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The purpose,of this thesis is to point out some of the problems 

which may occur while attempting to solve a polynomial equation on the 

microcomputer. 

, Specifically, programs are given which will solve polynomial 

equations of degree four or less using the formulas. Since it is not 

possible to solve a polynomial equation of degree five or more using a 

formula, programs are also given for Newton's, the secant, and the 

bisection methods. 

Solutions obtained by using these programs are given. Illustra

tions of some of the things which may cause problems are also given. 

Specifically, these include multiple roots, reducing the polynomial, and 

the order in which the roots are found. Problems encountered in getting 

the program itself to work are also discussed. 
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CHAPTER 1 

INTRODUCTION 

Polynomial equations and their roots have been of interest to 

mathematicians for centurIes. Through the years, many diverse methods 

for finding the roots of polynomial equations have been developed. 

While newer methods are constantly being sought, older methods are also 

being adapted to take advantage of the latest tools acquired through the 

technological advances of society. 

One of the latest tools to be thus acquired is the microcomputer. 

The microcomputer can make calculations exceedingly fast. For this 

reason it is especially useful in those method5 which require many 

complicated or repetitive calculations. 

However, the microcomputer is not without disadvantages. Before 

it can be used to find the roots of a polynomial equation, a program must 

be written. It must also be checked as to the accuracy of the solutions 

obtained thereby. But this is only the beginning of the problems which 

may be encountered when working with the microcomputer. 

Representation error will occur whenever a repeating decimal or 

irrational number is used. Round-off will also occur frequently in any 

method used on the microcomputer. Additional representation error will 

be incurred by the microcomputer when the machine changes the base ten 

number entered and displayed to the base two number it performs the 

calculations with, and back again. This error will be especially 

noticeable when working with decimals. 
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However, before discussing any specific method for solving 

polynomial equations, a brief review of several fundamental concepts 

Bssential for any metho d to find the roots will be outlined. 

The basis for solving any polynomial equation is the Fundamental 

Theorem of Algebra. This theorem was first proven by Gauss, circa 1800 

(for a proof see [8, p. 414]). The Fundamental Theorem of Algebra 

states that every polynomial equation, P(x) = 0, of degree n a 1 has at 

least one root. While this theorem does not solve the equation, it does 

guarantee that the polynomial equation has a root. 

Using the Fundamental Theorem, it can easily be shown that a 

polynomi.al equation of degree n will have exactly n roots. By the 

Fundamental Theorem, the polynomial equation will have at least one 

root. Let this root be r,. If r, is a root, then x-r, is a factor of 

the polynomial. A reduced equation may be obtained by dividing the 

polynomial by x-r,. Then, according to the Fundamental Theorem, this 

reduced equation must also have at least one root. By repeating the 

above process, the existence of n roots can be shown. 

Polynomial equations of degree four or less may be solved by 

using a formula. However, no formula exists for solving a polynomial 

equation of degree five or more. Furthermore, it is impossible to find 

a general formula for solving these polynomial equations. This conjec

ture was finally proven by Abel in 1824, [3, p. 555]. 

The above fundamental concepts, then, are the basis for solving 

polynomial equations of degree five or more. Many methods are available 

for use in solving these equations. Newton's method, the bisection 

method, and the secant method will be discussed in this thesis. These 

methods are all iterative in nature. Thus, the accuracy of the answer 
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is highly dependent upon the accuracy of the machine. While some methods 

dre self-cor·l~ecting. there is a J irnit to how much error can be compen

sated for. A small error introduced at the beginning, such as entering 

one of the coefficients incorrectly, or early in the procedure, such as 

reducing an equation by an inaccurate representation of a root, may 

greatly affect the roots of the polynomial equation. It may, in fact, 

change the equation so much that the roots of the original equation and 

of the inaccurate equation are entirely different. 

The purpose of this thesis, then. is not to offer methods for 

solving polynomial equations, but to point out some of the problems 

which may occur when adapting commonly used methods to the microcomputer. 

By knowing where to look for erro~, it is hoped the reader will be more 

conscientious when u~ing any method on the microcomputer. Some sugges

tions for circumventing these problems will also be offered. 

Programs written in conjunction with this paper are in Applesoft, 

and are designed to execute on an Apple II Plus microcomputer. Some 

minor modifications may be necessary for them to execute on a different 

microcomputer. 

For the purposes of this thesis, a polynomial will be denoted as: 

n n 1P(x) = a x + a x - + ••• + a (a i 0)
n n-1 O n 

where the coefficients are known real numbers, and n is the degree of 

the equation. 



CHAPTER II 

POLYNOMIAL EQUATIONS OF DEGREE oS 4 

Polynomial equations of degree one are also called linear 

equations. These equations have the general form of a,x + aO = 0, and 

are trivial to solve. Program 2.' will solve equations of this type. 

PROGRAM;'.l 

1U REt1 H·t- DEGREE 1 *u 
20 HOliE 
30 PRItH "'rH'IS PROGRRt1 HILL FINO THE ROOT OF RII 
40 PRINT "POLYNOHIRJ.. EQURTION OF DEGREE 1t1 

S0 PRINt . 
fie PRINT liTHE GENER~L FORH OF THIS TYPE OFII 
70 PRINT dEQU~TION IS t:liX + A0 ;: eu 

80 PRItH 

90 PRINT u***************************************M100 PRINT_ 
110 INPUT "EtHER Ai "iRi 
120 INPUT "EHTER t:l0 M;Re 
J30 HO~1E 
140 R = - R0 / Rl 
150 PRIHT liTHE ROOT OF THE EQU~TIOH IIA1"X + "A0 11 :s 0 

I C' It-.' 
180 PfU~H R 
170 am 

Polynomial equations of degree two are more commonly referred 

to as quadratic equations. These equations have the general form of 

a2x2 
+ a,x + aO : O. Quadratic equations are routinely solved by using 

the quadratic formula, which is as follows: 

-t. 2j-a,- a, - 4a2aO 
x = 

2a
2 

4
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There are, however, two forms of the quadratic formula. Form 

is shown above. Form 2 is obtained from Form 1 by multiplying the 

numerator and the denominator of Form 1 by the conjugate of the numer

ator. Form 2 is given below: 

x = 2aO 

+ I 2 
-a 1 - val - 4a2aO 

The two forms of the quadratic formula,	 therefore, are equivalent 

and should yield the same roots. Unfortunately, this is not the case, 

as is illustrated by Table 2.1. 

TABLE 2.1 

Eguation	 Form 1 Form 2 

2 x + 40x + 400	 -20 -20 
-20 -20 

2 x + 5x - 1000 29.2214439 29.2214439 
-34.2214439 -34.2214438 

2 x + 400x + 400	 -1.00251248 -1.00251258 
-398.997488 -398.997526 

2lOx - 100x + 10 9.89897949 9.89897959
 
0.101020513 0.101020514
 

x2 + 500x + 500	 -1 .00200787 -1.00200804 
-498.997992 -498.998078 

2 x + 1000x + 1 -9.99701675 E-4 -1.000001 E-3 
-999.999 -1000.29841 

2 x + 10000x + 1 -9.78186727 £-5 -1.00000001 E-4 
-9999.9999 -10222.997 

2 
x + 10000x - 1 1.0189414 £-4 9.9999999 £-5 

-10000.0001 -9814. 10705 
2 x + 1000x + .001 -7.23637641 E-7 -1 E-6 

-1000 -1381.90711 

( 1. E-5 )x2 + (1. E...6 )x + .025 51.0215759 48.9988785 
-1 E+ 11 -2.5 E-8 
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The roots generated from the last equation are not even close to 

being the same, especially when one notices the positive 11 exponent 

obtained by Form' and the negative 8 exponent obtained by Form 2. 

It is therefore necessary to know which of the two methods will 

yield the more accurate answer. Table 2.2 lists the actual roots, and 

the roots obtained by using both Form 1 and Form 2. 

TABLE 2.2 

Actual Roots Form 1 Form 2 

.'5, -1000 .500000267, -1000 .5, -999.999467 

- .5, -1000 -.4999~969, -1000 -.5, -1000.00062 

-.01, -10000 -9.99775529 E-3, -10000 -.01, -10002.2452 

- 1000, -1000 - 1000, -1000 -1000, -1000 

-1 E-5, -1 E+5 5.23924828 E-5, -1 E+5 -1 E-5, 19086.7076 

-1 E-6, -1 E+6 5.102157596 E-4, -1 E+6 -1 E-6, 1959.95514 

10000, -1 E-4 10000, -1.01752579 E-4 9827.76071, -1 E-4 

1000, 1000, .999999654 '000.00035, 

1000, -.5 1000, -.500000267 999.997467, -.5 

Both forms appear to yield results with approximately the same 

degree of accuracy. However, it can be observed that each method will 

yield a more accurate result for one root than for the other root. It 

can also be observed that the more accurate root for Form 1 is not the 

more accurate root for ~orm 2, and vice versa. ~urther investigation 

reveals the more accurate root is obtained when -a, and v! a,2 - 4a2a
O 

have the same sign. Thus, by checking the sign of a part of each form1, 

may be used to improve the accuracy of the answer. In the case of 
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complex roots, only Form 1 is used since it is much easier to work with. 

Program 2.2 will calculate the roots of a quadratic equation. Sample 

output from this program is given in Table 2.3. 

f'ROGRAM 2.2 

Hi F:Eti );H DEGREE 2 "*"**
 
20 HOME
 
3D PRIIH "THIS PROGRRH HILL FIHD THE ROOTS OF 'i"
 
40 PRItH IlPOLYNOHIAL EQUATION OF DEGREE 2"
 
50 PRINT
 
bO PRINT "THE GEHER~L FORM OF THIS TYPE OF"
 
70 PRINT IIEQURT ION IS R2X"·2 + A1X + R0 = all
 
S0 PRHH
 
90 PRINT "~*****************.*t**f**4******~*****" nm PRINT
 
110 INPUT uENTER A2 iliA,
 
120 INPUT "ENTER R1 II JAt
 
13121 INPUT "E~nER A0 "iA0
 
140 HOHE
 
150 REH *** EVALUATE THE DISCRIMINRTE 

. 160 0 Q ~1 * R1 - 4 ~ R2 * R0 
1;:'0 IF 0 < 0 THE.N 340 
180 REH *** CALCULATE RERL ROOTS 

. Hl0 0 = SQR (0)
 
200 REJ1 H:oJ· CHECK IF H1 IS POSlTIvt OR HEGRTIVE
 
210 IF Rl ) e THEN 270
 
220 REt1 *** A1 IS UEGRTIIJE
 
230 R1 =( - A1 + D) / (2 * R2) 
240 R2 = 2 * ~0 / ( - R1 + D) 
250 60TO 290
 
c:G0 REli **.. A1 IS POSITI IJE
 
270 R1 =( - ~1 - 0) / (2 * R2) 
280 R2 = 2 * ~0 / ( - R1 - D)
 
280 PRINT liTHE ROOTS OF THE EQURTION
 It 

300 PRINT A2">::'··2 + "A1"X + "A0 11 = 0 ARE"
 
310 PRINT Rl;u RND "iR2
 
320 GOTO 42(1
 
330 REH *** CALCULATE COMPLEX ROOTS.
 
340 0 = SQR ( - 0) 
350 R3 = - Al / (2 * R2) 
380 R4 = 0 / (2 "*" A2) 
J?0 PRIHT "THERE RRE NO RE'iL F:OOTS TO THE EQUATIOW·
 
380 PRINT A2"~:--·2 + lI~ll1X + fI~ell = 13"
 
:::90 PRItH
 
4u0 PRINT lilliE COHPLEX ROOTS ARE .. iR"3; II + II ;R4;" lit
 
410 PRltH llANO II .iR3i II - II ;R4; II I II
 
42t1 END 
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TABLE 2.3 

Eguation Roots 

x2 + 2x + -1 -1 

2 x + 10000x + 1 -9999.9999 -1.00000001 E-4 

2 x + 5x - 1000 -J4.2214439 29.2214439 

2 x + 100000x - -100000 1 E-5 

x 
2 + 1000x + 0.001 -1000 -1 E-6 

(1.E-5)x2 + (1.E+6)x + .025 -1 E+ 11 -2.5 E-8 

No improvement was obtained in the case of the last equation 

listed in Table 2.3. However, it should be noted that neither Form 

nor Form 2 yielded satisfactory answers when solving this equation. 

Nor will satisfactory results be obtained whenever a 1
2»4a ' due to2aO 

round-off error in the machine. 

Polynomial equations of degree three are also called cubic 

equations. These equations have the general form of 

a 3x3 + a2x2 + a 1x + aO : O. Cubic equations can be solved by using the 

cubic formula. This formula is not as well known as the quadratic 

formula. The three roots can be obtained by substituting the values for 

A+B A-B -- A+B A-B ~ 
Y = A + B, Y = - --2- + -Z- J-3, and y : - -Z- -~ v-3 into 

a 3 
q .9.-. E-.x :: y - 3a

2 
. In order to solve for y, let A 2" + 4 + 27 and,i- R3 

2 a 1 a__ 2a 3 a a a
2 2 2 1 O3) !l j <f... + J2 where p and q :: ----+B : - 2 - 4 27 - - - 2 ~3 - a 3 3a 3a 227a a3

3 3 3 

A development of these formulas may be found in (2, pp. 115-127J. 
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Table 2.4Program 2.3 will find the roots of a cubic equation. 

follows the program, and summarizes some sample output. 

PROGRAM ?J 

10 F:HI ,:-* LJLCJr-{EL 3 .:t H':1: 

20 HOt'1[
 
30 F'IUHl "THIS F'F:OGRl=\H HILL FWO THE ROOTS OF J=lll
 
40 PRINT "POLYt~OIHAL EQURTION OF DEGREE 3"
 
so F'RIIH
 
E;u F'RIIH liTHE GENERAL FORti OF THIS T'r'PE OF I,
 
70 PRINT "EQUATION IS A3X A 3 + ~2)V2 + 'A1X + R0 0/1
II: 

SO PHIlH
 
9u PRl1H 1I"1f H·*************************f.-********** II
 
100	 PRINT 
110 1NPUT II EtHER A3 II· i A3
 
120 INPUT uEtiTER ~2 ";~2
 
130 INPUT "Et-HER Ai II i~U
 
140 INPUT lIENTER A0 II;A0
 
150 HOHE.··
 
160 P = 111 /' 113 ,- (A2 '* A2) / (3 * J=l3 * R3)
 
170 Q * 2 * R2 '* HZ * J=l2 / <27 * A3 * A3 * R3) - R2 *
 

Ai/' <3 * 1=13 * J=l3) + J=l0 / ~3 .
 
