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CHAPTER I
INTRODUCTION

The unlform space is one of the gensralizations of a
metric space., The uniform structure's concept lies bet-
ween those of metric and topologleal structures, in the
sense that every metric space is a uniform space and every
uniform space 1s a topologleal space, The importance of
uniform structures lies on the fact that unlform spaces
preserve the maln features of metric spaces. That is we
can deal here with non-topologlical concepts of classical
analysls such as completeness, total boundedness, Cauchy
filters, uniform continuity...etc.

There are different approaches to uniform structures.
One of them is defining uniform structures by means of filters,
while another is defining uniform structures by a pseudomeiric
or a family of pseudometrics. In 1940 TUKEY defined uniform
structures by means of covers,

Now each element of a uniform structure is a nelghtor-
hood of the diagonal & , However not every nelghborhood of
A 1s a member of a uniform structure. On a set different
uniform structures may be deflned. But in a compact Hausdorff
space the uniform structure is unique and it 1s the family of

all nelghborhoods of A . Two uniform structures may induce

the same topology.



In chapter IV WEIL'S theorem is introduced. Now every
pseudometric space 1s unformizable and every topologlcal
space admits a quasl-uniform structure. In chapter III 1t
1s shown that every open cover of a compact uniform space 1s
a uniform cover.

In chapter V it 1s shown that the limit and the adherence
of a Cauchy filter are equal in uniform spaces. If the uni-
form space is totally bounded, then every ultra filter is a
Cauchy filter. In a guasi-uniform space the limit and the

adherence of a Cauchy filter are equal if it is R In a

3
uniform space, the neighborthd filter is a minimal Cauchy
filter, but this is not true in a quasi-uniform space. Now
every compact uniform space 1s complete and every compact
subspace of a complete Hausdorff uniform space is complete.
In chapter V 1t is shown that a uniform space is compact

if and only if it is complete and totally bounded. For every
uniform space there 1s a Hausdorff uniform space associated
with it. In chapter V i1t is shown that every uniform space

has a completion., If the uniform space is pre-compact then

its completion is compact.



CHAPTER II
FILTERS

In Euclidean space the following three results concern-
ing sequences hold [1@].

(1). A point xe€X 1s a 1limit point of A< X if and only
if there exlsts a sequence of distlnet polnts of A which
converges to x.

{(2). A polint xeX 1s a cluster polnt (adherence point)

oo
of a sequence {xna of elements of X i1f and only 1f there
\ o0
exlsts a subsequence {xnk} which converges to x.
|
{(3). A function f: X—>Y 1s continuous at x€ X if and

-

only 1f the sequence {xn} of elements of X converges to x
I

implies the sequence {f(x

D)Fo converges to f(x).
L

These results do not hold for topologlcal spaces 1n gen-
eral. They hold 1f the space 1s flrst countable.

The attempt to generalize sequences to more adequate
concepts for topologlical spaces began 1n the beglnning of this
century. During the period from 1915 to 1940 two new concepts
were devised; these were nets by E. H. Moore, H. L. Smith,

J. L. Kelley, and others and fllters by H. Cartan 1937, and
others.,

Since fllters play an lmportant role in the theory of
uniform spaces, this chapter 1ls devoted to a dlscusslion of

thelr basic propertles.
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DEFINITION 2,1 A filter . on a set X is a non-empty
collectlon of subsets of X satlsfying the followlng axloms:

rly] ¢ ¢ %

F [2] F., F5€ % 1implies FINF,y€ Z

F{3] Fy C T, Flei?‘ implies F e % .

DEFINITION 2,2 A non-empty collectlon CB)of subsets of
a set X 1s called a filter base over X 1f 1t satlsfles the

following axioms:

B[] ¢ ¢ 08
B{2] 1f3B, B, € (03 , then there exists a Be (3
such that B C B, N P

DEFINITION 2.3 A non-empty collectlon f of subsets of
X 1s called a fllter subbase 1f 1t has the finlte intersection
property.

LEMMA 2,1 The family % which consists of all sets F
such that FOB for some Be(Bwhere Q3 1s a fllter base 1ls a
filter. £; 1s sald to be the fllter generated by 03 .

