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CHAPTER I 

INTRODUCTION 

The uniform space is one of the generalizations of a 

metric space. The uniform structure's concept lies bet­

ween those of metric and topological structure$, in the 

sense that every metric space is a uniform space and every 

uniform space is a topological space. The importance of 

uniform structures lies on th~ fact that uniform spaces 

preserve the main features of metric spaces. That is we 

can deal here with non-topological concepts of classical 

analysis such as completeness, total boundedness, Cauchy 

filters, uniform continuity ••• etc. 

There are different approaches to uniform structures. 

One of them is defining uniform structures by means of filters, 

while another is defining uniform structures by a pseudometric 

or a family of pseudometrics. In 1940 TUKEY defined uniform 

structures by means of covers. 

Now each element of a uniform structure is a neighbor­

hood of the diagonal ~ • However not every neighborhood of 

~ is a member of a uniform structure. On a set different 

uniform structures may be defined. But in a compact Hausdorff 

space the uniform structure is unique and it is the family of 

all neighborhoods of ~ • Two uniform structures may induce 

the same topology. 
1 
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In chapter IV WEIL'S theorem is introduced. Now every 

pseudometric space is unformizable and every topological 

space admits a quasi-uniform structure. In chapter III it 

is shown that every open cover of a compact uniform space is 

a uniform cover. 

In chapter V it is shown that the limit and the adherence 

of a Cauchy filter are equal in uniform spaces. If the uni­

form space is totally bounded, then every ultra filter is a 

Cauchy filter. In a quasi-uniform space the limit and the 

adherence of a Cauchy filter are equal if it is R • In a
3

uniform space, the neighborhood filter is a minimal Cauchy 

filter, but this is not true in a quasi-uniform space. Now 

every compact uniform space is complete and every compact 

subspace of a complete Hausdorff uniform space is complete. 

In chapter V it is shown that a uniform space is compact 

if and only if it is complete and totally bounded. For every 

uniform space there is a Hausdorff uniform space associated 

with it. In chapter V it is shown that every uniform space 

has a completion. If the uniform space is pre-compact then 

its completion is compact. 



CHAPTER II
 

FILTERS
 

In Euclidean space the following three results concern­

ing sequences hold tlO]. 

(1) • A point x E X is a 11mit point of A C X if and only 

if there exists a sequence of distinct points of A which 

converges to x. 

(2). A point XEX is a cluster point (adherence point) 
co 

of a sequence {X \ of e~ments of X if and only if theren 

exists a sUbseqUen~e (Xnk~l which converges to x. 

(3). A function f: X~Y is continuous at xeX if and 

only if the sequence {Xn}~Of elements of X converges to x 

implies the sequence {f(Xn)~ converges to f(x). 

These results do not hold for topological spaces in gen­

eral. They hold if the space is first countable. 

The attempt to generalize sequences to more adequate 

concepts for topological spaces began in the beginning of this 

century. During the period from 1915 to 1940 two new concepts 

were devised; these were nets by E. H. Moore, H. L. Smith, 

J. L. Kelley, and others and filters by H. Cartan 1937, and 

others. 

Since filters play an important role in the theory of 

uniform spaces, this chapter is devoted to a discussion of 

their basic properties. 

3 
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DEFINITION 2.1 A filter ~ on a set X is a non-empty 

collection of subsets of X satisfying the following axioms: 

F [1] ¢ if- :;, 
F [2] FlO F2E -$ implies Fl (\ F2 E .$ 

F [31 Fl C F2 , F1E.'f implies F2 El}-> • 

DEFINITION 2.2 A non-empty collection 05 of subsets of 

a set X is called a filter base over X if it satisfies the 

following axioms: 

B [1] ¢ ~ 03 
B [2J If Bl , B2 E 03 , then there exists a B € (jJ 

such that B C Bl n B2 • 

DEFINITION 2.3 A non-empty collection j of subsets of 

X is called a filter subbase if it has the finite intersection 

property. 

LEMMA 2.1 The family ~ which consists of all sets F 

such that F::>B for some Bd8where g is a filter base is a 

filter. ~ is said to be the filter generated by u.5 • 

LEMMA 2.2 The familya3 which consists of all finite 

intersections of elements of a sUbbase filter j is a filter 

baee. 

EXAMPLE 2.1 Let X be a non-empty eet, A a non-empty 

subset of X, then..$ = { F Co X IF::::> AJiS a filter on X. 

EXAMPLE 2.2 In example 2.1, if A is a singleton set 

{x} then~is called a discrete filter. 

EXAMPLE 2.3 If A = X, then ~ ={xland ~ ie called the 

indiscrete filter on X. 
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EXAMPLE 2.4 Let fXn\l be a given sequence, and set 

Fi = {Xi' xi +l ' ••• }. Then,$ = {Fe. XIF::>Fi for some i} 

is the filter generated by the sequence {xn}~ and is called 

the elementary filter associated with the sequence. 

EXAMPLE 2.5 Let X be a topological space, X EO: X. Then 

the collection of all neighborhoods of X denoted by ~ is 

a filter on X called the neighborhood filter of x. 

DEFINITION 2.4 A set 63 c <{" is called a fundamental 

system of x if for every NxE v( there exists B€U3 such that 

x€:BcN •x

EXAMPLE 2.6 Let (X,t) b~ a topological space. The 

fundamental system of neighborhoods of x E X is a filter base 

on X. 

EXAMPLE 2.7 Let R denotes the real numbers and x e R. 

Then {(x- e, x + e)k>o} and\ex-e, x +~3are fundamental 

systems of neighborhoods of x and hence they are filter bases 

on R. 

LEMMA 2.3 Let (X, t) be a topological space, AC X, 

a E A and let C3 be the fundamental system of neighborhoods of 

a.	 Then ~ ={BrlA)BE:133is a filter base on A. 

PROOF Let al<.A. Since for each B€03, BOA t- ¢ then 

¢ t 01 and axiom B[l) is satisfied. 

Suppose AI' A2 E@A. Then there exist Bl , B E.03 such2

that Al = BIn A, A2 = B2 11 A. AI" A2 = (B l " A) (\ (B 2 l1 A) = 

(B l n B2 ) n A € 6i. Therefore axiom B[2J is satisfied and hence 

Oi is a filter base on A. 
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DEFINITION 2.4 A point xEX is called an adherence 

point or cluster point of a filterg; on X, denoted by XE adh(J':), 

if and only if N () F :f ¢ for each Nxe: ~ and F € 5f • x 

DEFINIT ION 2.5 A point x E Xis called a limit point 

of a f11ter~on X, or;} is said to converge to x if any only 

if~x C:P. 
DEFINITION 2.6 A point X€X is called a limit point 

of a filter base 03 on X if the filter generated by c8 converges 

to x. 

LEMMA 2.4 Let (X, t) be a topological space and let ~ 

be a filter on X, then adh (;].) =I'ltF tF EO: 2'-}. 
PROOF (1) Let x E adh (:}) then N () F ::f ¢ for each N '" ~ x x 

and F€$. Hence XCiAtFIFe:-3>}. 

(2) Let XE:(1 tF1F€-$}. Then NxlI F :/= ¢ for each 

NxE: ~ and FE:5f. Therefore xEadh ($). 

THEOREM 2.1 Let (X, t) be a topological space, x e: A 

and AcX, then xei if and only if there is a filter base on 

A which converges to x. 

PROOF (1) Let xe:i, then by lemma 2.3, ()3A = tB AA I BE(}3 

the fundamental system of x} is a filter base on A. For each 

NxE~there exists B€6.3such that BC N ' Since B()ACBCN ' x x 

then Q3 converges to x. 

(2) SUppose that such a filter base U3 exists 

which converges to x e: X. Then for each N e: ~ there exists x x 
Be: U3 such that BeN. Since Be A then N " A f. ¢ for each 

Nxc:..f'.x This implies
x 

XCii. 
x 
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This theorem is analogus to the corresponding result 

for sequences in Euclidean space. 

THEOREM 2.2 Let (X, t) be a topological space, x € X, 

then xEadh (if) if and only if there exists a filter if x 
containing 5f which converges to x. 

PROOF (1) Let x E adh (:J). Now F" N =t= ¢ for each x 

N E X and F €,E-, • Set U3 = 5 F n N 1F E if and N e.4i'J. 
x x 1 x x x 

Thus ¢ 1- t13 and hence axiom B(l] is satisfied. Let Bl , B2 E G3 

then there exist Fl , F E:g, and N~, Ni E ~ such that Bl = 2 

Fl () N~, B2 = F2 () Ni. BIn B2 = (Fl () N;) n (F2 () Ni) = (FIn F2 ) n 

(Nl f\N2 ). Since,$ and ~ are filters on X, then there exists x x x 

F E: ~ ,N € vi:. such that Fe F () F , N C Nln N2 • Hence
~' x x l 2 x x x 

FA NxE 03 and FANxC.Bll"I B2 • Thus axiom B[2J is satisfied 

and hence tf3 is a filter base on X. Let $ x be the filter 

generated by (j3 • If F €.$ and N € ~x' then N/'l FE 03 • x 

Since N 11 F c F, then F E ..g.,. Hence a. c. -S'- • x x r'x 
(2) Suppose that.$ is contained in a filter ";;:'x 

which converges to x, then N E: $ x for each N €. ~ x x 

since;1o c;f, then each Fe.$, F E,g;. Hence N n F :1= ¢ 
x x x 

for each N E ~ and F €..$. Thus XE adh ($).x 

This theorem is analogus to the corresponding result 

for sequences in Euclidean space. 

DEFINITION 2.7 Let...$be a filter on X and f a function 

from X into Y then f(,$) = [GCY I G::lf(F) for some Fe.$'- J . 
THEOREM 2.3 Let f: (X,t) (Y,s), then f is continuous 

if and only if;;' converges to x implies f(~) converges to f(x). 

PROOF (1) Let f be continuous then for each neighborhood 
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Nf(X) of f(x) = y""Y, there exists a neighborhood Nx of XEX 

such that f(Nx)CNf(x)' If~converges to x, then Nx e:.:r 

and hence Nf(x) e: f(.$). Thus f(.$) converges to f(x). 

(2) Assume that f is not continuous then if 

x€X there exists a neighborhood of f(x) such that no neighbor­

hood N of x satisfies f(Nx)CNf(x)' Hence Nf(x) * f(:J.) andx 
f(~) does not converge to f(x). This contradicts the assum­

ption of the theorem and hence f is continuous. 

THEOREM 2.4 A topological space (X, t) is T2 if and only 

if each filter on X converges to at most one point in X. 

PROOF (1) SUppose (X, t) is T2 andjJ a filter on X. 

If}f converges to two distinct points x, y£.X. Then eI1f'x c 5f 

and.Ajc:J.. Hence Nx()Ny 4= ¢ for each NxE~ and NyEuY'y' 

This contradicts the assumption that X is T2• Thus..$ does 

not converge to more than one point. 

(2) SUppose X is not T2• Then there exist 

two distinct points x, y c;; X such that for each Nx E ~ 

and NyE ur;, N n Ny '4: ¢' Set (Jj =!BIB = N l1 Ny for somex x 

NxE ~ and NyE~} 63 is a filter base on X and the filter 

11 generated by it contains both A"'x and .#"y. Hence-,I:J 

converges to both x and y. This contradicts the assumption 

and hence X is T2• 

THEOREM 2.5 A topological space (X, t) is compact if 

and only if every filter on X has a non-empty adherence. 