180 REH *** CALCULATE THE DISCRIHINATE
 
180 0 =Q * Q /' 4 + P * P '* p./ 27
 
200 IF ABS (0) < lE - 10 THEN 0 =0 '
 
210 REM *** CHECK FOR 3 RE~L.2 EQU~,OR 2 COMPLEX RO
 

OTS
 
220 ON ( SGl'~ (0) + 2) GOTO 250.550";'788"
 
230 REH *** 3 RERL UNEQUAL ROOTS '.
 
;::"0	 HEH *** 0{0
,50 REtt '*'** COMPUTE SQuARE ROOT OF 018CRIHIHFlTE
 
260 OS = SQR ( - 0)
 
t.:?0 RE11 -tH· Cm1PUTE 11 J=lNO B
 
280 REl-1 +** FIRST CHECK IF Q:s0
 
280	 IF Q < > 0 THEJ~ 390 
300 R = OS ;'. (1 /' 3) 
3110 B;:: - A 
320	 REH *** CALCULATE THREE Y/S 
330 Yl = 0 
340 1,'2 ;:: (l=i - 8) * SQR (3) /" 2
 
350 Y3;:: - 'l'Z
 
380 GOTO 650
 
370 REt1 **'* Q( >0
 
380	 REH +'-:H CALCULATE A AHO B USIHG DE HOIVRE"S THEO
 

REH
 
380 02 = - Q / 2 
400 Q3 = SQR (Q2 '* Q2 + OS '* OS)
 
410 C :: Q2 / 03
 
4-20 T;:: - J=lTN (C .... SQR ( - C '* C + 1» -I- 1.5l08
 
433 CO = T /' 3 
44u C3 ~ C0 + 2.08439513 
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PROGRAM 2.3 (continued) 

"450'C7 -~ 'C0- +-4-:-1Ssi9028 
A480 Q3 =Q3 (1 / 3) 

470 REH *** CRLCUL~TE 3 ~~S
 
480 Vi = 2 * Q3 ~ COS (C~)
 
480 ~2 =2 * Q3 * COS (C3> 
500 ~'3 = 2 * Q3 * COS (C7)
510 GOTO 850
 
520 REt1 *·u 2 EQURL ROOTS
 
530 REH *** 0=0
 
540 RH1 *** CRLCULATE R AHO B 
5S0 02 ~ - Q / 2 
580 03 = RBS (Q2)
570 ~ ~ Q3 A (1/ 3)
 
580 IF 02 = - 03 THEN ~ = - R
 
590 E: =H 
E;B0 REt1, *** Cl=JLCUL~TE 3 Iyl ~ S
 
£10 Iy'i = A + B
 
G20 Y2 = - (R + B) / 2 
6313 V3 = Y2
 
G40 REt'1 *H CRLCULATE THREE RERL ROOTS
 
650 R1 :: 1y'1 - R2 ,.' (3 * f.43 )
 
G80 R2 = Y2 .,. R2 / (3 -I' R3)
 
670 R3 =Y3 - R2 / (3 * R3)
 
880 REt1 *** PRIIn RESULTS
 
69.0 PRltH liTHE ROOTS OF THE EQURTION" 
IOI2J PRINT
 
710 PRINT R3" >'~"·3 + "R2"X"'2 + u~ll1X + "R0 1l = 0"
 
720 PRINT '
 
,'30 PRItH "~RE II JRli ll " "iR2i", RHO ~'JR3
 
740 GOTO 1020
 
750 REM .~* 2 COMPLEX ROOTS
 
780 REH *** 0>0 
l?O REI'1 **-l' CALCULRTE R ~O B 
780 OS z SQR (0)
 
780 Q2:: - Q / 2 + OS
 
800'Q4 = - Q / 2 - OS
 
810 03 = RES (Q2)
820 Q5 = HBS (Q4) 
830 ~ = Q3 A (1 / 3)
 
840 B =05 A (1 / 3)
 
850 IF Q2 = - 03 THEH ~:: - R 
860 IF 04 = - Q5 THEH B:: - B 
870 REM *** CRLCUL~TE 3 Y~S 
880 Yi = ~ + B
 
880 Y2 = - (R + E) / 2
 
900 Y3 : (H - B) * SQR (3) / 2 
310 REM *** CHLCULATE REAL PHRT 
920 Rl = Yl - R2 / (3 * A3) 
330 R2 = Y2 - R2 / (3 * R3)
940 REH *'** PRINT ANSHERS
 
850 PRINT "THE EQUHTION "H3"X"·3 + IIR2"X.....2 + "R1"X + "
 

H0" = 0" 
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PROGRAM 2.3 (continued) 

880 - PR-IH=r ·"HAS nio· IHAG-i~~ARV-ROOTS'-' 
970 PRINT 
3CI{J PRItH II ITS ONE REAL ROOT IS II .Rl 
990 PRItH 
1000 PRItH II ITS nm COt'1F'L8'~ ROOTS RRE II 

1010 PRINT R2" + uY3 11 I l='4ND IIR2 41 
- "Y3 '1 I II 

1020 H~D 

TABLE 2.4 

~untion	 Actual Hoots Computed Hou~ 

3 2 
x + 4x + 5x + 2	 -2 -2 

-1 -0.999999999 
-1 -0.999999999 

3 2 x + 6x + 11x + 6	 -2 -2 
-1 -1 
-3 -3 

3 2 x + 6x + 12x + 8	 -2 -2 
-2 -2 
-2 -2 

3 2 x + 2x - 5x - 6	 -2 -1.99999859 
-3 -3.00000211 
-1 -0.999996304 

3 2 
x - 2x - x + 2 2 1.99999859 

-1 -1.00000072 
1 1.00000222 

3 2 x + x + x + 1 -1 -1 
1 1 

-1 -i 

Polynomial equations of degree four are also called quartic, or 

biquadratic, equations. These equations have the general form of 

4 3 2 a4x ~. a3x + a2x + a,x + aO = O. Ouartic equations may be solved by 
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using the quar·tic formula. The four roots of the quartic equation may 

8 3 R + Q andbe found from the following equations: x :: - "4 + "2 - 2 

a 2 
8 3 R + E 

x = - Jr - 2 - "2 where R = j -i- - 8 2 + y. If R = 0 then 

) 2 /2 3a 3 2 3a3 2 
D = ---4- - 2a2 + 2 vly -4ao and E = ---4-- - 2a2 - 2 vly -~aO' 

23
3aJ 2 483a2 - Ba, - a 3If RiO then D = ---4-- - R - 2a2 + 4R and

/ 

4a - 8a, - a3a2 3)3a/ _R2_2'2 
4R 

3 

E :; 4 In both cases, y is any 

root of the following resolvent cubic equation. 

3 2 2 2Y - a2y + (a3a, - 4aO)y - a3 aO + 4a2aO - a 1 = 0 

A development of these formulas may be found in [2, pp. 128-131]. 

Program 2.4 will find the roots of a quartir: equation. Table 

2.5 fullows the program, and summarizes some sample output. 

PROGRAM 2.lj 

10 RBi *** DEGREE 4 *** 
20 Hm1E
 
313 PRUH "THIS PROGRAH HILL FIUD THE ROOTS OF A"
 
40 PRItH "POLYNOMIAL EQUATION OF DEGREE 4"
 
50 F'RltH 
[;0 PRIHT II THE GENE~L FOR~1 OF THIS TYPE II 

70 PRINT "OF EQUATION IS"
 
80 PRHH tlH4>-~A4 + A3X,'3 + A2~<1'·2 + AD~ ... A0 = 0"
 
90 PRIIH
 
100 PF:HH II **;:.************************************"

110 PRUn 
~ ze {t'~PUT "EtHER A4 ";A 
130 INPUT 'tENTER rf3 ";8 
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\. L:H TER(:42 .. j C
 
"ENTER At II.;[)
 
"EHTER 1-1£1 ";.£
 

~1l3-=E:./A 
90 8e = C ,.,. A 

ZIX1 C9 ::: [j ... A 
210 09 = E '" A 
220 REti .,~H' CALCUUHE F' .. Q... R OF RESOLVENT CU8IC 
230 P 
240 Q :; ~8 * C8 - 4 * 09 
250 R ~ - AS * AS * 08 + 4 * BS * 08 - C9 * CS 
c;:UO r~E11 Hd' $ULVE r~ESOLlJENT CUBIC 
270 !41 :.. Q .• p .... P ./ 3 
~oo 81 = (~ ~ p ~ p ~ r - 9 * P * Q + 21 ~ RJ ... 27 
2S~ 01 ~ 81 * 81 ./ 4 + ~1 * ~1 * Al / 27 
300 IF ~E;8~, 01) < 1E - 10 THOI D1 = 0 
310 ~,~ c= S'GH (01) + 2 
3~1tJ m~ i",; (iOlO 330 .. 48~j,,550 
330 lF 81 < > 0 THEN 3~ 
:>+0 R~ "'- SQF: ': -, (1) , 
350 142 :; AJ ...... (. 1 1" 3) 
~~60 82 == - A2 
370 ~<l ;;: (3 

:.::80 GOTO &50 
390 A3 = - 81 ... 2 
400 83 = SQR ( - 01) 
410 R4:; SQR (143 * A3 + 83 * 83)
4-2121 C1 ::: ft3 ./ R4 
~30 T;.:: .,. ATN (C1./ SQR < - Cl '* C1 + 1») + 1.5708 
440 CU Q T / 3 
4::>0 R4 ;: 1~4 .", (1 / ;:;) 
480 Xl c 2 * R4 * COS eC0)
4/0 uOTCJ l;;~u 
480 A3.: .- 81 1" 2 
480 ~4 ~ A8S (143) 

11 ~2 ::; A4 ."', (1 / 3) 
'510 IF A4 = -. As THEI'~ 142 = ~20

520 B2 ~ 

142 + 82 
40 80TO 850 

550 143 = - 81 ... 2 + SQR (01) 
e 83::: - B1 ./ 2 -SQR (01) 

5?0 H4 = ASS (143) 
580 ~2 = ~4 '" (1 /' 3) 

o IF A3 = - 144 THEN R2 = - ~2 
,4 84 = HBS (B~:)
 

B2 ::;; B4 ,'. (1 ", :3)
 

- 82
 

'En *** ',' IS ROOT OF RESOLVENT CUBIC · = ;.~ 1 ~- P / .3 
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8be	 RDi *'1;* C~CULATE !JALUE OF R 
70 R9 :: A9 *' AS / 4 - as + ;' 

880 I!:- ~ErS (RS) < 1£ - 5 THEN R9 = 0 
690 R8 = SOR (R9)
,eel REt1 *** PRIHT H 
710 PRINT liTHE ROOTS OF THE EQUATIOW' 
i'20 F'RltH A;iI)::""·4 + I' ;B.'I)<""'6 + " .. C;IlX"-2 + ",.;O,.;"'~ + II;E 

0 11;" = 
?30	 PRUH "ARE II,;
 

REt1 *** CHECK 1F R=B
 
l::)0 IF R8 = fj THEN 1080 
7'60 F:EH ·Hi R<)0 
?71d F(f:J1 ~ If CALCULATE 0 AND E 
7l::B U1 ...: 3 * ~9 * AD ,.. 4 ". R9 * RS - 2 * B~ l' (4 ~. ~9 i;' 

8~ . a I CO . ~8 * ~9 f ~8) I (4 ~ R8)
;sa El ; 3 * ~8 * R9 / 4 - RS • R9 - 2 * 99 - (4 ~ AS ~ 

88 -	 8 * C9 - RS * AS * ~S) / (4 * RS)
800	 IF 01 ( 0 THEN 880 
Bllr:1 D1 =: SQ~: (01 '> 
B2(1 RH1 *** CRLCULHTE 2 RERL ROOTS 
~JO R1 ~ - RS / 4 + RS / 2 + 01 / 2 
we R2 = - ~9 / 4 + RS / 2 - 01 / 2 

3!l0 PfHIH Rl;"~ ";g2;1I~"
 
~60 GOTO 83(1
 
J?O RCH H,-J,· CHLCUL~TE 2 COHPLD~ ROOTS
 
880 01 = SQR ( - 01) 
880 R1 = - AS / 4 + R9 / 2 
9€10 R2 = 01 / 2
 
',j10 PRWT R1;" + ";R2;"I .. 1I
 

820 PR I NT R1; II - ";R2.i .. I .. If
 

~30 IF E1 < 0 THEN 1010
 
840 E1 = SQR (El)
 
:J50 nEt1 *** CALCUL~TE 2 UORE RHIL ROOTS
 
60 R3 = - R8 / 4 - R9 / 2 + E1 / 2 

:3;-''3 r-;:4::; .- ~8 / 4 .~ R9 ,.' 2 -- E1 / ;:;: 
80 PF:nH R3. II ~ ~HO ";R4
 

:380 GOlO 1820
 
1l300 f,:H1 *H C~LcuunE 2 t10~:E CDt-1PLEX ROOTS
 
1010	 E1 ~ SQR ( - El) 
1GZ0	 R3 = - H8 / 4 - R9 ;" 2 
1030 R4 := E1 ;" 2
 
W40 PRINT F:3;1I + ";R4. II I .. ~ND"
 
i050 PRINT R3.i" - II ~R4;" I"
 
1B8f1 (jOTO 1820
 
1070 REM *** R=0
 
1Dt:0, IF It * Y -- 4 *' 09 < 0 THEI~ 1410 

90 REI1 *** C~LCULRTE 0 HNO E 
1100	 01 :: 3 '* AS *' A3 ,.' 4 - 2. * 89 + 2. * SQ~: (y * y 

4 ~c (8) 
1110 E1 :: 3 * 148 * ~8 / 4 - 2 * 88 - 2 * SQR (Y * y .

.; f.- [1~3) 

j lZG Lr 01 <: G Tf~Et'i 1~00 
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f'HOGRAM 'c!.ij (continu(~d) 

t·t *** C~LCIJ!.JnE 2 RHolL ROOTS 
t: SQR (01)
 
:: - R9 ./ 4 + 01 / ;:
 

~ R2; - AS / 4 - 01 / 2 
117a PRINT R1;"", ";R2 
. 100 ooro 1250 

30 REM *~* C~LGULAT£ 2 COMPLEX ROOTS 
1200 01 = SQR ( - 01) 
1210 Rl = - ~8 / 4 
1220 R2 :: 01 / 2 

22.:0 PRlIrf R1:;" + ";R2:;" I ~ II 

12413 PR I NT R1.. If - ",;R2.i II I ~ " 
1250 IF £1 < 0 THEN 1330 
1260 REM *** CALCUl~TE 2 t10RE REAL ROOTS 
1270. E1; SQR ([1) 
1280 R3 = - R8 / 4 + £1 / 2 
1~8u R4 = ~9 / 4 - El / 2 
1300 PHIIH R3; II ~ AND II iR4 
1310 GOTO 1820 
1320 RE~i *** CALCUUHE 2 tiORE CDt1PLEX ROOTS 
1330 £1: SQR ( - E1) 
1340 R3 = - A8 / 4 
1350 R4 := E1 / 2 
136'1 PRllH F:3; II + ",;R4; II I ~ AUO" 
137'0 PRHH R3 .. " - II;R4;"I" 
1380 GOTO 182e 
1380 REM *** CALCULATE 4 COHPLEX ROOTS 
1400 REH *** USE DE HOIVRE~S· THEOREH 
1410 01 =3 * AS * ~9 / 4 - 2 * 89 
1420 El =2 *" SQR ( - y * Y + 4 * 09) 
1430 R5:: SQR <01 * 01 + El * (1) 
1440 Cl ; 01 / R5
 
1450 T1 = - ATH eCl / SQR ( - C1 * Cl + 1» + 1.57'~
 

8 
1480 T2 := 8.2831853 - T1 
1470 C2 := T1 ,.- 2 
lqSe C3 = T2 ,.' 2 
1493 R5 = SQR (RS) 
15~0 01 =R5 * COS (C2)
1510 02 := R5 * SIN (C2) 
1520 E1 ~ RS * COS (C3) 
1530 E2 =R5 * SIN (C3)
1540 Rl = - ~9 / 4 + 01 / 2 
1550 R2 = - ~8 / 4 - 01 / 2 
1580 R3 = - AS / 4 + El / 2 
1570 R4 = - AS / 4 - £1 / 2 
1~1B0 F'RUH F:1;" + "~02 / 2;"1. 11 

15Sf1 PRINT R2;u - 11,;02 / 2;"I.,," 
181210 PRHIl F:3. II + Il .iE2 / 2 .. " I ~ A~m"

11610 PRINT R4 .. .- .. ;£2 ,/ 2 .. II I II 
1820 EUO 
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TABLE 2.5
 

Equation Actual Roots Computed Roots
 

4 3 2 x + 4x + 6x + 4x + 1	 -1 -1 
-1 -1 
-1 -1 
-1 -1 

Ii J 2 x + 8x + 24x + 32x + 16	 -2 -2 
-2 -2 
-2 -2 
-2 -2 

4 3 2 x + 5x + 9x + 7x + 2	 -1 -1 
-1 -1 
-1 -1 
-2 -2 

4 3 2 x + lOx + 35x + 50x + 24	 -1 -0.99999991 
-2 -2.00000027 
-3 -2.99999973 
-4 -4.00000009 

4 2 x - 5x + 4 2 2.00000012 
-2 -2.00000012 

1 0.999999768 
-1 -0.999999768 

4 x - 1 1 1 
-1 -1 

i i 
-i	 -i 



CHAPTER III 

POLYNOMIAL EQUATIONS OF DEGREE ~ 5 

As stated previously, no formula exists for solving polynomials 

of degree five or more. The roots of these polynomial equations are 

often found through the use of some iterative method. When using any 

iterative method, it will be necessary to frequently evaluate the poly

nomial. The~e are at least four possible ways to evaluate a polynomial; 

evaluation with exponents, evaluation without exponents, factored form, 

and synthetic substitution. Thus, to determine the best way to evaluate 

a polynomial, several polynomials were evaluated using these four 

methods, and thei~ results were compared. 

