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This thesis deals with a topic in ahstract algehra, the wreath 

product. The wreath product is a special type of permutation group 

which acts on ordered pairs. An example is given to illustrate the 

algebraic structure of the wreath product. t,lethods of performing the 
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are demonstrated. Theorems concerned with the structure of wreath 

products are developed. 

The importance of the concept 9f wreath products lies in their 

use in constructing certain t:~es of subgroups of symmetric groups. 

These subgroups are the Sylow p-subgroups of symmetric groups. The 

method of constructing Sylow p-subgroups with wreath products is 

developed. Computation of the number of Sylow 3-subgroups of the 

symmetric group on thirteen elements is performed. Similar compu

tations for symmetric groups on 12, 14, and 15 elements are shown. 

One chapter is devoted to investigating which wreath products 

have the same internal structure; that is, which are isomorphic. 

Theorems demonstrating isomorphisms between certain wreath products 



with the same number of elemcnts, that is, the SaJ:JC order) are 

developed, and conclusions for wreath products of order less than 100 

are derived from these theorems. 

Some minor results of the study are presented in Chapter VI. 
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Chapter I: Introduction 

The wreath product is a special form of permutation group. Under

standing the nature of the wreath product facilitates comprehension of 

certain types of subgroups of the symmetric groups. It is the intention 

of this thesis to present the concept of the wreath product in a manner 

that a reader with only a basic knowledge of abstract algebra can under

stand. It is assumed that the reader has had a course in abstract 

algebra. 

This thesis deals with finite groups. 

Some remarks concerning notation and statements of useful theorems 

(without proof) are in order. Since the topic at hand is permutation 

groups, the reader is reminded that a permutation group G is a set of 

one-to-one mappings (permutations) of elements of some set A onto the 

same set A. 

The notation indicating the action of a mapping (permutation) on 

an element of a set will for the most part be exponential. If a is 

gan element of set A and g is a mapping, a is the element to 

which g maps a. 

Permutations are often given in cyclic notation. For instance, 

(123) is a permutation which maps 1 to 2, 2 to 3, and 3 to 1. It is 

a mapping of {1,2,~ to itself. 1(123) = 2, 2(123) = 3, and 

3(123) = 1. 

A group G which is generated by a finite set of elements aI' 

a2' .•. , ~ is designated <al ,a2' .•• , ~> • Thus G = <al,a2, •.. ,~>. 

• 
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A permutation group on a set of n elements consisting of all nl 

possible one-to-one onto mappings of the set to itself is the symmetric 

group on n, designated Sn' 

The number of elements of a set A is denoted by IAI. The number 

of elements in a group G, the order of the group, is designated 

similarly, IGI. 

The identity element of a permutation group is designated as (1). 

The theorems which the reader will find helpful are listed along 

with definitions of appropriate concepts. 

1.) Definition of homomorphism: A mapping of the elements of a 

group G to those of a group H is called a homomorphism if and only 

if gl + hi and g2 + h2 implies glg2 + h 1h2· 

2.) Definition of isomorphism: A one-to-one homomorphism of G 

onto H is an isomorphism. 

The reader is reminded that identities are mapped to identities, 

and inverses are taken to inverses by homomorphisms. 

3.) Cayley's Theorem: Every group G is isomorphic to a per

mutation group of its own elements. 

4.) LaGrange's Theorem: If His a subgroup of G, then IHI 

divides IGI· 

The order of an element a of a group G is the smallest positive 

integer n such that an = (1). Since <a> is a subgroup of G, and 
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l<a>l= n, the order of an element of a group G must divide the order 

of the group G. 

5 .) Definition of conjugates: Two elements sand Sl of a
 

group G are conjugate if and only if for some x E G, x-1sx = Sl.
 

6.) Definition of conjugate sets: Two sets of elements Sand 

SI are conjugate if for some fixed x E G, x-1Sx = SI. 

7.) Theorems concerning conjugate sets: 

(a) If Sand SI are conjugate sets, they contain the
 

same number of elements.
 

(b) Any set conjugate to a subgroup is also a subgroup. 

(c) Two conjugate subgroups are isomorphic. The operation
 

of conjugation is an isomorphism.
 

8.) Definition of normal subgroups: A subgroup II of a group G 

is a normal subgroup if x-1Hx = II for all x E G. A nonnal subgroup II 

of G is sometimes called a self-conjugate subgroup. 

9.) Definition of coset: Ci ven a group G nnd a subgroup If. 

The set of elements hx, all h E If, x E: G, x fixed, is called a right 

coset of H, and is designated I-Ix. Similarly, the set of elements xh, 

all h E II, is called a left coset xl-! of H. 

10.) Theorems on cosets: 

(a) for H a subgroup of G, all x,y E G, either /Ix" IIy = ~ 

or Hx = IIy. 

(b) IXHI = Illi and IIIxl = IIlI 
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11.) Definition of a factor group: I f II is a nonnal subgroup 

in G. the factor group Gill consists of all distinct right cosets of 

H. The operation in Gill is defined as (Hxi) (IIxj) == HXi Xj . 

IGill I == ~t 
II is the identity element in Gill. 

12.) The First Theorem on Homor.lOrphisms: In the homomorphism 

G -)- Il. the set T of elements of G mapped onto the identity of II 

is a nonnal subgroup of G. T is called the kernel of the homomorphism. 

13.) The Second Theorem on Homomorphisms: Given a group G and 

a normal subgroup T; then if H == G/T. there is a homomorphism G -)- H 

,1'11Ose kernel is T. This homomorphism is given by g -)- TXi if g £ TXi 

in G. 

14.) The Third Theorem on Ilomomorpldsms: If G -)- K is a hOlllO

morphism of G onto K and T is the kernel of the homomorphism. 

then K is isomorphic to G/TJ(K,," CIT). 

15.) Definition of Direct Product: The direct product of groups 

AI' A2 •···• An' designated (AI xA 2x ... xA n) is the set of ordered 

n- tuples (a l • a 2 •...• an) for ai £ Ai' The product of (al. a2"'" an) 

and (b l • b 2 •.. 0' bn) is defined by 

(al' a 2 •· ... an)(b l • b 2 ... ·• bn) == (alb l • a 2b 2 ... ·• anbn)· 

The direct product is a group. 
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16.) A theorem concerning direct products: A group G is isomorphic 

to the direct product of subgroups Ai for i == 1, 2, ... , n, if 

(a) every A. is a normal subgroup of G;
1 

(b) A.() (U Ai) =<1>, the identity subgroup for all j = 1,
J

i~j 

2, ... , n. 

(c) G == UAi for i == 1, 2, •.. , n. 

If this isomorphism is satisfied, G, is called the direct 

product of the Ai'S, equating (1, 1, ... , ai"'" 1) to ai' 

17.) A preliminary to the Sylow Theorems: 

If the order of a group G is divisible by a prime p, then 

G contains an element of order p. 

18.) The first Sylow Theorem: If G is of order n = pms, where 

p does not divide s, p a prime, then G contains subgroups of order 

pi, for i == I, 2, ... , m, and each subgroup of order pi, i = I, 2, ... , 

m-l is a normal subgroup of at least one subgroup of oreler pi+l. 

19.) Definition of p-group: A group P is a p-group if every 

element of P has order a power of a prime p. 

20.) Definition of Sylow p-subgroup: A subgroup S of a group 

G is a Sylow p-subgroup of G if it is a p-group and is not contained 

in any larger p-group which is a subgroup of G. 

21.) A corollary to the first Sylow Theorem: Every finite group 

G of order n = pms , \..;hcre (p, s) = I, P a prime, contains a Sylow 
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p-subgroup of order pm, and every p-group which is a subgroup of G 

is contained in a Sylow p-subgroup of G. 

22.) The Second Sylow Theorem: In a finite group G, the Sylow 

p-subgroups are conjugate. 

23.) The Third Sylow Theorem: The number of Sylow p-subgroups of 

a finite group G is of the form I + kp and is a divisor of IGI. 

The· above definitions and theorems are referred to from time 

to time as they are needed to prove the theorems involving wreath 

products. 
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Chapter II: The Wreath Product 

As the introduction states, wreath products are permutation groups. 

They act on sets of ordered pairs. The fashion in \',hich the elements of 

a wreath product permute the ordered pairs depend upon the components 

of each ordered pair. 

Let G be a permutation group on the set A and H be a permu

tation group on set B, with IAI ::: m and IBI ::: n. Without loss of 

generality, let A::: {I, 2, ... , m} and B ::: {I, 2, 3, ... , n}. 

Allow G* to be the set of all n-tuples of elements of G. There 

exist mappings <p from the ordered set B::: {I, 2, ... , n} to each 

element of G~ ¢ (i) is the i th component of the clement of G*. Each 

of these n-tuples of G* can be considered to be an element of the 

direct product of n copies of G, G1XG2X... XG". There are lel n n-

tuples in G*. 

The wreath product of G by II, designated ClII, is a group of 

mappings (permutations) on A x B onto itself. These mappings are 

represented by G ::: [[';1' g2'···' gn ;h] ,·.'hcrc gi £ e and h £ II. The 

m3pping 0 on A x B is defined by 

(a,i)8::: (a,i)[gl,g2'···',~n;h]::: (aep(i),ih )::: (agi,ih) 

To prove that GtJ! is a group, first examine closure. For 8 1 

and 82 clements of CllI, 8182 is a product of l;lappings and is "'ell

defined; that is, 8102 £ chI. If 8 1 ::: fg1' g2' ... , r,n;h] and 82 ::: 

. 81 82 [ . 0 1 ]8 2 <P(')'h 02[PI, P2'···' Pn; k] then ( a,1) ::: (a,1) ::: (a 1,1) ::: 
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(agi ,ih)82 = ((agi)~'(ih) ,(ih)k) = (agiPih,ihk) = (a,i)63 for 83 = 

[gI Pl h , g2 P2h , ... , gnPnh ; hk]. Since giPih E G and hk E H, 83 E G~H. 

Examining this result closely shows that it is not necessary to 

consider the action of the elements of GUf on (a,i) E A x B when 

computing products of elements of GlH. Notice that in 8182,h permuted 

the Pi's in 82. In the example which follows this proof, the action 

of hi in 6i 8 j on the gj components of 6j is demonstrated. 

Since composition of mappings is an associative operation, it is 

seen that for 8i. 6j' 8k E G\H, (8 i 6 j )6 k = e i (8 j 8k)' 

There exists an identity element I E G~H. I = [(1) ,(1), ..• ,(1) ;(1)]. 

