity transformatio~s result in a better rate of 

aCC:"...Jracy [8, p. 924J than d0 Householder transformations. \.Jith th.::::t in 

mino, we nOw describe the use of ele~entary sioilarity transformations 

to reduce a nonsymmetric matrix to upper hessenberg forQ. 

~. can illustrate the process for n = 4 and Al = [a ..J. We shall
lJ 

assume that row and column interc~anges are required at each stage of 

tne reduction. Thus, suppose !a41 1 > la31 and la411 > la211. In this 

case we interchange rows 2 and 4 and colu~ns 2 and 4 by the similarity 

transformatiDn A~ = 124Al124 

r I 0 0 ol raIl a l2 aD a l4 l 
r 

I 0 0 o l 
0 0 0 I \ I a_. 8 22 a 23 a 24 I 0 0 0 I [ 

0 

0 

0 

I 

I 

lJ 

o I 

o I 

I 

I 

a 31 

a 41 

a 32 

a 42 

a
33 

a 43 

a 34 I 

I, 
a 44 J l: 0 

I 

I 

0 

o I 

- [ 
U J 

I l 
a 14 aD a l2 ! 

all 

a 4 i a 44 a 43 a42 

a
31 

a
34 

a 
33 

a 32 

a 
21 a2~ a 

23 a'l,") 

L. 
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= [a~jJ . Next we annihilate ami a41 by the similarity transformaa 31 
-1

tion A = M AIM = 
2 2 Z 

l 
..,

11 
I 

0 1 a ~ . 1 = I 1J l I:i 

0 1 
I 

"'32 I I I 0 -l.l32 
I I 

() -;J1D 4 .L 0 0 
42 0 1 ' I 

~ L
1 J I- J 

I 

J 

" .., r·" " ball a 1 ~ 3 i3 a 1~ I 011 D1: 13 b14 
..,
 

- ,.
 a , -, - " a " = b b<:;':1 " o:J 24 i 21 °22 23 b? !
-" 

I
 
u " a - " u b "33 

, 
I
a;, 33 

., 
c;]'-I I J2 ,-"

J';". 
., .,

J ., 2
"0

, a , J ! 0 b 
~-

? "43 lJ,
44 

f-- "" 

. /-'\,iit::r ,;' 
d"'32 -a 31 21 

m",z = -all/all 

Suppose i b 42 > I b32 ~. Then we interchange thE las t L·,lQ ro\o,'s and'I 

thE: li1st t~o columns oy the sicilarity transformation .: 
~
~") 

I = 
" 3 A?13' . 

~ ~ - " 
li:l.ally, WE reduce A2 to Hessenberg form by the similarit~: tranSlcnj1ation 

\ _ ". \t~.-l 
1~3 - '!3~ 2··j 

:- 1 r 1I1 b l2 b l3 b l4 -
Il rb 

.., 

o ,I b 21 b 22 b 23 b 24 I 0 1 
I 

o o 1 o 1b 32 b 33 b.J4 I 0 
I lO 

I 

o o o 1TI'43 1 J 0 b42 b 43 b 44 JL0 -C:~3 
-' 
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!b"b"b"b"11 12 13 14 

= I b " b II b II b " • where = 21 22 23 24 m43 -b42 /b 32 . 
0 b 11 b " b II 

32 33 34
 

0 0 b"b l1
 

43 44 

To carry out the reduction, in general, let A = l("a ..l and examine the
1 1]" 

magnitudes of the elements aZ1.a31 •... ,ai11 •... ,an1. Let a be the
i11 

ele~ent with largest magnitude (the pivot). This neans we must inter

change ro,"", 2 with roy,.' i and column 2 \l,"ith column i by the similarity
1 1 

transfcrr.:taticr'. 

Ai = lZi A11Zi ' 
1 1 

Next, we annihilate 8 31 ,841 ,... ,a~l with the transformation 

A-I A'l'-lZ - .. Z 1 <jz ' 

y,,'h€re I 1 
.., 

a 1 
I 
I 

HZ = I a "'32 1 

a t:l 4Z a 1 

I 
I . I 

< a 
L 

I'lnZ a 0 ... 1 I 

..J 

ana. r,l O) = -d,, /'a'l' ( t 3,4, ... ,n). This corr.plet£'s the first step.
t.... t..l_ 
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lie begin the kth step (k < n-Z) with the matrix 

[11 f I2 I
I 

f I'
K fIn 

.., 

[ZI L) f
L_ ! f Zk Znr

I

I 

I a f I f 
! 32 I f 3k 3n 

I 
I 
I 
I 
I 
I 
I 
I

a a ! [kk • • . f k:1 

---------------1----------------------''\ J ' 

a 0 .,. I f k+1 k ..• f k+I I 
I' 1 n I 
I I 

o a I f k+2 k 
I, 

.•. f k+2 ,n 
I 
I 
I 
I 
I 
I 

La o 
!
If,
I no<. 

f 
nn 

~ 

we select the element with greatest magnitude. (the pivot) among the ele-

Th is Deans that ;"Te interchange rm.J i.ments fk+1,k' fk+2,~' ... , f nk " 
" 

\o;'it~1 row k+l and colum:1 i1:. \.;ritb C'olunn k+l v,:ith the sir.lilarity transfnrT7:

ation 

' = 1 . A- I k 1 ' .Ak I k+ ,1
k

k +, 1 
k 

Kext, we annihilate f~+2,k' f k+3 ,k' . .. , f'k witll the transfor~ation 
n 

'.L A "'l-1 ' 
'\+1 • k+ 1 k'1c+.l 
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"'here 

r' 
1 

'l ~ 
"k+1 m,,+2,k+l 

"\+3,k+l 

m 1 ;
n~k·~-l 

~ J 

f'
tk 

3,-'l':" ill , (t = k+2,k+3, ... ,n).
t,K-+-l f'

k+1 ,k 

Ir; 5u=--_'.l":.a:::.-y, then, 

= [)L+1 I k+1 . JA [IL+1 I k+1 . r 1
, (k = 1,2,~ .. ,n-2),'1<+1 K ,lk K K ,1k 

....·here the up?er Hessenberg matrix A _ is sjr,~lar to the given natr':'x AI" 
n 1
 