PROOF (1) Let (X, t) be a compact topological space 

and;;fi a filter on X. By axiom F[2] , the class { FIF E Yo} 
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has the finite intersection property. Hence the class 

{F{FEO$} has the finite intersection property. But since 

X is compact, thenl1~F!F€$}:j: ¢' 

By lemma 2.4, if XE"tF)FE-fj, then x E: adh (.$). There­

fore adh ($) t ¢. 
(2) Let:! ={S,.I"'''..A}be a collection of closed sets 

with the finite intersection property. Then j is a subbase 

of a filter on X say:J.. If X€ adh (:J.), then X€(;)t S) So{'i:l'J, 

otherwise there exists Sj€ j such that x4 Sj' Thus XE sj. 
Since Sj""::f then Sj E:;'. Now sj is a neighborhood of x 

and sj () Sj = ¢ leads to a cOIl;tradiction. Hence X is compact. 

DEFINIT ION 2.8 A filter '$ on a set X is said to be an 

ultrafilter provided that no other filter on X properly 

contain...:1 • 

EXAMPLE 2.8 Let XEX, then the collection of subsets of 

X which contains x is an ultrafilter .$on X. 

PROOF By example 2.2, ~ is a filter on X. Suppose that 

there exists a filter)] on X which properly contains:; • 

Therefore there exists GelJ such that Gf-:J,. Since {x},"..r 

then {x!e-h. This implies Gn~xH= ¢; that is XEG. Hence 

GeJ. which is a contradiction. Thus!f is an ultrafilter. 

ZORN'S LEMMA If a non-empty partially ordered set X 

is such that every linearly ordered SUbset has an upper bound, 

then X contains a maximal element. 

THEOREM 2.6 Let X be a non-empty set. Every filter on 

X is contained in an ultrafilter on X. 
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PROOF Let::;' be a filter on a set X. Let r be the class 

of all filters on X that contain if • r is not empty since 

at least!f~ r. Partially order r by the inclusion rela­

tion C. Let f be a chain in r . Then iJ =- ld { ~ r ~ Eo f J 
is an upper bound of P • Clearly.$ c J1 for each if t.P •J Cl c( 

Also axioms F[l) and F[3] can be easily verified for ~. Let 

A, B e: J1 ,then A E. :J. i' B E -if j for some :$ i' :f j E: .f • 

Either :fie ~ or g., j c !fi. In both cases A, Bare 

elements of one of if and :f and hence All B -JJ •i j 

By Zorn's lemma r has a maximal element which by defin­

it ion 2.8 is the ultra-filter containing ;f • 

THEOREM 2.7 Let X be a non-empty set. A filter ~ is 

an ultra-filter on X if and only if AU B € -!f , implies 

either A € :;; or B E ..$ • 

PROOF ( 1 ) Assume that~ is an ultra-filter on X. 

SUppose that AU BE:} such that A f; ~ and B 1=.!f ,where 

A, BcX. setj} ={ycxl YUBt~J ,then-,(J is not empty 

since A€ ~. It can be easily shown that ~ is a filter 

on X. If F e::J" then F U B EO:;;;. Hence F e -Jj and thus:Pc.JJ • 

Moreover:;' is a proper subset of-!J since A f:..$ while Ae:JJ • 

This contradicts the assumption that ~ is an ultra-filter on 

X. Thus either A '" 51 or B € -$ • 

(2) SUppose that ~ is not an ultra-filter on X. Let 

jJ be an ultra-filter on X which properly contains:r • 

Then there exists Ge.JJ such that G ~ -$ • By the hypothesis 

of the theorem and since XE:f ,then GC 6:.lf. . Hence GC c -JJ 
which is a contradiction. Hence..$ is an ultra-filter. 
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LEMMA 2.5 A filter:if is an ultrafilter on a set X 

if and only if An F :j: ¢ for all FlO 1> implies A E$ • 

PROOF (1) Let $ be an ultrafilter on X, then by 

theorem 2.7 either A E .;J, or Acli:;;:'. If ACe.$ , one has 

a contradiction since An AC = ¢. Hence AIii::$ • 

(2) Suppose that :$ is not an ultrafilter. Then there 

exists an ultrafilter -J::J which properly contains.$4 • Let 

AEJj such that Af.$. Now AnG:j: ¢ for all Ge-JJ and thus 

An F :f: ¢ for all F€$. Hence AE: 1> which is a contradiction. 

LEMMA 2.6 If~ is an ultrafilter on a set X, then for 

every AC X, either A E ~ or A~E if. • 

This	 is a special case of theorem 2.7. 

LEMMA 2.7 Let';;' be an ultrafilter on a set X, then 

X E	 adh ($) implie s x e lim (.$). 

PROOF Let xe: adh (..g;). Suppose there exists NxE ~ 

such that Nx4 $. By lemma 2.6, N~ E..$ and N n N~ = ¢x 

contradicts the assumption that x E adh (.$). Hence x e lim..}' • 

THEOREM 2.8 A space is compact if and only if every 

ultrafilter on it converges. 

This follows immediately from theorem 2.5 and lemma 2.7. 



CHAPTER III
 

UNIFORM STRUCTURES
 

A. BASIC CONCEPTS 

DEFINIT ION 3.1 Let 

{Cy, x) I (x, y)E"U 1. 
X be a set and UCX x X. Then U- 1 = 

DEFINITION 3.2 Let X be a set and U, vex x X. Then 

U 0 V ={(x, y) \ (x, z) E U and (z, y)e: V for some z e:x} 

DEFINITION 3.3 Let X be a set. A uniform structure fer 

X is a non-empty collecticn ~ of subsets of X x X- such that 

the following axioms are satisfied: 

U [1] ~ is a filter on X x X, 

U (2J t::.c U, for every UE:OU, where ~ = [(x, x)1 x£x}, 

U (3] U E: v.. implies U- 1 E U 

U [4] For each U € 'U, there exists Ve: 'U such that V 0 Vc U. 

The elements of'U are called surroundings or uniformities. 

DEFINITION 3.4 Let (X, 'U) be a uniform space. U e: U is 

-1called symmetric if U = U • 

x 

x 
FIGURE 3.112 
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In Figure 3.1 a surrounding U c: X x X surrounds the 

diagonal ~ • 

LEMMA 3.1 Let (X,'lL) be a uniform space. Then for 

each UE U, there exists a symmetric surrounding V E "U , 

such that V 0 Vc:. U. 

PROOF Let Ue:.'U. By axiom U[4] , there exists V E "U 

such that V 0 VC U. Let 'Ii' = V() V- l • By axiom U[3J, 

V-lEU. vnV-lO=:"Uby axiom U[l]. Thus WE'lL. Now W- l = 
-I 

(Vf1V- l , = V-l"V = vnv- l = W. Therefore W is a symmetric 

surrounding. Since wCV, then'll 0 'li'c:.V 0 VC.U 

LEMMA 3.2 Let (X,"IL) be. a uniform space. If U 0=: <U , 

then U 0 U- l is a symmetric surrounding. 

PROOF (1) Let (x, y) € U 0 U- l • Then (x,o()e U and 

(0(, y)e U- l for some 0<0=: X. Now (y,o<) e:U and (0<, x) E U- l 

implies (y, x) EU 0 U- l • Hence (x, y) £ (U 0 U-l)-l. 

(2) Let (x, y)E (U 0 U-l)-l. Then (y, x)e:. U 0 U- l • 

Hence (y, o<)eU and (-<, X)EU- l for some o<.€ X. (x,o<.)€ U 

and (0<, y)EU- l implies (x, y)EU 0 U- l • Thus U 0 U- l = 

-1)-1(U 0 U • 

LEMMA 3.3 Let X be a set. A non-empty collection 1L of 

subsets of X x X is a uniform structure on X if and only if 

it satisfies the following axioms: 

U[l] 1L is a filter on X x X, 

U[2] II C U for every U e '1L 

U
.-
[3] For each UE eu, there exists V E "U , such that V 0 V- l 

C U. , 
PROOF It suffices to prove that[U] 3 is equivalent to 

axioms Ur3Jand u[41. If axioms U[3] and UL41are satisfied, then 
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for every U € "U.., we can choo se a symmetric W, such that 

W 0 we U and hence W 0 W- l CU. Thus axiom U[3) is 

satisfied. 

Let U[3)be satisfied. Then given U€"U.., there exists 

V€'!Lsuch that V 0 v-Ie U. Let (x, y) E. V. Then since 

( y, y) E. V-I, (x, y) G V 0 V-I. Thu s V c:. V 0 v-I = (V 0 V-l)-l 

c U- l • Since ve 'U , then by U[l] , U- l G '2.L and axiom U [3] is 

satisfied. 

Let W = V nv- l , then WeV and WCV- l • Therefore 

W 0 we V 0 V-I c U and thus axiom U(4) is satisfied. 

DEFINITION 3.5 A quasi-~niform structure is a non­

empty collection ~ of subset of X x X which satisfies axioms 

U[l) , U[2], and U[4). 

Every uniform structure is a quasi-uniform structure, 

but the converse is not true in general. 

EXAMPLE 3.1 Let X be a non-empty set and let ;u. = 
{X XX}. Then 'U is a quasi-uniform structure and also a 

uniform structure. It is called the indiscrete uniform struc­

ture. 

EXAMPLE 3.2 Let X be a non-empty set. Let '\l. be all the 

subsets of X x X containing the diagonal ~ Then 'U is a• 

quasi-uniform structure and also a uniform structure. This 

is called the discrete uniform structure on X. 

EXAMPLE 3.3 Let X be a non-empty set linearly ordered 

by the relation {,. Set V ={tXt y) x ~y1. Then '1.L ={ 
UIve Ue X x X lis a quasi-uniform structure for X, but it is 

not a uniform structure since axiom U[3)is not satisfied. 

DEFINITION 3.6 A sUbfamily '1f B of a uniform structure 'lL 
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on a set X is a base for ~ if each member of 'U contains a 

member of 6U B• 

DEFINITION 3.7 A sUbfamily 6U.. S of a uniform structure"U. 

is a subbase for 1-(.. if the finite intersections of members 

of 'U.S is a base for 'U- • 

THEOREM 3.1 A non-empty family ~B of subsets of X x X 

is a base for the uniform structure 'lL on X if and only if 

the folloWing axioms hold. 

UB(l] CU- B is a filter base. 

UB[2J /:l c. V. for each V€ '!lB' 

U (3) If Ve 'U • there exists We "U. B such that 'Ii e V-I,
B B

UB(4) If Ve '/.lB' there exists WE q(B such that 11' 0 We V. 

PROOF (1) Let 'lL B be a base for the uniform structure 

"U. on a set X. Then by definition 3.6 6lLB is a subfamily of 1(.. 

andu={ulu=:Jv for some VE'kBl. Axioms UB[l] and UB[2] 

can be easily verified. Let ve: 'liB' then Ve'lL. Hence there 

exist s WE: 'U. such that W 0 we V. Choo se U E 'U • such thatB

U C W. Then U 0 ue WoW cV and hence axiom U (4] is satisfied.B
/)/ -1Let V eo ·....B. then Ve:"U.. Choose W~"l.( such that WcV • Now 

W::>V for some UE <U.
B 

and therefore UCV- l • Thus axiom UB[3] 

is satisfied. 