Except for the cases in which multiple roots were involved, all 

methods gave similar results. In the cases of multiple roots, evaluation 

of the polynomial in factored form was clearly better. However, this is 

not a viable choice. The next best method was a tie between evaluation 

without exponents and synthetic substitution. Synthetic substitution 

was chosen because it requires fewer multiplications for the same 

accuracy of the evaluation. Program J.1 will evalua~e a polynomial 

using synthetic substitution. 

The n roots of the n-th degree polynomial equation may be real 

or complex in nature. Complex roots, however, will always occur in 

pairs. Thus, if a + bi is a root, then its conjugate, a - bi, is also a 

root. Therefore, any odd degree polynomial equation will contain at 

least one real root. Since an even degree polynomial may contain no 

17
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PROGRAM 3. 1 

10 RUi H-\ SI.,'I-nIIETIC SUBSTITUTIOU ***
 
20 REt1 *** A(X) = COEFFICIENTS OF POLYNOIHAL
 
30 REH *** '/ :; UALUE OF POL't'NOHI ~
 
40 REM *** R =VALUE POLYNOHI~L IS BEING EUALUATED ~ 

T
 
~;O HOHE
 
80 PRHH "THIS PROGRl=It1 USES SYNTHETIC SUBSTITUION"
 
713 PRINT "TO EVALUATE A POLYNOIHAL II
 
BO PRItn
 
90 PRINT IIENTER THE DEGREE OF THE EQUATlOW'
 
100 INPUT "01AXIMUI1 DEGREE IS Hn II J~l
 
1HI PRINT
 
120 REt1 *** EtHER THE COEFFICIENTS
 
130 PRINT liTHE COEFFICIEtH OF THE X,.·N TERH IS AOD II
 
140 FOR X :; N TO 0 STEP - 1
 
150 PRINT "ENTER A(IIX")lI j
 
180 H~PUT II II ;AOD
 
170 NEXT X
 
180 PRan
 
19121 INPUT IIEtHER THE VALUE TO BE SueSTI TUTED II;R 
200 REH *** EU~LUATE THE POLYNOI1IAL 
210 Y :; !=I(N) * R 
~20 FOR X = N - 1 TO 1 STEP - 1 
230 Y = (Y + A(X» * R 
~40 t·lEXT >~ 
250 'T' = Y + A( 0 :> 
260 PRINT 
270 PRINT IfF(IIR") = "y 
280 END 

real root., it Is most beneficial to know some additIonal inL~rmatjon 

about the nature of the roots. Descartes' Rule of Signs will provide 

this information. 

Descartes' Rule of Signs may be used to determine the maximum 

number of positive and negative real roots. The maximum number of 

positive real roots of the polynomial equation, PIx) : 0, may not exceed 

the number of variations in sign of the polynomial. Likewise, the max

imum number of negative real roots may not exceed the number of 

variations in sign of PI-x). 
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A polynomial equation with a = 0 will have zero as one of its
O 

r'ool::>. The minimum number of complex ,'oats 01' a polynomial equation may 

be determined by subtracting the maximum number of positive real roots, 

the maximum number of negative real roots, and the number of zeroes from 

the degree n of the polynomial. Program 3.2 will determine the nature 

of the roots using Descartes' Rule of Signs. 

PROGRAM 3.2 

10 REM *** RULE OF SIGNS *** 
20 REH H·* AOD = COEFFICIENTS OF POLlrlNOHIl=IL 
30 RH1 *H RP = NU~t8ER OF POSIT IUE ROOTS 
40 REti *** RN = t'~UHBER OF NEGATIUE ROOTS 
SO REH *** RZ = HUHBER OF ZERO ROOTS 
60 REH *** S =SIGN OF THE TERM 
7lJ HOHE 
B3 PRllH "THIS PROGR~1 USES OESCRRTES~ RULE OF" 
90 PRINT I'SIGNS TO DETERMINE THE HRXIHUt1 NUMBER"
loa PRINT 'IOF POSITIVE. t~EGRTlUE. RHO ZERO ROOTS" 
110 PRINT 
12~ PRllH "ENTER THE DEGREE OF THE F'OLYNtHRL'1 

130 INPUT "(HAXIHUH DEGREE IS 1'3> /lIN 
140 PRIHT 
150 PRHn "THE COE.FFICIENT OF THE X"·H TERt·t IS l=I( N)" 
160 PRINT 
1?0 REI·t *** OnE.R THE COEFFICIENTS 
180 FOR X = N TO 0 STEP - 1 
190 PRINT "ENTER l=I( II i>-~i")". 

200 INPUT II II .A('~) 

21 0 t'~E~n I:: 
220 RH1 *** Cl=ILCUUHE NUHBER OF POSIT IUE ROOTS 
230 RP ;; 0 
240 1';:1::11 ~'H' DEn::RMU~E SIGH OF F'lRSl' TERH
 
250 S = SGH (A<t~)
 
l6(l FOR)~ = I~ -.. 1 TO a STEP - 1
 
27(1 REH *** CHECK TO SEE IF COEFFICIENT IS ZERO
 
280 IF SG~4 (A( X» = 0 THE~~ 350
 
290 REt·1 *** CHECK TO SEE IF THE S IGt~ OF THE COEFF I CI
 

EHT IS OIFFEHEtH FROM PREVIOUS TERM
 
300 IF S = SG~~ <A< X» THEN 350
 
310 REt1 *u· IF 81m. IS OIFFEREHT. ~DO 1 TO t·4Ut1BER OF
 

POSITIUE ROOTS 
320 RP = RF' -+ 1 
330 REH *** RESET V'iLUE OF SIGN 
340 S = SGN (l=I(X)
 
35~ HEXT ~~
 
360 RN = (l 

~;'O REH *** CHECK IF DOD OR EUH. DEGREE POLYNmlll=lL 



20 

~ROGRAM 3.2 (cont.inued) 

380 IF (N /' 2) =- [NT (t. '/- 2)THE}f420 
380 R£H *** IF N IS 000.. CHAt-iGE SIGH OF FIRST TERti 
400 S = SGN ( - ~(N» 
410 GOTO 430 
420 S::: SGt 4 (~on) 

430 FOR ~~ .:: 04 - 1) TO 0 STEP - 1 
440 IF SGN <~(X») =e THEN sse 
450 H£H ·EH CHECK IF E>~POHEtn IS EVEN OR 000 
460 IF (X / 2) = INT ex / 2) THEN 530 
4('0 REH *H· I F E~~POUEHT IS ODD.. CHAt~GE SIGN OF TERH 
480 IF S::: SGN ( - R(X» THEN 560 
480 REH H'l IF SIGN IS OIFFEREtH FROH PREVIOUS TERM.. 

~D[I 1 TO t~EGRT rUE ROOTS 
::.00 RN ;;: RH + 1 
5t0 S = SGN ( - ~(X») 
52e GOTO 5BO 
530 IF S = tiGt'4 <ROO) THEH see 
540 RN ::: RN + 1 
55e S"la S'Gt·4 (~OD) 
560 NEXT ~< 

570 REH *** CRLCULATE NUHBER OF ZERO ROOTS 
580 RZ .: 0 
580 FOR ~~ ::: e TO N 
600 IF A(X> < )- a THEN 640 
E; 110 RZ ;;: RZ + 1 
620 NE~<T X 
630 REH H:'~ F'RltH OUT RESULTS 
640 PRINT 
E:S0 PIUt-n liTHE HRXIHUH NUUSER OF POSITIVE ROOTS IS IIR 

P 
[;8(1 PRun 
E;?0 PRItH "THE HAXIHUH NUMBER OF t~EGATIVE ROOTS IS IIR 

~~ 
B80 PRINT
 
\)90 PRINT "THERE HRE "RZ" ZERO ROOTS"
 
700 Et~D 

Most of the iterative methods require that an initial approxima

tion be supplied. This requires some knowledge as to the graph of the 

polynomial. From this graph an approximation to the root can be made. 

There are methods for calculating the upper and lower bounds of 

the interval which contains the real roots of the polynomial equation. 

Fy knowing the bounds of this region, the section of the graph which 

should be studied will also be known, and thus an approximation of the 
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root can be made. One such method, described in [7~ p. 300], for find-

log the upper and lower bounds (UB and LB, respectively) is as follows: 

M~~ + ••• + t~ 
UB = 

Ian 1 

LB = -UB 

If, according to Descartes' Rule of Signs, there are no positive 

real roots, then UB = O. Likewise, if there are no negative real roots, 

then LB = O. Program 3.3 uses this method to calculate the upper and 

l'lwt'lf' bounds. 

1'llUGlll\M j. ! 

10 REH *** LIHITS *** 
213 REB *** R( X) = COEFF ICI E~~TS OF POLYNOH I AL 
30 REt-1 *** RF' = NUt1BER OF POSITIVE ROOTS 
40 REt1 *** Rt~ = NUHBER OF NEGRTIVE ROOTS 
50 REH *** LL = LOHER LIMIT 
813 REH *** UL = UPPER LI"HIT 
lG HOME 
BG PRItH "THIS PROGRAM FIHOS THE UHERUAL ~~HICH"
 
90 PRINT ItCONTRINS j::lLL POSSIBLE RERL ROOTS OF THE"
 
100 PRINT "POLYNOMIAL"
 
110 PRINT
 
12I2J PRHH "HHER THE DEGREE OF THE POLYt~HIRL"
 
13B INPUT "( HRXIHUt1 DEGREE IS 10) "iN
 
14(3 PRUrr 
1~;0 PRINT "THE COEFFICIENT OF THE ~"·NTH T£R~111 
160 PRItH II IS HOoD" 
1?0 PRUH 
180 ROt *** EtHER COEFF ICIENTS 
130 FOR X = N TO 0 STEP - 1
 
200 PRINT IIEtHER A< II ;Xi" )" .f
 
210 ]t~PUT" "H:t(X)
 
22(1 NEXT >::
 
:::30 REtl -:H* OETERHINE RP 
240 S = SGt~ (A( t"~ ) ) 
250 RF-' :: 0 
L::60 FOR ~"~ = (t~ - 1) TO 0 STEP - 1 
270 IF SGN (H(X) = e THEN 310 
2G\ZI IF S = SGt~ (!=IOn) THE~~ 310 
290 RP =RP + 1 
3i)(j S = SG~~ (H( >:: ) ) 
310 NE~H:< 
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PROGRAM 3. J (cont;inued) 

:m 
;:;70 
J,~1{j 

390 REl1 *~* OETERt1HiE R~~ 
4,00 r"H ~ 11 
41~ IF (N / 2) = INT (N / 2) THEN 440 
420 S: SGN ( - HeN)
430 GOTO 450 
440 S = SGN (RCN»
 
450 for, x, .. Oi - 1) TO 0 STEF' .- 1
 
460 IF SGN. C~OO) :: e THEN 55e 
470 IF ~x / 2):: INT ex / 2) THEN 520 
480 IF S:: SGN ( - R(X» THEN 550 
490 F:~t ;;: RN + 1 
500 ::;:::: SGN ( - HOD) 
51(1 GOTO 550 
520 IF S:::: f;G~~ (H( >-~ » THEN 550 
~,30 R~~ =Rt·t + 1 
540 S:: SGN (H( X ) ;, 
55€! NEXT ~< 

5613 REt'1 'H~' DETERtUHE lm-~ER Llt1IT 
5/0 LL l:: 0
 
SG~j I F nt·~ :.: G THE~~ 580
 
sse FOH}:;:= 0 TO t·~
 
SU0 ~L :::: lL + H8S (~(>:»
 
610 NEXT ~\
 
820 II = - Ll / R<N)
 
630 ,RH1 *** ROUt~O LUHTS TO NEXT INTEaEF~
 
;A0 IF Ul:; IIH <UL) THHt Ei60 

:;; un <UL) + 1 
== IllT (ll) 

REH *** F'RItH RESULTS 
PRHH liTHE lOHER LHllT IS .. ;LL
 
PRHH tiTHE UPPER LIMIT IS ";UL
 
'END
 

The roots--especially the complex roots--of a polynomial of 

degree five or more may be found by repeatedly approximating the root 

and reducing the polynomial until a polynomial of degree four is 

obtained. This polynomial may then be solved by using the quartic 

formula. Program 3.4 will reduce a given polynomial by using synthetic 

division. 
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PROGRAM 3.4 
... -
'<Hi ·H'·* '3VtHHETIC DIUISIOt·~ '~"H 
F:EH **~ A( ~<) :: COEFFICIENTS OF POL'''HOtlI~L 
RH1 i·** BOD = COEFFICIENTS OF REDUCED POLW~OHIRL 

4~ REt1 **"* R = POLYNOHIRL ~HLL BE DIVIDED BY (X·-R) 
~G F:Et·1 ·;';H R1 = REt1AIHOER 
bU HOHE 
70 PHIl-a "anER THE DEGREE OF THE EQURliOH TO BElt 
Bf1 1NPUT "REQUCED (HAX 1HUH 1e) "..; t·t 
::m PRI~n 

100 REt-1 ·H·;:' EtHER COEFFICIEIHS OF POLYUOHIAL 
110 PRINT liTHE COEFFICIENT OF THE X"H TERt1 IS A( N)"
120 PRINT 
130 FOR;'~ = N TO 0 STEP - 1 
140 PRINT HEtHER A( ",~II )" ..; 
150 H~PUT II II j~OD 

180 t'~EXT ;:\ 
1?O PRINT 
18~ PRINT liTHE POL't1t,mt·HAL IS TO BE DIIJIDED BY O::-R)" 
180 INPUT "EtHER R II jR
ZOO Rl = 0 
210 REM H"'~ REDUCE THE POLYHOHIAL 
220 fX ~l _. 1) = Aon 
230 FOR ~ = N - 1 TO 1 STEP - 1 
240 8(X - 1) ; B(X) * R + ACX) 
Z5~3 t~E>::T (.:
 
~o0 REt-1 H~l:· CALCULATE REHAI HDER
 
270 R1 = 8(0) '* R + RCa)
 
280 REH *** PRINT OUT REDUCED POLYNOHIAL 
290 PRINT 
,3130 PRINT "THE REDUCED POL'r'HOHIAL ISII
 
310 PRINT
 
32€t IF H = 2 THEN 370
 
330 IF N ::: 1 THEt~ 380
 
340 FOR X = N - 1 TO 2 STEP - 1
 
350 PRINT B(X); .. ~:.·,.";X;II + II;
 

3&0 NDH >~
 
370 PRHH B( 1 )'·i·~ + II;
 
380 F'RItH 8( ~1)
 

380 RHt *** CHECK TO SEE IF THERE IS A REt-1AINDER
 
400 IF Rl = 0 THEN 430
 
41~1 PRINT
 
4-20 FRItH IITHERE IS A REHAINDER OF II ;Rl
 
430 END 

Newton's method requires the use of the first derivative. 