Consider the 4x4 nonsyTIlrJ.etric natrix
 

11 I 3 1 l 

Al 2 2 1 2 

I< 2 1 1 

1 1 1 

\·:e ....·ill utilize elementary similarity transformations to transforr.t A 

into an upper Hessenberg matrix. Because 8 > a , we interch;:n~e [(,",·;5
31 2J 

.::. ac, 3 anc ccdumns 2 and 3 by the sicilar:'ty tra:ls:orm.utio:l I.?3r'~Jl:3 t(', 
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obtain 

11 3 1 1 l 
Al = \ 4 1 2 1	 I
 

I
 
. 2 1 2 
I 2 I 

, 
I 1 1 1 1 
L ..J 

_:1t:rl 

,... 
II 1 0 ° o

I
I
, 

i	 
l, I 1 ol0 0 

. ,':-]	 i I ., ,
I'· .- J = 0 1 I'.1 CJ I I	 I v ,OJ- , .	 <'1 : 1 ° ! 

CJ - 1 0 I	 .) j. 0 

IL 0 -. 0 1 I I i 0 J j 1
L l.- .J~ -' 

.... hich results in 

-
r j 15 
4 1

1 I 
,

9
AZ = I 4 2 1 I

4 

11 30 1 
8 2 

19 1 3lO 16 '2 -z; 

because 11/8> 19/16, we will not interchange any ro\.-,'s or columns. Tnen 

ti,e final step is 



1 0 0 0 

-1 
M3A2}!3 = 0 1 0 0 

0 0 1 0 

0 0 
-19 

22 
1 

A
2 

~ 

26 

1 0 0 0 

0 1 0 0 

0 0 1 0 

19
0 0 1

22 

to obtain th~ upper Hessenberg Qatrix 

, 
1 

15 
4 

41 
, , 
LL 

..., 
11 

4 
9 
4 

30 
11 

1 

0 
11 

b 

101 
44 

3 !
-I 
2 I 

lo 0 
-101 

121 ~I
11..) 

~hen one or more of tne sub-diagonal elements of a~ upper Hessen-

berg natrix H are zero, it is called a reducible upper P'2ssenoerg matrix. 

~y partitiohing the matrix H ~ith respect to the zero subdiagonal elements. 

we obtain a block upper triangular structure where each diagonal blocK is 

an irreducible Hessenberg matrix. The QR transformation (to be ciscussed 

for Hes&enberg matrices in Ctlapter V) acts independently on each diagonal 

block. 

To reiterate, a symmetric matrix A is transformed into a tridiagonal 

matrix T tnrough si~ilarity transfomations constructed with Householder 

reflectors. An arlJitrary nonsyr..rnetric matrix E is transforr:2Q into an 

upper Hessen~erg matrix H through elementary similarity transformations. 

Chapters IV and V present methods for determining the eigenvalues of s~'1T\-

r,lecric r~atricl2s an0 nons~~:7rr.lelric matrices, respecti':E:ly. 



CHAPTER IV 

In this chapter we shall-describe the procedure for determining the 

eigeuvalues for a real, symmetric matrix. The procedure will incoL;orate 

the QR method, using the Wilkinsou origin shift. Through similarity traus

formations constructed with Householder matrices~ a real, s~etric matrix 

A has been transformed to a symmetric, tridiagonal matrix I. The QR al

gorit~~. a numerically stable procedure [4J, is defined as follo~s for the 

:natrix T. 

(4.1) 1 ~ II = Q]R] 

1 2 = R]Ql 

1 2 = (lZRZ 

I J = RZQZ 

I 
k

_
1 Q;;-l~-] 

I k ~-lQk-] 

The prod~ct QiR = T is determined by constructing a real orthogonal natrix
i i 

Q. ana a real upper triangular matrix R.o This is kno~n as a O~ deconposi
1 1 

tion of T.•. Note tnat T .+] is simp 1....., the product R.Q.. It can be S:10',;n
1 1 ~ 1 1 

[6, pp. Slb-SI9] that the sequence of matrices {T.} converges to a diagonal
1 
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matrix and that all the matrices T are similar to'T. Therefore, the
i 

sequence {T.} can be employed to determine the eigenvalues of T. Cou
, 1 

structing QR decompositions for the sequence of matrices {T.} is accomp
1 

lished through the use of Givens rotations. 

As stated above, it is imperative that the spectruDs of the ma

"1 -I 
tr:ces T'~l and T. are identical. If T, = Q,R. and Q. = (\, , then 

1 11 1. '1
" 1 

...... -.1-...., 
\...' . .i. = R.. Substituting into T. R.0. results in 
'1 1 1 1+ I 

1 '1 

n-1 :- 'I(..l • :2) Ti +1 ~i "i'-'i' 

r . =.:. , and J-. ere sLwilar ~atrices. I~e i~~ort of this ?~ccess is-........ 1'
_ 1 

t.12t. t:~( ~i;env3.1ues of th~ !!latrices .J.., are, in fact, t~-,e eiZEi1\'z,iuEs of 
1 

t.lt? :::: ..:.~t:.-ic, triciiagonai r;:a.trix T. 

I~ dccelerate the raLe of con\"ergence of tne sequence ~T.J to a dia
l 

gonel OGt:-ix. \.oTt? uti~ize the tecnnisut: of s~... ifting the crigin. As before, 

t~1e sY::7'."'7lctric, tridia£-oTI.s.l ~atri:x is 1}, t:12 first T7l.s.trix i~ .... tho: seqL:ence. 