(2) Let 'UB be a non-empty family of subsets X x X 

which satisfies UB[l]. UB[2]. UB[3]and u B[41. Let 'U.=tulu:::>v 

for some V E: '2lBJ. Then 'U. satisfies axioms U[lJ. U[2J and 

U[ifJ. Let U e 'U. then U::>V for some Ve~. By axiom UB[3]. 

there exists WE'!.), such that wcV- l • Now U=,V implies 

-1 -1 -1 r ] U =:J V ::> 11' and hence U E 'U.. Thu s axiom U L3 is sati sfi ed. 
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THEOREM 3.2 A family ~S of non-empty subsets of X x X 

is a subbase for a uniform structure ~if and only if it 

satisfies the following axioms: 

US[l) D.c S for each S £ .:us' 

US[2] If S E: 6J,(s' then there exist sets Tl"'" T £ "U Sm
-1such that T (\ ••• n TIfS •

l 

Us [3J If S € &/..(..S' then there exist sets Tl ,.··, T € 'U. Sm 

such that (T n ... () T ) 0 (T () ... (\ T ) C S.l m l m


LEMMA 3.4 Let (X,~) be a uniform space then,
 

( 1) (U- l ) -1 = U 

(2) If u, V E: ilL such that Uc V, then U- l c V- l , 
(3) IfU,VE'U , then (Unv)-l = u-lnv- l , 

(4) If U, V E: 'U , then (U 0 V)-l = V- l 0 U- l • 

LEMMA 3.5 Let (X, 'U.) be a uniform space. If Ul' U € '!.(,
2 

then (U n U )n c U~ nu~ •l 2 

PROOF Lets=tn~ulnU2)nCU~nu~~. E: Ssince 

Ul " u 2 cU l n U2 • Suppose that K E' S. Let (x, y) E (U~ n U~) 0 

(U n U ) then (x,D<) € U~ n U~ and (c;(., y)€ U
l 

n U for somel 2 2 

0(. E. X. Therefore (x, y) € U~+l II u~+l. Hence k+l e: Sand 

thus S is the set of all natural numbers. 

THEOREM 3.3 Let (X,1U) be a uniform space. Then for 

each natural number n, of::: {vn I V € "l.(} is a base for 'U.. on X. 

PROOF (1) Since e:. c V, then 6 eve Vn and hence axiom 

U [2] is satisfied.
B

(2 ) Let V
n
l ' V

n
2 EO GB n and let V = Vl n V2 • By lemma 

n ( )n n n3.5 V = Vl ()V2 C Vl nV2. Hence axiom UB(ll is satisfied. 
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n(3) Let V cR>n. Choose We: 'U., such that wcV- l • 

Hence Wn c. (V-l)n = (;rIl)-1. 

(4)	 If;rIlE: C8 n , then there exists WIi: "U.. such that 

nW 0 we V. Thus (W 0 w)n = w 0 WnC:Vn • Hence can is a 

filter base for a uniform structure ~ on X. 

THEOREM 3.4 Let X be a set, ~ a quasi-uniform structure 

on X. Then 'L<.-* =tu () v-llu, V E'U} is a base for a uniform 

structure on X. 
-1-1PROOF (1 ) Since /) c: U and [) C V , then /)cU (IV • 

-1 * -1 * ( 2 ) Let uln VI IE dlL, u 2 nv IE "U, then2 
1(U l () Vi1 ) n (U2 n V; )	 = (U1 (\ U2) n (VI n V2) -1 £" qJ. 

1	 * . 1 -I 1
( 3) Let U I' V- IE q,c., then (U n V- ) = U- (l V = 

V I' U- l E. "1.1-*. 

(4)	 Let un V-I IE 'U.-*. Then there exists, Ul' V €U,
1 

-1	 -1 -1
such that Ul 0 ule U, VI 0 VI ev. Hence VI 0 VI c:V • 

By lemma 3.5 (UlnVil) 0 (U nVil)C-(Ul 0 VI) (I (ViI 0 ViI)l 
c:	Un v-I • 

DEFINITION 3.8 Let (X,~) be a uniform space. For each 

x € X set U [x) ={Y\(x, y)e.U where UE:"U) • 

DEFINITION 3.9 Let (X,tL) be a uniform space. If AcX 

then U[AJ = lyl(x, y)E:U for some xEA, where UIE'UJ. 

THEOREM 3.5 If (X, tL) is a uniform space, then the 

family of all subsets ° of X such that for each x e ° there 

is Ue.'2L such that U [x]c.O is a topology on X called the 

uniform topology t~	 • 

PROOF (1) Let ° 02 E: tt<. , X E: 01 n 02' Then there1 , 

exist U, VE U such that U [x]CO l and V[x] c: ° Therefore2 , 
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(unv) [xl = U [x)1'I V (x)c 0ln 02' Hence 0Il' 02 E: t-u • 

(2) Let tOil be a family of members of t'f.(. and 

x G ~ {Oi\ • Then for each 01' there exists Wi e 'U such 

that Wi [x)CO i • Hence XEulWi (x]] = ( U Wi) [x]c U~Oi1. 
Therefore U {OilE: t'l< and t'l( is a topology on X. 

The topology t~ is precisely a generalization of the 

metric topology which is the family of all subsets ° which 

contain a sphere about each of its points. 

LEMMA 3.6 Let (X,'li. ) be a uniform space and V£ "U • 

If Y € V [ xl ,then V [yJc V 0 V [ xl • 

DEFINITION 3.10 Let X be a given set and let ~ be 

a collection of subsets of X for each x € X. Then ~ = 
UtN(x): X€xJ is called a neighborhood system on X if it 

satisfies the following axioms: 

N.l For every x E: X, ~ +¢, and x E: N for everyx 

Nx G~, 

N.2 If A ex and A:J N E ~, then A E ."vox'x 
1 y 2 ,,,, 1 2 A/'

N.3 If N E x' Nx € <IY x' then N () N € t./r xx x x 

N.4 If N E ~ x' there exists N: E ~, N:C N ' x x 
such that for every y € N*, N E: JV'. 

x x Y 
THEOREM 3.6 Let (X, 'l-() be a uniform space; then the 

family ~ = fu [x] lu € eu , XE XJis a neighborhood system. 

PROOF (1) AxiomN.l is satisfied since (x, x)€U 

implies x£U [x]. 

(2) Let N:>U [x]. Set V = uuGx, y)ly€ N}. Since 

UCV, then V € "U. If aE V(x1. then (x, a)E: V. Hence 

(x, a)E:U or (x, alE: U {(x, y) I yEN]. In both cases aE: N 
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and therefore V (x) eN. If Y e: N, then (x, y) E: V and hence 

Y € V[x] • Thus NC V[x) and hence N = v[x]euV(x). 

(3) Let u[x] , V[x]euV(x). Then U(x] n Vex) = 
(U n V) [x]eJt'(x). 

(4) Let U[x] e: uV'( x) • Choose V E: 1-1.., such that 

V 0 Vc U. Hence V[x] c U[x]. If y€ V[x], then by lemma 3.6 

V[y]cV 0 V [x]CU [x]. Thus ulx]e: vY(y). 

The neighborhood system~induces the uniform topology 

t'l{ on X. 

EXAMPLE 3.4 Let R be the set of real numbers. For each 

E > 0 define the set VE = te~::, y)/ !x-YI<e}. Then ~ = 
{V Ie> o} is a base for a uniform structure ,called thee 

additive or usual uniformity on R. The topology induced by 

~is the usual topology on R. 

EXAMPLE 3.5 Let R be the set of real numbers. Then for 

each a<b the sets Sab ={(x, y)!both x, y<b or both (x, y)a} 

is a subbase for a uniform structure which induces the usual 

topology on R. 

"': " .. .'."" ,.: ......... :.:.~
 
R ; ;.::: .... : ... :.". .... .. ..: .. :: .... : .: .. . ,," .. ......." .. "
" :,:AII· .. ···· .... ·· 

~/ .... "/'/." ~. ,,;.. 'f.,!:j>." • .. . " .. " " 
I 

./, "/ ,,/./".
,/ /" ;,.;. ~:::: : :[/./ // /, .:"'.:' .. 

,/' .j. :." ••• ,./ /./
V ./ , , , ',-L ~ •v/" /' / v /' " 

) 

/ /.9 " 
.//"/ /oj.Y" 
/ " '/ <,/'/,'

/ ,//" 
,/, ./ / /'./" ,-/,- " 

/'./,,/' " ./ " ,,-' ./"./"/' ­ ./ // 

R 

FIGURE 3.2 
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In figure 3.2 S2,3 == {(X, y) both x, y> 2 or both 

x. y< 3J. 
The uniform structures defined in examples 3.4 and 3.5 

are different but they induce the same topology. For in 

example 3.4 where the uniform structure is the usual uniformity 

on R, there are surroundings such that U[x~U •••UU[xJ == R for 

all choices of finitely many points. While in example 3.5 

for every surrounding U there are finitely many points 

xl' x2 , ••• ,x such that U[x~u ... U U(xm1 == R.m 
EXAMPLE 3.6 This is another example to show that diff ­

erent uniform structures may induce the same topology. Let 

(N.~) be a uniform space, where N is the set of natural 

numbers and 1Lis the discrete uniform structure defined in 

example 3.2. Then ~induces the discrete topology on N. 

Define Vn == {(x, y)lboth x, y) n or x == y} for n E N. 

Set'V== [vlv:::>v for all n EN}. qT is not the discrete n 
uniform structure on N but it induces the discrete topology 

on N. 

EXAMPLE 3.7 Let dl be the Euclidean metric on R, 

d2 (x, y) == I x - y I. Then d l , d2 induce two diff­
l+lxl l+\y\ 

erent uniform structure s "!tl , q[2 while tILl and ~ induce 

the same topology on R. To show this let U ~ ~2' then
E 

U~ == l(x, y) I d2 (x, y)<E}. Since d2~dl' then if 

(x, y) E: V€: E: "2L l ' dl (x, y) < E implies d2 (x, y) <E and 

hence (x, y) E U • Therefore V c: U and hence U" 4U. l • € E: E E 

Thus 'U2c 'fi l • To show that 'U. 2 is a proper subset of '2£.1' 

let Ul == i(x, y) I dl (x, y) <. I} , then Ul E 6JL,' Suppose 
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x ~ 0, y = 1 + X, then d 1 (x, y) = 1 and hence (x, y) rf: U1 • 

But d2 (x, y) =I..L - 1+xl<1. Hence U11U2 and1l2 ~~. 
1+x 2+x 

The equivalence between d and d follows from the fact1 2 
that f:R-+ (-1, 1) is a homeomorphism where f(x) = x 

T+[""i1' 
• 

Since d (x, y) = d (f (x), f (y) ), then d (x ' x)~ 02 1 1 n
 

if and only if d (x ' x)~ 0 •
2 n 
EXAMPLE3.8 On the set Z of integers define a uniform 

structure as follows: given a prime number p, let V = n
 

{ (x, y) E Z X Z J x'= y mod pn } for n E" N. Then the til. ­b ­

{V Ifor all ne: N}iS a base for. a uniform structure on Z,n
 
called the p-adic uniform structure
 • 

THEOREM 3.7 Let (X,'U) be a uniform space, AcX.
 

Then the interior of A relative to the topology is
 

the set of all_points x such that U [x]CA for some U€"U.
 