Program 3.5 will compute the coefficients of the first derivative. 
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PROGRAM 3 

10 REt1 *** OERIUATIUE *** 
20 REt·t *** ~(X) = COEFFICIENTS OF POLYNOHII1L 
3[3 REt1 *** BOn = COEFFICIENTS OF DERIVATIVE 
40 Hm1E 
:.u F'f~Hn IITHIS PROGRRH HILL FIHO THE FIRST" 
B0 PRINT IIDERIU~TIUEII 

'/0 F'RI ~n 

1:;0 PRIIH IIENTEg THE DEGREE OF THE POLlmOlll~L" 

90 It~PUT lie HAXntUH DEGREE IS 10) II .t·~ 
101(: PRHH 
1113 PRltH liTHE COEFFICIEtH OF THE X"·H TERt·1 IS R< H)" 
120 F'RUH 
1313 RH'l *** EtHER COEFFICIEtHS 
140 FOR X = H TO 0 STEP - 1 
150 PRINT "EtHER R( "X··)" j 
180 INPUT" ";~OO 

i '?0 HE>::T X 
180 RE~1 *** COMPUTE THE COEFFICIEtnS OF THE OERIIJRTI 

lJE
 
1813 FOR >~ = H TO 1 STEP - 1
 
200 B(X - 1) = ~(X) * X 
210 NDa ~< 

220 REM *** PRINT OUT THE FIRST DERIURTIUE 
230 PRUH
 
240 PRIlH "THE DERIU~TIUE IS II
 

250 PRINT
 
2G0 IF U = 2 THEH 320
 
270 IF N =1 THEN 330
 
ZOO IF N = 6 THEN 340
 
290 FOR ~.< == N - 1 TO 2 STEF' - 1
 
:mo PfHlH B(>~)">~AlIX" + II j
 

310 NEi<T X
 
320 F'RINT B( 1 )">~ + II j
 

330 PRun B( 0)
 
340 END
 



GHAPTE;A IV 

NEWTON'S METHOD 

Newton'3 method is an iterative method for solving non-linear 

equations. In order to find the root of a polynomial equation, P(x) = 0, 

it is necessary to find a value r such that P(r) = O. This is done by 

approximating the function P with the tangent line of the function at 

x = r . The point, r where the tangent line intersects the x-axisk+ 1,
k 

is used as the next approximation of the root r of P. 

)l 

j 

When Newton's method is applied to polynomials, it yields the 

following formula for calculating successive approximations to the root: 

r k+ 1 = r k - P(rk)/P'(rk ) 

where r k is the current approximation, and r k+ 1 is the successive 

approximation. 

25
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The fDllowing Lhaorem, given in [1, p. 54), is often given in 

conjunction with Newton's method. 

THEOREM 

Assume fIx), f'(x), and f"{x) are continuous for all x in some 

neighborhood of r, and assume f{r) =0, f'(r) i O. Then if r is chosen
O 

sufficiently close to r, the iterates r k ~ 0, will converge to r.k , 

Moreover, 

L ·· ·1ml t r-rk -to 1 
= 

f"{r) 
I< ~~ ( )2r-r

k 
2f' (r) 

pr'oving U1Ht the j Ler'ule.3 ar'e quatlr'<ltlcally convN·p;r~nt. 

One dIsadvantage to using Newton's method is that it requires 

the use of the first derivative. However, for a polynomial the first 

derivative is easy to evaluate. 

One advantage to Newton's method is that, once r becomes suffick 

iently close to r, it is quadratically convergent. However, in the case 

of mUltiple roots, that is, when f'(r) = 0, this is not necessarily true. 

In general, it is not known a priori if multiple roots are present. 

Some of the problems that may occur when multiple roots are present Will, 

therefore, be illustrated later in this chapter. 

But no matter what the nature of the roots, it should be pointed 

out that the real numbers are continuous; that is, between any two real 

numbers there exists another real number. The floating-point numbers 

used by the microcomputer, however, are granular; that is, between any 

two floating-point numbers there does not necessarily exist another 

rloating-point number. Therefore, as soon as the error in Newton's 

method approaches the distance between nearby floating-point numbers, 
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the granular structure of the floating-point number 3ystem prevents the 

continued use of the algorithm [5, p. 158]. 

The formula used for finding the succ..e33.i ve appr(Jximation~, tu 

Lhe rooL l~l used repeatedly, then, until r k+ 1 become:J 3uff'iciently close 

to the root. The usual point of termination is when /r k+ - rkl<~'1 

There may exist, however, cases where Irk+ 1 - rkl< € but Irk+ 1 - rifE.. 

Program 4.1 will find a root of a polynomial equation using 

Newton's method. Table 4.1 summarizes some of the results obtained by 

using Program 4.1. 

PROGRAM 4.1 

18 F:U1 ;; for. 14ElnOt~ iH 

2121 F:EI1 **~ R = CURREtn ~PPRm<H1~TIOt·j 
30 REM *** Rl = F(X)
40 REH *** R2 =F''( ~O 
)0 EEt·1 :,:..~:(. H3 = UEJ~ 'iF'PROXIt1ATION 
SO REH *** R(X) ~ F(X) 
10 REM ~*I 8(X) =F'(X) 
80 REI1 ~** I :: ITER~TIOH ~~Ut1BER
 
~.0 HOt-1E
 
100 PlUtH "THIS PROGR~H HILL FINO THE ROOT OF A"
 
110 PRINT "POLVNOHI~L USING NEHTOWS HETHOD"
 
120 Ff<ItH
 
130 PlUtH "EtHER THE DEGREE OF THE POLYHOHIAL"
 
140 INPUT "01RXIHUH DEGREE IS 10) II iN
 
150 PF:I~n
 

180 RH1 f. H· EtHER THE COEFFICIENTS
 
170 PRINT "THE COEFFICIENT OF THE X"·NTH TERHII
 
180 F'R lIH I. IS A( H) II
 

190 PRHH
 
200 FOF::O:::: lot TO 0 STEP - 1
 
210 PRINT "ENTER ~("XfI)";
 
;::20 IHPUT +I "iA(~'~)
 
230 NE:.n X 
;::':UZf PF:nH 
,50 INPUT "HHER THE IHITIAL GUESS" iR 
260 REM *** SEND OUTPUT TO PRINTER 
2;'~0 PF:# 1 
~8a REt-I *** F'RItH EQUATION RHO HEAOINGS 
280 PRINT T~8( 10)~" 'f i 

300 FOR X = N TO 2 STEP - 1 
310 PRINT 110D~"><"'·".iXi" + IIi
 
-::20 t·-IE>::r ~<
 
330 PlUtH ~(l); ":.:: + II ,;;~( 0)
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f'nCI(;HA~1 I •• 1 (c()nUnIJt~d) 

340 F'RHH 
':::50 PF:UH" ITT NO. " .. " ROOT" '" II FOOl' 
J&tJ F'RltH 
J70 1 "" 1 
301;":1 REt1 H *. CALCULATE FIRST OEF-:I 'JAT I VE 
380 GOSU8 2000 
400 REM *** CRLCULRTE FeX)
410 60SUB 2500 
420 FU = Y
 
43~ REM *** CALCUL~TE F~eX)
 
440 GOSUB 3000 
450 R2 ::::: 'T' 
460 I~Et'1 .A--t.-.); CALCULATE. NEH APF'Rm~H1AT I ON 
470 R3 = R - R1 / R2 
480 REt'1 *H· C~LCUU:nE CLOSEHESS OF AHSHER 
480 IF ASS (R3 - R) < 1E - 6 THEN 560 
50(1 f~Et1 *** CALCUUHE FOD OF NEW APPROXH1ATION 
510 R = R3 ' 
~;2~j GOSUB 2500 
53~) PRINT II I .. R.. YII 

54(1 I = I + 1 
550 GOTO 420 
55(1 PF:ltH 
5?~ PRINT "THE ROOT IS ".R3 
580 PR# (:I 
1888 Et·m 
WOO REt·1 *** CALCULATE FIRST DERIVATIVE 
2010 FOR X =N TO 1 STEP - 1 
:::020 BO~ - 1) = l=Ie X) * >~ 
2£130 NEXT ~< 
;::040 RETURt~ 

,500 REM *** CALCULATE FeX) 
2510 'T' = AdD * R 
2520 FOR~.:l = t~ - 1 TO 1 STEP - 1 
2530 Y = crT' + H( X1 ») '* R 
2:)40 HE>::T i::1 
2550 Y = Y + ~(0) 
2580 RE1URH 
31300 REtt *** CALCULATE F"eX) 
3010 IF t~ = 1 THEN 3070 
3020 y ~ BeN - 1) * R 
3030 IF N =2 THEN 3070 
;::040 FOR fa = t~ - 2 TO 1 STEP - 1 
3050 'T' :; (If' + B( ::<1 ») '* R
 
301;;0 t~U': r ):: 1
 
307~ Y = Y + 8(0)
 
·;:U~:l1 r::ETURt~
 



29 

TMJI.E 1,. 1 

In.it. No. of Actual Computed 
Equation Approx. Iter. Hoot Root 

}:. - 2x
2 

- x + 2 0 1 2 2 

x- + 2x2 - 5x - 6 0 4 -1 -1 

3'x .- 3x -1 4 -0.8660254 -0.86602~404 

) 2+ 6x + 11x + 6 0 6 -1 -1 

3 2 x + 4x + 5x + 2 0 17 -1 -1.00000405 

3 2 x + 3x + 3x + 1 0 37 -1 -1.00040349 

4 3 2+ lOx + 35x + 50x + 24 0 6 -1 -1
 

4 2
8x - 8x... 1 -1 3 -0.9238795 -0.923879532 

4 3 2 x + 4x + 6x + 4x + 1 0 19 -1 -0.995481137 

,6x5 - 20x 3 + 5x -1 3 -0.9510565 -0.951056516 

543 2 x + 15x + 85x + 225x 
+ 274x + 120 0 6 -1 -1
 

5 4 3 2
 x + 5x + lOx + lOx 
+ 5x + 1 0 32 -1 -1 .001 10733 

While Newton's method works quite well when the roots are dis

tinct, the number of iterations required when multiple roots are present 

increases dramatically. The accuracy of the answer also diminishes 

considerably. In order to learn more about why this occurs, the value 

of each approximation and of the function after each iteration was 

studied. Table 4.2 summarizes the results for P(x) = (X+1)3, 

4 5P(x) = (x+l) , and P(x) = (x+l) . 
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2 

3 

TABLE 4.2 

. 3 
P(x) = (x+1) 

Ropt 

-0.333333333 

-0.555555556 

-0.703703704 

P(~) 

0.296296296 

o•08779 14955 

0.02601229/-17 

18 

19 

20 

21 

-0.999380235 

-0.999986051 

-1 .49998605 

-1 .33332404 

6.98491931 E-10 

4.65661287 E-10 

-0.124989538 

-0.0370339374 

35 

36 

37 

-1.00109883 

-1.0008417 

-1 .00040349 

-9.31322575 E-10 

-9.31322575 E-10 

o 

.Ltet'a.tion 

2 

3 

rJo. 

4
P(x) ::; (x+1) 

Root-
-0.25 

-0.4375 

-0.578125 

P(x) 

0.31640625 

O. 100112915 

0.031676352 

17 

18 

19 

-0.99237465 

-0.994079792 

-0.995481137 

3.02679837 E-9 

1. 16415322 E-9 

o 
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itt 

p (x) :: (X+ 1)5 

ion Nu. Root. P(xl 

-0.2 0.32'(68 

2 -0~36 0.1073741' 

3 -0.488 0.035184j718 

19 -0.984748639 1.39698386 E-9 

20 -0.989921053 -2.:.12830644 E-9 

21 -0.945278196 4.9173832 E-7 

22 -0.956246206 1.5925616 E-7 

](J -0. 9862'+HLI07 6.98491911 E-lO 

31 -0.990237'769 4.6566128'( E-lO 

32 -1.00110733 o 

A closer look at the approximations reveals a "jump" at approxi

mately the 20th iteration. This is especially noticeable for odd-degree 

ynnrnials. In order to understand more clearly what \.las happening at 

is ~oint, the values of P'(x) were also printed. Table 4.3 summarizes 

the results for PIx) = (x+1)3, PIx) :: (x+1)4, and PIx) :: (x+1)5. 

TABLE 4.3 

PIx) = IX+1)3 

erat.ion No. Root P(x) P' (x) 

-0.333333333 3 

2 -0.555555556 0.296296296 1.33333333 

J -0.703703704 0.0877914955 0.592592592 
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(continued) 

"In 

Iy 

20
 

?1 

y::; 

36
 

37
 

'. t er'd t i Uti l'jO. 

~ 

J 

17
 

18
 

19
 

PIx) 

Dot 

O,'l()'J1802 I
 

-U.999986051
 

-1.49998605
 

-1.3.1332404
 

- 1• au 1OI)e~J 

-1.00084H 

-1.00040349 

r(x) 

Bllot 

-0.25 

-0.43'75 

-0.578121) 

-0.99237465 

-0.994079792 

-0.995481137 

p (>t) 

~ , 16/j l ')J2? r>(j
 

6.98491C;J31 E-10
 

4.65661287 E-10
 

-0.124989538
 

-5.587C;JJ54t.J E-~
 

-9.31322575 E-l0
 

-9.31322575 E-10
 

4
 = (x·.. 1) 

PIx)
 

1
 

0.31640625
 

O. 1001129 1') 

9.54605639 E-9
 

3.02679837 £-9 

1.16415322 E-9
 

J? 

pI (x) 
-~--

3. O?6'79B T( 1-;'-1) 

1. 1529TtJ5 t:-6 

9.31322575 E-l,O 

0.7'19958155 

cL 925'(9~~jr) E-6
 

3.62191349 E-6
 

2.12527812 E-6
 

pI (x) 

l, 

1.68'/S 

0.711914063 

4.00841236 £-6
 

1.77510083 E-6
 

8.30739737 £-7
 



TABLE 11. J (continued) 

p (x) = ()(+ 1)5 

~,I.![·8tion No. Hoo P(>:} p' (x) 

-0.2 5 

2 -0.36 0.32768 2.048 

J -0.488 0.107374183 0.8]88608 

\) -0.9847LJ8639 1.86264515 E-9 ?811LJ5287 E-7 

20 -0.989921053 1.39698386 £-9 2.70083547 E-7 

21 -0.945278196 -2.32830644 E-9 5.21540642 £-8 

22 -0.956246206 4.9173832 E-7 4.48338688 £-s 

30 -0. 9862LJ840'( 1. 86264515 £-9 4. 90~()24LJ9 E-'( 

31 -0.990237769 6.98491931 £-10 1. 75088644 E-7 

32 -1.00110733 4.65661287 E-10 4.2840838'1 E-8 

A look at the values for P(x) and P'(x} in the region of the 

njump" shows that P(x) and P'(x) are approximately equal to zero. In 

fact, at the point x = r, P(x) = PI(X) = O. Since Newton's method also 

irwolves the quotient P(x) IP , ,( x) , round-off error becomes especially 

important in the region around the root. Graphing P(x), P'(x), and the 

quotient reveals that in the region around the root, P(x)::: 0, 

P'(x) ~O, P(x)/P'(x) ~O. Thus, the method used to evaluate the 

functions becomes highly critical as x ~ r. Graphs 4.1, 4.2, and 4.3 

ustrate this fact for P(x) = (X+1)3, P(x) = (x+1)4, and P(x) = (x+1)5. 
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Close inspection of the values of Pix) and P'(x) as listed in 

'fable 4.3 reveal that normally P(x) < P' (x). However, in the region of 

the "jump" P(x) ~ pI (x). In order to accomplish this, th,= value vf 

P'(x) decreased greatly; that ls, P'(rk+ 1)<<P'(r ). Program 4;1 wa~k

modified to check for a significant decrease in the value of p' (x). 

This is especially critical in the case of P(x) = (X+1)3, the value 0: 

the root ~"as much closer to the actual root before the "jump," than at 

the end of the program. Program 4.2 shows the revised version of 

Program 4.1. Table 4.4 summarizes some sample output from this program. 