For 8 E G~H/eI = Ie = e since 

[g1 ' g2 ' . . . , gn ;h] [(1) , (1) , . . . , (1) ; (1 ) ] 

= [gl (1) ,g2( 1), ... ,gn(1) ;h(l)] 

= [g1 ' g2 ' ... , gn ;h] = 8 

and [(1),(1) , ... ,(1);(1)][gl,g2, ... ,gn;h] 

= [(1)g1'(1)g2" .• ,(l)gn;(l)h] 

= [g1 ' g2 ' ..• , gn ; h] = 8 

Each e E GUI has an inverse in GlH. If e = [gl ,g2, ..• ,gn ;h] , 

ht en -1e [( -1= g1 ' g2 -1 -1)h-1'h-1]' ... , gn ' 

since 
[gl ,g2 , ... ,gn ;h] [(gl -1 ,g2 -1, ,gn-1) h-l ;h-1] 

= [(gl ,g2'" . ,gn) (gl -1 ,g2 -1, ,gn-1 )h-1h ;hh-1] 

= [(gl ,g2' ... ,gn) (gl -1 ,g2 -1, ... ,gn-1) ; (1)] 

- [ -1 -1 -1. (1)]- gl g l ,g2 g2 ""'&n&n ' 
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= [(1), (1), ... ,(1); (1)] = I 

- I 
. '1 ar1y [( -I ' g 2 -I ••• ,gn-I) h 

;h- I ] [ h]Sun g 1 ' g 1 ' g 2 ' ... ,gn; 

[( -I -1 -I)h- I ( )h- 1 h-1h]g 1 ' g 2 ' ... ,gn g 1 ' g 2' ••• ,gn ;
 

h- 1
 
= [{ (g 1 -1 ,g 2- 1 , .. ,~- 1) (g 1 ,g 2' ••. ,gn) } ; (1)]
 

- [( -I -I -1 )h- I . (1)]
- gl gl,g2 g2'" ·,gn gn '
 

h- I
 = [((1) ,(1) ,'" ,(1)) ; (1)]
 

= [(1),(1), ... ,(1); (1)] = I.
 

Thus, G~lf is a group. This is Theorem 1 of Chapter II. 

Theorem 2. The order of the wreath product of G by II is IGl n IHI, 

~lere n = 131 

Since thero are IGl n possible choices of n-tup1es of G* and IHI 

possible choices of h f: H, IG~HI = IGlnIHI. 

C~lf is a group of permutations on A x B. It follows then that 

GHI is a subgroup of the symmetric group on A x B, S . It is shm-Jn mn 

in section (d), Chapter IV that for m > 1, n > I, Sm~Sn is a proper 

subgroup of Smn' 

The following example of a wreath product helps to understand the 

nature of the concept. Let A = U,2,3,4}; B = {1,2,3}; G = {(1),(12)} 

a permutation group of order t\vO on the set A; and II = {(I), (123). 

(132)} a group of order three on B. Since IAI = 4, IBI = 3, IA x BI = 

12. IGI = 2 and 11-11 = 3 means IG~H I = 23 • 3 = 24. GlH consists of 

24 elements of S12' which altogether contains 12! permutations. 
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The ordered pairs of Ax B are expressed as letters. 

a = (1,1) g = (3,1) 

b = (1,2) h = (3,2) 

c=(1,3) 1 = (3,3) 

d = (2,1) j = (4,1) 

e = (2,2) k = (4,2) 

f = (2,3) 1 = (4,3) 

The elements (permutations) of GW are 

= [(1) ,(1) ,(1) ;(1)]81 [(1) ,(12) ,(12) ;(123)]
8 13 

= [(1),(1),(12);(1)]82 = [(12) ,(1) ,(12) ;(123)]
814 

= [(1),(12),(1);(1)]83 = [(12) ,(12) ,(1) ;(123)]
8 15 

84 = [(12),(1),(1);(1)] = [(12) ,(12) ,(12) ;(123)]
8 16 

= [(1),(12),(12);(1)]85 = [(1) ,(1) ,(1) ;(132)]
8 17 

= [(12), (1), (12) ; (1)]86 = [(1) ,(1) ,(12) ;(132)]
818 

= [(12),(12),(1);(1)]87 = [(1),(12),(1);(132)]
819 

88 = [(12),(12),(12);(1)] = [(12),(1),(1);(B2)J
820 

89 = [(1),(1),(1);(123)] = [(1),(12),(12);(132)]
821 

= [(1),(1),(12);(123)]8 10 = [(12) ,(1) ,(12) ;(132)]
822 

= [(1),(12),(1);(123)]811 = [(12),(12),(1);(132)]
823 

= [(12),(1),(1);(123)]8 12 = [(12),(12),(12);(132)]
824 

In Tah1 e 1 \',hich foll OI'S, the g. and h components of each 8 are 
1
 

arranged in column. Beneath these components in the same column, 

are the ordered pairs to which each G maps a,b,c, ... ,1. Following 

this table is an explanation concerning how it is constructed. 
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Table 1 

8 1 82 8 3 84 8 5 86 8 7 8 S 

gl (1) (1) (1) (12) (1) (12) (12) (12) 

g2 (1) (1) (12) (1) (12) (1) (12) (12) 

g3 (1) (12) ( 1) (1) (12) (12) (1) (12) 

h (1) (1) (1) ( 1) (1) (1) (1) ( 1) 

a (1.1) (1.1) (1.1) (2.1) (1.1) (2.1) (2.1) (2.1) 

b ( 1.2) (1.2) (2.2) (1.2) (2.2) (1.2) (2.2) (2.2) 

c ( 1.3) (2.3) (1.3) (1.3) (2.3) (2.3) (1.3) (2.3) 

d (2.1) (2.1) (2.1) (1.1) (2.1) (1.1) (1.1) (1.1) 

e (2.2) (2.2) (1.2) (2.2) (1.2) (2.2) (1,2) (1.2) 

f (2.3) (1.3) (2.3) (2.3) (1.3) (1.3) (2.3) (1.3) 

g (3.1) (3.1) (3.1) (3.1) (3.1) (3.1) (3,1) (3.1) 

h (3,2) (3,2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) 

i (3.3) (3.3) (3.3) (3.3) (3.3) (3.3) (3.3) (3.3) 

j (4.1) (4.1) (4.1) (4.1) (4.1) (4.1) (4.1) (4.1) 

k (4.2) (4.2) (4.2) (4.2) (4.2) (4.2) (4.2) (4.2) 

1 (4.3) (4,3) (4.3) (4.3) (4.3) (4.3) (4.3) (4.3) 
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Table 1, continued 

89 ~10 8 11 8 12 8 13 8 14 8 15 8 16 

gl (1) (1) (1) (12) (1) (12) (12) (12) 

g2 (1) (1) (12) (1) (12) . (1) (12) (12) 

g3 (1) (12) (1) (1) (12) (12) (1) (12) 

h (123) (123) (123) (123) (123) (123) (123) (123) 

a (1,2) (1,2) (1,2) (2,2) (1,2) (2,2) (2,2) (2,2) 

b (1,3) (1,3) (2,3) (1,3) (2,3) (1,3) (2,3) (2,3) 

c (1,1) (2,1) (1,1) (1,1) (2,1) (2,1) (1,1) (2,1) 

d (2,2) (2,2) (2,2) (1,2) (2,2) (1,2) (1,2) (1,2) 

e (2,3) (2,3) (1,3) (2,3) (1,3) (2,3) (1,3) (1,3) 

f (2,1) (l ,1) (2,1) (2,1) (1,1) (1,1) (2,1) (1,1) 

g (3,2) (3,2) (3,2) (3,2) (3,2) (3,2) (3,2) (3,2) 

h (3,3) (3,3) (3,3) (3,3) (3,3) (3,3) (3,3) (3,3) 

i (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) 

j (4,2) (4,2) (4,2) (4,2) (4,2) (4,2) (4,2) (4,2) 

k (4,3) (4,3) (4,3) (4,3) (4,3) (4,3) (4,3) (4,3) 

1 (4,1) (4,1) (4,1) (4,1) (4,1) (4,1) (4,1) (4,1) 
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Table 1, continued 

a17 a18 a19 a20 a21 a22 8 23 a24 

gl (1) (1) (1) (12) (1) (12) (12) (12) 

g2 (1) (1) (12) (1) (12) (1) (12) (12) 

g3 (1) (12) (1) (1) (12) (12) (1) (12) 

h (132) (132) (132) (132) (132) (132) (132) (132) 

a (1,3) (1,3) (1,3) (2,3) (1,3) (2,3) (2,3) (2,3) 

b (1,1) (1,1) (2,1) (1,1) (2,1) (1,1) (2,1) (2,1) 

c (1,2) (2,2) (1,2) (1,2) (2,2) (2,2) (1,2) (2,2) 

d (2,3) (2,3) (2,3) (1,3) (2,3) (1,3) (1,3) (1,3) 

e (2,1) (2,1) (1,1) (2,1) (1,1) (2,1) (1,1) (1,1) 

f (2,2) (1,2) (2,2) (2,2) (1,2) (1,2) (2,2) (1,2) 

g (3,3) (3,3) (3,3) (3,3) (3,3) (3,3) (3,3) (3,3) 

h (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) 

i (3,2) (3,2) (3,2) (3,2) (3,2) (3,2) (3,2) (3,2) 

j (4,3) (4,3) (4,3) (4,3) (4,3) (4,3) (4,3) (4,3) 

k (4,1) (4,1) (4,1) (4,1) (4,1) (4,1) (4,1) (4,1) 

1 (4,2) (4 ~2) (4,2) (4,2) (4,2) (4,2) (4,2) (4,2) 
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Understanding Table 1 may be facilitated by looking at several 

examples. 

a84Example 1: = (1,1) [(12),(1),(1) ;(1)] 

= (1</>(1)[(12),(1),(1)],1(1)) = (1(12),1(1)) = (2,1) 

The first component of a, 1, is mapped to 2 because the gl

component of 8 4 is (12). 

Example 2: b8s = (1,2)[(1),(12),(12);(1)] 

= (1</>(2) [(1), (12) ,(12)] ,2(1)) = (1(12) ,2(1)) = (2,2). 

The first component of b, 1, is mapped to 2 because the g2

component of 8s is (12). 

Example 3: f 8 13 = (2,3)[(1),(12),(12);(123)] 

= (2</>(3) [(1), (12), (12)] ,3(123)) = (2(12) ,3(123)) 

= (1,1). 

The first component of f, 2, is mapped to 1 by the g3 - component 

of 0 13 . 

Exanp1e 4: dO 14 = (2, 1) [( 12), ( 1), (1 2) ; ( 12 3)] 

_ (2 H1 ) [(12) ,(1) ,(12)] ,1(123)) = (2(12) ,1(123)) 

( 1 ,2) . 

The first component of d, 2, is acted upon by the Bl-conponent 

of 814. 