J. '1£ .-..'--"t"'~:X- - T1 -- '1 - ;: 1 lis DU i 1 t oy shi{tinS t:le ()ri~i~ thE: a:-.(JUi:lt. - 1 . , 

J...: t::..r oetemining C! Oil aecoz-.position of T = Q ·~.·e construct the r.atrix
1 1

L17 

Sl to be tne product R (!1- 7ne secane.! matrix in thf> seC;uence ~'Iij is con
1

s~n.l,-'ted by shifting tile origin Jacl< to forIT. tile matrix 1 = 51 + =- 11. In
2 

gener~:~ th~ Q~ algorithm with oribl~ s~i£ts is de£ine~ as £011025: 
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(4.3) T = T
1 

A 

T = T - a I
I 1 1 

A 

T = Q RII 1 

51 = RIQ I 

T =51 +°1 1L 
" T = T2 - °ZIZ 
A 

1 = QZRZ2 

= R Qc
-' 2 2 L 

=5 +O 11] 2 Z

T, T'I-O'IIJ-l J- J

T, Q, I R , IJ-l J- J

5, p" I Q , IJ-I J- J

T 5, I + 0, IIj J - J-

Again, it is necessary that the matrix T = T and each matrix in the
I 

sequence {T } are similar. Theorem 2.6 establishes that if O(T ) = 
j I 

{,l I' 
, 
r, 2' . .. • ,l'n}' then 0(11 ) = {)'I-O I' ,lZ-J 2' , ,l -0 L Recall 

n n 

fron: (4.2) that the spectrum of 5 I is identical to the spectrum of T .
I 

Because tne origin is shifted to construct matrix 1 from tue TI,atrb; 51'
2 

l'lleorem Z.6 establishes that o(1'Z) = {O'I-ol)+ol' ()'Z-(JZ)+oZ' ... , 

(' -: )+:J J = 0 (1'1)' In like manner, it can be sho......~n that thE: E:igE:L1valuE's
n n i.J 
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of the matrix T) are identical to the eigenvalues of each matrix in tbe 

sequence {T.}.
J 

Since equivalent spectrUlDs are assured for the matrices in the 

sequence {T,} developed through the QR algorithm with origin shifts, a 
1 

method for deteroining the amount of the shift is the next step in the 

process. Consiu.er the first ~a[rix in the sequence, the s:-7.1ID.etric, tri

diabonal matrix 

r ~) o "l 
~l 

I 21 C<2 22
 

T = I ~ 0.

2 3 

!
I 

I 
I ~n-l 

I ;):,., n-l
L n .J 

. lLe t i-,' = I 0. ~ , = 
[ a n _1 Sn_l l Check H.e size of ". 

I I 

L" T J ;:. n·-l n a J 
r-

II ==If t-~.1.5 sm a11" , 1e t P. ! a ~. ' .., 
I

I 
P n-2 I'l :n-2i 

3 a _ II T J n-2 n lc .

(~ot~; If;:" is "small l \, then one of the eigenvalues of the matrix T is 

appare:1t. For example J if S = p 1 and 16 ), is less than or equal to n- n

IJ-12 , then a is an eigenvalue of the matrix T.) ..!\gain, checK thE size 
n 

of ~. If 0 is not "sma ll", then cO:1sider T-cJI \",'here CJ is cO::lputed to be 

the E::igt::Dvalue of the matrix h' lying closest to T. DeterITiine 'J 2S folloT..... s: 
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1) If	 a = T, then 0 = a-lSi. 

2) If a '" T, then ¢ = (a-T) /2 and 
2 

o - T	 - sign(¢) '8 

- 1<p1	 +'J¢2+f32 

This choice for an origin shift is attributed to Wilkinson ~ 6, pp. 507-5121 

Recall that Givens rotations are to be us~d to construct QIl decon

positions for the sequence of matrices that converges to a diagonal matrix. 

After t~e introduction of :·;ilkinson's origin s~ift 0. to accelerate con
J 

vergence, c.~:{ deCOID?Ositions are deternined for the seq"J.encE cf matrices 

(i. J \o,'jlt2.re~. = T. - 0.1. 
J J J J
 

COi'.sider the sy:-.m.etric, tridiagonal watrix
 

ls	 0rEI 1 I 
c	 

I
I
, 

'I	 E2 32 
I

I 
10 2T =	 

E3
1	 I 

I 

"n-l I 
0 ~ E

n-l n'- J 
2

The Givens matrix G] is constructed using the value wI =~E12 + 8 . Tneu
1 

the product of G and T results in the matrix R whose first subdiagonal
1 I 1 

elerrlLcnt is zero. 
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2Using the value w :~£22 + 6 , -the Givens matrix G is built to zero2 2 2 

out the next sub-diagonal element in R
1

. 

2 

_~!_~_~ ~ __: 0 or_:+--~;----~;-! 
I , o 

G

l 
R1 

0, ~ ~, o : 9_ 7 x I 0 o o 
I 'I : -.)2 ""2: 0 r I lII. ,II I p" >~2 I 

I o I
I-~ 

-
~, 

I 
C

I
l 0 ,: 8" 63 o o3 ___L__ ~ ~~_}_____________ I 

I 

I 
o 1n- 3 

----L--------- r ----------------------
I 

o o . 

"3 
I 

' 
rI 

c, 
" 

o o 
I 
I 
I 
J ,I ,, 

o o o : 
1 

0 E n _ 1 
6
n-1 

i
I 

I I I 
I o o : 0 E ii=-n-lJL0L I n j 

R
2 

Ii) x x 0 ·.. 0 01 

0 w x x · .. 0 02 

0 0 £3 x ·.. 0 0 

0 0 ·.. 0 063 c 4 

Ci o o o < 
, 

~n-1 6n - 1 
I

o o o cL0 Sn-1 n 
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He continue to construct Givens matrices until the final step ",heu, using 

the value w 1 = 4/ £, 2 2 
+ Sn-l'n- Y n-l 

G
n-l 

I 
I 
II l
1 
I 
I 
I 

I I 0n-2 I
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 

----------i-------------
, ~ ;.I
I 

n-1 n-lI -- - i 1 IlJ! ,I 
I '"n-l n-1 !,I I 

I I 
I P X 
I n-l n-lI 1-::-- - 
: n-l 

w
n-lL -

w
1 

x 

0 w
2 

0 0 

0 0 

I . 