PROOF Let B =[xlu[xlcA for some UE:U}. Suppose 

that 0 is an open subset of A. Then 0 ={ xlu[x]cO for 

some ue:'U}. Clearly oc B. That is B contains every open 

subset of A. Let x E B, then U [x] c A for some U€ 'U. Choose 

VE'/J. , such that V 0 VcU. Let ye: V(x] , then v[Y1cv 0 V 

[x)cU [x)cA. Hence y € Band V[x)CB. Therefore B is an open 

subset of A and hence it is the interior of A. 

THEOREM 3.8 Let ~B be a base for the uniform space
 

(X, 'U ), AeX, then A =ntv [A) IV € d/,(B l .
 
PROOF Let xe:I. For each V€ "U , there exists a


B
 

symmetric W € 'U , such that W 0 WcV. Now W[x](lA =I: ~.

B 

Suppose ye: w[x) n A, then ye.A and y £ w[x}. Hence 
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Xc wry] c. v(Yl c V CAl. Thus x e; 0 {v (AJ \ V E. 'U B\. Let 

xE C\tv [Al\v£ q,{B\' Then for each V€ 'U B , there exists 

a symmetric WE: tUB with WCV. Since xEW (Al, then for 

some yEA, (y, X)EW and hence (x, y)EW. Hence YEW [x]c 

V [xl. Thus V [xl n A *16 for each V € 'U B which implies 

X€ A. Therefore A = n {v [A1 \ V E. 'UB }. 

LEMMA 3.7 Let (X, 'U) be a uniform space, x E X and let 

U, V£ 'U. Then U [xl x V [xJc::u- l 
0 V. 

LEMMA 3.8 Let (X, 'U) be a uniform space, U€'U, V€'U 

and V is symmetric. Then V 0 U 0 V = lJ tv (xl x V [y) I 
(x, y) E u}. Thus V 0 U 0 V is a neighborhood of U in the 

product space X x X. 

PROOF (1) Let (a, b)EV 0 U 0 V, then there exists 

x, y€.X, such that (a, x)€V, (x, y)€U and (y, b)E. V. Since 

V is symmetric, then aE.V[x)and bEV[y), Hence (a, b) e 

V[x) X V[Y] , (x, y)eU. Thus V 0 U 0 V C U{V[x] x V[y] I 
(x, y) E uJ. 

(2) Let (a, b) e: U tv [xl X v(Y11 (x, y) € U}. Then 

(a, b) € V[xJ x V[y1 for some (x, y) E U. Hence ae: v[xl which 

implies (a, x)€V. bEV[yJ implies (y, b)€V. Thus (a, b)E 

V 0 U 0 V. Therefore V 0 U 0 V =U{V(x] x v[y]l(x, y)EU}. 

THEOREM 3.9 Let (X,~) be a uniform space, and let 

Me X x X. Then M = n {V 0 M 0 V I V € 'U} • 
PROOF Let (x, y)6 M, then for each Ve: 'U. , V [x] x V 

[yJ nM :f: 16. For each V E 'U.. , there exists a symmetric U E "U 

such that UcU 0 UCV. Now U [xl x ULYJ C\M =t 16 if and only 

if (x, y)e U[a]x U[b]C V[a] x V[b] for some (a, b)EM, that is 
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if and only if (x, y)eu{v [a] x V[b) I(a, b) £ M}. By lemma 

3.8, it follows that (x, y)£M if and only if (x, y)€(\tv 0 

M 0 V \ V € 'll.}. Hence Pi = (\ \ V 0 M 0 V I V € 'U} • 
LEMMA 3.9 The interiors of the surroundings in the 

uniform space (X,~) form a base for the uniform structure1L 

that is "U has a base of open sets. 

PROOF If U E: "U, then there exists a symmetric V € "U. , 

such that V 0 V 0 VC U. By lemma 3.8, V 0 V 0 V is a neigh­

borhood of V. Therefore the interior of U contains V and 

hence int (U)€~. Thus the set of interiors of U€~ form 

a base of 'U • 

LEMMA 3.10 The closures of the surroundings in the 

uniform space (X, 'll.) form a base for the uniform structure 'U • 

PROOF Let U€'U , then there exists a symmetric V€ 'U.. , 

such that V 0 V 0 VcU. By theorem 3.10 VcV 0 V 0 VcU. 

Thus by definition 3.6 the lemma is established. 

THEOREM 3.11 Every uniform structure has a base of 

symmetric surroundings. 

PROOF If Ue:U , then by lemma 3.2 V = U(\U-1 is 

symmetric. Since VCU, the theorem is established. 

LEM¥~ 3.11 Let (X,~) be a uniform space, then for each 

UEU , (U)-l = (U-1 ) 
• 

THEOREM 3.12 Every uniform structure <U.. has a base of 

symmetric closed surroundings. 

PROOF Let U € U , then by theorem 3.3, there exists 

V€ 1.<. , such that V 0 V 0 VcU. By theorem 3.10 V =nt w 0 V 0 wI 
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WE."lL 1 . Thus 'if c. v 0 v 0 V and hence 'if c U. By lemma 3.11 
- -1(V) -1= (V). Hence - -1(V) is a closed surrounding. There­

- -1fore V n V is a closed symmetric surrounding and contained 

in U. Hence the theorem is established. 

LEMMA 3.10 Let (X,~) be a uniform space, then each 

U € 'U. is a neighborhood of D. (However, not every neighbor­

hood of ~ is necessarily an element of ~ .) 

PROOF (1) For each Ue"U , there exists a symmetric 

V€'IJ. such that V 0 VcU. Then for each xeX Vex] x v[x]c. 

V 0 Vc::U. HenceU{v [xJ x V [x] Ix ex} CU. But L.I IV [x] 

x V [x] I x EX} is an open set in the product topology on 

X x X which contains {J • Hence U is a neighborhood of D • 

(2) Let (R,"U) be a uniform space where R is the set 

of real numbers. and ~ is the usual uniformity on R. The 

set {(x, y)\ Ix - yl< 1/ (1 + lY\)} is a neighborhood of ~ 
but not a member of ~ • 

THEOREM 3.14 Let (X,~) be a uniform space, then the 

following are equivalent. 

(1) X is T2- space (2) n Iulu€'U} = 6 

PROOF (1) Let X be T2- space and assume that there 

exist two points x, y€X, x f Y such that (x, y)€o{ulueuJ. 

For each UE'U, chose a symmetric VE"U such that Vo VcU. 

Then (x, y)6 V. Hence XE: v[yJ C u[y] and yE v[x]c u[xJ. 

Thus U [x] (l Wry] 1 ¢ for each U and WE: U. Hence X is not T2 

which is a contradiction. Therefore, nfu I UE~= /1 • 

(2) A8sumen1uI U€'Uj =& • If x, y€X and x 1 Y. 
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then there exists UE'U. such that (x, y) 1 U. This implies 

y +U[x]. Also (y, x)$ V for some V€ 'U.. and hence x¢ vriJ. 
Thus X is a T space.

2
­

THEOREM 3.15 Let (X,1,() be a uniform space, AeX such 

that U[A] = A for some ue'U., then A is both open and closed. 

PROOF (1) Let XE:A. Since I =n~[A1 \U€1.t}, then 

x E: U[AJ which implies x€' A. Hence A is closed. 

(2) Let x€A, then U[x]CA and A is open. 

COROLLARY 3.1 Let (X,1L) be a uniform space, then for 

any AeX and U e:'l< ,U tUn [A) In = 1, 2, ... } is both open and 

closed. .
 
PROOF Let U [A] U U2 [A] U ••• be such set. Then U 0 l U[AJ u 

U2 [A]U ...} = U2 [A]UU 3 [A]U ... CU[A] U U2 [A] • • • • Thus, by 

theorem 3.15, this set is both open and closed. 

DEFINITION 3.11 Let (X,~) be a uniform space. A uni­

form neighborhood of AeX is a set which includes ULA] for 

some UIf: v.. • 
LEMMA 3.11 Every uniform neighborhood of A is a neigh­

borhood of A. 

THEOREM 3.16 Every neighborhood of a compact set is 

a uniform neighborhood. 

PROOF Let N be a neighborhood of a compact set K. For 

each X€ K, choose U €' U. such that U 0 U [x]c N. Since x x x 

K is compact and is covered by {U [x] I x E K} , then it has x 

a finite subcover {UXi [xi] Ii = 1, 2, ••• , n}. KcK = 

() {U [KJ ) U € 'U}C W[KJCN. Hence N is a uniform neighborhood 

of K. 
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EXAMPLE 3.9 The interval (0, 1) is not a uniform neigh­

borhood of its subset of rational points with the usual uni­

form structure. Let A ={x (x E Q, x e(o, l))where Q is the 

set of rationals. Assume that (0, 1) is a uniform neigh­

borhood of A, then there exists U = {(x, y)' Ix - yl<EJ( E > 0)e 
such that ACUE [A] C (0, 1). But this is impossible. There­

fore (0, 1) is not a uniform neighborhood of its subset of 

rational points. 

B. UNIFORM CONTINUITY 

DEFINITION 3.12 Let (X,~) and (Y,CV) be two uniform 

spaces, then the function f: X-+Y is called uniformly cont­

inuous if for each V€'V. there exists UE'U such that (a, b) e U 

implies (f (a), F (b) ) e: V. 

DEFINITION 3.13 Let f: X-tY, then define the function 

f x f denoted by f from X x X~Y x Y by f 2 (a, b) = (f (a),2 

f (b) ). 

LEMMA 3.12 Let f 2 : X x X-+Y X Y, then f is uniformly 

continuous if and only if f~;I (V) € "U.. for each V €"'V , where 

1( and ~ are uniform structures on X and Y respectively. 

EXAMPLE 3.10 The function f: R~R defined by f (x) = x3 , 
where R is the set of real numbers, is a homeomorphism of R 

onto itself which is not uniformly continuous with respect to 

the usual uniform structure. 

LEMMA 3.13 If the function f: (X,'U)~(Y,'V) is 

uniformly continuous, then f is continuous in the induced 

topologies. 

EXAMPLE 3.11 The identity mapping of a uniform space 

onto itself is uniformly continuous. 
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EXAMPLE 3.12 Every mapping of a discrete uniform space 

into a uniform space is uniformly continuous. 

DEFINITION 3.14 If ~ and ~ are uniform structures on 

a set X, then <U is said to be finer than 1iU if ~l::> '2£-2'l 2 

(or <U. is said to be coarser than 'U 1)'2 

THEOREM 3.17 Let "2£.1' <U2 be two uniform structures on 

X. Then ~l is finer than ~2 if and only if the identity 

mapping i: (X, 'U.l)~ (X, CL ) is uniformly continuous.
2 

PROOF (1) Let'U-l::;l "U- and consider i: (X, ~)~2 
(X, "lL ). Given V€ 'U ' then i-I (V) = V€ 'U and hence

2 2 l 

is uniformly continuous. 

(2) Let i: (X, ~l) ~ (X, oU- ) be uniformly continuous,
2 

then given V€ q,L.2' i-I (V) = V€ 'Ul • Hence lUI :::;J ~ 2 • 

THEOREM 3.18 Let tU l ' 'U2 be two uniform structures on 

X. Then ~l is stronger than ~2 if and only if the identity 

mapping i: (X, 4.£1) --+ (X, 'U. ) is continuous.
2 

DEFINITION 3.15 A coverCC = {Oil of a uniform space 

(X, tU) is called a uniform cover, if there exists U € 1J. , 

such that for each xeX U[x] c 0i for Bome 0it CC • That 

is {u[x] I x EX} refines CC • 

THEOREM 3.19 Let f: (X,'U)~(Y,"1T). For each V€""jT 

set C:C v= {f- l (V ryJ ) lyE y}. Then f is uniformly cont­

inuous if and only if CC V is a uniform cover of X for each 

V€. 'V . 