The twenty-four elements of GlJI may be expressed as permutations 

of the set containing a,b,c, ... ,.1. 
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81 = I 813 = (abf) (cde) (ghi) (jkl) 

82 = (cf) 811+ = (aef) (bcd) (ghi) (jkl) 

83 = (be) 815 = (aec)(bfd)(ghi)(jkl) 

81+ • (ad) 816 = (aecdbf) (ghi) (jkl) 

85 = (be) (cf) 817 = (acb)(dfe)(gih)(jlk) 

86 = (ad) (cf) 818 = (acedfb) (gih) (jlk) 

87 = (ad) (be) 819 = (acbdfe)(gih)(jlk) 

88 = (ad) (be) (cf) 820 = (afedcb)(gih)(jlk) 

89 = (abc) (def) (ghi) (jkl) 821 = (ace)(bdg)(gih)(jlk) 

810 = (abcdef) (ghi) (jkI) 822 = (afb) (ced) (gih) (jlk) 

811 = (abfdec)(ghi)(jkl) 823 = (afe) (bdc) (gih) (jlk) 

812 = (aefdbc)(ghi)(jkl) 821+ = (afbdce)(gih)(jlk) 

The elements 81 ,82 , ••. ,8 8 are every distinct product of the cycles 

(ad) ,(be) ,and (cf). These eight elements form a group since each one 

is its own inverse and 61 is the identity. The h-component of each of 

these is (1), so {8 1,82 , .•. ,8 8} is similar to the G* defined on page 

7. Refer to {8 1 ,82 , ... ,8 8} as G*. 

{89 ,8 10 , ••• ,8 16 } is not closed under the operation (composition
 

of mappings). Since the h-component of each of these elements is
 

(123), it is seen that 89G* = G*8 9 = {89,810, ... ,816}.
 

Similarly, {817,818, ..• ,821+} is not closed under the operation. 

Since each h-component is (132) = (123)-1, this set consists of inverses 

of 89G*. Also 817G* = G*8 17 = {817,818, •.• ,821+}. 
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Table 2 which follows is the multiplication (or composition 

of mappings) table for GW as defined in this example. It ''las computed 

from the cyclic forms of e. € G~H. For brevity, only the subscripts
1 

of the ei are listed. Using this table as reference, one can demonstrate 

how products of elements of GlH may be computed without reference to 

ordered pairs of Ax B. 



Table 2 
r-
...-l 

1 2 3 4 5 G 7 R 'J 10 11 12 13 14 15 1(, 17 18 19 ~o 21 "",
LL 23 24 

2 1 S 6 :1 L~ 8 7 10 :J 13 11~ 11 12 lC 15 18 17 21 22 19 20 24 23 
3 5 1 7 2 8 4 G 11 13 9 15 10 16 14 14 1<) 21 17 23 18 24 20 22 
I ~ G 7 1 8 2 3 5 12 14 IS :3 IG 10 11 13 20 22 23 17 24 18 l eJ :21 
5 3 2 g 1 7 S I~ 13 11 10 IG 'J 15 1 11 12 /.1 1 'J 18 24 17 23 22 20 
6 4 n 2 7 1 5 3 1 11 12 16 10 15 'J 13 11 22 20 24 18 23 17 21 19 
7 8 I~ 3 G 5 1 2 15 1G 12 11 14 13 9 10 23 24 20 11) 22 21 17 18 
~ 7 6 5 I~ 3-. 2 1 IG 15 14 13 12 11 10 ') 24 23 22 21 20 1 J 18 17 
'J 11 12 10 15 13 11~ 1G 17 B 20 18 23 21 22 24 1 3 4 2 7 5 G 8 

10 13 11~ ') lii 11 12 1S 13 21 22 1 7 21~ lCJ 20 23 2 5 6 1 8 3 4 7 
11 ) 15 13 12 10 16 1 11 19 17 23 21 :20 18 2 JI 22 3 1 7 5 4 2. U 6 
12 15 'J 14 11 16 10 13 70 23 17 ·22 19 24 18 21 4 7 1 6 3 8 2 5 
13 10 1G 11 14 9 15 12 21 18 2 II 19 22 17 23 20 5 2 8 3 6 1 7 4 
1'+ 16 10 12 13 15 9 11 22 7/~ 18 20 21 23 17 19 G R 2 4 5 7 1 3 

~...... 
~"'. 

15 
1G 
17 

12 
111 

20 

11 
13 
1R 

1G 
15 
19 

9 
If) 
'J ,., 
~L 

14 
12 
23 

1] 

11 
21 

1') 
:3 

24 

23 
24 

1 

20 
22 

II 

1 J 
21 

2 

:? I~ 

23 
3 

17 
1P 

G 

22 
20 

7 

21 
1~ 

5 

18 
17 

8 

7 
8 
9 

4 
6 

12 

::) 

5 
10 

8 
7 

11 

1

'.L 

11~ 

... 
L. 

4 
15 

5 
:1 

13 

2 
1 

16 

'.". 
' . 

18 22 17 21 20 24 13 23 2 6 1 5 I~ 8 3 7 10 14 '] 13 12 IG 11 15 
1J 23 21 17 2 1t 20 18 22 3 7 ;) 1 8 II :2 G 1 1 15 13 'J 16 12 10 14 
20 17 22 23 li3 1') 2 11 21 II 1 6 7 :2 3 '3 S 12 (J 1'~ 15 10 11 IG 1::) 
21 24 11 12 23 22 17 20 ";) S 3 2 

., 
/ ti 1 LI 13 16 11 10 15 111 9 12 

22 18 20 2 11 17 21 /.3 1J G 2 4 8 1 5 7 3 1l~ IJ 12 1G 9 13 15 11 
23 19 2lf 20 21 17 2? 18 7 3 3 l~ 5 1 G 2 15 11 16 12 13 9 14 10 
2 I~ 21 23 22 19 1f1 20 17 E 5 7 G 3 2 tl 1 1e 13 15 14 11 10 12 9 

• 
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In the demonstration of closure of G\H on page B, it is seen that 

in 8 i 8 j • the h-componcnt of 8i permutes the g-components of 8 j , For 

the example given here. 

(gl,gZ.g3)h = (g h,g h,g h)'
1 Z 3
 

In particular, (gl,gz,g3)(IZ3)
 

= (gl (IZ3) ,gz(l23) ,g3(lZ3)) 

= (gZ·g3,g1)
 

Similarly. (g,g,g )(13Z) = (g,g,g)

1 ~Z 3 3 1 Z 

The following two examples demonstrate the computation of 8i 8 j 

without reference to ordered pairs of Ax B, 

Example 1: 88 = [(1),(1),(1);(123)][(12),(12),(1);(123))
9 15 

= [((1),(1) .(1)) ((12) ,(12) ,(1)) (123) ;(123) (123)] 

= [( (1) , (1) , (1)) ((12) , (1) , (12)) ; (132)) 

= [(12),(1),(12);(132)] = 822 , 

Inspection of the multiplication table reveals the same result, 

89 815 = 822 , 

Example 2: = [(12), (1) , (12) ; (123)] [(1) , (12) , (12) ; (132)]814 821
 

- [((12) ,(1) ,(12)) ((1) ,(12) ,(12)) (123) ;(123) (132)]
 

= [((12) ,(1) ,(12)) ((12) ,(12) ,(I)) ;(1)] 

= [(1) ,(12) ,(12) ;(1)] = 85 

The multiplication table shows =814 821 85 , 
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Chapter III: The Importance of Wreath Products 

The concept of the wreath product facilitates construction of 

Sylow p-subgroups of the symmetric group Sn. It is shown in section 

3 of Chapter 4 that for some prime P. if Pr is a Sylow p-subgroup of 

Spr. Pr +l • a Sylow p-subgroup of Spr+l. has the same structure as 

Prl<c>. where c is a cycle of order p in Spr+l. A Sylow p-subgroup of 

Sn consists of the direct product of groups of this form. 
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Chapter IV: Theorems Connected with the Wreath Product 

Section 1: The structure of a wreath product is given in this 

chapter by presenting four theorems. Theorem 1 demonstrates that the 

permutations a € G~H for which h = (1) form a group isomorphic to 

G* as defined on page 7, and Theorem 2 shows this group to be a normal 

subgroup. Theorem 3 demonstrates (Gw)/{a:a € G~H, h = (I)} isomorphic 

to H. Theorem 4 establishes that {a:a € G~H and gi = (1) for all i} 

is isomorphic to H. 

Theorem 1: {a:- a £ GlH, h	 = (I)} :: G* 

Let f be a mapping from	 {a: a E G\H, h = (I)} to G* such that 

ffor a = [gl'g2, ... ,gn;(I)]. a = (gl,g2,···,gn)· 

If a = [Pl,Pl,.·.,Pn;(I)] and a2 = [r ,r2 ,·.·,rn ;(I)],
1 1
 

(a 1a2) f = [p1 \ (1) ,P2r 2(1) , ••. , Pnrn(rl ; (1) ] f
 

= [Pl r l,P2 r 2,···,Pnrn;(I)]f
 

= (Pl r l' P2 r 2'·· .,Pnrn)
 

= (Pl,P2,···,Pn)(r1 ,r2,···,rn)
 

= e f e f
 
1 2 

Since f is a one-to-one correspondence which preserves operations 

it is an isomorphism. Thus {a: a £ GiH, h = (I)} is a subgroup of 

G~H and is isomorphic to G* the direct product of n copies of G. 

Henceforth,{a: a £ GlH, h = (I)} is referred to as G*. 
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Theorem 2: G* is a normal subgroup of GHI. 

Let f be a mapping from G)H to H such that for 8 = [gl. g2; 

•..•~;h] an element of GtH. 8 
f = h. Then for 81 = [gl. g2 •..••gn;h] 

and 82 = [P1.P2 •••.•Pn;k]. 

(8 182)f = [glP1h·g2P2h.···.gnPnh;hk]f 

= hk 

= 8 f 8 f
 
1 2
 

So f is a homomorphism onto H. The elements of G* are mapped 

to the identity element of H by f. so G* is the kernel of f. By 

the first Theorem on Homomorphisms. G* is a normal subgroup of Gll-l. 

Theorem 3: (GlH)/G* ~ H. 

Application of the Third Theorem on Homomorphism establishes this. 

Theorem 4: K = {818 € G~H and 8 = [(1) .(1) ••••• (1) ;hj is iso

morphic to H. 

f
Clearly IKI = IHI· If 8 = [ ( 1) • ( 1) •..•• ( 1) ; h] and 8 = h. then 

(8 .8.) 
f = h.h. 1 ] Since f is one-to-one and onto and since= 8.f8.f

•1 J 1 ] 

f preserves the operations. K ~ H. 

Consider the example given in Chapter One.
 

A = {1.2.3.4}. B = {1.2.3}
 

a = «12». H = «123»
 

It is seen that G* ~ G x G x G 
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Also G* is a normal subgroup of G~H, since for p E: GlH, 8 E: G*, 

the h-component of P-18P is hp- 1hp = (1). 

In this case, (G~H)/G*. {G*,89 G*,8 17G*} . The isomorphism 

involved is 

(G*) f = (1) 

(8 g G*) f = (123) 

(8 17G*) f = (132) 

K = {61'8 9 ,8 17} (8 1) f = (1) 

(8 9) f = (123) 

(8 17) f = (132) 

Section 2: Associativity of the Wreath Product 

If the process of forming the wreath product is considered to 

be a binary operation, it is associative. If K is a permutation 

group on a set C, then (G~H)lK = Gl(HlK). If (A x B) x C and A x (B 

x C) are equated with A x B x C, the two wreath products are identical. 

Theorem 1: The operation of forming wreath products is associative. 