PROGRAf1 4.2 

1U f;:EtI *.~, ;" HEH rat·1 F:Ett I SED '"J:):"* 
2~:::1 HEt·1 *** R = U~LUE USED IN SUBROUTINES 
~:O F·:l]·~ H:-:~' ru ~ CUr.:G:EtH AF'F'F:mat1~TION 
40 F:EI'1 i;'~* F:2 = FOD 
r~. (j ~;Et1 **~ R3 = F'~(X) 
E;(1 F:EJ1 *** R4 = NE~ RPPROXIHRTION 
','-'(j F:Et'i *f* R5 = PREVIOUS F(X)
80 F:H1 *** R6 = PREVIOUS RPPROXIHRTION 
'):) ~:Dl :H';'; H( ;::) = F( i<)
 
1(1(1 F:EJi *** 8(X) = F"'OO
 
~ U) F:Et·i ·H, ,,:. 1 ::: 1H:.r-;:HT I m~ 1'·IUi·18EF:
 
120 HOt-IE
 
: :'::0 l-'f-::UH "THIS F'ROGR~t1 ~H LL Fn,O THE ROOT or ~" 
14(1 PR I ~n "POLYNOl1II=lL US I t~G ~~E~-n(lN-R~PH::;ot~" 
1:;8 :'IUtn
 
1L~j
 . r:'HltH "Et·HER THE OEGF:EE OF THE F'OLtmotH~L" 
170 I~WUT "( ~1H~'; I t·1W·1 DEGREE I::; 10) "; t·j 
18~~ F'b:ltH 
I !jll f~:Etl H,~' EtHEF: THE COHFICIEI·ns 
20(1 F'R ItH "THE COEFF I CI ENT OF THE t~",,~nH TERt1" 
210 F'G:ltn IS HOO"It 

~2~) F'f;:ItH 
2J(: ;"or.: i< := t·~ TO 0 STEP - 1 
24(1 F'R ItH "EtHER R<" i'~" :;''' ; 
.) l.:.:, 
""",-.JIo'_l 11 WUT " ",; ~OD 
2(;0 t·~l:.:-:;T ;:':: 
'::/~J Pf:.:i~n 
2c:~ 1i H~'lIT "UHER THE rtH T I ~L GUE~;::; " .. R1 
290 REM *.* SEND OUTPUT TO PRINTER 
'~:!..~ ~~~ ~:'r~:# 1 
31U kEH *~l PRINf EQU~TION ~NO HEROINGS 
:::20 F'RltH THE:(. 10);" ";
3_;(: F(.If,; ;:: = t~ ro ::...: :::.:"r [P - 1 
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PROGRAM 4.2 (continued) 

3413 PRINT ~«(;:); ,,~<,.,11 iXi II + II;
 
J50 I~D::T 1:
 
~60 F'RHH ~< 1 )i"~;: + ".;~
 
370 PRItH
 
J80 PfUtH "ITT HO."," ROOT".; II FOD"
 
39121 F'RHH
 
400 1 :: 1
 
~ 1121 RUt *** CALCUUHE FI r..;ST DERI VAT I VE
 
42~3. GOSLIB 2000 
4-3(1 REtt *** CALCULATE F< i<)

4-4121 R = Rl
 
4-50 GOSUB~,
 
48121 f::2 = V
 
,t;"(l REh *·H CAlCUUnE F" 0::;' 

.4:::0. GOSUE: 301210 
480 F:3 :;: l'r' 

50121 REI·1 *·H· CALCULATE NEr~ AF'PF:o>': I t·iAT I ON
 
510 R4 c Rl - R2 / R3
 
5,~0 REt1 H* CALCULATE CLOSENESS OF At~SHER
 
530 R :;: F:4 
54121 IF HBS (R4 - R1) < lE - 8 THEN 840 
550 IF R8S (R5 / leO) > A8S (R3) THEN R = R6: GOTO 

G40
 
580 R5 =: R2:
 
~;?~1 F:Ei ::: 1~;4
 

58~1 F:E~l :Hi'*' CALCULHl E Fon OF ~IEr~ APPRO>': I HAT I Ot~ 
590 R1 =R4 
12;0121 GOSlJ8 2~500
 

810 PRItH" "I .. f(,Y
 
820 I :;: I + 1
 
630 GOTO 480
 
INO f-'f~Hn 

t;~(1 F'rUI·1 f' IlTHE r.:OuT IS II .I~
 
CoG!,:) r-or;:t* ~l
 

1~YJ~J UUJ
 
2UUO REI1 iO'O: (;HLCUL~TE FIHSl DERIVATIVE
 
2010 FOR X = N TO 1 STEP - 1 
2020 [:( i~ - 1) := ~(~.::) :~ ;<
 
2030 NE~~T i<
 
21140 RETU~;t~
 

25(1£1 REt·1 'H·* C~LC:UUHE F()~)
 
2510 Y ;:: ~(N) * R
 
t.:~~(1 FGF:;'(1;:: t~ - 1 TO 1 STEP - 1
 
2530 'T' = CT' + ~c< 1)) '* ~:
 
2540 I~G·:i' >·;1
 
255(1 V ;:: V + !=i( '3 )
 
25EiG r:ETUm·~
 
3QO(1 REt1 :,: ** CALCULATE F ,,- ( >~ )
 

10 IF H ;:: 1 THEN 3070
 
3[120 " = 8~ t~ -- 1) ~. R
 
30J~ 1F t·~ = 2 THEJl 307£1
 
~3~O ~UR Xl ;:: N - 2 TO 1 STEP - 1
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PROGRAM 4.2 (continued)
• ±:::::IIIii!!. 

3050 't,' ; ('tt + B( Xl) ; * R 
';;~bG NUn' >~:l 

~:Q70 ',I ::: 'i + 8( C ) 
::::080 RErURt,~ 

TABLE 4.4 

Init. No. of Actual Computed 
[quaHon Approx. Iter. Root Root 

x J - 2'x2 - x + 2 _ o l l 

3 2 
x + 2x - 5x - 6 o 4 -1 -1 

34x - 3x -1 4 -0.8660254 -0.866025404 

3 2 
x + 6x + 11x + 6 a 6 -1 -1 

3 '2 ,., -1. ()()(jOO,.()L..Jx + 4x + 5x + ; o -1 

3 2 x + 3x + 3x + o 19 -1 -0.999986051 

432 x + lax + 35x + 50x + 24 a 6 -1 -1 

4 2
8x - 8x + -1 3 -0.9238195 -0.923819532 

4 3 2 x + 4x + 6x + 4x + 1 a 19 -1 -0.995481131 

16x5 - 20x3 
+ 5x -1 3 -0.9516565 -0.951056516 

543 2 x + 15x + 85x + 225x 
+ 214x + 120 a 6 -1 -1
 

5 4 3 2
 x + 5x + 10x + lOx 
+ 5x + 1 a 32 -1 -1.00110133 

The next step is to reduce the polynomial equation to see if the 

~oot found is a multiple root. Program 4.3 shows only the modification 

made in Program 4.2. 
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PROGRAM 4.3 

485 REM I~~ R3 IS MULTIPLICITY 
408 R8 ::: 11 
850 PRItH "THE ROOT IS ·'.iR 
E;E;0 F:8 ~ R8 + 1 
G~0 Ir R8 == N THEN sao 
880 F:H1 *** F:EDUCE POLYt'lO~lIHL 
E;9~j tH = t-l 
700 GOSUB 3500 
710 REt1 *** CHEC~~ TO SEE IF !·iULTIF'LE ROOT 
~20 GOSUB 3700 
7:30 IF ~BS ('t') > lE _. 9 THEH ;'80 
740 PRItH 
?50 PlUtH R~ II IS A MULTIPLE ROOT" 
?GO R8 ::: R3 + 1 
~~;~(1 IF fo:8 ::: t·~ THEt~ 800 
78~t 80TO 7(10 
('B0 f:'R HH r~ #" 1S ttOT A t'1ULTI PLE ROOT It 
800 PRM G 
22IJO 1~Et-1 *u SET UP COEFFICIEHTS FOR REDUCED POL',t·mI1 

IAL 
~21~ FOR X ~ 0 TO N 
2220 C< X) =He :;,~ ) 
2230 ~~D·:T;< 
2240 RETURI~ 

3500 REM f** REDUCE POLYNOHIAL 
3510 D(Nl - 1) = C(Nl)
 
3520 FOR:<1 = Nl - 1 TO 1 STEP - 1
 
3530 O(Xl - 1) ::: OeXl) * R + C(X1) 
3540 t·t[>':T·)-o:1 
3550 tH ::: tH - 1 
3560 FOR Xl ::: 0 TO Nl 
3570 C(Xl) ::: D(Xl) 
35:30 ~~E>~T >a 
3580 RETUHN 
3;'(10 REt~ H~~' CALCULATE Fe X) FOR r.:EDUCED POL't'NOtHRL 
3710 Y ::: CeNl) * R 
:3/20 IF tH == 1 THEt·1 3780 
3730 FOR Xl ::: Nl - 1 TO 1 STEP - 1 
3;40 Y ::: (~ + C(Xl») * R 
3750 NE)<T i'~ 1 
.:;/Cu 'r' = tr' + C( (I ) 
377'(t RETURt·~ 

Table 4.5 summarizes the results obtained [rom using this modi

fication. As can be easily observed, the results were anything but 

spectacular. 
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TABLE 4.5
 

Eq,uation Root Multiplicity 

3(X+ 1) -0.999986051 2 

2(x+1) (x+2) -1.00000405 

4(x+l) -0.995481137 

(x+I)3 (x+2) -0.999161488 

(x+ 1) 5 -1 .00110733 2 

Program 4.2 was further modified to first reduce the equation, 

and then to ask for a new initial approximation. Newton's method is 

subsequently applied to this reduced equation. Reduction of the poly

nomial continues until a reduced equation of degree 2 is obtained, 

whereupon the quadratic formula is used to obtain the remaining two 

roots. Program 4.4 will find all real roots of the polynomial equation. 

Since some of the real roots of the original equation may not be roots 

of the reduced equation due to error introduced while reducing the 

polynomial, Descartes' Rule of Signs is also incorporated into Program 

4.4. After each reduction a check is made to determine whether or not 

there are still real roots. If there are no longer any real roots, the 

process is terminated, unless the equation is of degree 2. Table 4.6 

follows, and summarizes some of the results obtained from Program 4.4. 

PROGRAM 4.4 

10 REH *t} HEHTON HITH QURD *** 
20 REti *** R = VRLUE USED IN SUBROUTINES 
30 ~:EH ),+,; R1 = CURRENT IiPPRma t·HH ION 
4C1 REM *** R2 = F( ~<: )
50 ~:E~t *** R3 = F"OO
60 REM *** R4 = NEH ~PPROXIH~TION 
~'B F:EI·t *** R5 = PREVIOUS DIFFERENCE
80 RBi *** R9 = NUMBER OF ROOTS FOUND 
:}Q r.:Et·1 ·H·* ACO ::: F(X) 
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PROGRAM 4.4 (continued) 

100 REM *** BeX) = F/(X)
 
110 REti i··H:· COD :; F:EDUCEO F'OL'/I·~OtH AL
 
120 RE~1 *** I = ITERIH ION NUHBER
 
13(1 RD'I *** RP ;; HUHBEH OF POSITIVE ROOTS
 
140 REt·1 *** RN = NUHBER OF t~EGATIVE ROOTS
 
150 REt1 *);.". F:Z = t'~Ul'1BER OF ZERO ROOTS
 
160 RD1 *** S = SIGH OF THE TERt·1
 
1;'(} HOliE
 
~80 PRINT "THIS PROGRAM HILL FIND THE ROOT OF ~ ..
 
190 PRINT IIPOLYNOHIAL USING NEHTON-RAPHSOH"
 
200 PRINT
 
;::10 F'RIlH" IT ~HLL ALSO REDUCE THE EQUATIQt~ BEFORE"
 
223 PRIHT "FINDH~G THE t~EXT ROOT II 
23(1 PRHn 
;::40 PRIlH "ENTER THE DEGREE OF THE POLYt~OHIAL" 
250 INPUT "01AXIHUH DEGREE IS 10) II iN 
2Cll pro: un 
;;:/0 f~EJi ·u* EtHER THE COEFFICIEtHS 
280 PRINT liTHE COEFFICIEtH OF THE X"'NTH TERti" 
230 pr,UH II IS AODII 
30~ F'RUH 
310 FOR X = N TO (1 STEP - 1 
320 PRINT IIENTER He IIX II )'. i 
330 INPUT"" iA( >::) 
340 ~~Ei<T X 
~50 PF.; un 
380 R9 = f:I 
3?0 N1 = t,~ 

38~) REl1 H'T SET UP COEFFICIENTS FOR REDUCED f'OLWmHI 
RL '" 

';;~j(1 GOSUB L:200 
~00 REH *** CHECK FOR REAL ROOTS 
410 GOSUB 4000 
420 IF RP + Rt~ + F:Z = 0 THEN PRINT "THERE ARE HO REA 

L ROOTSII: GOTO 1398 
430 H~F'UT "EtHER THE INITIAL GUESS .. iR1 
440 REt-1 *** SEND OUTF'UT TO PR I tHER 
450 PF:4t 1 
460 RH1 *** PRINT EQUATION AND HEAOH~GS 
470 GOSUB 2000 
4Se. HEt"I;:;H RH10lJE ZERO ROOTS FROH EQUATION 
490 IF RZ = 0 THE~~ 540 
500 IF F:Z > 0 THEt~ GOSUB 3800 
510 GOSUB 20013 
520 IF H1 =2 THEN 950 
530 GOTO 480 
'A0 f~'RItrr IIITT ~·m." .. " ROOT" .. II FO~)" 
55(1 PRINT 
550 I '= 1 
~-i?(1 REt-1 *** CALCUL~TE FIRST OERI'JATIVE 
580 GOSUB 2100 
590 REH *** CALCUL~TE FeX) 
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PROGHf\M 4.4 (contirlued) 

800 ~: = F:l 
b10 GOSUB 2500 
620 R2 ::. Y 
830 REM ~** CALCULATE F~(X) 
840 GOSUB :m0e 
G50 R3 == 'It 
SEiIZl ~:Et'1 *** CALCULATE 1'~EH APF'Rm~ IHAT ION 
670 R4 = Rl - R2 / R3 
(;80 REt1 *** CALCULATE CLOSENESS OF A~~SHER 
890 R = R4 
700 IF ABS (R4 - Rl) < lE - 6 THEN Boe 
710 IF ~BS (R5 / 100) > ABS (R3) THEN R4 == R6: GOTO 

800 
720 R5 = R3 
730 R6 = F:4 
740 REH ***' CALCULATE F( X) OF NEW APPROXI l-1~T Im~ 
750 Rl == R4 
?G0 GOSUB 2500 
770 PRINT» "I~R~Y 

78~1 I = I + 1 
790 GOTO 620 
(:00 PRINT 
Bl~ PRINT HTHE ROOT IS HjR
820 PRINT 
030 PRINT 
B40 REt·1 'l·n REDUCE POL'I't'~OHIAL 
&50 GOSUB 3500 
360 IF IH :: 2 THEN 840 
87(1 RH1 *,i* CHECK FOR NEXT ROOT 
SS0 PR.. 0 
890 Hm1E 
301.) GOSUB 2020 
310 R5 =0 
:320 R6 :: 0 
830 GOTO 400 
940 GOSUB 2000 
95(1 RE~1 *** EVALUATE THE OISCRHtU~ATE 
9800= C(l) * C(l) - 4 *' C(2) *' cee) 
8?~1 IF 0 < I.) THEN 1130 
980 REH *** C~LCUL~TE REAL ROOTS 
980 D:: SQR (D)
 