PROOF (1) Suppose that f is uniformly continuous and 

V€ 'iT If y = f (x)€ y. then there is UE: 'li- , such that 

i 



28
 

f ( U [x] ) C. V[yJ and so that U[x]c f- l (V [yJ). Hence 

~V is a uniform cover of X. 

(2) Conversely if V€ CJT • then there exists a 

symmetric we "IT such that'll' 0 we V. By hypothesis'Cw is a 

uniform cover of X. Hence there exists U€'U. such that 

U[x) is included in some member ofCCw for each x E: X. Let 

l
(xl' X2 ) €U. then there exists y€. Y with f- (W [y]):::> u[xl1. 
Hence (f (Xl)' f (x2 ) )€w[l] x W[Y]CW 0 WCV and therefore 

f is uniformly continuous. 

THEOREM 3.20 Every open cover~ of a compact uniform 

space (X. 'U) is a uniform covE;r. 

PROOF Let 'C = tCi } be an open cover of X. then for each 

xi € X. choose Ci E CC with xi € Ci and a surrounding Vi 

such that Vi [xi] C Ci • For each Vi € t:U • choose a sym­

metric UiE"/.{ with Ui 0 uie Vi. The class tUi [xillxi€x} 

is an open cover of X. Since X is compact there is a finite 

subcover fU ik [xikl \k = 1. 2 ••••• n}. Set U = kQl Uik • 

Then X€X implies x € Un [xnJ and hence U[x]CU 0 Un [xnJc 

0 Un [xnJ CVik [XnJCCnE CC. Thus 't: is a uniformUik 

cover. 

THEOREM 3.21 Every continuous function f from a compact 

uniform space (X.1l) into a uniform space (Y.17) is uniformly 

continuous. 

PROOF Given V€V. then for each xe:X. f- l (V [f (x)J) 

is a neighborhood of x. since f is continuous and V [f (x)J 

is a neighborhood of f (x). Set 't: ={f- l (V [f (x)J )[X€x}.v 



29
 

Then ~v is an open cover of X. Since X is compact then 

by theorem 3.20, ~v is a uniform cover. Hence by theorem 

3.19	 f is uniformly continuous. 

THEOREM 3.22 A compact topological space has at.most 

one	 uniform structure which is compatible with it. 

PROOF Let (X, t) be a topological space. Assume there 

exist two uniform structures 4£1' ~2 on X compatible with t. 

Define the identity function i: (X, ,\)...,.(X, 'U ). The family
2 

"CU = tU [xi) \ xi € X, U e: 'i( 2 ) is an open cover of X. Also
 
l


{i- U [xi] \ xi E: X} =tU [xil} is an open cover of X. Then 

by theorems 3.20 and 3.19 i is uniformly continuous and hence 

it is continuous. Therefore by theorem 3.18 ~l is stronger 

than	 tU.. 2 which is a contradiction. Hence 'til = U •2 

EXAMPLE 3. 13 Consider the interval (0,00) with the 

usual uniformity. Then the collection 'C = l(x - ~, x1 \ x) 1 J 
is a cover for (0,00) but it is not a uniform cover. 

EXAMPLE 3.14 Consider the interval (o,oQ) with the 

usual uniformity. Then the collection CC = { (x, ~) I o<x<1 } 

is a uniform cover. 

DEFINITION 3.16 A pseudometric on a set X is a function 

d on X x X into R, the set of real numbers, satisfying for all 

x, y, Z EX: 

(1)	 d(x, y)) 0 (2) d(x, x) = 0 

(3)	 d(x, y) = d(y, x) (4) d(x, z) ~d(x, y) + d(y, z) 

LEMMA 3.14 Let d be a pseudometric, then for each pos­

itive number r, let Ud,r = {(X, y) I d (x, y)< r}. Then the 
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family 'UB = l Ud ,r I r € R+ ~ is a base for a uniform structure 

on X. 

LEMMA 3.15 A non-empty family D of pseudometrics on X 

forms a uniform structure on X if it satisfies the following 

axioms: 

(1) If d d ~ D, then d1v d2E D where d V d = sup1 , 
2 1 2 

(d d )·1 , 2 

(2) If e is a pseudometric, and if for every E > 0, 

there exists d E. D and 8 > 0, such that d (x, y)~ S implies 

e (x, y)::;;; E: for all x, y E: X, then e «: D. 

LEMMA 3.16 Let ~ be a ~ollection of covers of a set X 

such that (1) If a' , CB are members of'f, then there is a 

member of t which is a refinement of both l1' and Ci3, (2) if 

a.' € q>, then there is a member of l' which is a star refine­

ment of a' j and (3) if (/3 is a cover of X and some refinement 

of CO belongs to <:p • then CB € <t> • Then the family 6lt ={
B 

t[p 1 Q) E: T J where U~ = u iG x GIG € l1"} is a base for a 

uniform structure on X. ~ is precisely the family of all 

uniform covers of X. 



CHAPTER IV 

UNIFORMIZATION PROBLEM 

DEFINITION 4.1 A topological space (X, t) is said to 

be uniformizable if there is a uniform structure "!L on X 

compatible with it. 

LEMMA. 4.1 Let (X, '2.() be a uniform space, A c X, then 

'U ={U () A x A IUE:'U3is a uniform structure on A calledA 

the relative uniform structure, on A. (A,~) is called a 

subspace of (X,~). 

THEOREM 4.1 Every subspace A of a uniform space (X,~) 

is uniformizable. 

DEFINITION 4.2 Let (X, t) be a topological space, then 

it is called quasi-uniformizable if there is a quasi-uniform 

structure on X compatible with it. 

THEOREM 4.2 Every topological space is quasi-uniformizable. 

PROOF Let (X, t) be a topological space. Set ~S = 
{O x 0 U Oc xxloe: t} . Claim that "US is a subbase for 

a quasi-uniform structure on X. To show this we need to 

verify axioms US[l) and Us[:~]. Axiom US[l) is satisfied since 

D. c S for each S E: qj S. Let (x, y) E: S 0 S, where S E: 'US' 

then (x, z) € S, (z, y) E: S for some z e: X. Since S = 0 x 0 U 

Oc x X, then there are two possibilities: (1) If xe:O, 

then y, z € 0 and hence (x, y) E: 0 X oc S. Thus S 0 Sc s. 

(2) If XEOc , since y€X:, then (x, y)"Oc x Xes. Thus 
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S 0 seSe Hence axiom Us [3] is satisfied. 

The quasi-uniform structure {P induced by ~S is called 

the Pervin-quasi uniform structure. 

THEOREM 4.3 Every pseudometric space is uniformizable. 

PROOF Let d be a pseudometric on a set X, t is the top­

ology induced by d. Consider the sets V€ = {(x, y) I d (x, y) 

(E JWhere € >0, then the family '2L B of all sets V€ is a base 

for a uniform structure ~ on X. Denote by t'l£ the uniform 

topology associated with 'U. Then a set Oc X is open in t 'IL 

if and only if for each x € 0, there exists U E ~ such that 

x E U[x] C 0. But U € "U if and only if U:::> V E for some € >o. 

Now ° € . ttl. if and only if OE: t and thus t'tL = t. 

DEFINITION 4.3 A topological space (X, t) is completely 

regular if for any closed set F and for any x1F, there exists 

a continuous function f: X-7 (0, 1J such that f (x) = 0 

and f (F) = 1. 

DEFINITION 4.4 A diadic scale of open sets is a family 

where d € D the set of diadio rationals d = .!!!....' where{°d) 
2n 

n -­m = 0, 1, ••• , 2 , n = 1, 2, 3, ••• , and 0di c: 0dj for each 

d i < d j • 

LEMMA 4.2 A topological space (X, t) is completely 

regular if and only if for any closed set F and x,!- F, there 

exists a diadic scale of open sets [Od} de D such that 

FC 
X E 0d c for each dE D. 

PROOF ( 1) Let (X, t) be completely regular. Suppose 

that F is a closed subset of X and x ~ F. Then by definition 
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4.3 there exists a continuous function f: X_!?, 11with 

f (x) = 0 and f (F) = 1. Since f is continuous, then rl[o, d )i 

= 0di is open in X, and contains x. If di <d j , then [0 , di)c 

[0, d ]. Hence f- l [0, di)Cr l [0, d j ) which impliesj 

0diCOdj" Let aeOdi • Assume that at-0dj' then f (a)~dj • 

Let d <k <,d j , then f (a) £ (k, 1) which is open in [0, 1] •i 
Hence aE f- l (k, 1) = G where G is open in X. Hence GnOdi f 
¢. If bEGnO then f (b)e:(k, 1) and f (b)e(o, d ) which

di
, 

i 

contradicts our assumption. Thus aE:0dj and hence 0diCOdj. 

Therefore {Cd) is a diadic scale of open sets. Claim that 

0dCFc for each dED, otherwi~e let y€OdflF. Since yeF, 

then f (y) = 1. yeOd, then f (y) = [0, d) and hence f (y)'" 

1 which is a contradiction. Therefore 0d C F. 

(2) Define a function f such that f (x) = 0 if 

xeod for each dED, and f (x) = sU P { d I x 4= 0d\Where f: 

X_ [0, 1]. Since XE 0d cFc for each dE D, then f (x) = 0 • 

f (F) = su p {m/2n I m = 0, 1, ••• , 2n , n = 1, 2,... ) = 1 • 

To show that f is continuous, consider the two kinds of open 

sets [0, a)and (b, l} • f- l [0, a) = {x I f (x) <aJ = 

ld ~a t 0d)WhiCh is an open set in X, r (b, lJ = { 

xl f (x) >b1= d ~ b { o~lwhich is open in X. Hence f is a 

continuous function. 

THEOREM 4.4 WElL'S THEOREM 

A topological space (X, t) is uniformizable if and only if 

it is completely regular. 

PROOF (1) Suppose that (X, t) is uniformizable. Let 

x E: °where °€ . t. Hence there exists a uniform structure 
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'U.. on X which induces t, with Ul [xJCO for some U E"U • 

Select a seQuencetU2_n1 (n = 0,1, ••• ) of symmetric surround­

ings such that U -(n+l) 0 U -(n+l) c:. U -n for every n ~ N. 
222 

Define Ud = U -n 0 --- 0 U -a for each positive diadic 
2 1 2 II: 

-nl -n2 -nk
rational d = 2 + 2 + ••• + 2 • Clearly Ud 0 Ud c:: 

1 1 

Ud + d for each dl , d E D satisfying d + d <. 1. If
2 l 2l 2°<. dl < d2 then Ud 0 Ud d C. Ud and hence Ud [xJcint 

1 2 - 1 2 1 

(Ud [x]). Define 0d = int (U d (x]). Then 0d C 0d • 
2 1 2 

Since Ul [xJc 0, then x E: Ode ° for each d <'1. Hencet°d\ is 

a scale of open sets satisfying the condition of lemma 4.2 

and thus (X, t) is completely regular. 

(2) SUppose (X, t) is completely regular. Let C (X) 

be the collection of continuous real-valued functions on X. 