If G, H, and K are permutation groups on sets A, B, and C respec

tive1y with IAI = m, IBI = n, Icl = p, then (GW)lK = G~(mK). 

first I(G~H)lKI = IGt(H~K) I
 
I (G\H) KI = IGlHIPIKI = CIGlnIHI)PIKI = IGlnPIHIPIKI·
 

IGlCHlK) I = IGlnPIHlKI since IB x ci = np;
 

and IGlnPIH~KI = IGlnplHIPIKI since [H2KI = IHIPIKI
 

Thus I (GIH)) KI =IGl(H~ K) I 
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Since the orders of the two wreath products are the same, a one-

to-one onto mapping from one to the other that is an isomorphism completes 

the proof. 

If <p € (r~Hn K, then <p is of the form [(g l,g2,'" ,~;h 1), (gn+l' 

... ,g2n;h2) , .. " (gCp-l)n+l"" ,gpn;~) ;k] 

Let f be a mapping from (GtH)VC into Gt(Hl K) such that for <p € 

(GIH)lK, 

f 
<p = [(gl' g 2,···,gn;h 1),(gn+l ,···,g2n;h2),···,(g(p-l)n+l'···' 

f
gpn;h ) ;k] = [g l' g 2" .. ,gpn; (h l,h 2, ... ,hp;k)] € Gl(HlK)p

Clearly f is a one- to -one onto mapping. Also'it is the desired 

isomorphism. If <p = [Cgl,g2,···,~;hl) ,(gn+l"" ,g2n;h2)· ··,(g(p-l)n+l' 

···,gpn;hp);k] and <P' = [(g'l'g'2,···,g'n;h'l), (g'n+l,···,g'2n;h'2), 

..• ,(g'(p-l)n+l, ..• ,g'pn;h'p) ;k'], consider (<p<p')f. k acts upon the 

subscripts of the h'i's. 

So (<p<p,)f = [(gl,g2, ... ,gn;h 1)(g'(lk_l) n+l'" .,g'(lk-l)n+n;h\k), 

... , (g(p-l) n+1, ... , gpn ;hp) (g' (pk -1) n+l' ..• ,g (pk -1) n+n ;h 'pk) ; kk'] f 

Each hi may be considered to be acting only on the numbers 1, 2, ... , 

n, 

So (<p<p,)f = [(glg'(lk-l)n+lh, •.. ,gng'(lk-l)n+nhl;hlh' lk),.'" 

(' g,.h h' ). kk'] f
g(p-l)n+l g (pk-l)n+lhp" ··,gpn (pk-l)n+nhp' p pk , 

( <p<p' ) f = [g 1g , (1k -1 ) n +1hI' g 2g ' (lk -1) n+ 2h 1 ' • • • , gng' (lk -1) n+nhi' . • . , 

g(p-l)n+lg ' (pk_l)n+lhp,···,gpng'(pk_l)n+nhp ;(h 1h' lk ,h 2h' 2k "'" 
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Since the orders of the two wreath products are the same, a one-

to-one onto mapping from one to the other that is an isomorphism completes 

the proof. 

If cp e: (GlHHK, then ep is of the form [(gl>gz,···,gn;h 1), (gn+l' 

... ,g2n ;h2) , ... , (g(p-l)n+l , ... ,gpn ;~) ;k] 

Let f be a mapping from (G~HHK into Gt(m K) such that for cp e: 

(GIH)lK, 

f 
cp	 = [(gl,gz,···,gn;h1),(gn+l ,···,g2n;h2),···,(g(p-l)n+l'···' 

gpn;hp);k]f = [gl,gz,···,gpn;(h1,hz, ... ,hp;k)]e: GlOIlK) 

Clearly f is a one- to -one onto mapping. Also' it is the desired 

isomorphism. If cp = [(gl,gz,···,gn;h ) ,(gn+l,···,g2n;h2)· .. ,(g(p-l)n+l'
1

···,gpn;hp);k] and cp' = [(g'l'g'z,···,g'n;h'l), (g'n+l,···,g'2n;h'2), 

... ,(g'(p-l)n+l, ... ,g'pn;h'p) ;k'], consider (cpcp,)f. k acts upon the 

subscripts of the h'i's. 

So (H,)f = [(gl,gz,···,gn;h1)(g'(lk_l) n+l'" .,g'(lk-l)n+n;h'lk), 

···,(g(p-l)n+l, ···,gpn;hp)(g' (pk_l)n+l,···,g(pk_l)n+n;h'pk); kk,]f 

Each hi may be considered to be acting only on the numbers I, 2, ... , 

n, 

So (H,)f = [(glg'(lk-l)n+lh, ... ,gng'(lk-l)n+nhl;hlh'lk), ... , 

(g(p-l)n+l g ' (pk_l)n+lhp" .. ,gpng'(pk_l)n+nhp;hph'pk); kk,]f 

( cp CP' ) f = [g 1g , (1k -1) n +1hI' g zg' (1k -1) n+ 2h l' ... , gng , (1k -1) n +nhI' ... , 

g(p-l)n+lg ' (pk_l)n+lhp'··· ,gpng ' (pk_l)n+nhp ;(h1h' lk,hzh' zk'···' 
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hph'pk;kk')] = [glg'(Ik_I)n+lhl,···,gpng'(pk_I)n+nhp;(hl,h2'···' 

h ; k) (h ' 1 ' h ' 2 ' ... ,h' ; k ' ) ] . p p 

If we allow (ik - I)n + jhi = (j hi , i k), then (¢~') f = 

[glg'(lhl,Ik),g2g'(2hl,Ik) ,···,gng '(nh l,Ik) ,···,g(p-I)n+Ig'(lhp,pk) , 

... ,gpngCnhPpk);(hl,h2, ... ,h ;k)(h'l,h'2, ... ,h' ;k')] = [(gl,g2,"" 
J p p 

) ( a" ') (h h h .k)g bpn (I,I),g (2,I),···,g (n,p) l' 2"'" p' ;(h 1 ,h2 ,···h ;k)p 

(h' ,h' , ... ,h';k')] = [g,g , ... ,g ;(h,h , ... ,h ;k)]
1 2 P 1 2 pn 1 2 P 

[g' a' '(l' h' = [gl ,g2"" ,gpn;, (1,1)"> (2,I),···,g (n,p); 1 l' 2, ... ,h'p;k ' )] 

(h ,h2 , ... ,h ;k)][g'l,g'2, ... ,g' ;(h'l,h'2, ... ,h' ;k')] = ~f(~,)f.
1 P np P 

Thus f preserves the operation and is an-isomorphism. 

Theorem 2: If (.\ x B) x C = A x (B x C) = A x B xC, then (C;~Il)l K 

is identical hith (ll(ll1.K). 

To demonstrate this, it suffices to show that for ~ E: (qll)? K 

as defined in Theorem 1, and isoTaorphism f as defined in Theorem 1, 

~ = ~f 

((a,b) ,c)~ = ((a,b) (g(c-I)n+I, ... ,gn;hc ) ;ck) 

= ((ag(c-l)n+b,bhc) ,ck) 

= (ag(c-I)n+b,(bhc,ck)) 

= (ag(c-I)n+b ,(b,c) (111 ,h2, ... ,hp;k)) 
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Let (c-l)n + b = (b,c).
 

Then ((a,b) ,c)<p = (ar:(b,c) ,(b,c)(hl'h2 ,··· ,hp;k))
 

f 
= (a,(b,c))<P 

Section 3: Construction of Syloh' p-subgroups of S 
n 

I1ere is perhaps the most outstanding aspect of wreath products, 

the construction of Sylow p-subgroups of S. TIle computation of the n 

order of Sylow p-suhgroups and the construction thereof with IHeath 

products is demonstrated in this section with an example. 

(1.) Computation of the order of a Sylow p- subgroup of Sn' 

The order of Sn is nl. If lSi = n! = pJn s for SOlile prime p 

such that (p,s) = 1, the SylOW p-subgroups have order pm by a corollary 

of the First Sylow Theorem. When n is expressed in base p, n = 

aopk + alpk-l_ + •.• + ak_I P + ok ~lere 0 < a i < p - 1, and M = [ ~] + 
p
 

!!-] + ..• + n ] .

p2
 pk 

To show this, consider [ ~ ] . [~] is the number of factors of 
p p 

nl = n(n - 1)(n - 2) •.. 3,2'1 ~lich contain at least the first power of 

p; that is, p, 2p, 3p, ... ,kp, where k = [ ~ ] . 
p 

[ ~7] is the number of factors 0 f n! which contain p" as a factor. 
p 

lIenee p appears as a factor of n I at least ~.1lis Jfl8.11Y more times. Similar 

remarks hold for [ !!- ] , ... , [ ;. ] . 
. p3 P
 

~ ] = 0 for i > k + 1, since pk+l > n.
 
p1
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k k-l
Since [	 !!- ] = [aop +alP +: .. +ak_1P+ak]
 

pi p1
 

k k-l	 i = aop + alP +••. + ak_iP
 

pi
 

= aopk-l + alpk-2 +... + ak-l for 1 < i < k, 

M = [ n ] + [ !!-] +... + [n ]
 
P p2
 PK 

= (aapk-l + a I pk-2 + ... + a p + a )

k-2 k-l
 

+ (aopk-2 + alpk-3 +...+ ~ ) +•.. + (ao+ all + ao.
K-2 

Factoring out the coefficient ai's yields M = ao(pk-l + pk-2 + 

... + P + 1) + a l (pk-2 +... + p + 1) +... + ak_2(p + 1) + ak_l· 

(2.) Construction of Sylow p-subgroups 

The information developed above show that a Sylow p-subgroup of 

N r r r 1S r has	 order p r, where Nr = [~] + [ ~] +... + [ ~] = pr- + 
p	 p p2 pr 

pr-2 +... + p + 1. Constructing Sylow p-subgroups for S , S 2' ... ' 
P P 

S k easily generalizes to constructing a Sylow p-subgroup for S . 
P 

Writing n = aopk + alpk-l +... + ak_1P + ak' partition the n letters 

into a	 sets of pk letters, a l sets of pk-l letters, ... , ~-l sets ofo 

p letters and a sets of single letters. When the appropriate Sylow
k 

p-subgroups in each set are constructed, then the direct product of 

these is a group P of order pm and is a Sylow p-subgroup of S . 
n 

.
 
!:" 

... 

', 

-\ 
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The wreath product may be used in this construction of Sylow 

p-subgroups of S. For some prime p, a Sylow p-subgroup of S , the 
n p 

N 1-1
symmetric group on 1, 2, ... , p, is of order p, since p 1 = pP = 

ppO = p. = p. Therefore this Sylow p-subgroup is cyclic and may be 

generated by the cycle (123 ...p). In any event, this Sylow p-subgroup 

is isomorphic to «123 ...p». Sp2 on 1,2, ... , p2 has a subgroup 

which is the direct product of the cyclic groups generated by a = 1 

(12 ...p), a = (p + 1, ... , 2p), ... , a = ((p-1)p+1, ... , p2). This2 p 

direct product has order pp. This direct product is not a Sylow 

p-subgroup of Sp2, since a Sylow p-subgroup of Sp2 has order pp+1. 