HK;lO F:Et-1 *** CHECI~ IF Al IS POSITIIJE OR NEGATIVE
 
1010 IF C(1) > 0 THEN 1070 
102~ RE~'I *H C( 1) IS ~~EGAT IVE 
1030 R1 == ( - C(l) + D) / (2 * C(2») 
1040 R2 == 2 * C(O) / ( - C(l) + 0)
1050 GOTO 1080 
1080 REM *** C(l) IS POSITIUE 
1070 Rl == ( - Cel) - D) / (2 *' C(2». 
1080 R2 :;; 2 i· C( 0) ;" ( -- C( 1) - D) 
108(1 PRINT liTHE HOOTS ARE uRl 
110u t='~:Hn "A~m "R2 
1110 GOTO 1180 
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PIlOGHI,\M 4.4 (continuedi 

112U 1~f.J1 ~ H CRLCUL~TE COHPLEj,: ROOTS 
1130 0 = SQR ( -. (I > 
1140 R3 = - C(l) / (2 * C(2» 
11513 R4 = 0 / (2 * C( 2 ) )
 
11813 F'~:IIH liTHE COI1F'LEi'~ ROOTS ~F:E ".H3." + .. iR4. 11 I II
 

1170 PRIHT "AND ";R3;" - II.R4;III" 
11 Em F'R# (I 
1998 EIKI 
2000 RH1 *** PRllH EQUATIOt~ 
2010 PR I NT TA8( 1'3 ) • II ". 
2020 FOR X = Hl TO 2 STEP - 1 
2030 PRINT CCX);"XA";X;II i ". 
2\)40 1'~E>(1 ~< 
;;:e~o F'r::IIH C( 1 ). I'>~ .. II ;C< 0) 
20&0 pr..;INT 
2100 REt1 ·:t:H CALCUUHE FIRST DERll)~TIl)E 
2118 FOR X = H1 TO 1 STEP - 1 
2120 B(X - 1) = C(X) * >c 
2130 ND~T i<: 
2140 RETURN 
2200 REt1 ~:** SET UP COEFFICIEtHS FOR REDUCED POL'T'NOI'1 

IAL 
2210 FOR i< = 0 TO U 
2220 CC~<) =H(X) 
2230 t'~E~'~T (:: 
2240 RETURN 
25~0 REI'1 *** CRLCUUHE F< >~ )
2510 Y = C(N) * R 
2520 FOR Xl = Nl _. 1 TO 1 STEP - 1 
2530 Y = (y + CeXl» * R 
4::540 NEXT >::1 
2558 Y = Y + C(0) 
2580 F:l:.TURN 
3000 REM *** CALCUL~TE F~<X) 
3010 IF tIl ;: 1 THEN 307'0 
3020 Y = BCNl - 1) * R 
3030 IF Nl =2 lHEN 3070 
3040 FOR Xl = Hl - 2 TO 1 STEP - 1 
3050 Y = (Y + SeXl» * R 
301:;0 NEXT,~ 1 
3070 y = Y + 8(0)
 
3080 RETUR~~
 

3500 REli *** REDUCE POLYNOHI ~L
 
3510 oeNl - 1) = CCN1)
 
352a FOR Xl = Hl - 1 TO 1 STEP - 1
 
3530 O(Xl - 1) = O(Xl) * R + CeXl) 
3540 t'~Dn ,::1 
3550 Hl = Hl - 1 
3580 FOR Xl = 0 TO Nl 
3570 C(Xl) = O(Xl)
 
3580 NDn Xl
 
3581.3 RETURt~
 

38(1(1 F:Di **'" REDUCE IF 2ERO ~:OOTS
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PROGRAM 4.4 (continued) 

3810 FOR X2 = 1 TO Hl 
3820 C( )::2 - 1) = C( :'~2 ) 
3830 NE~n X2 
3840 IH = tH - 1 
3850 RZ = RZ - 1 
::mcu F'n un II THE. ROOr IS 0" 
3870 PF\INT 
38:.:0 r~E rURI~ 

40eG REt1 -H'* CRLCULRTE HUl1BER OF POSITIIJE ROOTS 
4010 RP = II 
4-020 REt1 *** DElERt'UI~E SIGH OF FIRST TERH 
4030 S = SGN (C(Nl)
 
4-040 FOR ~:2 = IH - 1 TO 0 STEP - 1
 
4050 REH *** CHECK TO SEE IF COEFFICIENT IS ZERO
 
4080 IF sm~ (CO::2)) = 0 THEti 4130 
4070 REH *** CHECK TO SEE IF THE SIGN OF THE COEFFIC 

lENT IS OIFFEREtH FROH PREVIOUS TERH 
4080 IF S = SGN (C(X2) THEN 4130 
4030 REH *** IF SIGH IS DIFFERENT, ROD 1 TO NUHBER 0 

F POSITIVE ROOTS 
4-100 RP = RP + 1 
4110 REt1 H-* RESET VRLUE OF SIGN 
4120 S = SGN (C(X2) 
4130 ~~D~T X2 
4140 'Rti = (1 

4150 RBi i-** CHECK IF ODD OR EVEN DEGREE POLYt~OHI~ 
4160 IF OH / 2) = INT (Nl / 2) THEN 42'00 
4170 REt-1 *** IF Nl IS ODD, CH~GE SIGN OF FIRST TERH 

4180 S = SGN ( - C(N1» 
4130 GOTO 4210 
4200 S = SGN (C(N1)) 
4210 FOR X2 = Nl - 1 TO 0 STEP - 1 
4220 IF SGN (C(X2» =0 THEN 4340 
4230 REM *'H CHECK IF EXPONENT IS EVEN OR 000, 
4240 IF (X2 / 2) = INT (X2 / 2) THEN 4310 
4250 REt1 *** IF E}~PONENT IS ODD, CHRNGE SIGN OF TERH 

4280 IF S = SGN ( - C(X2») THEN 4340 
4270 REtt *** IF SIGN IS DIFFERENT FROH PREVIOUS TERH 

, !=lOO 1 TO t~EGI::n II)E ROOTS 
4280 F:N = Rt~ + 1 
4230 S = SGN ( - C(X2)) 
-tJ00 GOTO 4340 
4310 IF S = SGN (C(X2) THEN 4340 
4320 RN = RU + 1 
4330 S = SGN (C(X2» 
4340 NE:;<T X2 
4J~,0 REti *** COUNT t-~Ut1BER OF ZERO ROOTS 
4380 RZ = e 
'370 FOR X2 = 0 TO N1 
4380 IF C< ~(2) < )- 0 THEN 4410 



46 

PROGRAM 4.4 (continued) 

"'380 RZ = RZ + 1 
4400 NEXT X2 
~41a RETURN 

TADLE 4.6 

EqlmUoll Re/rlL 

I} 4 J,) x + 2x + x 0 

4 3 2 x + 2x + x 0 

3 2 x + 2x + x 0
 

2
 x + 2x + 1 -1, -1 

2) x5 _ 13x3 + 36x 0 

4 2 x - 13x + 36 2
 

3 2
 x + 2x - 9x - 18 -3
 

2
 x - x - 6 3, -2 

543 23) x + 15x + 85x + 225x + 274x -1 
+ 120
 

432
 x + 14x + 71x + 154x + 120 -2.00000001 

3 2 x + 12x + 47x + 59.9999998 -2.99999998
 

2
 x + 9.00000003x + 20.0000001 -5.00000004, -3.99999998 
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TABLE 4.6 (continued) 

Equation Root 

5 4 1 24) x + 5x + 10x- + 10x + 5x + 1 -1.00 nil 0733 

x4 
+ 3.99889267xJ 

+ 5.99667923x2 

+ 3.99668045x + 0.998893891 -1.00010715
 

3 2
 x + 2.99878552x + 2.99757239x 
+ 0.998786873 -0.999210898
 

2
 x + 1.99957462x + 0.99957564	 -0.99978731 + 9.86997169 E-4i 
-0.99978731 - 9.86997169 E-4i 

5 35) 16x - 20x + 5x o 

4 2
16x - 20x + 5 -0.951056516
 

3 2
16x - 15.2169043x - 5.52786405x 
+ 5.25731112 -0.587785252
 

2
16x - 24.6214683x + 8.94427191 0.951056517, 0.587785252 

Again, in the cases involving multiple roots, the results were 

less than ideal. It is therefore suggested that whenever a multiple 

root is suspected, an alternate method be used. Several alternate 

methods will be discussed in the next chapter. 

Table 4.7 compares the roots obtained by using the depressed 

equation and the roots obtained by using the original equation each 

time. The roots are listed in the order found, with the same initial 

approximation being given to find each root. 
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.!@LE 4.7 

Init. 
Equation Approx. Roots-Depres~ Roo~s-Original 

5 316)( - 20x + 5x 0 0 0 

-1 -0.951056516 -0.951056516 

-0.1 -0.587785252 -0.581785252 

0.5 0.587785252 .	 0.581785252 

0.9 0.951056517	 0.951056516 

543 2 x + 15x + 85x + 225x 
+	 274x + 120 -5.1 -5.0000001 -5.0000001 

-4.1 -3.99999993 -3.99999997 

-3.1 -2.99999997 -3.00000009 

-2.1 -2.00000007 -2 

-1.1 -0.999999969 -1 

543 2 x + 5x - 25x - 125x 
+	 144x + 720 -5.1 -5.0000001 -5.0000001 

-4.1 -3.99999988 -4.00000007 

-3.1 -3.00000012 -3 

2.9 2.99999988	 3 

3.9 4.00000011	 4.00000012 

The roots obtained by using the original equation were only 

slightly better than those obtained by using the depressed equation. 

However, the three equations illustrated have five distinct roots. Had 

multiple roots been involved, the original equation would have produced 

much better results, especially if the multiple root were found first. 

Approximately the same n~ber of iterations were required whether using 

the original equation or the depressed equation. An alternative method 
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gtrt be to combine the two; that is, use the depressed equation until 

(xl then finish with the original equation. This might be J 

especially helpful when working	 with higher degree equations. 

Table 4.8 compares the values of the roots computed by usihg the 

depressed equation when the roots are found in ascending order and in 

descending order. 

TABLE 4.8 

Init. Roots Init. Roots 
Equation Approx. Ascending !£E.rox. Descending 

5 316x = 20x +- 5x -1 0 1 0 

-0.951056516 -0.951056517 

-0.587785252 -0.587785252 

0.587785252 0.587785252 

0.951056517 0.951056516 

543 2 x + 15x + 85x +- 225x 
+	 279x + 120 -6 -5.00000018 0 -5.00000004 

-3.9999995 -).99999998 

-3.00000088 -2.99999998 

-1.99999937 -2.00000001 

-1. 000000 16 -1 

5 . ~ 3 2 x + 5x - 25x - 125x 
+	 144x + 720 -6 -5 5 -5 

-4.00000009 -4 

-2.99999994 -3.00000001 

2.99999993 3 

4.00000005 4 

The values for the roots are comparable. However, the roots 

found in descending order are slightly more accurate than those found in 
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ascending order. Thus, when uoing a depressed equation, the order of 

finding t'oots should be tak€ln into consideraticm. 

Conte [4, pp. 66-73J provides an alternate algorithm for finding. 

the roots of a polynomial equation usIng Newton's method. With the 

coefficients of the polynomial P(x) stored in a , a l' . . • , a O' n n-

Conte first stores the coefficients obtained through synthetic division 

by x-z in b , b _1, •.• , b • The remainder is storp.d in bOo Thus,n n 1

PIx) = q(x)(x-z) + b ' where q(x) is the quotient polynomial. When 
O 

x ~ z, P(z) ; bOo 

The first derivative of P(x) is also required for Newton's 

rnethod. It' P(x) ; q()()(x-z) + b ' then P'(x) = q(x)(l) + q'(x)(x-z).
O 

Again, it' x = Z, P' (z) : q{z). 

Conte employs the following algorithm: 

Let z = x , b = a ,c = bm n n n n
 

for k:; n-1 , ., 1, do:
 

LLet b = a + zbk k k + 1 

Let c :; b + zC +k k k 1 

Let bO = a O + zb, 

The value of P(z) is now stored in bO' and the value of P'(z) is stored 

in c l' Thus, x -- xm bO/c,.m+ 1 

Program 4.5 finds the roots using Conte's algorithm. Table 4.9 

summarizes some sample output for Newton's method and Conte's algorithm. 

It should be noted, however, that the two methods are mathematically 

equivalent. The only difference is the order in which the calculations 

are performed. 
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18 . REH *** NEWTON <CONTE) *** 
~.~ BEt1 *** R< X) =F( X) 

REH *** BOO = CONiE'S BOO
 
REt1 *** C( X) = CONTE'S C< X)
 
RBi *** Z = UHTIRL RPPROXIMRTION
 
REM **~ 21 =SUCCESSI~JE RPPROXIMATION 
REt1 'H'* I =. ITEr~TION HUMBER· 

Be HmlE 
:)0 PRItH "THiS PROGRrti tWILL Flt~o. THE ROOTS OF AM 
100 PRINT "POLYHOHIRL EQUATION BY USING CONTE"S" 
110 PRINT "lJERSION OF NEHTON'S METHOO" 
120 PRINT 
130 PRun IIENTER THE DEGREE OF THE POLYNOMIAL"
 
140 INPUT "( HA>UMUH DEGREE IS 10) II iN
 
150 PRINT
 
180 PRUH "THE COEFFICIENT OF' THE X"'NTH TERH" 
170 PRINT II IS A( N)"
 
100 PRINT
 
180 REt'1 *** EtHER THE COEFFICIENTS
 
200 FOR X =N TO 0 STep - 1 
210 PRIIH uENTER H( "X" )11 i 
220 .INPUT "sA(X)II 

~::S0 . I~E~a x 
240 PRltH
 
250 I 1
:1:1 

260 II~F'UT IIEtHER THE INITIRL GUESS".Z 
270 REB *** SEND OUTPUT TO PRINTER 
280 PRtJ 1 
'~90 REM *** PRINT EQUATION 
300 PRINT' TAB( 10)." ". 
310 FOR X = H TO 2 STEP - 1 
320 PRINT A()()+tX..."X" + H. 
330 NEXT X 
J40 PRUH A< 1 )"X + "R(0) 
350 PRINT 
380 PRINT lilT III," ROOT II 
370. PRINT 
380 REH *;.:* CmHE'$ RLGORITHM 
390 B(N) = ROD 
400 COD = BO·D 
410 FOR K =N - 1 TO 1 STEP - 1 
420 B(K) =A(K) + Z *' B(K + 1)
430 C( K) = BOO + Z *' C( K + 1)
440 NEXT k
 
450 e<0) = A(0) + Z *' B(1)

460 21 = Z - B(0) / C(l) 
470 IF RBS (21 - Z) < lE - 6 THEN 520 

PRINT "I,ZlII 

490 I = I + 1 
500 Z = Zl 

le ooTO 380
 
FUNT
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PROGRAM 4.5 (continued) 
~ - - . 

~;J0 PF:ltH "THE R'OOr IS "Z1 
4:0, PRtt e
 

S50 END
 

T.ABLE 4.9

No. of No. of 
Equation Iter. Newton Iter. Conte 

----,..." 

3 2 
x - 2x - 4 + 2 1 2 1: 2 

3 2 x	 + 2x - 5x - 6 4 -1 4 -1 

4x3 _ 3x 4 -0.866025404 4 -0.866025404 

3 2 x + 6x + l1x + 6 6 -1 6 -1 

3 2 x + 4x + 5x + 2 17 -1.00000405 16 -0.999978767 

J 2 x + 3x + 3x + 1 37 -1.00040349 19 -0.999530169 

4 3 2 x + lOx + 35x + 50x + 24 6 -1 6 -1 

4 28x - 8x + 1 3 -0.923879532 3 -0.923879533 

432 x	 + 4x + 6x + 4x + 1 19 -0.995481137 18 -0.994617309 

5 316x - 20x + 5x 3 -0.951056516 3 -0.951056516 

543 2 x	 + 15x + 85x + 225x 
+ 274x + 120 6 -1 6 -0.999999841 

5 4 3 2 x	 + 5x + lOx + lOx 
+	 5x + 1 32 -1.00110733 20 -0.986005838 

Except for the cases involving mUltiple roots, there is no 

appreciable difference in either the number of iterations or the 

calculated value of the root. Where multiple roots are.involved, 

Conte's method required fewer iterations, but Newton's method provided 

the most accurate answer. 
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ALTERNATIVES TO NEWTON'S METHOD 

Since Newton's method does not work well when multiple roots are 

present, alternative methods were sought. One such method is' the bi

section method. The bisection method is probably one of the oldest 

iterative methods in existence. Briefly, an interval is found such that 

x, < x < x2 ' and that f(x 1) f( x ) < O. That is, at one boundary of the
2 

interval f(x) is positive, and at the other boundary f(x) is negati'/e. 