0 

0l:
I

I 

R
n-2 

wI 

0 

x 

W 
2 

x 

X 

0 

X 

·.. 
· .. 

I 
I 
I 
I 
I 
1 
1 

0 

0 

0 

0 l
I 

0 0 w
3 

X ... I, 0 0 

c: 0 0 W · .. I, 0 0 
4 

_________________________L ___________i 

0 0 0 0 ·.. I
I £ 

n-1 x 
I 
I 
I 
I 
I 

0 0 0 0 · .. I (\ Cl. II n-l nI 
I J
 

x 0 · .. 0 0"" 

x x · .. 0 0 

w x ·.. 0 03 

0 ·.. 0 0 = 4 Rn-l . "'
 

0 0 · .. w x
n-l 

0 0 ·.. 0 x 

Note that this process results in an upper triangular matrix R 1 Also n-

note that tbe matri>; G G _ .. , GZG 1 is ortllogonal since it is tbE' prrn 1 
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duct of orthogonal matrices. Finally, 

Hessenberg by observing the following. 

Gn-l 

0 0 0 0,1 ·..	 l r 1
 
I
 

0 1 · .. 0 0 0 
\	 I

I 
1
 

I
 

I
 
I . 

U 0 · .. 1 U 0 I ,I 0 

l	 i
In-l n-1 I


0 ·.. -- --, " I
0 0	 I 0 
~ l..J I
 

I n-l n-1	 ' 
I	 I
 
I	 I


~'n-l n-1

° 0---
n 

Lv 
1
lo · .. 

v.! n-l 
£ _ J l 0 

G r
n-l u 

11 0 ·.. 

I 0 1 ·.. 

= I 

I
 
0 0 ·.. 
0 0 ·.. 
0 0 ·.. 
0 0 ... 

note 

0
 

1
 

0 

0 

0 

n-2 

0 

0 

U 

x
 

x
 

x
 

that 

·.. 
· .. 

· .. 

· .. 

·.. 

°
 0 

U
 

x
 

x
 

x
 

the matrix G is lower 

Gn-2 

0 0 °l 
0 0 o ! 

I
 
I
 
I
 
I
£ 13
 i
n-2 n-2 o I
 

w.L n-2 n-2
 

~ £
 .... n-2 n-2--- -- 0 
~ i..L'n-2 n-2 

I
 
0 0 

1J 

°l0 

. 
0
 

0
 

x
 

xJ
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G G
n-l n-2 

G 
n 

_ 
3 

1 o o 0 o 0 1 o o o o 0 

a 1 o 0 o a a 1 o o a 0 

0 

0 

U 

0 

· .. 

· .. 

1 

0 

0 

x 

0 

x 

°I
I 
I 

a I 

u 

I ° 

u 

0 · .. 

9. n-3 
wn-3 

Sn-3--
wn-3 

Sn-3 
wn-3 

( 
n-3 

wn-3 

u 

U 

0 

C. 

i 
, 

I 
I.

0 

a 

0 

a 
... 

· .. 
U 

0 

x 

x 
x 

x 

x ' I 0I I 

xJ La 
a 

0 

· .. 
· .. 

(J 

a 

0 

a 

1 

a 
G i 

lJ 
G G G

n-l n-2 n-3 

a 
r1 

I 

a 

1 a 

a 

a 

o o 

o °l 
o I 

= 

a ° x x a a 

a a x x x 0 

a a x x x x 

o a x x x x 
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The	 final product to produce the matrix G is 

G	 GIG	 ZG 3" .GZn- n- n-	 1 

E	 SI lrl a a ... a a r 1 a ... a a a IWI	 WI 
I , E	 I

I	 °l 1SI 
a x x ·.. a a a : -- - a · .. a a 0 

I ! I "'1 WI 

,I 
I 0 X X ·.. 0 0 o ! I 0 a 1 ·.. a a 0 

J 0 0 · .. x x o i 0 0 0 ·.. 1 0 0 

l
I
 

:j	 0 0 · .. x x o ! 0 0 0 ... 0 1 0 

u 0 ·.. x x 0 0 0 ·.. 0 0 1 iLa x J	
I 

J 

G 

= I 

x 

x 

x 

x 

x 

x 

,,",,0 0 · .. 

~~. 
x x ••. 

. . 

0 

0 

0 

ol 
I 

o I 
I 

0 
I 
I 

>: x x x ·.. x "" 0 

x x x >: ·.. x x 

'I x 
L. 

x x x · .. x X 
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The result of these observations is that a QR decomposition for the matrix 

Tcan be defined. Because the matrix G is orthogonal and lower Hessenberg, 

Twe choose Q z G • Consequently, Q is orthogonal and upper Hessenberg. We 

define R = R l' the upper triangular matrix. n
~ 

Earlier it was established that if T. = Q.R. and S. = R.Q., then 
J J J J J J 

T. and S. are similar watrices. Tnerefore, the sequence {T.) can be em
J J J 

ployeG to deter~ine the eigenvalues of T. however, the processes of util

~ 

izing Givens rotations to determine a QR deconposition for T and of util
j 

izing ~ilkinson's origin s~ift to accelerate the rate of convergence of 

the sequence {T.} also require tllat the matrix R.O. be sVIrm1etric and tri-
J J 'J . 

diago:1al. 

TEEORE:: 4.4 If the symmetric I;.atrix r QR, where Q is orthogonal, 

then tile product RQ is sy'T.L":1etric. 

Proof. Because T is symmetric, T = QI: = (QR) T = RTQT. Since c,T = ()-1, 

T T T T T T T T T T .
TQ = (R Q )Q = R (Q Q) = R. Tnen (R~) = 0 R = Q (T~) = Q (T)~ 

QT(QR)Q = (QTQ)(RQ) = RQ. Bence, the Llatrix Rr:J is syOl.'lletric .• 

T'rlEORE~l 4.5 If the matrix R is upper triangular and the roatrix Q 

is upper HessenDerg, then RQ is tridiagonal. 