Consider the element b = [1,p+1,2p+1, ... ,(p-1)p+1] [2,p+2, ... ,(p-1) 

p+2] ... [p,2p, ... ,p ] of order p. 

b-1aib = ai +1 , where the subscripts are taken modulo p. 

Consider ai = [(i-1)p+1,(i-1)p+2, ,ip] t b- 1 = [(p-1)p+1, 

(p -2) p+1, ... , p+1,p] [(p-1) p+2, ..• ,p+2, 2] [p2 ,p2 -p , ... , 2p ,p] • 

so b-1 ai b ={ip2- P + 1, p2 - 2p + 1, , P + 1, 1] 

[p2 _ P + 2, p2 - 2p + 2, , P + 1,2]
 

... [p2, p2 _ p, ... , 2p, p]}
 

{[(i - l)p + 1, (i - l)p + 2, ..• , ipj\
 

~l,p + 1,2p + 1, ... ,p2 - P + 1]
 

[2 ,P + 2,...,p2 - P + 2]
 

... [p ,2p, ... ,p2])
 

b- 1 takes ip + 1 to (i - l)p + 1, then ai maps (i - l)p + 1 

to (i - l)p + 2. But b takes (i - l)p + 2 to ip + 2. So b- 1a i b 

-..
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maps ip + 1 to ip + 2. A similar argument holds for ip + 2 being mapped 

to ip + 3, and so on. If b-l maps an element to one which is fixed by 

a, b immediately reverses this action. Hence b-1aib = rip + 1, ip + 2, 

... ,(i + l)p] = ai+l. 

Also (b-1aibt = a2 i+l or b-1ai bb-1a i b = a 2 i+l 

or b-1 a2 . It = a2 . l'
1 1+ 

This generalizes to b-1anib = ani+l by induction. 

From the results above, it is seen that fromb-'aib =ai +l one 

may derive ar. = bai+lb-1. 

ba.b-1 = b2a· lb~ = a· 11 1+ 1

Again by induction, bmaib-m = ai_me Combining these results, it 

is discovered that 

bmanib-m = ani_n\for all natural numbers m and n. This information 

is necessary to show that bman is of an order which is a power of pi 

for all natural numbers m and n. Consider (bman.)P = bman.bman ... bman . 
1 1 1 

= (bmanib-m)bmbmani···bmani 

= ani_m(b2manib-2m)b2mbmani .. ·bmani 

n n 3m n -3m 3m m n m n 
= a i-rna i-2m(b a i b )b b a i ... b a i 

n n n n (p-l) m m n 
= a i-rna i-2ma i-3m··· a i-(p-l)mb b a i 

n n n n 
= a i-rna i-2m··· a i-(p-l) rna i 
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If (p,n) = 1, this element is of order p, so long as (p,m) also 

equals 1. If P divides m, this element is the identity, being (ani)p = 

npa
~ 
. = (1). 

If (p,n) =1 and (p,m) =1, (bmani)p is of order p, hence bmani is 

of order p2. So bmani is an element of a p-group. Since an·bm = 
~ 

bmi1+m' anibm is also an element of a p-group. 

The p-group generated by b and ai's cannot have order greater 

than pp+l, since pp+l is the order of a Sylow p-subgroup of Sp2' It 

cannot have order less than pp+l since l<al>x<a2>x •.• x<~>1 = pp. 

No ai generates aj for j , i, nor will any ai generate b. Similar 

b will not generate any ai. So this group is a Sylow p-subgroup of 

Sp2' This subgroup may be generated by a, and b. 

This Sylow p-subgroup is the wreath product of <al> and the group 

generated by the first cycle of b. The set associated with <al> is 

A = {1,2, ... ,p} and the set associated with the first cycle of b is 

B = {1,p+I,2p+I, ... ,(p-l)p+I}. The elements of A x Bare (j,ip + 1) 

for j = 1,2, ... ,p; i = O,l ... ,p-l. Call the first cycle of b by the 

letter c, then l<al>\<c>1 = l<a1>1 IBI ]<c>1 = ppp = pp+l. 

If (j,ip + 1) is identified with ip + j, <al>l<c> is a subgroup 

of Sp2' Since l<al>~<c>1 = pp+I, it is a Sylow p-subgroup of Sp2' 

Sylow p-subgroups are conjugate, hence they are isomorphic. So <al,b> 

may be equated with <al>~<c>. 

Let Pr be a Sylow p-subgroup of Spr on 1,2, ... ,pr. The letters 

r r+1 2 r r+ 1 h d b 1 f1 , ... ,p,p , ... , p , ... ,p are t ose permute y e ements 0 
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Spr+l' Let c = [1,pr+l, 2pr+ l , ... ,(p_l)pr + 1][2,pr+2,2pr+2, ... ,(p-l) 

r 2] [ ;' r· 2 r . (1) r .] [r 2 r r+ 1] P + ... J,P +J, P +J, ... , p- P +J ... p , p , ... ,p . 

Then let Pr(i) = c-iprci . Since Pr(i) is a conjugate of P inr 

Spr+l, it is a group of order pNr. Moreover, it is a permutation group 

of the letters ipr + 1, ... ,(i+l)pr. To see this, consider p, an element 

lof Pro P is a permutation on l, ... ,pr. c- maps pr + j to j for 1 ~ 

j ~ pro p takes j to k for 1 ~ k ~ pr and c maps k to pr + k. So 

c-lpc permutes the elements pr + m for 1 s m S pro Similarly, c-2 

maps 2pr + j to j, and c2 takes k to 2pr + k, so c-2pc2 permutes 

the elements 2pr + m. In general, c-ipci permutes elements ipr + m 

for m = l, ... ,pr;i = O, ... ,p - 1. 

Since each Pr(i) displaces a distinct set of letters, the group 

they generate is their direct product. 

IprxPr(l)X...XPr(p-l)1 = (pNr)p = ppNr. 

Since no p E Pr generates c and c generates no element of Pr , the 

group generated by c and Pr is of order ppNr+l. But pNr + 1 

= p(pr-l + pr-2+ + p + 1) + 1 

= (pr + pr-l + + p2 + p) + 1 

= p(r+l)-l + p(r+l)-2 +... + p2 + P + 1 

= Nr + l 

So c and P generate Pr +l ' a Sylow p-subgroup of Spr+l'r 

Now consider Pr acting on letters 1, ... ,pr, and d a cycle of order 

p, d = (uOu1 up_l ). The wreath product Pr~<d> permutes symbols (i,uj) 

for i = l, ,pr; j = O, ... ,p-l. 

.. 
" 
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PIPrl<d> I = IPrIPI<d>1 = [PrI • p 

= (p(pr-l+pr-2+ ... +p+l)]p • P 

= pp(pr - l +pr - 2+ ... +p+l) • p' 

ppr+pr-l+ ... +p2+ p+l 

= pNr+l 

So Prl<d> is a Sylow p-subgroup of Spr+l' If (i,uj) is identified 

\~ith i + jpr, then, \",ithin isomorphism, Pr+l as defined above and P ' <d>r 

are the S::lme. 

To illustrate tIle preceding discussion, a Sylow 3-subgroup of S13 

is constructed. 13 = 1'32 + 1·3 + 1. So the tllirteen letters are 

partitioned into one set of nine letters, one set of three letters, and 

one set of one letter. A SylOloJ 3 -subgroup of S13 is .~ = P2 x r 1 x I 

"'here PI' (for r = 1,2) is a Sylow 3-sub[;roup of 5 31" 

Let P = «123», 

and P2 =«123) ,(147) (258) (369». 

P2 ::: I'll <147>. 

Investigate the construction of P2' 

Allow a = (123) and b = (147) (2~8) (369) . 

So b-1a1b = [(174) (285) (3%)] (123) [(147) (258) (369)] 

= (456). Let a2 = (456). 

b- 1a 2b = [(174) (285) (396)] (456) [(147) (258) (369)] (789) 

Let (789) = a 3 

b-1a 3b = [(174) (285) (396)] (789) [(147) (258) (369)] = (123) = a 1 
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Each of the ai displaces a distinct set of letters, so the group 

they generate is their product. Now I<a1>x<a2>x<a3>1 = 33. Since b 

is of order 3, the group generated by PI and b must have order at least 

33+ 1. Since b E S3 2 and PI ~ S3 2 , the order of the group generated by 

PI and b cannot be of order greater than 33+ 1. Hence PI and b generate 

P2 , a Sylow 3-subgroup of S32. 

Consider P1~«147». Since PI permutes 3 elements and «147» 

permutes 3 elements, P1l «147» permutes 9 elements. So P1\«147» ~ 

S32 • 

Here it is necessary to allow 1 = uO' 4 = u1 ' 7 = U2 so that (147) 

may be called c = (uOu1u2). Then P~ <c> permutes symbols (i,uj) for 

i = 1,2,3; j = 0,1,2. 

Ip1~<c>1 = 33.3 = 33+1, the order of a Sylow 3-subgroup of S32. 

If (i,uj) is identified with i + 3j, r.t <c> is the same as P2 within 

isomorphism, since Sylow subgroups are conjugate by the Second Sylow 

Theorem. 

If P2 is allowed to permute the letters 1,2, .•. ,9; PI to permute 

10,11,12; and the identity group to map 13 to itself then 

S = <(123) ,(147) (258) (369». x «10,11,12» x I
 

= ( P1l <(147») x PI x I.
 

1$1 = Ip21·l p11·1 11 = 33+ 1.3 = 35 = 243.
 

Note that 5 = 1(32- 1+1)+1. If ao = 1, a1 = 1, a2 = 1, and p = 3, 

then 13 = aoP2 + alP + a2 . 



33 

13! =	 pms, H = a (pZ-l+1) + a 1 

It should be noted that any Sylow 3-subgroup of S13 is isomorphic 

to any	 Sylow 3-subgroup of either SIZ or S14. 

Pz x PI ~ Pz x PI x I ~ Pz x PI x I x I. 

In general, for n = aopr + a1pr-1 +... + a 1P + ar' where a s ai ~ r _


p-1, a Sylow p-subgroup S in Sn is
 

$ = (Pr x Pr x ... x Pr ) x (Pr - 1 x Pr - 1 x ... x Pr - 1) x ...
 

aO times a1 times
 

x (PI	 x PI x ... X PI) x (I x I x ... X I)
 

a - 1 times a times
r	 r 

If $0 is designated the Sylow p-subgroup of Sn ,,,hen <IT = 0, $1 

the Sy10\'1 p-subgroup of Sn when ar = 1, and so on up to $p-1 for ar = 

p-1, it is seen that 

~o ~ ,')'1 .~ $2 ~ •.• '" $p-l . 

The compi ete constructj on of a Sylow 3-subr,roup of Sg is helpful 

jn computing the number of Sylow 3-subgroups of S13 that actually exist. 