Define a set Sf, e =[(x, y) EO X x xl If (x) - f (y)1 < e 1 
(e >0), where f E: C (X). Then the family 'US of the sets 

Sf is a subbase for a uniform structure q{ on X. To show , e 

this it suffices to verify axiom Us (31 ' since clearly 

Do C Sf and Sf is symmetric. If Sf E:: 1.J.. S' let,e ,e ,e 

S = ~ , then Sf, S 0 Sf, S C Sf, e. Let "U B be the base 

generated by 1(s. SUppose F is a closed set in t, and 

x if F. Since X is completely regular there exists a f€ C (X) 

with f (F) = 1 and f (x) = o. If Z€ Sf, t(x1 ' then \ f (x) ­
,,''liJ 

f (Z)1 <t. Hence If (z)1 < t and thus Zf!:F. It follows 

that Sf, t [xlf'1F = ¢ and so F is closed in the uniform 

topology t'l{ • Thus tct~ • Let V E "U , then V = 
B 

Sf n··· n Sf where Sf E 'U S. Hence 
l' e l n' en i' e i 
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v [x) = Sfl' e [x] (\ ... n Sf e [xl·
l n' n 

-1 
sf e [xJ = 1y I Ifk (x) - f k (y) I<ek \ = f k Uk (x) ­

k' k l 
ek , f k (x) + ek ), since f k (x) - e (f (y) (fk (x) + e. 

It follows that Sf [xlis open in t and thus V [x]
k' ek 

is open in t. Hence t eu C t and thus t'U.. = t • 

COROLLARY 4.1 Every normal space is uniformizable. 

This follows from the fact that every normal space is 

completely regular. 

THEOREM 4.5 Every compact Hausdorff space is unifor­

mizable. 

Since every compact Haus~orff space is normal the 

result follows by corollary 4.1 • 



CHAPTER V
 

COMPLETENESS AND COMPLETION OF UNIFORM SPACES
 

A. COMPLETENESS OF UNIFORM SPACES
 

DEFINITION 5.1 Let (X,"lL) be a uniform space and Ue 'U. 

A subset A of X is said to be U-small if Ax A C. U. 

LEMMA 5.1 Let (X,~) be a uniform space. If two sub­

sets of X A and Bare U-small, then A UB is u 2_small, 

provided A () B = ¢ • 

PROOF Let (a,b)E: (AUB) x (AUB). Since AnB =f ¢, 

there exists a c I:: An B. Then (a, c) E A x A or (a, c)e 

B x B and hence (a, C)E U. Also (c, b) € U and thus (a, b)E 

U 0 U. Therefore AUB is U2-small. 

DEFINITION 5.2 A filter.$ in a uniform space (X, 'lL) 

is a Cauchy filter if and only if for each surrounding U, 

there is a FE:.!J. which is U-small. 

LEMMA 5.2 A filter $ in a uniform space (X,"U.) is a 

Cauchy filter if and only if for each UE "U. , there exists a 

point x € X, such that U[x}: $ . 

PROOF (1) If:J, is a Cauchy filter in (X,"U), then for 

each Ue'U., there exists Feff which is U-small. There exists 

a x E:: F. Let yeF, then (x, Y)E U and y E U[x]. Hence 

FCU[x] which implies u(x}e.g,. 

(2) Let U€U , then there exists a symmetric VE'U 

with	 V 0 VC U. By hypothesis, there exists xe X, such that 
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v [xJe:J.. V[x] x V[x] c V 0 VC U and hence g., is a Cauchy 

filter. 

LEMMA 5.3 An elementary filter~ generated by a 
"" sequence {~} 1 is a Cauchy filter if and only if for every 

Ue:'2L we can find a natural number N such that (xn ' xm) € U 

for each n, m>N • 

LEMMA 5.4 Let f be a function from X onto (Y,4V). 

Then the family'2{ = {f;l (V) \ ve")T J is a uniform structure 

on X. Furthermore if 6J is a Cauchy filter base on Y, then 

f- l (6.)) is a Cauchy filter base on X. 

THEOREM 5.1 Every convergent filter is a Cauchy filter. 

PROOF Let:f, be a filter on a set X which converges 

to x € X. Then U [x] E:}r for each UE cu. • Hence by lemma 5.1,:$ 

is a Cauchy filter. 

The converse of theorem 5.1 is not true in general; that 

is a Cauchy filter need not be convergent. 

EXAMPLE 5.1 Consider the metric d on R defined by 

d (x, y) =I~x~~ • The sequence {I, 2, ••• J 
1 + I x I I hYl\ 

is a Cauchy sequence but does not converge. The elementary 

filter generated by the sequence is a Cauchy filter which does 

not converge. 

EXAMPLE 5.2 Let X be a non-empty set. For each finite 

partition W =1.. Ai 1 l.{,. i :,; n} of X, let Uw = ~ Ai x Ai • 

Then the sets U~ form a base for a uniform structure~ on 

X. The topology induced by 'U. is the discrete topology since 

for each x G X, the sets f x] and l x} c form a finite 

partition of X. Hence if V = ( {x} x {xl )U ( {x} c x tX}C), 
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thenVlx] =fxJ. 

An important property for this uniform space is that 

every ultra filter ~ on X is a Cauchy filter with respect 

to ~. Furthermore if X is an infinite set and since it 

has the discrete topology, then it is not compact. Hence by 

theorem 2.8 there are ultrafilters on X which do not converge. 

THEOREM 5.2 A uniformly continuous mapping preserves 

Cauchy filters. 

PROOF Let f be a uniformly continuous mapping from 

(X,'U) into (Y, CIJ) and.$ is a Cauchy filter on X. Given 

VE 'V, then f;;l (V) E U. Hence there exists FE:r with 
-1F x Fef (V). This implies that f 2 (F x F) = f (F) x2 

f (F)c V. Since f (F) E f (!f), then f Up) is a Cauchy 

filter. 

EXAMPLE 5.3 Let VE: =t(x, y)E:R+ x R+ \ \x - Yl<E}. 
Then the sets V (E> 0) is a base for a uniform structure 

on R+. Define a function f: R+~ R+ by f (x) = 1 . 
x 

ro 
Consider the sequence t~ )1 in the domain of f. Then the 

filter ::r generated by the sequence is Cauchy. Now f (,$) 

is not a Cauchy filter since it is generated by the sequence 

{n}~ which is not a Cauchy sequence. 

" LEMMA 5.5 If ~ is a Cauchy filter on X and if ~ is 

" a filter on X finer than:$ ,then :f. is a Cauchy filter. 

LEMMA 5.6 Let'll and "IT be two uniform structures on X, 

such that 'U. is finer than 0/. If:;' is a Cauchy filter 

relative to ~ , then it is a Cauchy filter relative to qr • 
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LEMMA 5.7 If:J. orJ:! is a Cauchy filter on (X,'lL) and 

if F nG +¢ for each FE.$ and G1f:..Jj , then the family y = 

[F () GI Fe.J. , GE-l/} is a Cauchy filter on X. 
THEOREM 5.3 Let (X, 'U) be a uniform space. If 4> is 

a Cauchy filter on X, then 11m:f = adh $ . 

PROOF Let a e: adh :J, and UE U. Then there exi st s a 

symmetric V€ 'U: with V a VcU. Since:J. is Cauchy, then there 

exists Fe:.$ , such that F x FcV. Since F n V la] f ¢ , then 

let be: F rlV [a] and (a, b) ~ V. SUppose x If: F, then (b, x)E 

F x FcV. Thus (a, x)e:V a VcU. This imp11es xe:U [a] • 

Hence Fe U [a) and thus U (a] € ff.. Therefore aE 11m ::r • 

Clearly if a e: 11m-r ,then a e: adh g. • Hence 11m f1. = 
adh :f • 

EXAMPLE 5.4 Let X = [1, 2, 3, 4, 5} . Define V = n
t (x, y) I both x, y> n or x = y}. Then the sets V form a
n 

base for a uniform structure on X. Let::fi =lf2} , {I, 2J ' 
{2, 3} , t1, 2, 3} , f2, 3, 4} , tl , 2, 3, 4} , 12, 3, 4, 5} , 
X }. Then g, is a Cauchy filter on X. For example 

V3 = {(I, 1) , (2, 2) , (3, 3) , (4, 4) , (5, 5) , (4, 5) , 

( 5, 4)} and V3 [2] = {2} E -1 • Also 11m -Sf. = adh.if • 

DEFINITION 5.3 Let (X,~) be a quasi-uniform space 

and:; a filter on X. !f, is "U.-Cauchy if for every U€'U 

there exists x € X, such that U [x] EO: :} • 

In the case of a quasi-uniform space the adherence of a 

Cauchy filter is not necessarily equal to its limit. The 

following example will show this. 
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EXAMPLE 5.5 Let X = tI, 2, 3, 4, 5 ~ and W = {(x, y) J 

x ~ y}. Then W is a base for a quasi-uniform structure • 

Set .$ = lx, {2, 3,4, 5}} . then ,$ is a Cauchy filter 

since W[2] = [2,3,4,5} €:J • Now adh (.1') = X, while 

11m $ = ~ 1, 2} • 

A question arises if there are quasi-uniform spaces 

that are not uniform spaces in which the limit of every 

Cauchy filter equals its adherence. 

DEFINITION 5.4 A quasi-uniform structure is R if
3 

given x EX and U € 'U , there exists a symmetric V E "U such 

that V 0 V [x] eu[xJ • 

THEOREM 5.4 Let (X, ~) be a R quasi-uniform space.
3

­

If :J. is a Cauchy filter on X, then 11m:f = adh.:f 

PROOF Let x € adh ($), Ue 'U-. Since '2<. is R ,3 
there exists a symmetric V E 'U, such that V 0 V 0 V [x)cu (x). 

There exists a£X with V [a]€:-$. Since V [aJ f"\ V (xlf: ¢ • 

let b € V [a1(\V [x]. Suppose YE.V[a] ,then y€Vo V 0 V 

[x] c u[x) and hence V [ale u [x] • Thus U[x] €-J and x E lim :J, • 

Hence lim::f. = adh;;' • 

THEOREM 5.5 Let (X, t) be a compact space. Then every 

ultrafilter on X is a Cauchy filter with respect to any uniform 

structure compatible with it. 

PROOF Let 6/{ be a uniform structure compatible with t, 

and let.:P be an ultrafilter on X. By theorem 2.8 -¥ converges 

and hence by theorem 5.1 ~ is a Cauchy filter. 

Let (X.~) be a uniform space and ~ a filter on X. 

Define :;,* ={u [F] I Fe:} ,U€u} • 
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*LEMMA 5.8 .$ is a filter on X. 

LEMMA 5.9 .$ * is coarser than j. ; that is :f*cS"- • 
* LEMMA 5.10 ~ is a Cauchy filter on (X,4,U) if and only 

if g, is a Cauchy filter on (X,"U.). 

PROOF (1) Let:;'* be a Cauchy filter, then given U,""U., 

there exists V [FJE:P* such that V [F1 x V [F]CU. Since 

Fe V LF], then F x FeU and hence :J, is a Cauchy filter. 

(2) Suppose..J- is a Cauchy filter. If U f: -U , there 

exists a symmetric V€'U, such that V 0 V 0 Vc.U. There 

exists F€$such that F x FeV. Now V [F] x V [FJev 0 V 0 vcU. 

Hence ~* is Cauchy. 

DEFINITION 5.5 A filter!f on a set X is called an open 

filter if it has filter base of open sets. 