LEMMA 2.2 The family {3 which consists of all finite
Intersectlions of elements of a subbase filter‘f 1s a filter
base.

EXAMPLE 2.1 Let X be a non-empty set, A a non-empty
subset of X, theniﬁ =-{F < X IF o> %}13 a filter on X.

EXAMPLE 2.2 In example 2,1, 1f A is a singleton set
{x} thenFis called a discrete filter.

EXAMPLE 2.3 If A = X, then :{X]and ﬁf 1s called the

I1ndiscrete filter on X.
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EXAMPLE 2.4 Let {xn]]]_ be a glven sequence, and set
F, = {xi, Xy 10 ooe } . Thenih :{Fc. }IKIF::oF1 for some 1}
is the filter generated by the sequence {xn}T and is called
the elementary filter assoclated with the sequence,

EXAMPLE 2.5 Let X be a topological space, x¢€ X. Then
the collectlon of all nelghborhoods of x denoted by (/l/; 1s
a fllter on X called the neighborhood filter of =x.

DEFINITION 2.4 A set @Ccﬂ; 1s called a fundamental
system of x 1f for every Nxe foﬂthere exists B€(3 such that
Xe Bo Nx'

EXAMPLE 2.6 Let (X,t) bge a topological space. The
fundamental system of nelghborhoods of x€X is a fllter base
on X.

EXAMPLE 2,7 Let R denotes the real numbers and xe R.
Then ’{(x- €, X + € )16}»0} and{ [x-€, x +:E]}are fundamental
systems of nelghborhoods of x and hence they are filter bases
on R,

LEMMA 2.3 Let (X,t) be a topological space, ACX,
2€X and let (B be the fundamental system of neighborhoods of
a., Then q ={B(‘.A'B€@}is a fllter base on A.

PROOF Let a€ A, Since for each Be(B, BN A # # then
3 6% and axiom Bf1] is satisfied.
€03A. Then there exist B

Suppose Al, A 32603 such

1!
= B, A, AN A, = (Blf\ AYn (132n A) =

2

that A; = Byn 4, A

1 2
(Bln Ee)n Ae 0%. Therefore axiom B[E] is satisfied and hence

Ji 1s a filter base on A.



DEFINITION 2.4 A polnt x€X 1s called an adherence
point or cluster point of a filterF on X, denoted by x< adh($),
1f and only if N_NF # @ for each Nxeui/’x and Fe F .

DEFINITION 2.5 A polnt x€ X 1s called a 1limit point
of a filter?on X, or & 1s said to converge to x 1f any only
if Jﬂx <. F.

DEFINITION 2.6 A point x€X is called a 1limit point
of a filter base (B on X 1f the filter generated by (I converges
to x.

LEMMA 2.4 Tet (X, t) be a topologleal space and let .2
be a filter on X, then adh (%) :ntﬁ!Fe 5"}

PROOF (1) Let xeadh (#) then N,OF 3 @ for each NerC
and Fe.%. Hence xenileef?'}.

(2) Let xe(\ifh‘é?}. Then an F + @ for each
N, € Jf; and Fe . Therefore xeadh ().

THEOREM 2.1 Iet (X, t) be a topological space, x € A
and Ac X, then xe & if and only if there is a filter base on
A which converges to x.

PROOF (1) Let x€X, then by lemma 2.3, (3, = {B nalBe®
the fundamental system of x} is a fllter base on A, For each
Nxedff there exists Be (3 such that Bc N_. Since BﬁAc‘.BCNx,
then 33 converges to X.

(2) Suppose that such a filter base (B exists
which converges to x€ X, Then for each Nxé -/V; there exlsts
Be U3 such that BCN_. Since BC A then N N4 # ¢ for each
NIEJ(;. This implies xe A.



Thls theorem 1s analogus to the corresponding result
for sequences 1In Fuclidean space.

THEOREM 2.2 1Let (X, t) be & topological space, x € X,
then xe adh (F) if and only if there exists a filter SFX
containing,?'which converges to Xx.