It 11appens that there are ov~r three million distinct Sylow 3-subgroups 

of S13' To establish this, proceed as follows: 

Since S = Pz x PI x I, the number of Sylow 3-subgroups of Sg and 

of S3 must be taken into account. The Third Sylow Theorem dictates 

that the number in each case must be of the form 1 + 3k. For S9' 
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1 + 3k must divide 91 The same may be said for S3, 1 + 3j must divide 

31 Matters are simplified for S3' The cyclic subgroup of order 3 is 

the only Sylow 3-subgroup of 53' 

The elements of a Sylow 3-subgroup of S9 are found to be cycles of 

order 3, products of disjoint cycles of order 3, and cycles of order 9. 

Cycles such as (123) and (145) cannot belong to the same Sylow 3-subgroup, 

since (123)(145) = (12345), a cycle of order 5. Nor can (123) and (124) 

belong to the same Sylow 3-subgroup, since (123)(124) = (14)(23), an 

element of order 2. No two single 3-cyc1es of a Sylow 3-subgroup can 

permute the same letters of 1,2, .•. ,9 . 

It is known that a Sylow 3-subgroup of S9 is generated by a 3

cycle and a permutation of three disjoint 3-cyc1es. Choice of either 

There are (9) = 9-8'7of these is restricted by choice of the other. 3 ,-_ .. 
3·2 

= 84 distinct 3-cyc1es and their inverses. Since the other generator, 

a properly selected triple, transmutes a 3-cyc1e into two conjugate 

disjoint 3-cyc1es, divide 84 by 3 to obtain 28. For instance, consider 

the 28 3-cyc1es involving 1, none of which is an inverse of any of the 

others; 

(123), (124), (125), (126), (127), (128), (129),
 

(134), (135), (136), (137), (138), (139),
 

(145), (146), (147), (148), (149),
 

(156), (157), (158), (159),
 

(167), (168), (169),
 

(178), (179),
 

(189) . 
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Once a 3-cycle has been chosen as generator. selection of the other 

generator. a triple of disjoint 3-cycles. is restricted. Each of the 

3-cycles of the triple must permute exactly one of the elements of 

the given 3-cycle, since otherwise permutations having orders other 

than powers of 3 are obtained. C<:msider (123) and (147) (235) (689)·; 

(123)(147) (235) (689) = (1347) (25)(689) which is of order 12. 

With this restriction. there are (~) ways of selecting the letters 

of the first factor of the triple. and 2 distinct ways of ordering 

these letters. For the second factor there are (j) ways of selecting 

the letters and 2 distinct ways of ordering them. There remains (~) 

or one way to select the letters for the third factor, and two ways of 

ordering them. Altogether there are 

6·5 4·3 3(~)(i)23 = • 2 = 6·5·4·3·2-2 2
 

= 6! possible triples of disjoint 3-cycles.
 

Note that (6!) (28) does not yield a number of the fonn 1 + 3k. 

A Sylow 3-subgroup of S9 must contain several triples of the proper 

form. The example which is constructed below shows that any Sylow 

3-subgroup of 59 contains 18 such triples. 

Let the letters a,b.c ...• i be the nine p-lemcnts permuted by 

members of 59' Select (11 = (abc). B = (adi) (bch) (cfg) ; then 

B- 1Cl1B = (dcf) = Cl2 

~-1(12B = (ihg) = Cl3 

~-1Cl3B -= (abc) = (11 
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A Sylow 3-subgroup of S9 contains 81 elements. The subgroup <aI' 

a2.a 3> accounts for twenty-seven of these elements, which are all pro

ducts alma2na3r where m = 0,1,2; n = 0,1,2; and r = 0,1,2. 

Other than S and S-l, there remain S2 elements yet to be inspected. 

Thirty-six of them are 9-cycles. The other sixteen are the desired 

tripl~s of 3-cycles. 

C·:msideralS, a2S, a3S, aI-IS, a2- l S and a3- l S. Each of these gen

eratc~ six 9-cycles distinct from those generated by the other five. 

Table 3 lists these products on pages 37-38. 

Jt is not necessary to consider Sal' Sa2 , and so forth. s-lalS = 

a2 mo,ns all3=Sa2. Similarly, a2S = Sa3 and a38 = Bal' 

So far, sixty-five of the 81 elements have been given. Sixteen 

remain to be found. These are triples of 3-cycles in which the three 

letter~ of al are apportioned one to each factor. There can be no 

more than 18 such elements, 8 and S-l included, in a Sylow 3-subgroup 

of S , since there are 63 elements which are not of this form. There 

are exactly 18 elements of this form. The following nine elements are 

distinct triples of the appropriate form, none of which are inverses 

of one another: 

S 8 -1a l a2a 3 

ala2a38 0-1a l a 31J a2 

ala28a3 0-1a l lJ a 2a 3 

a l Sa2a 3 B-1a 2 a l a 3 

a l a 3Sa2 
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(CLlB) = (abc) (adi) (beh) (cfg) = (aehbfgcdi) 

(CLlB) 2 = (ahfciebgd) 

(CLlB) 3 = (abc)(def)(ihg) = CLlCL2t:t3 

(CL B)4 = (afibdhceg)l 

(CL lB) 5 = (agechdbif) 

(CL B)6 = (acb) (dfe) (igh) = CLl-lCL2-lCL3-l
l 

(CLlB) 7 = (adgbeicfh) 

(CLlB) B = (aidcgfbhe) 

(CL l B)9 = (a). the identity 

(CL B) =_ (def) (adi) (beh) (cfg) = (adhbegcfi)2

(CL B) 2 = (ahecidbgf)
2

(CL By3 ::: (abc) (def) (ihg) = CL l CL 2 CL 32

(CL B) 4 = (aeibfhcdg)
2

(CL B) 5 = (agdchfbie)
2

(CL 6) 6 = (acb) (dfe) (igh) = CLl-lCL2-lCL3-l
2

(CL B) 7 = (afgbdiceh)
2 

(CL B) B = (aifcgebhd)
2

(CL 2B) 9 = (a) 

(CL B) = (ihg)(adi)(beh)(cfg) = (adibehcfg)
3

(CL 3B) 2 = (aiecgdbhf) 

(CL 3B) 3 = (abc) (def) (ihg) = CL l CL2 CL 3 

(CL 3B) 4 = (aegbficdh) 

(CL B) 5 = (ahdcifbge)
3

(CL 3B) 6 = (acb) (dfe) (igh) = CL l -lCL2 -1 CL3 - l 

(CL 36) 7 = (afhbdgcei) 

(CL B) B = (agfchebid)
3

(CL 38) 9 = (a) 
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(aI-IS) = (acb)(adi)(beh)(cfg) = (afgcehbdi)
 

(aI-IS) 2 = (agebifchd)
 

(a -IS) 3 = (acb) (dfe) (igh) = a -l a -l a -1
 
1 1 2 3 

(a I-IS) 1+ = (aeicdgbfh) 

(aI-IS) 5 = (ahfbgdcie) 

(a 1- 1 13) 6 = (abc) (de f) (ihg) = al a 2a 3 

(a I-IS) 7 = (adhcfibeg) 

(al- 1S)8= (aidbhecgf) 

(a 1- 1 R) 9 = (a) 

(a - 1 Sr = (dfe) (adi) (beh) (cfg) = (adgcfhbei)
2 

(a -1 e) 2 = (agfbidche)
2 .. 

(a - IS) 3 = (acb) (dfe) (igh) = a -l a -l a -1 
2 1 2 3 

(a -lS)1+ = (aficegbdh)
2 

(a -IS) 5 = (ahdbgecif)
2 

(a - 1S)6 = (abc) (def) (ihg) = ala2a3
2 

(a -IS) 7 = (aehcdibfg)
2 

(a -IS) 8 = (aiebhfcgd)
2 

(a -IS) 9 = (a)
2 

(a3- 1S) = (igh)(adi)(beh)(cfg) = (adicfgbeh) 

(a3- 1S)2 = (aifbhdcge) 

(a3 -IS) 3 = (acb) (dfe) (igh) = a -l a2 -l a3 -11

(a3- IS) 1+ = (afhceibdg) 

(a3- 1S)5 = (agdbiechf) 

(a3-1S)6 = (abc)(def)(ihg) = a1a2a3 

(a3- 1S)7 = (aegcdhbfi) 

(a3- 1S)8 = (ahebgfcid) 

(a3- 1S)9 = (a) 
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These nine elements and their inverses are the eighteen desired 

triples. Anyone of these may be considered to be the second gen

erator, the triple of disjoint 3-cyc1es of this particular Sylow 3

subgroup. For instance, if ala2a3S = y, then S = a 1-la2-1a3-ly. 

Recall that there are 6! = 720 ways of selecting an appropriate triple. 

Since each Sylow 3-subgroup of S9 contains 18 of these, there are 

720/18 = 40 ways of selecting a distinct Sylow 3-subgroup once the 

single 3-cyc1e generator is chosen. Recall that there are 28 such 

3-cyc1es to choose as generators. Altogether there are 28·40 = 1120 

Sylow 3-subgroups of S9. 

The criteria of the Third Sylow Theorem are satisfied. 1120 = 

1 + 1119 = 1 +3(373). 1120 = 25.5.7 divides 9! = 27. 34.5.7. 

With this information one can calculate the number of Sylow 

3-subgroups of S13. There are (li)(j) ways of selecting the letters 

permuted by S13 to construct a Sylow 3-subgroup. 

$ = P2 X PI X I. 

(v) (j) = 13·12·11·10 • 4 = 2860 = 1 + 2859 = 1 + (953)3.
4·3·2 

Note that both 1120 and 2860 are of the form 1 + 3k. Hence their 

product is of the same form. 

(1120)(2860) = 3,203,200 = 1 + 3,203.199 = 1 + 3(1,067,733). 

3,203,200 = 2752.7.11.13 divides 13! = 21°3 552.7.11.13. So the 

criteria of the Third Sylow Theorem are satisfied. The number of 

Sylow 3-subgroups of S13 is 3,203,200. 
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It is not too difficult to compute the number of Sylow 3-subgroups 

of S12 and S14' There are (\2) ways of selecting letters to construct 

a Sylow 3-subgroup of S12' 

(12) = 12·11·10 = 220.9 3·2 

(1120) (220) = 246,000, the number of Sylow 3-subgroups of S12' 

14.13.12.11.10For S14' there are (~4)(~) = 5·4 = 20,020 ways• 25·4·3·2 

to select the letters. 

(1120) (22020) = 22,422,400, the number of Sylow 3-subgroups of S14' 

When considering the number of Sylow 3-subgroups of SIS' some 

difficulty is encountered. 

(;5)(~) = 100100 = 2 + 100098 = 2 + 3(33,366). 

~fu1tip1ying 100100 by 1120 yields another number of the form 

2 + 3k, an undesirable result in light of the Third Sylow Theorem. The 

problem is solved when the fact that P2 x (PI x PI) and (P2 x PI) x PI 

are isomorphic but not identical is taken into account. Doubling 

100,100 yields 200,200. 

(200,200) (1120) = 224,224,000 = 1 + 224,223,999 = 1 + 3(74,741,333). 