This interval is then bisected to find x3 ' = (x,+x )/2. If f(x 3) = 0,X3 2 

then x is a root. Otherwise, the boundaries are changed by moving x3 3 

to x, if f(X,) has the same sign as f(X ), or to x if f(X ) has the3 2 2

same sign as f(x3 ). This procedure is repeated until f(x ) = 0, or3

rather f(x3 )< €. The function f must be continuous on the interval' 

[x" x2 ]. 

The bisection method, however, is not without problems. When 

evaluating ,the polynomial, if r is sufficiently close to the root,
3 

P(r ) will occasionally have the wrong sign. That i:::, when r -:::::: r,3 3 

P(r3) ~ O. However, due to round-off error incurred while evaluating 

the polynomial, P(r ) will be positive rather than negative, or vice3

versa. This will cause the wrong boundary to be reset. Thus, while 

P(r 1)P(r2) < 0, r 1<r < r 2 is no longer a true condition. The interval 

[r" r 2 ] no longer contains the root. It will, therefore, be impossible 

to obtain a very good approximation to the root. This is illustrated in 

Table 5. L 

53 
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TABLE 5.1 

5 4P(x) = x + 5x + 10x3 + 10x2 
+ 5x + 1 

r 1 r'2 P (r' 1) P(r )
IT II 2

-,.) 0.01 - I 1, 1)1-) 10 lOW, 

,) -O.<)(J') O. () I _ii, (hfJ[) 1~'Ij'f 1';- 10 1.01) 1() 1IJO~) 

3 -0.995 -0.4925 -4.f}5661287 E-10 O.OJJ66?1C'5 

4 -0.995 -0.74375 -4.65661287 E-10 1.1048899 E-3 

5 -0.995 -0.869375 -4.65661287 E-lO 3.80305573 E-5 

6 -0.995 -0.9321875 -4.65661287 E-l0 1. 43353827 E-6 

7 -0.995 -0.96359375 -4.65661287 E-lO 6.44940883 E-8 

8 -0.995 -0.979296875 -4.65661287 E-10 3.7252903 E-9 

9 -0.995 -0.987148438 -4.65661287 E-10 6.98491931 E-l0 

10 -0,991074219 -0.987148438 -2.32830644 E-9 6.98491931 E-10 

11 -0. 9891111328 -0.987148438 -9.31322575 E-lO 6.98491931 E-lO 

12 -0. <j89 11' 1328 -0.988129883 -9.31322515 E-10 1.16415322 E-9 

13 -0. 989111328 -0.988620606 -<j.31322575 E-lO i., G56612~7 E-10 

14 -0.988865967 -0.988620606 -4.65661287 E-lO 4.65661287 E-l'J 

15 -0.988743287 -0.988620606 -4.65661287 E-10 4.65661287 E-10 

In the first iteration, r = 0.995 :=r. However, P(r ) = 3 3

-4.65661287 E-l0. Thus, while r is to the right of r, the sign of3 

P(r ) indicates it should be to the left. The interval used for the
3

second iteration, therefore, does not contain the root. Theoretically, 

this should not happen. This error can be compensated for by increasing 

the value of~ sufficiently to prevent 'P(r ) ~O. There is also a
3

corresponding loss in the accuracy of the answer as a result of this 

compensation. However, the two-place accuracy with the change is better 
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than the one-place accuracy without it. Program 5.1 will find the root 

of a polynomial equation using the bisection method. Table 5.2 summar

izes some of the results obtained from Program 5.1. In all cases, r, 

and r were chosen so that r iron the first iteration.
2 3 

I'ROGRAM .5. 1 

lG REJ1 H:~' BISECTIOt~ *** 
20 REH *4* R<X) =COEFFICIENTS OF POL't'~mHI~L 
30 F:EH *** H :: DEGREE OF POLYHotn ~L 
40 RE~1 *** LL = LO~ER LIHIT 
50 F:Et-1 *** UL = LIPPER LIMIT 
60 ,REM *** X = MIDDLE VAlUE 
70 REM *** L8 =F(LL) 
80 REt·i *** RB = F( UL )' 
90 RHi *** H8 = F<X) 
100 REH *** R =V~LUE FOR SUBROUTINE 
'110 REH *·If. I = ITERATION HUMBER 
12B HOt-1E , 
130 PF:Un "THIS PF:OGRAH USES THE BISECTION METHOD" 
140 PRINT liTO FINO THE ROOTS OF A POLYHOHI~Ltl 

150 PRIHT 
160 PRIHT IIEtHER THE DEGREE OF THE POLYHOHIALII 
170 INPUT .. (t~XIHUt1 DEGREE IS 10) ".N 
180 p~:un 

180 p~:Itn "THE COEFFICIENT OF THE X,.·~nH TERW' 
200 PRIHT II IS ~:< N)" 
;::10 PRltH 
220 REt1 *** EUTER COEFFICIENTS 
230 FOR X =N TO 0 STEP - 1 
240 PRltH "EUTER R< II ..Xi II )". 
250 INPUT II ".iA( X) 
260 NEXT ~,~ 

270 PRINT 
28~ It4PUT "ENTER THE LEFT BOOOO OF THE ltHERURL > 

".iLL
 
280 PFUHT
 
300 IUPUT "ENTER THE RIGHT BOUND OF THE INTERVAl )
 

II ;UL
 
31e RB1H* CHECK TO SEE IF ltnERU~L COHTRH~S ROOT
 
320 R = LL
 
330 GOSUB 2000 
340 LB = Y 
350 R =UL
 
360 GOSUB 2000
 
J?0 r..;B ; '1'
 
380 IF SGH (LEi) =: - SGN (RB) THEN 430
 
390 IF RSS (LB) < 1E - 9 THEN R = LL: GOTO 680
 
400 IF ABS (RE:) < 1E - 9 THEH R =UL: GOTO 680
 
410 PRHH II I Hl'ERVAL DOES ~~OT CONTAIN R ROOT"
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PROGRI\M 5.1 (continued) 

42(1 GOTO 280 
430 RUi H* SEND OUTPUT TO PRINTER 
440 PRI 1 
45(1 REM *** PRUn EQUATIOt·~ At~D HEAOIH6S 
460 PRItH TAS( 10)" ". 
4!Q FOR X ~ N TO 2 ST~P - 1 
480 PRINT A(X)"XA"X" + " j 

4~(l HE~n~:
 

:)0(1 PRltH A< 1 )">~I "A( 0)
 
510 PRltH
 
:':;2'" PRINT" IT tt". II HOOT"." FOD"
 
53(1 PRItl r
 
54(1 I = 1 
~5121 REH H:-* C~LCIJUnE tUOPOINT OF INTERVAL 
560 i< = (LL + UL) --- 2 
5?~J R = )~ 

580 (JOSUB 2000 
59121 t18 = 'T

I 

bOO REl1 'i :H: CHECK FOR CLOSENESS OF ROOT 
E:10 IF ABS (HB) < 1E - 9 THEN 680 
1~2\1) REH *+.~. RESET BOUNDS 
630 IF SGH (LB) = SGN (HB) THEN LB = HB:LL = X 
fA0 IF SGH (RE:) = SGH <He) THEN RE: =HB: UL = >~ 
85121 PRINT "I .R.'J'II 

E:m; I = 1 i· 1 
870 GOTO 56-0
 
1~8(1 F'fUtH .
 
b:J0 PRIlH II niE ROOT IS ".iR
 
?UO PR. I)
 
:.i J :) EHO
 
;;:OIJU REl1 :t; H EVALUATE F< >~)
 

2010 Y = A(N) * R 
2020 FOR >a =; H - 1 TO 1 STEP - 1 
2030 Y = (y + A(X1» * R 
20413 ~~E>a j:: 1
 
2050 Y = Y + ~(O)
 
;2080 RETUF:t·~
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TA~LE 5.2 

No. of Actual Computed 
Equa_t~on Interval Iter. Root Root 

~ 

x3 - 2x2 -)( + 2 -1.5, -0.4 26 . -1 -1 

3 2 x + 2x - 5x - 6 -1.5, -0.4 29 -1 -1 

34x - 3x -1.0, -0.5 29 -1 -1 

3 2 x +6x +11x+6 -1.5, -0.4 )0 -0.8660254 -0.86602')404 

3 2 x + 4x + 5x + 2 -2.5, -1.4 28 -2 -2 

3 2 x + 3x + 3x + 1 -1. 5, -0.4 9 -1 -0.999414063 

4 3 2 x	 + lOx + 35x + 50x 
+	 24 -1.5, -0.4 29 -1 .-1 

4 . 2
Ax - 8x + 1 -1.0, -0.5 12 -0.4218795 -0.923874513 

I, 'J 2 
x	 + 4x· + 6x + 4x + 1 (bisection method not appropriate) 

5 316x - 20x + 5x -1.0, -0.8 27 -0.9510565 -0.951056516 

543 
x	 + 15x 2+ 85x 

+ 225x + 274x + 120 -1.5, -0.4 5 -1 -0.984375
 

543 2
 x	 + 5x + lOx + lOx 
+ 5x + 1	 -1.5, -0.4 29 -1 -1 

In general, the bisection method requires more iterations than 

does Newton's method. It, too, does not work well when multiple roots 

are present. In fact, it will not work at all in cases such as 

(x+l)4 = P(x) where the function only touches, rather than crosses, the 

x-axis. 

As another illustration of the types of problems which may occur 

as a result of round-off error, the following example is given. The 

root printed as being used on the 26th, 27th, and 28th iteration in the 
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3equation x + 4x2 
+ 5x + 2 :: P(x) was -2. However, the values printed for 

P(x) were -1.86264515 E-9, 4.19095159 E-9, and 0, respectively. Similar 

examples are given in Table 5.3. 

TABLE 5.3 

Equation	 It. No. Root P(x) 

x3 -.2x2 - x + 2	 26 -1 -5.58793545 E-9 

27 -0.999999994 3.7718~)643 E-8 

28 -0.999999998 1.25728548 8-8 

29 -1 0 

3 2 x + 2x - 5x - 6	 26 -1 5.58793545 E-9 

?7 -0.999999994 -3.72S290J E-8 

28 -0.999999998 -'.JO)8~16 E-8 

29 -1 0 

x4
+ 10x3

+ 35x2
+ 50x + 24	 26 -1 -7.4505806 E-9 

27 -0.999999994 3.7252903 E-8 

28 -0.999999998 1.49011612 E-8 

29 -1 o 

543 2 x + 15x + 85x + 225x	 26 -1 -5.96046448 E-8 
+	 274x + 120 

27 -0.999999994 1.490' 1612 E-7 

28 -0.999999994 5.96046448 E-8 

29 -1 0 
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TABLE 5.3 (continued) 

Equation It. No.- Root P(x) 

48x _. 28x + 1 28 -0.923879532 -4.19095159 £-9 

29 -0.923879533 5.3551048 £-9 

30 , -·0.923879533 1.62981451 £-9 

31 -0.923879532 -1.39698386 £-9 

32 -0.923879533 1. 62981451 E-9 

16x5 - 20x3 
+ 5x	 26 -0.951056514 3.01151737 £-8 

27 -0.951056516 8.85740403 £-9 

28 -0.951056516 -3.54296162 £-9 

29 -0.951056516 1.77148081 £-9 

30 -0.951056516 -3.54296162 E-9 

It should be noted, however, that although the final computed 

root shown for the fourth and fifth degree Chebyshev polynomial equations 

were the same as those obtained by using Newton's method, the procedure 

used for the bisection method did not terminate naturally. 

The secant method is similar to Newton's method. This method 

uses the slope of the line drawn between two points on the graph to 

approximate the slope of the tangent line. The general formula is as 

follows: 

r k+ 1 = r k - P(rk)/s 

where s is the slope of the line and s = [p(r ) - P(r 1)/(r - r ).k_
k

_k 1 k 1
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Program 5.2 will compute the root of a polynomial equation using 

the secant method. 

PHOGHJiM I,.? 

10 F~EH *** ~';;EC~tH -t:.*.~ 
20 REt-I *~* Rl = FIRST APPROXitiATION 
30 REB *** R2 = SECOND APPROXIHATION 
40 REM *** P,3 = HEH APPRQX1HATION 
50. REt1 :t** F1 = f( R1 ) 
6121 REM 4-*~. F2 = F< R2 > 
70 REM *4-* S = SLOPE 
80 HOHE 
30 . PRIt~T "THIS IF'ROGRAH HILL FIHO THE ROOT OF ~II 
100 PRINT IIPOLYHOHIAL USING THE SECANT t1ETHOOli 
11121 PRltn 
120 PRINT "ENTER THE DEGREE OF THE F'OLVNOHIRL" 
130 INPUT 1Ie:t1AXIHUH OEGREE IS 10) II IN 
140 PRUn 
150 REM *** ENTER THE COEFFICIENTS 
160. PRINT "THE COEFFICIENT OF THE X.....NTH TERH " 
1;.'0 PRItH "IS AOD II 
180 PRINT 
131Cl FOR >~ = N TO 0 STEP - 1 
200 PRHH "EHTER A< 11)<")" j 
210 HWUT II ".~OO 

220 t·EXT X 
c::~~0 PRItH 
240 PlUtH t'THE SECAt-H HETHOD REQUIRES THO ItHTI~L" 
250 PRINT "APPROXIMATIONS TO THE ROOT" 
260 PRINT 
2;.'0 INPUT "ENTER APPROXlHATION Ii tt iR1 
280 INf>UT "ENTER APPROXiHATION 42 II .R2 
280 I = 1 
300 REt1 *** SEND OUTPUT TO PRINTER
 
310 PR# 1
 
320 REt1 *** PRIHT EQUATION RNO HEROIHGS
 
330 PRINT TAB< 10)11
 II. 
340 FOR X = t~ TO 2 STEP - 1
 
350 PRINT ~(X)"XAHXII + ".
 
380 t'~D<T i~
 
370 PRINT ~(1 )">~ + "A( 0)
 
380 PRINT
 

2 11380 PRINT "IT ""."ROOT l u ."ROOT
 
400 PRINT
 
41;;) REt·1 ·H* £VRLU~TE F< R1 )
 
420 R = R1
 
.:t30 GOSUB 200~
 
44121 F1 = ~'
 

450 REt-1 **~ EVALURTE F< R2)
 
460 R :;; R2
 
.:t?O GOSU8 2000
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PROGRAM 5.2 (continued) 

480 F2 = ~I 

480 REtl *~'I;* CALCULATE SLOPE 
500 S = (F2 - Fl) / (R2 - Rl) 
510 REH *** C~LCULATE NEW APPROXIHRTION 
520 R3 ;. Rl - Fl / S 
530 RE~1 *** CHECI( FOR CLOSHESS 
540 IF HBS (R3 - R1) < lE - 6 THEN 610 
550 REH *** RESET R1 AND R2 
560 R2 = 1'1 
5?0 1'1 ;. R3 
580 PRllH "l ,R1 ,R2II 

580 1 = 1 + 1 
800 GOTO 420 
f;10 PF:ltH 
820 F'HINT liTHE F:oo'r IS II .. R3 
830 PR# G 
1388 am
 
~000 REH ~..*.* EVALUATE F( R)
 
2010 Y = H(N) * R 
2020 FOF: X = t·~ - 1 TO 1 STEP - 1 
2030 Y =.(Y + H(X» * R 
2040 NEXT }:: 
2050 Y = Y + A(0) 
2060 RETURN 

In order to investigate whether the location of the two initial 

approximations with respect to the root affects the number of iterations 

required to find the root, various approaches with three representative 

equations were compared. Table 5.4 summarizes the results. 