PROOF (1) Tet xeadh (F). Now FAN_ 4 ¢ for each
N_ e.A/x’and Fe P . su@: {FanlFe F and Nxedlg.

Thus ¢ ¢ (3 and hence axiom B[1] 1s satisfled. Let By, B2€B
1 2 -
then there exist F., erg and N-, N e JV; such that B, =
_ 2 _ 1 2y _ n
o = Fef\Nx. Bln B2 = (Flﬂ Nx)n (F2ﬂ NI) = (Fln FE)

(Ni{\Ni). Sincefr’ and JV; are filters on X, then there exists

N 1
Fl Nx’ B

1n w2
N < N-N X<,
Fe$p , N € V/x such that F€F,NF,, N N NN-. Hence

10 By Thus axiom B{2) is satisfied

and hence @ 1s 3 fllter base on X. Let fi‘x be the filter

FAN_e 03 and FAN_ B

generated by @ . If F€,5" and Nxe ‘/V)x' then an Feﬁ .
Since N NF < F, then F € ,?vx. Hence & <.% .
(2) Suppose that &% is contained in a filter "?‘x

which converges to x, then Nx€ ,55: x for each Nxe (Jf/';t
since . < ,;’,Z:x, then each Fe %, F Effzx. Hence an Fi g
for each N_ € J/; and F€ % . Thus xe adh ().

This theorem is analogus to the corresponding result
for sequences 1n Fuclidean space.

DEFINITION 2.7 Let-Fbe a filter on X and f a funection
from X into Y then f(.&) =iGCY | 6D f(F) for some FE.;"} .

THEOREM 2.3 1Let f: (X,t) (Y,s), then f is continuous

if and only ifi?'converges to x implles f(i%) converges to f(x).

PROOF (1) Let f be continuous then for each neighborhood



Nf(x) of f(x) = yeY, there exlsts a nelghborhood Nx of xe X
such that f(Nx)c:Nf(x). Ifgconverges to x, then N, € %
and hence Np(y ) € f(#). Thus f($) converges to f(x).
(2) Assume that f 1s not continuous then 1if

x€ X there exists a nelghborhood of f(x) such that no nelghbor-
hood N, of x satlsfles f(Ny)<Nge ). Hence Ny ¢ (%) and
f(#) does not converge to f(x). This contradicts the assum~
ptlon of the theorem and hence f 1s contlnuous,

THEOREM 2.4 A topologlecal space (X, t) 1s T, 1f and only
1f each fllter on X converges to at most one polnt 1n X.

PROOF (1) Suppose (X, t) 1s T, and P a filter on X.

2
If % converges to two distinct points x, y€X. Then &/ < %
andd/’yc $ . Hence N_N N, # § for each Nxedr; and Nyc—:dlr”y.

Thls contradlcts the assumptlon that X 1s T Thus % does

2.
not converge to more than one polnt.

(2) Suppose X 1s not T Then there exist

o
two dlstlnet polnts x, y€ X such that for each Nxe «/V;
and Nye.dV;, N_N Ny + #. Set(B = iB|B = N, NNy for some
N_€ J/Jx and Nye (/V;} (3 is a filter base on X and the filter
X generated by 1t contains both cdﬁ; and;A/;. Hence -4/
converges to both x and y. Thls contradlcts the assumption
and hence X 1s Tz.

THEOREM 2.5 A topological space (X, t) is compact if
and only 1f every fllter on X has a non-empty adherence,

PROOF (1) Let (X, t) be a compact topologlical space
end .# a filter on X. By exlom F{2] , the class { F|F eﬁ‘}



has the finlite intersection property. Hence the class
{?{Fe.‘i‘v} has the finite intersection property. But since
X is compact, thenn{?JFef’}:t g

By lemma 2.4, if xen{F]FE,?’}, then ¥ € adh (#). There-
fore adh (#) + #.