Proof .•iu1tip1ying Rand Q results in (for 5x5 matrices) 

R Q 

r: x 

x x 

x 

x 

x xl \x 
x I I x x 

x 

x 

x 

x 

x 

x 

x 

I a 

I 0 

La o 

o 

o 

o 

a 

x 

a 

x 

x 

x 

x 

x 

l: a 

a 

x x 

a 

x 

x 

x 

:< 

x 

X I 

IxJ 

= 

RQ 

x x z z zl 
x x x z z I 

a x x x z 

o o x x x 

o a o x x 
~ 
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By Theorem 4.4 the matrix RQ is symmetric. Consequently, the triangu'ar 

block of zeros in the lower left-hand corner of RQ has a correspondin
D 

triangular block of zeros in the upper right-hand corner of RQ. Thus, 

RQ is tridiagonal.. 

We now consider a 4x4 real t symmetric matrix 

r 5 4 J
 
J l
 

A = I 4 5 1 J : 

1 J 4 2 I 
lJ 1 2 4J 

The Q:S. alborith;.'. with an origin shift is employed to determine the srec

truD of A. The ~~ decompositions are built using Givens rotatior.s and tne 

origin srlifts are chosen according to ~ilkinson. 

After A is transfor~ed using Householder reflectors, we have 

T = T
1 

I O. 500000D 01 

I 
-0.424264D 01 

-0.424264D 01 

0.600000D 01 

0.0 

0.141421D 01 

0.0 

0.0 l 
0.0 0.141421D 01 0.500000D 01 

0.0 
IJ 

L 0.8 0.0 0.0 0.200000D 01 

~ote that t 4 ,3 = t 3 ,4 & O. Therefore, t 4 ,4 A = 2 is an eigenvalue of 

A. '~ilkinsonls choice for the first shift 01 = 4. A QR deconpcsition 
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for II - 01 = Q R is built using Givens rotations.1 1 

Then 

T2 = R1Q1 + GIl 

r- G.784211D 01 -J.382874D 01 0.0 0.0 l 
i
I -0.3828740 01 0.317830D 01 -0.377414D 00 0.0 I 

I 0.0 -u.3774140 00 0.49795YD 01 0.0 I 
I 
I 

' 
0.0 0.0 0.0 0.20000DD 01..J 

From tne ~atrix T 02 is defined as O.50j547[ 01. Agai~t a Q~ d2cornposi2 , 

tion is constructed for T - :TZI = Q R " Tnen
Z 2 2 

T = R Q + J 1
3 2 2 2

0.843664;) 01 -0.340972;) 01 0.0 0.0
 

-0.340972D 01 0.256337D OJ -0.498482D-02 0.0
 

0.0 -0.498482;)-02 0.5000000-01 0.0 

I 0.0 0.0 0.0 0.2000JOD 01 JL 

For appearance sake, the following iterations have zeros inserted in posi

tions when the entries become "small". 

G = 0.500001E 01, T = 
3 4 
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D.89327DD 01 -D.29D974D 01 0.0 0.0
 

-D.29D974D 01 D.2D6730D 01 -D.69D428D-D8 0.0
 

0.0 -0.690428D-D8 D.5DDOOOD 01 0.0 

0.0 0.0 0.0 D.2DOOODD 01 

° 4 = 0.5000DOE 01, TS 

..,,r D.928647D 01 -D.243l6DD 01 0.0 0.0 i, 
I -0.24316DD 01 D.171353D 01 o.163513D-14 0.0 !

I

, 

,! 
0.0 D.161D59D-14 0.50DODDD 01 0.0 

I 
0.0 0.0 0.0 D.ZDDDDDD 01 ...! 

° 5 = D.I00DDOE 01, T6 

r O.lOODDOD 02 -0.1749lJSD-07 0.0 0.0 lI 
I
ID.17490SD-07 D.I00DOOD 01 0.0 0.0 

I 

0.0 0.0 0.500000D lJl 0.0 I
I 

0.0 0.0 D.O. D.20JDOOD 01JL

= D.lODODOE 01,° 6 17 

r D.lDDDDOD 02 0.0 0.0 0.0
 l,,

0.0 O.lOOODDD 01 0.0 O.J I, 
0.0 J.O D.5DDDDOD 01 0.0 I 

l 0.0 0.0 0.0 O. ZDOOOOD 01 J 
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Thus, a(A) = {la, 1, 5, 2}. Note that the four eigenvalues of A were 

determined with six iterations of the QR algorithm with an origin shift 

applied to the symmetric, tridiagonal T The QR algorithm takes lessI . 

than two iterations per eigenvalue for a tridiagonal matrix [7, p. 230J. 



OlAPTER V 

In Chapter III an arbitrary nonsymmetric matrix B was transformed 

into an upper P.essenberg matrix H through elementary si~ilarity trans

formations. In t~is chapter we shall describe the procedure for deter

mining the eigenvalues of the upper Hessenberg matrix H. The QR algorithm 

utilized in producing tne eigenvalues of a real, symmetric matrix will 

again be used. "'Then applieG. to an upper Eessenberg Datrix E, the u:unodi

fie.J. QE algoritho has tl.·,ro possible res'.Jlts. One is con\"eq;encE: to a 

"Dlock upper trj angular rr.atrix \"ll)ose diagona~ "blocks are at ;'.ost of oreer 

'[\,,'c.,. llle Gtller possible res:Jlt is that convergence ooes n<-~t occur. i·:ith 

t~e DOGification Gf a single origin shift as Gesc~ioe~ in C:~apter IV, the 

C,D,n 21gcrit":1.r.: appl:'ec to E req:...Iires complex arith...-::letic:.JeC<il!sc: t;lt e i ::t>:1

\.:,:J.~UC5 ('f a=-, upper t>:::ssE:':1berg natrix can be Eitner real or ccr;~·lex. ~·:lf'. 

procec.ure useu is ti1e Gou':J.le shift ~I: algoritlu:J 'hT:lich a\;oids cOIilple)~ 

arith.::tetic, guara~tees convergence ·..~it11 Hproper,r strategy, a~d accelerates 

tne rate cf convergence. 