224,224,000 = 285372.11.13 divides IS! = 211365372.11.13. So the 

number of Sylow 3-subgroups of SIS is 224,224,000. 
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Section 4: Theorem--For m > 1, n > 1, Smlsn is a proper subgroup 

of Smn' 

If M= {I,2, ... ,m} and N = {I,2, ... ,n} IH x NI = mn, so it 

is easily seen that Sm~Sn~ Smn' If either m = 1 or n = 1, then SmlSn = 

Smn' 

m = 1 implies IS ~ S I = (m!) nn! = n! = (mn)! = IS I. m n mn
 

n = 1 implies ISmlSnl = (m!)~! = m! = (mn)! = Ismnl .
 

It is understood that m and n are natural numbers. Induction is 

used to show that when both m and n are greater than 1, Smtsn is a 

proper subgroup of Smn' Consider m = n = 2. Ism'snl = (2!)221 < 

(2 02)! = ISmnI since (2!) 202! = 220 2 = 8 and (2 02)! = 4! = 24. 

Assume for some k € N, the natural numbers, that (k!) 202! < 

(2k) 1. 

[(k+I)!] 202! = (k+I)2(k!) 202! while [2(k+I)]! = [(2k+2)(2k+I)] 

[(2k)!]. 

(k+I)2 < (2k+2)(2k+I) for all k € N, so [(k+I)!] 202! < [2(k+I)]!. 

Therefore for all m > 1, m € N, (m!) 202! < (2m)!.
 

Assume for some j £ N that (m!)joj! < (mj)!
 

(m!) 0+1) O+I)! = (m!)(j+I)(m!) j j! and [(j+I)m]! = [(j+I)m]
 

[(j+I)m-I] ... [(j+I)m-(m-I)] [(jm)!]. 

It happens that 

(m!) (j+I) < [(j+I)m] [(j+I)m-I] ... [(j+I)m-(m-I)] 

or (m!) (j+I) < [(j+I)m] [(j+I)m-I] ... [jm+I] 



UUl U ,Ill 
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Chapter V: Wreath Products of Small Orders 

Section 1: Possible Orders of Wreath Products 

Theorem: Since 1r.~1I1 = [GIIBIIIII \~here B is the set of clements 

permuted by II, III I must divide IBI! 

II is a permutation group on B, so II is a subgroup of SIB I' By 

LaGrange's Theorem, IIII must divide ISIBII. ISI1311 = 181! 

Since this chapter concerns "Teath products of small orders, the 

concept of "small" must be defined. lIere it is considered to be less 

than or equal to 100. 

Sn has a cycle c of order n, 50 <c>l«l» has order n ,,'hen (1) £ 

S1' This case is trivial. (~~II is nontrivial if both I GI > 1 and 

IIII > 1. 

If lei = 2 and 181 = 2, then 1111 = 2. letJlI = 22 '2 = 8. This 

is the smallest possible order for a non-trivial "reath product. 

For IGI = 2 and 1131 3, III I 1:'c3.y be 2,3 aT 6. 

23 '6 = 48 

2 3 '3 = 24 

2 3 '2 = 16 

If IGI = 2 and 1131 = 4, 1111 can have value 2,3,4,6,8,12 or 24. 

24 • 2 = 32 24 • 6 = % 

24 '3 = 48 24 ·S = 128 > 100 

24 '4 = 64 
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When IGI = 2 and IBI = 5, the possibilities for 1111 are 2,3,4,5,6, 

8,10,12,15,20,24,30,60, and 120. 

25 .2 = 64 

25 .3 = 96 

25 .4 = 128 > 100 

IGI = 2 and IBI = 6 means the smallest value for IIII is 2. 26 .2 = 

128 > 100. 

If IGI = 3, 1131 = 2 means 1111 = 2 and IGlIl1 = 32 .2 = 18. 

When IGI = 3 and 1131 = 3, the possibilities for IG~JII are 3 3 .2, 

3 3 .3, and 3 3 .6. 

33 .2 = 54 33 .6 = 162 > 100 

3 3.3 = 81 

IGI = 3 and 1131 = 4 means the 10\.,rest value of 1~1I1 is 34 .2 = 

162 > 100. 

IGI = 4 and 1131 = 2 yields IQIII = 42 .2 = 32. 

IGI ::: 4 and' BI ::: 3 means IGllIl > 4 3 .2 ::: 128 > 100. 

IGI ::: 5 and IBI = 2 yields IG~HI = 52 .2 = SO. 

IGI = 6, IHI = 2 implies IG~HI = 62 .2 = 72. 

IG1 = 7, IHI = 2 me ans IGmI ::: 72 • 2 ::: 98. 

The possible orders less than or equal to 100 are 8,16,18,24,32, 

48,50,54,64,72,81,96, and 98. 

_. 
,
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Section 2: Isomorphisms between Wreath Products 

In this section, three theorems and a corollary are presented to 

establish the conditions in which two wreath products are isomorphic. 

It follows from these theorems that \vreath products of some particular 

orders are always isomorphic. A counter example is given to show that 

two wreath products of order 32 are not necessarily isomorphic. 

Before Theorem 1 can be presented, it must be understood that the 

exponential notation for mappings behaves the same way as the func

tional notation; that is, (gl,g2" .. ,gn)hk is equivalent to (hk) 

[(gl,g2'·· ·,gn)] = h(k[(gl,G2'" ·,gn)])· An example is presented to 

demonstrate this. 

Let G = S2 and H = S3' then Glii = S2~S3. Consider [(1), (12) , 

(12);(123)] and [(12),(1),(12);(13)]. The product of these is 

[(1) ,(12) ,(12) ;(123)] [(12) ,(1) ,(12) ;(13)] 

= [(( 1) , (12) , (12) ) ((12) , (1) , (12) ) (123) ; (123) (13) ] 

= [(1)(1), (12)(12) ,(12)(12) ; (12)] 

= [(1) ,(1) ,(1) ;(12)] 

If h = (123) and k = (13), hk = (123)(13) = (12). 

Notice how (12) acts on (gl,g2,g3)' 

(12) [(gl,g2,g3)] = (g2,gl'g3)' 

(123) (13) [(g1 ,g2 ,g3)] = (123) [(g3' g2,gl)] = (g2 ,gl ,g3) . 

However, if ordinary mapping notation is used [(gl ,g2' g3)] (hk) = 

{[(g ,g ,g )]h}k = {[(g1,g2,g3)](123)}(13) = [(g2,g3,g1)](13) =(g1,g3,g2),
1 2 3 , 
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which is not the same element of G x G x G unless gl = g2 = g3. In 

general (g2. g1. g 3) # (gl. g 3,g2). 

Theorem 1: If G '" G'. where G and G' are permutation groups over 

some sets A and A'. IAI not necessarily equGl to IA'I, and H' = a-Ilia 

\.,rhere IBI = IB'I and a £ SIBI' then G~H '" G'llI'. 

Clearly. G '" G' means IGI = IG'I. and H' = a-lIla yields Illi = Ill'l. 
SO Ir,VII = IGIIBIIHI = IG'IIB'IIII'I = IG'~H'I. A one-to-one onto 

Tn3.pping between the two wreath products can be designed. 

Let <1>1 be an isomorphism bet\,een G and G'. <1>2 is an isomorphism 

between G x G X... x G and G' x G' X... x G' if (gl,R
2
,·· .,gn)<I>2 = 

(gl<1>l,g2<1>1, .. ·,gn<l>l) for n = IBI = IB'I. 

Designate the elements of G x G X... x G as v·. So clements of
1 

G' x G' X... x G' are V.<I>2. 
- 1 

Then allow <1>3 to be a mapping from GHI to G'tIl' defined by [Vi; 

h i ]<I>3 = {(a-1h) (VI) ;a-1ha]. 

<1>3 is <ill isomorphism. That it is one-to-one and onto fol101,s 

from the facts that a-I and <1>2 are one-to-one and onto. That it 

preserves operations is demonstrated as follows: 

[VI; hI] if> 3 [v2 ;h2 ] <I> 3
 

= [(a-1<1>2) (VI) ;a-1h a] [(a-1<1>2) (V2) ;a-1h2a]
1

= {[(a- 1<1>2) (VI)] [(a- 1if>2) (V2)]a-lhla;a-lhlaa-lh2a} 

= {[(a- 1h) (VI)] [(a-1h 1a) (a- 1ep2) (V2)] ;a- 1h 1h 2a} 

= {[(a-1if>2) (VI)] [(a-1h
1if>2) (V

2
)] ;a-1h 1h 2a}. 
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Now hi 4J2 = 4J2hi for all hi e: II or 4J2 = hi-I4J2hi. 4J 2 merely renames 

the components of (gi ,g2'· .. ,~). In (gi ,g2,···,gn)hr
l 

4J 2hi, hi changes 

the order of the components, 4J renames them, and h i -
I restores the 

2 

original order. 

So [vI ;hl ]
4J 3 [V2;h2]4J 3={ [(a-Ih) (VI)] [(a- I 4J2 hl) (V2)] ;a-Ihi h2a} 

= {[(a-I 4J2) (VI)] [(a-Ih) (V2 hl )] ;a-Ihl~a} 

= [(a- I 4J2) (VIV2 hl ) ;a- I hI h2a] 

= [VIV2hl ;hl~]4J3. 

= {[VI ;hd [V2 ;~]}4J3 

So GllI : G'~II' 

Corollary to Theorem 1: If G ~ G' and H = H' for IBI = IB' I, then 

G~ H : G'~ II ' . 

This follows immediately, since H' = (1) -Ill(l) . 

Theorem 2: If IGI = IG'I = p for some prime p and H' = a-IHa for 

IBI = IB'I and a e: SIBI' then GlH: G'tH'. 

If IGI = IG'I = p for some prime, G and G' must both be cyclic 

groups. Cyclic groups of the same order are isomorphic. 

Theorem 3: G '" G' and IHI = IH'I = IBI = IBf 1= 2 or III I = 

IH'I = IBI = IB'I = 3 yields GlH : G'lH'. 

This follm'o's from the corollary to Theorem 1, since H = H' in 

both cases. There is only one group of order 2 which permutes a set 

of two elements. Similarly, there is only one group of order 3 which 

permutes a set of three elements. 
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Theorems 2 and 3 permit the conclusion that two wreath products 

of order 8, 18, 24, SO, 81, or 98 are isomorphic, since each of these 

numbers is of the form p2. 2 or p3. 3 where p is a prime. TIlis is the 

only way they can be written in the form mkn where n divides k!. 

There remain seven other possible orders less than 100 for which 

isomorphisms might possibly be constructed. Looking at the circum

stances in which these values occur, one finds that there are at least 

cleven distinct wreath products: 

16 = 2 3.2 

32 = 24 .2 = 42'2 

48 = 2 3,6 = 24 '3 

54 = 32,2 

64 = 2'+. 4 = 2 5 • 2 

72 = 62• 2 

96 = 2 4 .6 = 2 5 '3 

Theorems 1 and 2 permit the conclusion that in cases ~lere IG~!II = 

IG'~ II I I= 16 or IGW I = IGI~ HI I= 54, then GIH '" G r~ HI. In these cases 

]GI = IGII = p for p = 2,3, so G '" GI. There are three permutation 

groups of order 2 on a set of 3 clements, but they are conjugates of 

one another. 