(2} Letf = {Sﬂ}dé-ﬁ-}be a collection of closed Esets

with the finite intersection property. Then f is a subbase
of a filter on X say # . If xe adh (%), then er{S“f Sxej’},

otherwise there exists S,e f such that xef. Sj' Thus xe S5,

J J
Since Sjé F then S‘1 € F . Now Sg is a neighborhood of x
and Sgﬂ S;] = @ leads to a contradictlon. Hence X is compact.

DEFINITION 2.8 A filter Fon a set X is sald to be an
ultrafilter provided that no other filter on X properly
contain F .

EXAMPLE 2.8 lLet x<« X, then the collection of subsets of
X which contains x is an ultrafilter %on X.

PROOF By example 2,2, 3 1s a filter on X. Suppose that
there exists a filter¥on X which properly contains.@ .
Therefore there exists Ge& X/ such that Gqf.?» « Since {x}e_?-
then {x}e,{j . This implies GON {x}zf: #; that is xe G. Hence
Ge$ which is a contradiction. Thus % is an ultrafilter,

ZOEN'S LEMMA If a non-empty partially ordered set X
is such that every linearly ordered subset has an upper bound,
then X contains a2 maximal element.

THEOREM 2.6 Let X be 2a non-empty set. Every filter on

X 1s contalned in an ultrafilter on X.
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PROOF Let P be a filter on & set X. Let [7 be the class
of all filters on X that contain & . {7 1s not empty since
at least ¢ {° . Partially order [° by the inclusion rela-
tion C . Let § be a chain in | . fhen f/= Y 1% [ %< )
1s an upper bound of § . Clearly ‘?o’cc Al for each _316' P .
Also axioms F[1) and P[3) can be easily verified for ¥/ . Let
19 B € —-51’3 for some —PT"i, Ell’jé At

Either _?’1 C —% or 'S[’j C-sz’i. In both cases A, B =are

A, Be o/ , thenae F

elements of one of ,5‘1 and ,?J and hence AnB UU .

By Zorn's lemma [’ has a maximel element which by defin-
ition 2.8 1is the ultra-fllter contalning Z .

THEOREM 2.7 Let X be a non-empty set. A filter % is
an ultra-filter on X if and only if AUB€ . , implies
elther A € .5'; or B € F .

PROOF (1) Assume that . 1s an ultra-filter on X.
Suppose that AuBe J such that A ¢ <% end B¢ % , where
A, B<X. Setl/ ={ch\ yuse¥} , then- 1s not empty
since A€ £/ . It can be easily shown thet */ 1is a filter
on X, IfF €%, then FUBe.% . Hence F e/ and thus.Fcl.
Moreover . 1s a proper subset of - since A 45 F while aelf .
Thls contradicts the assumption that,% is an ultra-filter on
X. Thus eilther A ¢ % or Be % .

(2) Suppose that 5‘: is not an ultra=-filter on X. Let
747 be an ultra=fllter on X which properly contalns ,.?7 .
Then there exlsts G€ 70 such that G 4-:’:77 « By the hypothesis
of the theorem and since Xe .% , then G°& % . Hence ¢Se& X/
which 1s a contradiction. Hencef\-'y“; 1s an ultra-filter.
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LEMMA 2,5 A filter.# 1s an ultrafilter on a set X
if and only if ANP % @ for all Fe P implies A€.f.

PROOF (1) Let & be an ultrafilter on X, then by
theorem 2.7 elther A€ P or 8% % . If A°c % , one has
a contradictlion since An A® = @. Hence Ac F.

(2} Suppose that F is not an ultrafilter. Then there
exists an ultrafilter -¥/ which properly contains % . Let
te &/ such that AdF . ¥Yow AnG # £ for all Ge ff and thus
ANTF #+ ¢ for all Fe%. Hence A€ F which 1s a contradiction,

LEMMA 2,6 If % 1s an ultrafilter on a set X, then for
every ACX, either A€-F or A% % .

This 1s a speclal case of theorem 2.7.

LEMMA 2,7 Let.? be an ultrafilter on a set X, then
xe adh (PH) implies xelim (F).

PROOF Let xe adh (F). Suppose there exlsts N_e dwx
such that Nxé.if . By lemma 2.6, N; e .94 and N_ N N; = ¢
contradicts the assumption that xeadh (%). Hence xelin ¥ .