Before confronting t'lle situation of re21 or cOITI?lex a.ritru-:Jetic, the 

cqnvergence or nonconvergence of tne Q~ algorith~ for a Hessenberg watrix 

r:ust ':::>e discussed. T"1e OR algoritlU:: is saia to converge for m<:n Hessen

. 0 I - [\ (l)] of 1 0" ,berg :::::l2trlx 11 - .I 1 t 1e sequence 1..'"i J, generated ~y (4.1) and there
i
 

' ~ f • (i) h(i)
0 0 re f crreu to as ~., satIs Ies n'+l .. j I + () as i -+ cc, for j = 2,3, .•. ,0 

1 J ,J .J 

n-l. In other words J the QR algorithm converges if, for each pair of adja

cent su'0Giagonal elemellts of E J at least one of the entries converE=es to zero.
l 

:~ote that convergence does not require (but may result in) a tri 

angular matrix w;lOse eigenvalues are displayed on the diagonal. This form 

resul ts I,I.'hen all of the eigen\.. alues are real ~ However, when some of thE:' 

ei~~n~~:je5 arE:' complex, it is sufficient f0r t~e sequence of natrices to 
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converge to upper block triangular form with lxl or 2x2 blocks on the 

diagonal. We now state necessary and sufficient conditions for conver

gence. 

THEOREM 5.1 The QR algorithm applied to an irreducible Hessenberg 

matrix H converges if, and only if, among each set of eigenvalues of H 

with equal modulus, there are at most [\0,'0 of even algebraic Qultiplicity 

aOG two of odd algebraic multiplicity. 

Proof. See Parlett (1968). 

Consequently, given a matrix H witll more tIlan t~o distinct eigen

valUtS 0[ equal modulus, the sequence of matrices {I:. J ge:l.erated by the1 . 

C!}{ ,;lgorithfil o·'~·s not converge. An example of [i"lis condition is the ITl<Jtrix 

(5.2) o 1 l 

l: 
r 0 

o o 'I 

:1 = 

1 OJ 

2
whose eigenvalues are 1, \"', and. w where t,...' = exp (2ni/3). In other \-lords, 

the spectrum of 1-1 is {I, -~ +V3/2i, -!~ -"V3lZi}, each of y,,'hose r:1ET,~ers has 

algebraic multiplicity one. Because more than two eigenvalues of equal 

modulus have- odd algebraic mul tiplicity, the sequence of matrices {Hi} 

defined b~ the QR algorithm does not converge. 

The icportance of the theorerJ can be realized when the QR algorithm 

is applied to real, s:~etric matrices. Since the eigenvalues of real, 

symmetric matrices are always real, there can be at most two distinct 

eigenvalues of equal modulus, resulting in compliance with the conditions 
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for convergence of Theorem 5.1. 

Returning to consideration of Hessenberg matrices, we examine an 

irreducible, complex, Hessenberg matrix II with four distinct eigenvalues 

of equal modulus IAll = IAzl = IA31 = IA 41 with nrultiplicities 4,3,Z and 

I, respectively. Since A1 and A3 have even algebraic multiplicity and A Z 

and) have odd algebraic multiplicity, the QR algorithm "ill converge 
~ 

;;hen applied to the lOatrix H. In fact, the Q!1. algorithm has strong con

vergence properties when applied to hessenjerg Qatric€s. If tile basic 

Q~ 21gorithrn fails to produce the eigenvalues of an irreducible Eessenberg 

::-latr':'x the si tuatioD can easily be remedied by the introduction of the 

te..::llni.guc ci shifting tl:e origin. The I<1.atrix Ii mi ',: ba-.'€ a 51 ectrum 

t.lat Goes not fulfill the conditions of 'Iil€Orem 5.1. !lov-rever, tlle matrix 

i-i-qI v,YouL:I have a spectruIL for \Jhicf;. convergence OCCli.TS. 

Consicer rhe first t .....·o steps of the Qr, algorit>Wl ,",'ith an origin 

shift for an upper hessenberg matrix H. 

(5.3) H = H
1 

A 

1:1 = H1-ql I 

A 

HI = QIRI 

HZ = RIQ l + qlI 
A

Hz = HZ-qzI 

A 

Hz = Q2RZ 

li 3 = RZQZ + qZI 

Fro:;; (4.2) we knO\{ that 
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T(5.4)	 H3 = QZHZO Z 
T T 

= QZ(01 H101)QZ 

T 
= (01 0 Z) "1(01 0 Z)' 

The result is that H can be	 computed fran: III and th" product 01 0 Z' How3 

ever, tole would like to be able to determine ~f3 l.Jithout conc;;tructing the 

QR decompositions for HI anc H In order to accoreplish this, we need2 o 

the following discussion. 

Suostituting from (5.3) we observe teat 

(5.5)	 Ql Q2R"Rl = °1 (H Z- q 2I )R1 

-OHR n~ - l" 1 - q2"1"1 

Ql(Rl Ql+ql I )R1 - q2Ql~l 

Ql R1ql Rl + q l Q1 Rl - q2Ql Rl 

= (QlRl+qlI)QlRl - q2Ql Rl 

= HlQlRl - q2~lRl 

(1l1- q 2I) Ql Rl 

= ("1-Q2I )("1- Ql I ). 

Specific choices for the origin shifts ql a~d q2 will be made later. At 

this pcint note that if q2 is chosen to be ql or if ql and Q2 are both 

real, then the product (li 1-q ZI) (lil-ql 1) is real. This implies that the 

matrices 0l Q2 and R R are real. Ti1US, fro," (5.4) H is real. F.ealizin~
2 l 3 

that H can be deterr..ined by ll2t-l as "] is by HI' then thE seque~ce2t+1 

H , E , }IS' .,. is real. Observe that if q] is complex, then the matrix
l J 
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H2 ~ R1Ql+qlI is· complex. Thus, the sequence H2 , H4 , H6 , •.. may be com

plex. 