LEMMA 5.11 ~* has an open filter base. 

PROOF Let U€q{ , then by lemma 3.9, there exists an 

open surrounding WCU. Tltus W [FJ €:g.,* and W [FJe U [FJ • 

Since W [FJ is open, then the sets W [F] form an open filter 

base for:.p * • 

LEMMA 5.12 If,;]> and.j} are Cauchy filters such that .$ 

is finer than !! , then -4 is finer than 5>*. 

PROOF Let U [FJ t::f: , then there are two cases: 

Case (1) If Fe -JJ , then since Fe U[F] , U[F]e -JJ • 
Hence -4 is finer :5> * • 

Case (2) If F t- J!. There exists a symmetric VE 'U , such 

that V 0 ve U. Since..jJ is Cauchy, there exists x E X with 

V [x]€ JJ , and consequently V[x]e 1> . Since V [xJI'l F t ¢ , 

let Ye V (x]OF. Then x E V[y] • Hence V(xJcV 0 V[y]cU[y] 
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and thu s U [y] E)7 • Since y€F, then U [yJCU[FJ. Hence 

*U[FJ€ .J:J and thus JJ is finer than ~. 

LEMMA 5.13 If :g:, is a Cauchy filter, then:f * is 

a minimal Cauchy filter on X. 

LEMMA 5.14 If -!f and .JJ are Cauchy filters, then :;,*::: 
IJ* if and only if -1- fl )J is a Cauchy filter. 

* * t:t.*LEMMA 5.15 If:f is a filter on X, then ( :} ) ::: -::r • 

THEOREM 5.6 Every neighborhood filter ~x for 

xEX	 is a minimal Cauchy filter. 

PROOF Since lim ¢ , then by theorem 5.1 ~xvr:	 t 
is a Cauchy filter. Assume there exists a Cauchy filter~ 

on X which is properly contained in ~x. There exists 

U [x] rt~. Choose a symmetric VE '/.( , with V 0 VcU. Then 

Vex] Et ::f. Now V[a)EE-for some aE X, which implies v[a)e~. 

Thus x€ V[a] and hence aft V[x]. Therefore V[ale V 0 V[x]CU [x] 

and consequently u[x]e$ which is a contradiction. Thus ~ 

is a minimal Cauchy filter. 

DEFINITION 5.6 A uniform space (X,~) is complete if 

and only if every Cauchy filter on X converges. 

DEFINITION 5.7 A quasi-uniform space (X,~) is complete 

if and only if every Cauchy filter has non-empty adherence. 

DEFINITION 5.8 A quasi-uniform space (X,~) is strongly 

complete if and only if every Cauchy filter converges. 

LEMMA 5.16 In a uniform space completeness and strong 

completeness are equivalent. 

PROOF Let (X,'U) be a uniform space. If:f, is a Cauchy 

filter on X, then by theorem 5.3 lim;;' ::: adhJh • 
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THEOREM 5.7 In a uniform space completeness is invariant 

under uniform isomorphism. 

PROOF Let (X, "U) be a complete uniform space. Let f 

be a uniformly continuous function from (X,~) onto (y,qT). 

Let;f be a Cauchy filter on (Y, 'V). Then f- 1 (.$) is a Cauchy 

filter on X which converges to some point x€ X. Now for 

each V€ ')7, f- 1 (V [f (x)]) = f;l (V) [X)E f- 1 (.$). Hence 

V [f (x)] €.:J> for each V€ ev • Thus f (x) £ 11m -1-> and 

hence (Y,~) is complete. 

EXAMPLE 5.6 On any set X, the discrete uniform structure 

{u I u Co X x X, u =>tJ }is compl!lte. 

THEOREM 5.8 A closed subspace of a complete uniform 

space is complete. 

PROOF Let (X,'It) be a complete uniform space and (y,~) 

a closed subspace of X, where dUy = {u n Y x Y I U€'UI. If-1­

is a Cauchy filter on Y, then Jf is a Cauchy filter base on X. 

Since X is complete, :;. converges to a point a EX. Since]l c Y, 

then adh:1' =() FcY. Now a E adh..1- c Y and hence Y is complete. 

THEOREM 5.9 Every complete subspace of a Hausdorff 

uniform space is closed. 

PROOF SUppose (Y, ~Y) is a complete subspace of the 

uniform Hausdorff space (X,4<). Let y E: Y, then U [y1 n Y :f ¢ 

for each U € 'l( • The family of sets if ={u (yJ n Y \ U E 'l.(. ~ 

is a Cauchy filter in Y. Hence;;f> converge s to a £ Y. Now.$ 

is a filter base in X and since U[y]is an element of the filter 

in X generated by :/> for every U E' "U. , then y E: lim 51> By• 

theorem 2.4 a = y € Y. Hence Y is closed. 



44
 

THEOREM 5.10 A compact subspace of a complete Hausdorff 

uniform space is complete. 

THEOREM 5.11 Every compact uniform space is complete. 

THEOREM 5.12 Let Y be a dense subspace of the uniform 

space (X.~). such that every Cauchy filter in Y converges to 

a point in X. then X is complete. 

PROOF Let.$ be a Cauchy filter on X. Consider the 

family03 = 1U [FJ ny I U€'U and F €:f} . Then 1is a Cauchy 

filter in Y which converges to a point x € X. Let U € "U. • 

then there exists a symmetric VE'/.(. with V 0 VcU. Since 

v [x] 11 (V [F] n y) *¢ • it f~llows that V [x] () V [F) 4 ¢ • 

Therefore U [x] n F f ¢ for each FE~. Hence ~ converges 

to x and X is complete. 

EXAMPLE 5.7 Consider the space (C* (X). d) where C* (X) 

is the set of all bounded continuous real functions on X and 

d is a metric on it defined by d (f. g) = sup {If (x) - g (x)1 

Ix EX} then C* (X) is complete. 

DEFINITION 5.9 A (quasi) uniform space (X.~) is called 

totally bounded if for every U€ 'U • there are finitely many 

sets AI ••••• An in X such that: 

( 1) Ai x Ai C U and (2) Ui Ai = X for 1 ~ i ~ n • 

DEFINITION 5.10 A (quasi) uniform space (X.~) is 

called precompact if for every U.. "U. there are finitely many 

points xl' .... x E: X. such that lJ. U [xi1= X • n 
LEMMA 5.17 Every totally bounded quasi-uniform space 

is precompact. 

THEOREM 5.13 A uniform space is precompact if and only 

if it is totally bounded. 
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PROOF (1) If (X,4U) is a totally bounded uniform 

space, then by lemma 5.15 it is pre-compact. 

(2) Suppose that (X,1d is pre-compact. Let UE 'U. , 

then there exist s a symmetric V€ 'U such that V 0 VcU. 

There are finitely many points xl' ••• , ~€ X, such that 

u V (xJ= X where 1 ~ i ~ n. Now V [xD x V [xile V 0 Vc.U 

and hence (X, til) is totally bounded. 

THEOREM 5.14 A uniform space is totally bounded if and 

only if every ultrafilter is a Cauchy filter. 

PROOF (1) Suppo se (X, 'U) is pre- compact, then given 

U € ~ there are finitely many points xl"'" x E X, such n 
that U U [xil= X where 1 ~ i" ~ n. Let if be an ultra­

fil ter on X. Since X E :f, then at least one of the U (xiJe:$. 

Hence ~ is a Cauchy filter. 

(2) Assume that (X,~) is not pre-compact. Then set 

C3 = Ix - U [AJ I A is a finite subset of X} for some U€'U.. 

Then 03 is a filter base on X. Let:f be an ultrafilter on X 

containing CB. If.lP is a Cauchy filter, then U [x] € .$ 

for some x€'X. But X - U (X]E$Which is a contradiction. 

Hence ~ is not a Cauchy filter on X. 

THEOREM 5.15 A uniform space is totally bounded if and 

only if every filter is contained in a Cauchy filter. 

THEOREM 5.16 A uniform space is compact if and only if 

it is totally bounded and complete. 

PROOF (1) Suppo se (X, <U) is a compact uniform space. 

Then by theorem 5.5 every ultrafilter is a Cauchy filter. 

Hence (X, 'U) is totally bounded and complete. 
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(2) Assume that (X,'U.) is totally bounded and com­

plete. Hence every ultrafilter on X is a Cauchy filter 

which converges in X. Thus X is compact. 

THEOREM 5.17 Every topological space has a totally 

bounded quasi-uniform structure compatible with it. 

PROOF The Pervin quasi-uniform structure is totally 

bounded. 

B.	 THE HAUSDORFF UNIFORM SPACE ASSOCIATED WITH UNIFORM SPACE 

Let (X,'ll.) be a uniform space. Set C =(\lV I V6'U1. 
LEMMA 5.18 (1) C ::::::>1:> (2) C = C2 = C- l 

DEFINIT ION 5.10 Define a relation /V on a uniform space 

(X, 4L) by x", y if and only if (x, y) E: C. 

LEMMA 5.19 The relation'" on X is an equivalence 

relation. 

LEMMA 5.20 Let 
v
X denotes the set of equivalence classes 

of'" on X. Then ~ = [x) ={Y6xl x,""y} = C [x). 
v v." v

LEMMA 5.21 Define V by (x, y) E: V if and only if there 

v v ()	 v v)exists X o E: x, Yo b y, such that xo ' Yo E: V. Then (x, y 
v	 v 

b V	 if and only if (a, b) E. C 0 V 0 C, for all a E x and 
v 

b € Y • 

LEMMA 5.22 Set iL ={V \VE 'U. }, then 'U forms aB	 B 
v 

uniform structure base on X. 
y 

THEOREM 5.18 If'U is the uniform structure generated by 
v v v v

'U
B

, then 'U is Hausdorff. (X,-.u) is called the Hausdorff 

uniform space associated with (X,~). 
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V \I' V '" V
PROOF SUppose (x, y) Eo U for each U € -U • Then
 

v v

(x, y) E a 0 v 0 a for each x EX, y ... y and V €' 'U Now• 

(x, y)€ n {a 0 v 0 a IVE'U.}Cl'ltv 0 V 0 V I V€'IL} = a, 
since{v3 I V€ 'll ] is a base for 'U • Thus (x, y) € a 

v v v v 
and x = y. Hence (X,~) is a Hausdorff space. 

" LEMMA 5.23 The function J' from X onto X = X / ___ defined 
v 

by f (x) = x is uniformly continuous. 
v y 

PROOF Let UE 'U • Since U cOo U 0 a, then a 0 U 0 ae"U. 

Let (x, y) E: a 0 U 0 a, then (x , xo ) E a , (xo ' Yo) € U and 
v y 

(Yo' y) E: a for some (x ' Yo) e U. Now X e x, Yo€' y, henceo o
 
v v v
 

(x, y) e: U. Hence .f' is unifo~mly continuous.
 

DEFINITION 5.11 Let (X, t) be a topological space, Y is 

a set. Let f be a function from X onto Y. Then the quotient 

topology on Y is Q =tOCY \ f- l (0) is open in t}. 
v v 

THEOREM 5.19 The uniform topology of (X, 'IL) coincides 

with its quotient topology under the mappingjP • 
y 

PROOF (1) Let t denotes the uniform topology associated 
v 

with ~and Q denotes the quotient topology. By lemma 5.18 
v

l' is continuous. Let 0 €t. Since f is continuous, then 
-1 vJ (O)et. HenceOeQandthustCQ. 