THEOREM 2.8 A space 1s compact if and only if every
ultrafilter on 1t converges,

This follows immedlately from theorem 2,5 and lemma 2.7.



CHAPTER III
UNIFORM STRUCTURES

A, BASIC CONCEPTS

DEFINITION 3.1 TLet X be a set and UCX x X. Then U™ =
{(y. x) | (x, y)€U} .

DEFINITION 3.2 Let X be a set mand U, V<X x X. Then
UoV = {(x, y)|(x, 2z} € U and (z, y)e ¥V for some z éi#}

DEFINITION 3.3 Let X be a set., A unlfeorm structure for
X 1s a2 non~-empty collectioniﬂ.of subsets of X x X such that
the followling axlioms are setisfled:

U [1] U 1s a filter onm X x X,

U [2] AcU, for every Uc%u, where & = {(x, x) | xeX} ’

U [3] U€ % tmplies U™ € 2
U [4] Por each Ue %, there exists V€ % such that V o V< U.
The elements of 4¢ are called surroundings or uniformities.
DEFINITION 3.4 Let (X, %) be a uniform space, U € U 1s

called symmetric if U = U™',

12 FIGURE 3.1
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In Flgure 3.1 2 surrounding U < X x X surrounds the
dlagonal A .

LEMMA 3.1 Let (X, ) be a uniform space. Then for
each U€ %, there exists a symmetrlc surrounding Ve& U |
such that Vo V< U,

PROOF Let U€<u . By axlom U{4), there exists V e «
such that V o V€ U. Let W = VNV L. By axiom U[3],

view, yn V"lé‘uby axiom U[1]. Thus We 2t , Now wl =

-
(vn V'l) = v-iav = vAv~l = W. Therefore W 1s a symmetric

surrounding. Slnce W<V, then W o WV o VC U .
LEMMA 3,2 Let (X,?%) be & uniform space, If U € 4L,

then U o U"1 1s 2 symmetrlc surrounding.

PROOF (1) TLet (x, y) € U o UL, Then (x,x)e U and

1

(o(y Y)EU™" for some x€ X. Now (y,%)eU and (x, x) & y-l

implies (y, x)€U o u™l. Hence (x, y)e (T o y~1y-1,

(2) Tet (x, y)e (U o U1)"L. Then (y, x)eU o UL,

Hence (y, )€U and («, x)eU'l for some x& X. (x,x)€ U

1

and (¢, y)e U~ implies (x, y)€U o v, Thus U o Ul =

(U o u”1)~1L,

LEMMA 3.3 Let X be a set. A non-empty collectlon 2 of
subsets of X x X 1s a uniform structure on X 1f and only 1f
1t satlsfles the followlng axloms:

Uf1] 4t 1s a filter on X x X,

ul2l] Ac U for every U € &

Fd
U[B] For each Ue @t, there exlsts Ve 2 , such that V o V'l

< 1,
rd
PROOF It sufflces to prove that[U]} 1s equlvalent to

axioms U[3) and U[4. 1If axioms U[3)and Ul4)are satisfied, then
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for every U€ U, we can chocose a symmetrlc W, such that

W o WCU and hence W o W1

C U. Thus axiom U[3)1s
satlsfled,
Let U[3)be satisflied. Then given U€a, there exists

Veasuch that Vo V" '< U. TLet (x, y) € V. Then since

1 1

, (x, y)EV O v, Thus ve ve v1= (Vv o v'l)‘l

(v, y) e V7
-1 -1
C U”". Since V€4 , then by U[1l], U "¢ 2 and axlom U[3]1s

satlsfled.

1 1

Let W = VNV™ ", then W<V and WcV™", Therefore

1 U and thus axiom U{4) is satisfied.

WoWCVo V™

DEFINITION 3.5 A quasi-uniform structure is a non-
empty collectlion U of subset of X x X which satisfies axloms
ul1), v[2), and vlal

Every uniform structure 1s a quasl-uniform structure,
but the converse 1s not true 1n general.