TABLE 5.4 

3 2P(x) = x + 6x + 11x + 6 

No. of Actual Computed 
Approx. Approx. 2 Iter. Root Root 

-4 o -2 -2 

-2.9 -1.1 2 -2 -1.99999998 

o 9 -1 -1
 

-4 -5 9 -3 -3
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TABLE 5.4 (continued) 

3 2P(x) : x + 4x + 5x + 2 

No. of Actual Computed 
Approx. 1 AE£rox. 2 Iter. Root Root 

-1.4 0 19 -1 -1.00001519 

-1.6 0 14 -2 -2 

-3 -2.4 8 -2 -2.00000004 

_1-3 0 1 -1 

0 1 24 -1 -0.999992713 

-3 -4 9 -2 -2 

3 ?P(x) : x + 3x + 3x + 1 

No. of Actual Computed 
Approx. 1 AEE.rox. 2 Iter. Root Root 

-2 1 26 -1 -1.00051558 

0 -3 25 -1 -0.999244997 

-3 0 26 -1 -0.99964703 

-2 0 1 -1 -1 

0 1 26 -1 -0.999561218 

-3 -2 28 -1 -1.0005264} 

In general, fewer iterations were required when the two initial 

approximations surrounded the root. For all practical purposes, how

ever, this is not a viable choice. But for the purposes of comparison, 

the initial approximations given for use in Program 5.2 were the same 

as those used in Program 5.1. Table 5.5 summarizes the results obtained 

from Program 5.2. 
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TABLE 5.5 

No. of Actual Computed 
Equation r l' r 2 Iter. Root Root 

3 2 x - 2x - x + 2 -1. 5, -0.4 7 -1 -1.00000003 

3 - 6x + 2x2 - ~x - -1. '5, -0.4 5 -1 -1.00000003 

4x3 - 3x -1.0, -0.5 7 -0.8660254 -0.866025404 

3 2 x + 6x + l1x + 6 -1.5, -0.4 14 -1 -1 

x3 
+ 4x2 

+ 5x + 2 -2.5, -1.4 23 -1 -0.999998388 

3 2 x + 3x + 3x + -1>.5, -0.4 20 -1 -1.00063794 

432 x + lOx + 35x + 50x 
+ 24 -1.5, -0.4 7 -3 -2.99999999 

4 28x - 8x + 1 -1.0, -0.5 10 -0.9238795 -0.923879532 

4 3 2 x + 4x + 6x + 4x 
+ 1 -1.5, -0.4 2'( -1 -1.00415797 

5 316x - 20x + 5x -1.0, -0.8 7 -0.9510565 -0.951056516 

543 2 x + l5x + 85x + 225x 
+ 274x + 120 -1.5, -0.4 9 -2 -2.00000001 

543 2 x + 5x + lOx + lOx 
+ 5x + 1 -1.5, -0.4 18 -1 -1.01567717 

Again, more iterations are required when mUltiple roots are 

present. The computed root in these cases is not as accurate as when 

no multiple roots are present. The secant method has an advantage over 

the bisection method in that it can compute the root when the function 

does not cross the x-axis. 

The secant method does have a disadvantage in that the two 

initial approximations submitted cannot also be roots of the equation. 
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Nor can they be values such that P(r,) = P(r2 ). If this occurs, the 

slope will be zero, and the secant method will no longer work. 

The last alternative method to be presented is a variation of 

Newton's method. This method is provided by Haggerty in [6, p. 101], 

and is not dependent upon the multiplicity of the root. 

If P(x) :: (x-rlmq(x) = 0 (q(r) i 0) 

m m-1then P'(x) = (x~r) q'(x) + m(x-r) q(x) 

PIx) (x-r) mg,(x)
and ::FTXT m m-1(x-r) q'(x) + m(x-r) q(x) 

(x-r) m-1 [(x-r)q(x))
= 

(x-r) m-1 [(x-r)q'(x) + mq(x)] 

:: 
(x-d.9(x) 

Setting this equation equal to zero yields x :: r as a root. (For 

examples of the graph of fIx) :: P(x)/P'(x), the reader is referred 

again to Graphs 4.1, 4.2, and 4.3.) 

Let F(x) = P(x)/P'(x) then: 

F'(x) = P'(x)P'(x) - P(x)P"(x) 
[p'(x))2 

= 1 _ P ( x) P" (x) 

[P' (x))2 

Since F(x) has only one root at x = r, F(x) may be substituted for PIx)
 

in Newton's method. Thus r k+ 1 :: r k - F(rk}/F'(rk )
 

where Flrk ) :: P(rk)/p'(r ) and F'(r ) :: 1 - p(r )p"(r )/[pt(r )]2.

k k k k k

Program 5.3 will compute the root of a polynomial equation using 

Haggerty's version of Newton's method. Table 5.5 summarizes some of the 

results obtained from Program 5.3. 
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PROGRAI-I 5.3 

1(3 REH *** NanON <HAGGERT't' ) *** 
20 REH *** H = DEGREE OF THE POLYHOHI~L 
30 RHi *H: AOD = COEFFICIENTS OF POL'rIUOHIAL 
40 REH *** B(X) = FIRST DERIVATIVE 
58 REH ~'H: COO = SECOND OEP.!'J~TIVE 
80 REM *** R = INITIAL ~PPROXIH~TIOH 
TO f.:£1·1 ·H·w R1 = F( R) 
8(1 REl1 *** R2 = F"( R)

80 RBi Ui- R3 = F..... (R)
 
100 REt·1 *** R4 = SUCCESSIVE APPROXIMATION
 
11£1 REI·1 H:* F = FOO 
120 REM *** FP = F~(X) 
1J~1 REM ~.~* I = ITERATION NUHBER 
140 HOME 
15~ F'IUNT "THIS PROGRAt1 ~HLL FIND THE ROOT OF All 
180 PRINT npOLYNOMIAL USING H~GGERTY"S VERSION OF" 
1?1O PRINT "NEWTOWS HETHODu 
183 PRINT 
180 Pf.:HH nENTER THE DEGREE OF THE POLYNOHIAl li 
2e0 INPUT II( HAXlt1UH DEGREE IS 10) II iN 
210 PRllH 
2:20 RBi *** E~n£R COEFFICIENTS 
230 PRINT liTHE COEFFICIENT OF THE r~ANTH TERH" 
240 PRINT illS AOD" 
250 PRltH 
280 FOR ~.~ =N TO "STEP - 1 
270 PIRINT "EtHER A( nWI )11 i 
200 INPUT II II iA( >~ ) 
290 NE>n X 
300 PRItH 
310 INPUT IIEtHER THE INITIAL GUESS ".R 
320 PRlla
 
~::m I = 1
 
340 REJi ·:H·l· SENO OUTPUT TO PRUHER
 
350 PRtt 1
 
2:80 HEl1 ·u* PfUtH EQUATION AND HEADINGS
 
370 PRINT TAB( H3)1I "i
 
38£1 FOR >~ = t~ TO 2 STEP - 1
 
390 PRINT ~(X)"XAIIX" + "j
 

400 t'~EXT X
 
HO PFUtH A( 1 )IIX + "A( 0)
 
420 PRINT
 
43(1 PlUtH lilT ''','' ROOT"
 
440 PRHn
 
450 REM i'** COUPUTE FIRST DERIVATIVE
 
460 GOSUB 3000
 
4('0 F(E:t-1 *** COt-iPUTE SECOND DERIVATIVE
 
480 GOSUB 4000
 
480 EEl1 *B· EVRLUATE F( R)
 
500 GOSU8 2000
 
510 fH = 'll
 

520 REt1 '1:** EVALUATE F" ( F: )
 
530 GOSUE: 3500
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l'lll 1(; (l fIt-, ,~ .. I (c.un ti ll!J0.l1 ) 

5~O R2 ; 'r'
 
550 REH *** EVRLUATE F"" ( R)
 
SSO GOSlIB 4500 
~?0 R3 ;: ~' 

5813 REt-1 *** CALCULATE F AHO FP 
5'30 F ::: Rl / R2 
GB~ FP = 1 - Rl * R3 / CR2 * R2)
810 REt1 +** CALCULATE HEW ~PPROXlt1ATIOH 
G20 f(,4 ;: r.: - F ". FP 
630 R(;Jl *** CHECK FOR CLOSEt'lES~i 
8~~ If R8S ~R4 - RJ ( lE - G THEN 710 
G50 R ::: R4 
88(1 F'RItH "I ,R4II 

870 I = I + 1 
880 GOSUB 2000 
880 IF ABS CY) < lE - 6 THEN 710 
700 GOTO 510 
,'HJ prUtH
;'2(1 PRINT liTHE ROOT IS " i R4 
730 F'R# 0 
1839 Etm
 
2000 REH *** EVALUATE F(R)

2010 Y ::: A(N) * R 
2020 FOR Xl = N - 1 TO 1 STEP - 1 
2030 Y = (y + A(Xl» * R 
21340 HD':T >~1 
2050 Y ~ Y + ~(e) 

2IJCO m:TURI~ 

3UOl} r~[H *0 COIIPUTE FIHST OERIVAllUE 
3010 FOR X = N TO 1 STEP - 1 
3~2~ B(X - 1) ;: A(X) I X
 
3030 NEXT ~<
 
3040 RETURN
 
3500 REM *** EVALURTE F'(R)
3510 IF H ::: 1 THEN 3570
 
3520 \? = EK Ii - 1) * R
 
3530 IF H = 2 THEN 3570
 
3540 -FOR Xl = N - 2 TO 1 STEP - 1
 
3550 Y = ~y + B(Xl» * R
 
35130 -NDn >a 
3570 y ::: y + B(0)
 
3580 RETURN
 
..1300 REt1 *-1): Cot1PUTE SECOND DERIIJRTIVE
 
4010 FOR X = N TO 2 STEP - 1 
4020 C(X --2) = Bex - 1) * (X - 1) 
4(130 NE::<T ~<
 

4040 RETURli
 
45~0 REM *-1* EVRLUATE F~/(R)
 
4510 IF N = 1 THEN Y = 0: RETURN
 
4520 iF N = 2 THEN 4580
 
4530 Y = C(N - 2) * R 
4540 IF H ::: 2: THEt-~ 4580
 
4550 FOR Xl = N - 3 TO 1 STEP - 1
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PROGRAM 5.3 (continued) 

4560 Y = (y + C(Xl»
4570 NEXT Xl 
4580 Y = Y + C(G) 
4590 RETURN 

I R 

TABLE 5.6 

Equation 

3 2 x - 2x - x + 2 

Init. 
Approx. 

o 

No. of 
Iter. 

5 

Actual 
Root 

Computed 
Root 

1.0000001 

3 x 2 
+ 2x - 5x - 6 o 4 - 1 - 1 

34x - 3x -1 4 -0.8660254 -0.866025404 

3 x 2 
+ 6x + l1x + 6 o 1 -1 -1 

3 x 2 
+ 4x + 5x + 2 o 3 -1 -1.00003033 

3 x 2 
+ 3x + 3x + o -1 -1 

4 x + 
+ 

316x 
24 

+ 
235x + 50x 

o 6 -2 -2.00000036 

48x 2 - 8x + 1 -1 4 -0.9238795 -0.923879533 

4 x 3 
+ 4x 2 

+ 6x + 4x + 1 o -1 -1 

516x - 320x + 5x -1 4 -0.9510365 -0.951056516 

543 x + 15x + 85x 
+ 274x + 120 

+ 
2225x 

o 5 -2 -2.00000004 

5 x 4 3 
+ 5x + lOx 
+ 5x + 1 

2 
+ lOx 

o -1 -1 

The number of iterations required when multiple roots are
 

present decreased significantly in Haggerty's version of Newton's method.
 

In the other cases, Haggerty's version required the same, or perhaps one
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~dditional, number of iterations to find the root. The roots obt~ined 

by using Haggerty's method appeared to have the same degree of accuracy 

as those obtained by usin~ Newton's method. 

r'or purposes uf comparing the results of the four principal 

methods di~_;c.lJ:J~wd, Table Ij.'( summarizes the rc~ults otJt;t.inerJ by u::.;in/,~ 

Newton's, Haggerty's, the secant, and the bisection methods. 

TABLE 5.7 

.Equation 
Init. 

Approx. 
No. of 
Iter. 
--- 

Newton 
----- --

No. of 
Iter. 
-

Haggerty 
I) 

x -+ I)X 
II 

... 
"I 

lOx + 
~ lOx + Sx ... 1 0 32 -1.00110733 1 -1 

543 x + 15x + 85x + 
2225x + 274x + 120 0 7 -1 5 -2.00000004 

5	 5 4 25 3x + x - x 
2125x + 144x + 720 0 1 -5 7 -3 

5 316x - 20x + 5x -1 4 -0.951056516 4 -0.95105616 

Init. No. of No. of 
Equation !eE.rox. Iter. Bisection Iter. Secant 

5 4 3 x	 + 5x + lOx + 
2lOx + 5x + 1 -1.5, -0.4 5 -0.984375 17 -1.01567711 

543 x +	 15x + 85x + 
2225x + 274x + 120 -1.5, -0.4 29 -1 9 -2.00000008 

543x + 5x - 25x _ 
2125x + 144x + 720 -3.5, -2.4 28 -3 10 -3.00000001 

5 316x -20x +5x -1.0, -0.8 30 -0.951056516 7 -0.951056516 
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Although the results will not be presented in this thesis, the 

four' programs used to generate Tabie 5.7 were translated into FORTRAN. 

The results obtained on the microcomputer were very close (to three 

significant figures) to those obtained using FORTRAN in double-preci.sivn. 



CHAPTER VI 

SUMMARY 

The purpose of this thesis has not been to show how the "tried

and true" methods of solving polynomial equations may be adapted for use 

on the microcomputer. Nor has it been to develop new methods. Rather, 

the purpose has been to show that while the methods already in existence 

may be adapteG, they should not be blindly adapted. 

All methods do not work equally well for all types of equations. 

The user should, therefore, be aware of some of the types of equations, 

and some of the areas in solving equations in general, in which problems 

may occur. With this information, steps can be taken to avoid, or to 

compensate for, these problems. 

Specifically, programs that will solve polynomial equations of 

degree four or less are given. While no formula exists for solving 

polynomial equations of degree five or more, there are many iterative 

methods available for approximating the roots of these equations. 

Programs for solving equations using Newton's, the secant, and the 

bisection methods are given. 

When using any iterative method, the task of evaluating P(x) is 

highly critical. As x -4 r, the amount of round-off error increases 

signif1cantly. Thus, no method is more accurate than its evaluation of 

P(x). Polynomial equations which contain multiple roots are especially 

difficult to evaluate. 

70 
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Polynomials are ill-conditioned. That is, a small change in one 

of the coefficients may produce a large change in the roots. The 

equations illustrated in this thesis are of degree five or less. A 

significant amount of change can be detected with these. Highe~ degree 

equations would be affected even more. This is important not only when 

working with depressed equations (as illustrated in Table 4.6), but 

also when entering irrational numbers or repeating decimals as co

efficients. 

Other problems may be encountered when solving equations with 

six or more complex roots, or when working with equations with complex 

coefficients. Although not presented in this thesis, some methods, such 

as MUller's, will develop intermediate complex iteratives. Special care 

will have to be used to work with these on a microcomputer. 

Since programs for iterative methods are normally verified by 

using equations with known roots, the user needs to exercise extreme 

caution in attempting to find the roots of an equation whose roots are 

unknown. Thus, while the user may think the correct roots have been 

obtained, the error incurred by the machine during the procedure may 

have circumvented ever finding the correct roots. Therefore, it is 

extremely important for the user to be aware that problems may occur, 

and to be conscientious enough to look for them. 
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