(2) Let GeQ. Then l'-1 
(G)et. Hence for each 

x € j-l (G) there exists U E: 'i(with U [x]c.fl (G). It follows 

thatf(U [x] ) c G. There exists a symmetric V E: "'U such 

3 _'i" ["] ." V VV C U. Let y E V x • Then (x, y)E V and thus (xo ' yo)e: 

3 V"a 0 V 0 a c: V c: U for all X € x and Yo E. y. Hence o
 

(x, y) " U which implies ye: U [x]. Therefore )'(y) =
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v v v 

Y € f' (u [x] ). Thus V [x] C f (U [X] C G.) It follows 
v v v 

that G € t and hence Q c t. Thus Q = t. 

C.	 COMPLETION OF UNIFORM SPACES 
... 

Let X be the set of all minimal Cauchy filters on a 

uniform space (X, "l.(). Define V= ~ ( If , -JJ ) :;. , -lJ are 

minimal Cauchy filters on X such that .:f n -1J contains a 

V-small set 1. 
LEMMA 5.24 Set	 ~B = i ~ I V E 'U and V is symmetric}. 

1\ 

Then ~B forms a base for a uniform structure on X. 

PROOF (1) Let.:J. € t Then given a symmetric V € -U , 
A 

there exists FE":r which is a V-small. Hence (.!f ,...;. ) € V. 

"" ...(2)	 Let VI' V2 € "U B and let W = VI {\ V2 • Then if is 
A A "f1

symmetric, which implies if E: 'U • If (.$ , -/1 ) € W, then$ (\,v
B

contains	 a W-small set and consequently:$(\ -1J contains a 

" A
VI-small	 set and a V -small set. Thus (..;f ,j)) E: VI" V2	 2 

" " " and hence We VI (\ V •
2 

1\ II 

(3) From the definition each V € ~B is symmetric and 

hence axiom UB [31 is satisfied. 
" 1\(4) Let	 V E "U then there exists a symmetric W €"U ,

B
, 

2	 " A su ch that W c V. If (.:f> , --I:J ) E: WoW, then (!f,H)Eif,"
" II 

Fl(H,,,I1)€ W for some H € X. Let be a ii-small set such that 

Fl E :f n Hand F2 bs a 'i-small set such that F2 E H'" 11 • 
By lemma 5.1 Fl U F2 is a W2-small set and hence V-small. 

,..	 A A " 
Since Fl U F

2 
€ -$	 {\-11, then (4), p) E V and hencs W 0 WCV. 

A	 " II 
Thus ~B is a base for a uniform structure ~ on X. 
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" A
LEMMA 5.25 (X, 'U.) is a Hausdorff space. 

PROOF By theorem 3.14 it is sufficient to prove that 

n 1V\V is symmetric} =b • Let us assume the contrary, 

then suppose ($ ,J/) € o\V}. Set 03 = {FUF/F€-r, 
F'€" JJ 1' then O?> is a filter base on X. Let H be the filter 

h ~, 

generated by 03 • If F € H, then F :J F u F for some F€ :;; , 

.. .. ,
F'el! . Hence F ::> F , F ~ F and therefore H is coarser 

than -$ and.!J • Now given any symmetric V € 'U, there is 

a V-small set G €;ffl -JJ and hence GUG = GER. Thus H is 

a Cauchy filter. Since -!f and Xl are minimal Cauchy filters, 

" then 5} =JJ = H. Hence n 1V] = t, and thus X is Hausdorff. 

" LEMMA 5.26 Define a func'tion i: X.-X by i (x) = 

JY?x where ~ is the neighborhood filter of x. i is 

uniformly continuous. 

PROOF By lemma 5.8 the neighborhood filter ~Of 
A 

x € X is a minimal Cauchy filter and hence uV' € x. Let
X 

A A 

V €;U ,then there exists an open symmetric WE 'U , such 

2that W c V. If (x, y) € W then i 2 (x, y) = ( Jif'x' ~). 

Since Ii [y] € ~ then W[y] x W [y] clio We-V. Hence Wry) 

~~ nvr'yandthus(J"x' vY'y)E:~. Thisimpl1es 

that i is uniformly continuous. 

LEMMA 5.27 Let (X, "U) be a Hausdorff uniform space, 

then the function i: X-+X defined by i (x) = ~ is 

one to one. Furthermore i-I: i (X)~(X) is uniformly 

continuous. 

PROOF Assume for two distinct elements x, ye:X that 

i (x) = i (y); that is ~ = cA;. This contradicts 

the assumption that (X,"U) is Hausdorff. Thus i is one to 
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one mapping. LetU€"1A. If( vY'x' uY'yleUthen 

there exists N € £ tl ~ such that N x Ne U. Hence 
uf"'x

(x, y l = i-I ( ~yl € U. Thus i-I is uniformlyx' 
continuous. 

LEMMA 5.28 Let (X,qil be a uniform space, then i (xl 

is dense in X, where i is the function defined in lemma 5.26 • 

PROOF Let Jfi € 
A 
X. If U € 'U ,there exist s an open 

symmetric V E "U such that V3 e U. There exists F E!f with 

F x FeV. By lemma 5.11 there exists an open set O€:J. such 

that 0 x OCV [F] x V [Flc V3CU. If xe:O, then x e: V [F] • 

Hence V [FJ € ~. Thus (:f , ~ l € Uand hence 

ur; € U( 1> l. Therefore U. (;$ l n i (xl =I ¢ for each 
~ 1\ 1\ /\ " 

"'l' (; X and U € "l.l. Hence i (X lis dense in X. 

A " THEOREM 5.20 Let (X,'l( l be a uniform space, then (X,'U l 

is complete. 

PROOF Let):/ be a Cauchy filter on i (xl, then i-I (.,ttl 

= H is a Cauchy filter on X. H* ={U [FJ I FE H, UEOU} is 

a minimal Cauchy filter on X coarser than H. Then i (H* l =~ 

is a Cauchy filter on i (xl coarser than j7. If U € ~ , 

there eXists an open symmetric V € 'I.( with V3 CU. Since H 

is Cauchy, there exists FEH such that F x FeV. Hence V [FJ 

x V [F]CV3C U. Let a € V [Fj, then V [F1 e~. Hence 

(H*, vf" l € U and thus ~ € U(H*J. This impl1es 

... [ *J 
a 

,!j 
a 

*"U H €.jJ and hence converges to H e: X. Therefore 

by theorem 5.12 (X," 'Il" l is complete. 
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DEFINITION 5.12 When (X,~) is a Hausdorff uniform 
A A 

space, then (X,~) is said to be the completion of (X,~). 

LEMMA 5.29 Let f be a uniformly continuous mapping of 

X into a complete Hausdorff uniform space Y, then there is 

a unique uniformly continuous mapping g: " X- Y such that 

the diagram X"; i )o•..X commutes; that is f ::: g 0 i •fl /~
y.t- /,- g 

PROOF Define a mapping go· 
• i (X)~Y, such that 

go (i (x) ) ::: 11m f ( cA!'x) • Since f is uniformly contin­

uous, hence it is continuous, then lim f ( ~x) ::: f (11m .AI' x) 

::: f (x). Thus go 0 i ::: f. T~ show that go is uniformly 

continuous in i (X), let U* be a surrounding in Y. Since 

f: X~ Y is uniformly continuous then there exists a symmetric 
,

surrounding V in X, such that if (x, x ) € V, then (f (x), 
/ * .,. A

f (x ) ) U • If (i (x), i (x ) ) £ V , then i (x), 

i (x) have a neighborhood of both x , x in common which 

is V-small and hence (x, x') eV, which implies (go (i (x) ), 

go (i (x') )€ U* since f (x) ::: go (i (x) ) and f ({ ) € go 

(i (x') ) . Hence go is uniformly continuous in i (X). 
A 

Since i (X) is dense in X by lemma 5.28, then go can be exten­

" ded to g: X- Y such that f ::: g 0 i and it is clear that g 

" is the unique uniformly continuous mapping from X into Y. 

LEMMA 5.30 The completion of a Hausdorff uniform space 

is unique; that is any two Hausdorff completions of a Hausdorff 

uniform space (X,~) are uniformly isomorphic. 

PROOF This follows immediately from lemma 5.29. 
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THEOREM 5.21 If (X,~) is a totally bounded uniform 

" 1\space, then (X, 1.L) is compact. 

" '" '" 1\PROOF By theorem 5.20 (X, IU) is complet e. Let U E 4i. 
A 1\ A " '" 

then there exists a symmetric V E: 'U , such that V 0 VC. U. 

w" = " vn (i (X) x i (X) ) is symmetric in the relative uniform 

-1 " structure on i(X). Let W = i (W), then since (X,-u) is2 

totally bounded, there are finitely many points xl' x2 '.'" 

x EO: X such that U " W [xj1= X where 1 !:- j ~ n. Hence n 

" U 11' [i (X j )] = i (X) where 1 ~ j f:.. n. If:;f € X, then 
1\

( .$ • i (x) ) € V for some i (x) E i (X), since i (X) is 

dense in X. Now (i (x), i (X ) ) € "We-V " and hence (.if, i
j [J ..A A '" " (X j ) )C V 0 VC:U. Thus -$ € U i (X j ) • Hence X = 

1 " 1\U {U " [i (x j )1 , where 1 ~ j ~ n and it follows that (X,"U) 

" " is totally bounded. Therefore by theorem 5.16 (X.~) 

is compact. 



CHAPTER VI
 

SUGGESTIONS FOR FURTHER STUDY
 

An interested problem is to characterize spaces with 

unique uniform structures. The following conditions are 

equivalent for any completely regular space X [5J 

(1) X admits a unique uniform structure, 

(2) The stone-'1Sech compactif1cation (f3 X contains 

at most one point not in X. 

(3) /tex-xl ~ 1· 

(4) X has a unique compactification. 

(5 ) Every function in C* (X) is uniformly continuous 

in every admissable structure on X. 

(6) For any two normally seperated closed subsets of 

X at least one of them is compact. This is due to Doss (1949) 

[10] • 

The space of ordinals Wand the Tychonoff plank Tare 

examples of non compact spaces with unique uniform structures. 

In 1959 G~l [10) proved that there is a one to one 

correspondence between all totally bounded uniform structures 

and all Hausdorff compactification that can be defined on a 

completely regular space. 

An important theorem due to Shirota [5J which states 

that a completely regular space in which every closed discrete 

subspaoe has non-measurable cardinal admits a complete uniform 

53 
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structure if and only if it is real compact. 

The ooncept of locally uniform spaces has been recently 

discussed. The interested is referred to James William [12J. 

If (X, t) is completely regular space and 'llf =v {'U I "U 

is a compatible uniform structure.}. One would like to have 

a description of ~f. 

The concept of fine spaces which are the spaces having 

the finest uniform structure compatible with the topology 

has been recently studied. Central results are Shirota's 

Theorem and ~licksberg's (1959). One would like to have a 

complete answer of the question "When is the product of 

fine spaces fine [7J . 

Uniform structures on topological groups were first 

studied by Weil (1937). There are by now a number of texts 

devoted to the subject such as Pontrajagin (1939), and Mont­

gomery and Zippin (1955). Now every topological group is 

completely regular and hence it is uniformizable. 

A different approach to a uniform and quasi-uniform 

structure is due to Csaszar [3] who considered them as part­

icular cases of syntopogenous structures. 
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