EXAMPLE 3.1 Let X be a non-empty set and let U =
{X p X}. Then % 1s a quasl-uniform structure and also a
unlform structure. It 1s called the indiscrete uniform struc-
ture.

EXAMPLE 3.2 Let X be a non-empty set. Let 4 be all the
subsets of X x X contalning the dlagonal A . Then U 1is a
quasi-uniform structure and also a uniform structure. Tils
1s called the discrete unlform structure on X.

EXAMPLE 3.3 ILet X be a non-empty set linearly ordered
by the relation < . Set V = {(x, y) x éyl. Then U = {
Tivevucx x Xliis a quasl-unlform structure for X, but it is
not a unlform structure since axion U[}]is not satisfied,

DEFINITION 3.6 A subfamily‘uB of a uniform structure %
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on a set X 15 a base for L 1f each member of 4 contains a

member of Q‘.B.

DEFINITION 3.7 A subfamily ‘U.S of a uniform structure«
is a subbase for 2¢ if the finite intersections of members
of Uy 1s a base for .

THEOREM 3,1 A non-empty family "LLB of subsets of X x X
1s a base for the uniform structure % on X if and only if

the following axioms hold.
UB[1] ‘uB is a filter base,

Ug[2] A < v, for each Ve Uy,

1

UB[3] If Ve %_, there exists We U, such that We V -,

B? B
UB[4] If Ve Uy, there exists We Uy such that W o WC V.
PROOF (1) Let Uy be a base for the uniform structure

Y« on a set X. Then by definition 3,6 ‘U—B is a subfamily of U,

and U :{U|U DV for some Ve ‘LLB}. Axioms Uz{1] and UB[Z_]

can be easily verified. Let Ve %, then Ve®% . Hence there

exists We 2, such that W o W=V, Choose U € U such that

Bl
UCW. Then U o U=W o WcV and hence axiom UB[4] 1s satisfied.

Let V&, then Ve . Choose W €4 such that wev i, Now

W>OV for some U« ‘U-B and therefore Uc V1. Thus axiom UB[3]

is satlisfied.

(2) Let QLB be a2 non-empty famlly of subsets X x X
which satisfies Up[1], UB[E], Ug [3] and ugl4). Tet u= iU]U:JV
for some V€ "’IIB}. Then 2L satisfies axioms U[l] , U[2] and

Ul[4). Let Ue %, then UV for some Ve¥. By axiom Up[3],

there exists We %y such that WeV™ . Now UDV implies

U5V 5 W and hence U™le % . Thus axiom U[3] 1s satisfied.
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THEOREM 3.2 A family @LS of non-empty subsets of X x X
15 a subbase for a uniform structure % if and only if it
satlisfles the following axlioms:

U[1] D< s for each S U,

USI:QJ If S € "ms, then there exist sets T ,..., Tme‘us
-1
such that Tln e nTmCS .
Ug[3] If s g, then there exist sets T ,..., T € Ug

such that (T; A ... NT ) o (T;n «eo NT ) C S,
LEMMA 3.4 Let (X,4) be a uniform space then,
(1) (whHt=v \
(2) IfU, ¥ € 2% such that UcV, then vl < vl
(3) IfU, V € 2« , then (Tnv)"l = g-lavy-l,
(4) IfU, Ve ac , then (U o V)™t =v1o u-l,

LEMMA 3,5 Let (X, ) be a uniform space. If Uyy U, U,
n n n
then (U, N U, )" < Uy NT, .
- n n n
PROOF Tet S = {nfU; n U,)% < U] N UQS. € S since

U,AU,cU;N U, . Suppose that K € 5. Let (x, y)e (U‘{nug) 0
(U N T,) then (x,d)euﬁn Ug and («, y)e U 0 U, for some
& € X, Therefore (x, y)e U]'{"'l ol U},c,”l + Hence k+1 € S and
thus S 1s the set of all natural numbers.
THEOREM 3.3 Let (X,4¢) be a uniform space. Then for
each natural number n, @n = {Vn } Ve‘u} 1s a base for % on X,
PROOF (1) Since AcV, then A< V <« V2 and hence axionm
UB[2] 1s satisfied,
(2) tTet vy, vy, € BY and let vV = V, N V,. By lemma
3.5 V0= (VNV,)" « V] NV . Hence axlom Upfl] 1e satisfied.
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(3) Let v® €8T, Choose W € 2, such that We=Vv™l,
Hence W* < (V-1)2 = (v¥)~1,

(4) I1f V< B8P, then there exlsts W e 2 such that
WoWcV. Thus (W o W) = W2 o WRc V2., Hence B2 is a
filter base for a uniform structure 2¢ on X.