We want to avoid constructing the matrices H H H ..• (i.e.,
2

, 
4

, 
6

, 

A A 

avoid determining the QR decompositions for H H H ••. ) because of2 , 4 , 
6

, 

the complex values they possibly contain. Consider the following theorew. 

TEI:ORD~ '1.6 If the ~atrix A is real and nonsingular, th€~ there 

exists a decomposition A = QF. for v,,'"hich Q is orthogonal and F. is upper 

triangular. Furtj1ennore~ if the diagonal elements of R are real and 

?csitive, the decomposition is unique. 

?roof. Sec Young-Gregory (1973), pp. 921-922. 

TilUS, to bypass tne composition of Q.lR} and Q R and tC' builJ 0}Q2 2 2 

direc:1\', IJe determine the ?roduct :.; ~ (Bl-Q2I)(Hl-qlI)· If ql' q2 are 

net eigenvalues of E then}I is nonsingular. Find the QU decomposition
1

, 

('0,7) M ~ (El-q2I)(Hl-Q1I) Ql "1 

""ere the diagonal elenents of I:l are real and posi tive and q2 ~ ql or 

ql' q2 are real. Thus, Theorec', 5.6 states that ° ~ Q The result is1 1Q2 , 

that we can avoid forming 1~2. The matrix B is determined from HI and
3 

all computations are accomplished with real aritruJ.etic. 

I~ general, the double shift QR algorit~~ applied to an u~per Ees

senberg ~atrix H is as follows. 
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H = R
I 

-r. 
H) = Q1HIQ I 

Ii. 

" 
-T -= Q3H)Q 3 

-T 
H

2t+l = Q2t-I H2t-I Q2t-1 

where (H2t-I-qt+ll) (IiZt_l-qtl) = °tRt' 

Tt~e unique decomposition t;)eorem (5.6) provides the '.Jasis for con

structi:tg tnE.' matrix H in one step of tr,e dous.le s:lift QR .o:lgorithr:-.
3 

rat~er th~n two steps of the QR algorit~rn with a single origin shift. 

T:,eC'reticelly, tilen, \<Ie are concerned that~; = (EI-q21)(lil-qlI) is non-

singular and that tne diagonal ele~ents of tne upper triangular Rare 

real and positive. However, empirically it ~1as been estCl'blisned that 

checking }1 for its singularity or nonsingularity is not a concern. In 

fact, a matrix like (5.2) "';10se eigenvalues can;lOt be proauceo by the QR 

algorithm is a rare situation. In other words, this algorithm is more 

powerful than Theorem 5.6 leads u3 to believe. Therefore, in practice 

\<Ie can apply the double shift QR alrorithm to upper Hessenberg matrices 

and, in most cases, successfully obtain the eigenvalues. 

~e initiate the process of determining eigenvalues of an upper 

Hessenberg matrix H* by considering its subdiagonal elements. A negli

gible entry on the subdiagonal allo~s us to oecompose H* into two upper 

Hessenberg matrices which can be operated on independently. After all of 

the ei~envalues of the na trix in the lower r ight-hand corne~ are deter
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mined, we can then continue the process by performing iterations on the 

upper matrix. Thus, the matrix H* can be decomposed into 

»(l) l 
H (Z) I 

H* I , 

I B(k) 

L J 

F (k)\;here H(i) is an irreducible, upper Hessenberg matrix. Let 11(i~) 
·1 

HI - (h, ,j. Then the matrix
1J 

I\ ..1 I r- I,: r l 
I I I I i 

'----.... -------~------------------ I I, , \ 
I

I 
I
Ic I h n - I 

"1 - I \ n-1..n-l n-1 ,n I 
II Y II 

I I r 
,1 h , I ,I I 
n,n-} n,n ...J• J -

To choose the origin shifts for the first step of the ~ouj1e shift QR 

a1goritill1l. find a(Y) = {o.l' aZi. Tnen find the product 

(H
1

-o.1I)(n l -aZI) = 
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hu-<lr h1Z hIn hl1 -<lZ h12 h 1n 

h Zl h ZZ-a1 h Zn h Z1 h -aZZZ h Zn 

o h
3Z h3n o h3Z h3n 

10 0 ... h -Cl: L0 0 ... h -a.) II nn 1 , nn --J"- ~ 

r x v v · ..I 1 vl 
I 

v v ·.. II Y1 v 

= I z v v · .. 
' 1 v II 

I 0 v v · .. v 'I 

I 
I 

I
 

lo J 

",,~here xl = hi1 - h11 (u l + uZ) + ura Z + n12 bZ1 

Y1 = hZI (h 11 + °ZZ - ell - a Z) 

zl = h3Zh Z1 ' 

~ote that the product is not a Hessenberg matrix. Consequently, 

Givens rotations that were utilized in constructing the QR decomposition 

of a syou,etric, tridiagonal matrix are not useful, because the number of 

mul tiplications would be too great. Instead, lN€ will determinE:. an orth0

gonal Q using Householder transformations. Furthermore, we will pre-

and post-multiply hI' ratller than (H 1-a I)(H 1-a I), by householder matrices1 Z
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to build an orthogonal Q, When AQ = QH where A is nonsingular. Q is 

orthogonal and H is irreducible upper Hessenberg, then Q is determined 

by its first column [5, p. 178J' Because the first Householder matrix 

will be built on xl' Yl , zl' the nonZero eleQents of the first column of 

(Hl-a1 I) (Hl - a 2l), the Q we dete=ine will produce the appropriate Ecssen

berg matrix for the next iteration. 

Therefore, in practice, ..... e calculate only tl1E first column of the 

product (El-CilI) (H l -O: 2I) . Let sf = (Xl' "1' 2 l )T with 1\ 5 1\ = c l ' Bune1

the first Householder matrix 

r p I l
I -'I I . 