«12» = (123)«23»(132) = (132)«13»(123). 

In the event that IGI = IGI I~ 2 and IHI = IHI I = 6 for IBI = IBI I = 

3, then G'lH' '" GUt. This follows since G '" GI and H = HI = 53. IGUlI 

= IG'~H'I = 48. 
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If IG] = IG'I = 2 and IHI = IH'I = 3 for 181 = IB'I = 4, then GHI ~ 

G'lH'. This conclusion is permitted since G ~ G' and the four permu

tation groups of order 3 on a set of four elements are conjugates of 

one another: 

«123»	 = (14)«234»(14)
 

= (34)«124»(34)
 

= (24)«134»(24).
 

Again,	 IGlIlI = IG'~H' I = 48. 

I f IG~ HI	 = IG,~ II 'I = 72 and G ~ G', then Gl H ~ G'l H ' • 

In this	 case IHI = IH'I = IBI = IB'I = 2, so H= H', by Theorem 3. 

For two wreath products of the same order, it is always possible 

to devise a one-to-one onto correspondence between them. In the in

stances above, an isomorphism can always be constructed. But there are 

cases in which an isomorphism cannot exist between the two wreath 

products. An example involving wreath products of order 32 iemonstrates 

this. 

Let G =«12» for any set A and let G' = G. Let H =«12» for 

IBI = 4 and H' = «12)(34» for IB'I = 4. 

I GllIl =	 24 .2 = 32 = 1G'llI' I . 

Clearly G ~ G' amd H ~ H', since H and H' are of order 2. But 

there does not exist an isomorphism between Gt II and G.'~ H'. Table 4 

lists the elements of each which do not involve the identity element 

of H or H'. There is no need to list those elements since G* ~ G x G 
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x G x G ~ G' x G' x G' x G' ~ G'*. In Table 4, allow (12) to be repre

sented by 1, and (1) to be represented by O. Also let (12)(34) = ~. 

Every element of either G* or G'* has order 2. Inspection of 

Table 4 reveals that GUt has eight elements of order 4, while G'~ II' 

contains twelve such elements. Since isomorphisms preserve order, 

there can be no isomorphism between GUI and G'~ H' . 

This example illustrates that mere isomorphism between II and II' 

is not sufficient to guarantee isomorphism· between G~II and G'111' . 

In this case, H' f:. a-1Ha for any a E S4' (12) is an odd permutation; 

that is, it is the product of an odd number of transpositions, a 

transposition being a cycle of order 2. (12)(34) is an even permu

tation.. A permutation is either even or odd, but not both. Hence 

a- 1(12)a f:. (12) (34) for any a E S4' 

There remain some unanswered questions about wreath products of 

orders 48, 64, 72, and 96. Concerning 64, it can be asserted that if 

H = «12» and H' = «12)(34» for IBI = IB'I = 5. H' F a-1Ha, for 

any a E S5 for the same reasons as those given in the preceding para

graph. It is suspected that construction of a table similar to Table 

4 would reveal the two wreath products involved do not contain the 

same number of elements of the same order. This is a topic for further 

study. 

It is also suspected that construction of tables would reveal 

irreconcileable differences in the following instances: 



Table 4: 

order a 

2 [00001 ] 

4 [10001] 

4 [01001] 

2 [00101] 

2 [00011] 

2 [llOOl] 

4 [OllOl] 

2 [OOlll] 

4 [10101] 

4 [l.0011] 

4 [01011 ] 

2 [11101] 

2 [11011] 

4 [10111 ] 

4 [Olll1] 

2 [11111] 

Elements 

2a

[00000] 

[llOOO] 

[11000] 

[00000] 

[00000] 

[00000] 

[11000] 

[00000] 

[11000] 

[llOOO] 

[11000] 

[00000] 

[00000] 

[llOOO] 

[11000] 

[00000] 

of GlH 

3a

[01001] 

[10001] 

[10101] 

[01101] 

[01011] 

[10011] 

[01111] 

[10lll] 

Sl 

4a

[00000] 

[00000] 

[00000] 

[00000] 

[000001 

[00000] 

[00000] 

[00000] 



Table 4: 

order a 

2 [OOOO~] , 

4 [1000~]. 

4 [0100~] 

4 [001O~ ] 

4 [0001~ ] 

2 [1100~ ] 

4 [0110~ ] 

2 [0011~ ] 

4 [1010~] 

4 [1001~] 

4 [0101~ ] 

4 [1110~] 

4 [1101~] 

4 [10ll~] 

4 [01l1~] 

2 [llll~] 

Elements of G'l H' 

a 2 a 3 

[00000] 

[llOOO] [0100~,] 

[11000] [1000~] 

[00110] [0001~] 

[00110] [0010~] 

[00000] 

[11110] . [1001~] 

[00000] 

[11110] [0101~] 

[11110] [0110~] 

[11110] [101O~] 

[00110] [1l01~] 

[00110] [1l10~] 

[llOOO] [01l1~ ] 

[llOOO] [10ll~] 

[00000] 

S2 

a 4 

[00000] 

[00000] 

[00000] 

[00000] 

[00000] 

[00000] 

[00000] 

[00000] 

[00000] 

[00000] 

[00000] 

[00000] 
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IGI = 2, IHI = 2, 1BI = 4, IG'I = 4, IH 1= 2, IB'I = 2; 

IGml = IG'lH'1 = 32. 

IGI = 2, 1111 = 6, IBI = 3, IG'I = 2, IH'I = 3, IB'I = 4; 

I GUll = I G'~ H' I = 48. 

IGI = 2, IHI = 4, IBI = 4, IG'I = 2, IH'I = 2, IB'I = S; 

IGlHI = IG'l H' I = 64. 

IGI = IG'I = 6. IHI = IH'l = IBI=IB'I= 2 where G = S3 and G' 

is a cyclic group of order 6. I GUll = IG'~H' I = 72. 

IGI = IG'I = 2, IHI = 6, IBI = 4; IH'I = 3, IB'I = S; 

I GUll = I G'l II 'I = 96. 

Here it can be noted that for I GI = I G' I = 2, III I = IH' I = 3 

for IBI = jB'1 = S, then IG~HI = IG'HI'I = 96 and GlH '" G'~H'. There 

are ten permutation groups of order 3 on a set of five elements, but 

they are all conjugate, since they are the Sylow 3-subgroups of S5. 
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Chapter VI: Some Further Results of the Study 

Section 1: Theorem:
 

If G and 1I are p-groups for some prime p, then qIl is a p-group.
 

Since G and II are p-groups, IGI = pm for some m £: N and IIII =
 

pn for some n E: N. If IBI = k, where B is the set of elements per

muted by H, then IGUll = IGIl BI 1lli = (pm) kpn pkmpn = pkm+n. 

So GHI is a p-group, since the order of each of its elements must 

divide pkm+n. 

This result should not he surprising, since the constTIlction of 

Sylow p-subgroups of Spr involved the formation of wreath products of 

p-groups. 

Section 2: Theorem:
 

For any prime p, (p-2)! = 1 + kp for some k E: N.
 

For Sp there are p! orderings of the p elements. lloh'ever as p


cycles there are only (p-1)! distinct elements of Sp since there are 

p \I'ays of selecting the first entry of the p-cycle. Each p-cyc1e 

is of orller p; hence it will generate p-1 distinct p-cyc1es and the 

itlcntity. Each collection of these p-1 di stinct p-cyclcs ~nd the 

identity compose a group. So there :lre Jl'-=lJ_~ = (p-2)! cyclic
p-1 

subgroups of order p of Sp. These are the Sylow p-subgroups of Sp. 

Since the number of Sylow p-subgroups of any group is of the form 

1 + kp by the Third Sylow Theorem, (p-2)! = 1 + kp for some k £: N. 
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Section 3: Theorem: 

The operation of forming wreath products is not commutative. 

GlH :f H~G in general. 

Consider the example given in Chapter II; A = {l,2,3,4}, B = 

O,2,3}, G = «12» and II = «123». 

IGlIII = IGI IBI IHI = 23 .3 = 24 

IBIGI = IHIIAIIGI = 34 .2 = 162. 
.. }

So Gtll an mG, having different orders are not even isomorphic, 

let alone equal. Since 24 does not divide 162, GW;' H\G by LaGranges 

Theorem. However, GUl l§; S12 and Hl GC; S12 • 

Section 4: The set of finite permutation groups with the operation 

of wreath product is a semi -group. 

A semigroup is a set upon which an associative binary operation is 

well-defined. In Chapter II it is seen that a wreath product is a 

permutation group. Associativity of the operation is demonstrated in 

Section 2 of Chapter IV. 

Section 5: Any group G is isomorphic to a wreath product. 

By Cayley's Theorem, r, ~ P where P is some permutation group of 

the elements of G. P = PlS I . 
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Chapter VII: Conclusion 

The basic intent of this paper was to present the wreath product 

in a form understandable to the person with only a basic knowledge of 

permutation groups and abstract algebra. The failing of many texts is 

that they are too concise. They give no examples, and their definitions 

depend upon too much esoteric information given beforehand. This 

thesis has attempted to define the wreath product as simply as possible. 

It has provided examples and proofs where none existed in the available 

literature, and fleshed out some proofs which were presented in the 

texts, Hall in pa~ticular. Special attention has been given to con

struction of Sylow p-subgroups of symmetric groups, this being one of 

the important applications of wreath products. 

A great deal of time and space has been devoted to calculation of 

the number of Sylow 3-subgroups of S13. The concept of the wreath 

product was not used here. 

Some questions have been left unanswered about isomorphisms between 

wreath products of certain orders. However, a theorem which assisted 

greatly has been proven in that particular section. 

A particularly exciting result of this study is the theorem pre

sented in Section 2, Chapter VI, that for any prime p, (p-2)! = 1 + kp 

for some natural number k. This is an application of group theory to 

problems in number theory. 

Topics for further study might include development of a smooth 

algorithm for constructing a Sylow p-subgroup of Sn' element by element. 
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~ 
:J 
~ 
~ 
~ In the construction of a Sylow 3-subgroup of S9 in Section 3, Chapter IV, 
~ 

trial-and-error was used. Also direct use of the concept of the wreath4 
I

I
j 

product in this matter might be developed. 

Another topic for further study involves the unanswered questions 

about isomorphisms between wreath products of orders 32, 48, 64, 72, 

and 96. One might construct counter examples to demonstrate non-

isomorphisms, or one might devise and prove theorems demonstrating 

existence or non-existence of isomorphisms: 

The importance of wreath products rests partially on Sylow p-

subgroups. The question now is, what good are Sylow p-subgroups. 

This is something for further study. 

Nothing has been said in this paper about twisted wreath products 

or restricted wreath products. Nor was anything mentioned concerning 

the wreath product being a special type of semi-direct product. Again 

these are topics for further study. 

If the reader goes away from this thesis with a better under

standing of wreath products and a higher appreciation of permutation 

groups in general, this thesis accomplished part of its purpose. If 

the paper has engendered in the reader a desire to investigate further 

the wreath product and its applications, it has done still more. 
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