THEOREM 3.4 Let X be a set, % a quasl-uniform structure
on X. Then 2 ={U ﬁV'1|U, Ve‘u} 1 a2 base for a uniform

structure on %.

1 1

PROOF (1) Sinced < U and &6 < V', then AcUNV .

1l #* -1
e 1, Uenv2

_ -1 *
) = (Uln Ug)ﬂ (vln vz) € U .
-1

(2) Let Ulﬂ Vl

-1
2

(3) Let UMY

= "?xf, then
-1

(U p V1IN (U,n v
%* L |

€ 9, then (UnV™:) = U™V =

vntl e al .

- *
(4) et UNOY 1 € 4 ., Then there exists, U

1 1

1 V1 €
- - -1
such that Ul o} U1C U, Vl o} VICV. Hence Vl 0 Vl <V .

By lemma 3.5 (U0 V1) o (U nvihye(uy o v)) n(vil o vih)
cuavl,

DEPINITION 3.8 Let (X,9) be a uniform space. For each
x € X set U [x} ={yl(X, y)E U where Ue‘u} .

DEPINITION 3.9 Iet (X,™) be a uniform space, If AcX
then U[A] = {yl(x, y)e U for some xe€ A, Where U e‘?&}.

THEOREM 3.5 If (X, %) 1s a uniform space, then the
famlly of all subsets 0 of X such that for each xe€ (0 there
is Ue4 such that U [x]c0 1s a topology on X called the
uniform topology tm. .

PROOF (1) let 0,, 0,&t, , x € 0,N0,. Then there
exist U, Ve % such that U(x)cO; and V{z]<0,. Therefore



(unv)[x] =0 [(x)n v {xlcon Ope Hence 00 0, € t, .
(2) Let {Oi} be a family of members of t, and
there exists W

X e iij {OJ + Then for each O € U such

1 1
that Wy [x}c0y. Hence erLwi [x]} = (VW) [x]c U}oi}.
Therefore U {0136 tm and ‘t,u 1s a2 topology on X.

The topology tu 1s preclisely a generallzatlon of the
metric topology which 1s the famlly of all subsets O which
contaln a sphere about each of 1ts points.

IEMMA 3.6 Let (X,% ) be a uniform space and Ve 2 .
If yeV [x] , then Vv [gleVv o Vv [x].

DEFINITION 3.10 Let X be a glven set and let 4 ve
a collection of subsets of X for each x€X, Then JV;[ =

U{N(x): xex} 1s called a nelghborhood system on X if it
satlsfles the followlng axioms:

N.1 For every xe X, d/; $ ¢, and xe N, for every
N, € dlﬂx,

N.2 If AcX and ADNX € lex, then A € M ’

X
1 2 1 n o2
N3 If Ny € SN Ny e #°, then N_ N N2 e N,

x’ X
N.4 If Nxe Mx' there exists N; <€ ‘/f/:c, N;C_ Nx’
such that for every yeN;, Nx € JK; .

THEOREM 3.6 Let (X,%U) be a uniform space; then the
Iamilyn/w = {U [x] |U € U, xe X} i1s a nelghborhood system.
PROOF (1) Axiom N.1l is satisfied since (x, x)€TU

implies xeU [x].
(2) Let NoU[x] . Set V = UU[(x, y)lye N} . Since
UcV, then V€ % . If a€ v(x], then (x, a)€ V. Hence

(x, a)e U or (x, a)e U {(x, ) | yeN} . In both cases a € N
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and therefore V {x]c N. If yeN, then (x, y)€ V and hence
ye€V[x] . Thus NcV[x] and hence N = V[x]er/f(,x).