1_ ---L------Il' : !1 
i I JL : n-3 

T T 
....lhere R = I - (2/u l u )u and = ( • + ) T 

l u u l xl -c J' Yl' z1 •1	 l l 

Recall that a householder matrix is both orthog0nal ancl sj~metric; ther~-

fore, pre- and post-multiply HI by 1'1 to obtain 

I 
I l 
I 
I 

Rl 
I 
I 
I 

0 

I 
I 
I....1

UllilUl = ,
\ , 

I 
I 
I 

0 I
I I 
I n-3 
I 
I 
I 
I 
I 
I 

L

I	 I 
r 

X X X I l I 
I 
I 

x X X	 I
I 
I 
I 

(J X X	 I 
I 

----------t--------
0 0 X I 

I, X 
I 

. I 
I 

, 

. . I 
I , 

. I 
I . 
I 
I 

0 0 0	 I
I X 

r I 
I 

R I
I 0l I 
I 
I 
I _______L _____ 
I 
I 
I 
I 
I 
I0 I I 
r n-3 
I 
I 
I 

I
 
I
L
I 

J 
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x x x x x ·.. x x x 

x x x x x ·.. x x x 

x X X X X '" X X X 

X X X X X · .. x x x 

0 0 0 x x ·.. x x x I = HZ = (Zhij )· 

0 0 0 0 x " . x x x 

o o o o o o x XJ 

Tne next !iouseholc.er Matrix is 

U = z 

1 : 0 : U i 

--;-,--;-2-1--;----- I 
I I , 

----~-----~--------
I I o I 0 I 1 4 
I I n-

where R2 is oased on Sz = rzh21l with l/szll = c Z' Tllen 

Zh3J 

Zh41 
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x x x x x x ·.. x x x 

x x x x x x ·.. x x x 

0 x x x x x ·.. x x x 

0 x x x x x · .. x x x 

ui'zu2 : I 0 

0 

x 

0 

x 

0 

x 

a 

x 

x 

x 

x 

·.. 
· . " 

x 

x 

x 

x 

x 

x 
I 

: H 
3 

: (3 h ij) . 

La o o o o a o x 
j 

x.J 

l\E:X t let 53 r3~32l with Il s 
3 11: c3 " :rlen build a Housel101der ~atrix 

3
n 

421 

~3h52J 
"3 based on 53' 

--=~--~-~---~-~-----lo I RiO IU : _____JL__~ __L_______ I3 
I I , 

o i 0 : I -' J
I I n:J 

Pre- a~d post-multiplication by ~J proaucea 
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U
3

U
3

U
3 

= 

fx 

I 
x 

0 

a 

I a 

a 

x 

x 

X 

a 

a 

a 

x 

x 

X 

x 

x 

x 

x 

x 

X 

x 

x 

x 

x 

x 

X 

x 

x 

x 

x 

x 

X 

x 

x 

x 

· .. 
·.. 
·.. 
·.. 
· .. 
·.. 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

X 

x 

x 

x 

x 

= H4 = (4hij)' 

iLO o o o a o () x J.J 

The next to la~t Housetlolder matrix produces 

U i,E 2V 2n- n- n = 

IX 
x 

x 

x 

i 
Hn-1 ( 1h .. ) • 

n ~J 

\ 
I 

l: 0 

a 

0 

0 

a 

0 

... 

... 

x 

x 

0 

0 

x 

x 

x 

x 

x 

x 

x 

x 

x 

TI,e final step is to build 
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U _
n l [--~~:'+-----: 

I n-l 

where R I is oased on 5 1 ~ ~ h l wi th II s II ~ c - 1 • TnllSn- n- In-l n-1,n-2! n-l n
 

Ln-1 hn ,n-2 J
 
~ Ii (k)U H 1.: the next upper Hessenberg matrix in the sequencen-1 'n-l n-l 2 ' 

~(;;)
f or Ii • 

At tnis point ~e check the subdiagonal elements of 1i (k) If h2 0,n-1 

is approxililattly zerc (acceptably small or negligible), 11 ,n is an eigenn 

value of Eo (k) (llence, an eigenvalue of Ii*). ThuS, t,7e "uefla tell HZ (k) by 

deletinl?, its last rC",: and column and then continue. If ~1 1 7 is &pproxn- ,0-_ 

i~ately zero, then t~e eige~values of t~e 2x2 matrix in the lo~er rig~t-

hand corner are a co~?lex conjugate pair of eigenvalues of 11*. t,Te deflate 

(k) 'l' . 1 . 1 . h . IfH, oy ae etlug lts ast two rows ano co unns ana t en contlnue. a~v 

oLler sUDaiagonal ele~ents of B~ (k) are negligiule, we d ecompose Ii"2 
(k) 

and 
~ 

continue with the upper Hessenberg matrix in the lower right-hand corner. 

One complete step of the double shift QR algorithlil and corresponding 

" c hecks ll have been delineated. If after ten 0:t\ steps, no eigenvalue has 

been deternine, then the shifts ~1' 02 are defined by [7, p.362J. 

(5.9) ~ 1. 5 ( I, h I I + \h 1 ., , ) • °1 + °2 n,n- n- ,n-, 

(Ih '+Ih 1)2°1:l2 n ,n-1 1 n-1 .n-2' 

instead of being defined as eigenvalues of the lo~er right-hand Lx2 matrix. 

If after t ....·enty iterations, we are still unsuccessful in deterr.:lining an 
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eigenvalue, then the definition of (5.9) is again used. After thirty 

unsuccessful it~rations, we admit failure of convergence. 

In Chapter III we obtain, through elementary similarity transforma

tions, an upper Hessenberg matrix H from a nonsymcetric matrix B. Now we 

can cieterrnine the spectrum of E using tne double s:1ift QF. algorithm "lith 

tr:l Q~ decompositions cDnstructed using li~useholder reflectors. 
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