(3) Let Uf[x]}, V[i]euV?x). Then U[x] n V[x] =
(v nv) (xle N (x).

(4) Let Ulx]e ‘-/V’(x). Choose V € 9 , such that
Vo VoU. Hence V[X]<U[x] . If ye V[(x]), then by lemma 3.6
v[ylev o v[xleU [x}. Thus U[x]e ATy).

The nelghborhood system‘Aﬂinduces the uniform topology

ty on X,
EXAMPLE 3.4 Let R be the set of real numbers. For each

€ » o define the set Ve = {(x, y)l lx-yl(e}. Then‘uﬁ =

{VE fe > o} 1s a base for a uniform structure , called the

additive or usual uniformity on R. The topology induced by

AU 1s the usual topology on R.
EXAMPLE 3,5 Let R be the set of real numbers., Then for

each a<b the sets S, , = {(x, y)‘both X, y<b or both (x, y))a}

1s a subbase for a uniform structure which induces the usual

topology on R.
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In flgure 3.2 32’3 :‘{(x, y} both x, y)> 2 or both
x, ¥< 3}.

The uniform structures defined in examples 3.4 and 3.5
are dlfferent but they induce the same topology. For in
example 3.4 where the unlform structure 1s the usual uniformity
on R, there are surroundings such that U[xl__]U...UU[xI; = R for
all choices of finltely many points. While 1n example 3.5
for every surrounding U there are finltely many polnts

X, XpseeesXy such that Ulxju...UU[x ] = R

m
EXAMPLE 3,6 This i1s another example to show that diff-

erent uniform structures may ?nduce the same topology. Let
(N,4L) be a uniform space, where N is the set of natural
numbers and % is the discrete uniform structure defined in
example 3.2. Then A induces the dliscrete topology on N.

Define Vh = {(x, y)lboth X, y>n or x = y} for n € N,
SetYV= iVlV:DVn for all n € N}. €Y 1s not the discrete
uniform structure on N but it 1nduces the discrete topology
on N,

EXAMPLE 3%.7 Let d1 be the Euclldean metric on R,

1 d2 induce two diffe

de(x,y)=1 x - _ ¥ | Then d
1+ x| 1+iyl

erent uniform structures ‘L(l, "2‘:2 while 9% and ‘302 induce
the same topology on R. To show this let U_ € QLé, then
Ug = S[(X, 7) | dy (x, y)<€} . Since d,¢dq, then if

(x, y) € Vo € @Ll, dy (x, y})< € 1implies d, (x, y)<€ and

hence (x, y) € U_ . Therefore VE < U‘E and hence Uee U

€ 1°

Thus U,< #%,. To show that %, is a proper subset of %,
let Uy = i(x, y) | dy (x, y} < 1} , then U; € 2, . Suppose
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X220,y =1+ x, then ti1 (x, y) = 1 and hence (x, y)& U, .

But 4, (x, y) -I -2_x|<1. Hence U1¢‘36 and‘?c 1:"'26

T+x
The equivalence between d1and d2 follows from the fact
that f:R—» (=1, 1) 1s a homeomorphism where f{x) = x .
T+ x|

Since d2 (x, y) =4, (f (x), £ (y) ), then 4

1
if and only if 4, (x,y, X)> 0 .

1

EXAMPLE3.8 On the set 2 of integers define a uniform
structure as follows: glven a prime number p, let Vn =
{(x, y)€ 2 X Z]xEy mod Pn} for n€N. Then the ‘N-b =
{Vn |for all ne N}is a base for.a uniform structure on Z,
called the p-adlec uniform structure .

THEOREM 3,7 Let (X,%¢) be a uniform space, AcX.

Then the interlor of A relative to the topology 1is
the set of all points x such that U [x)<A for some Ue U.

PROOF Let B = {xIU[x]CA for some UG‘M}. Suppose
that O is an open subset of A. Then O :{xlU[ijO for
some Ue‘u}. Clearly 0c B. That 1s B contalns every open
subset of A, Let xeB, then U[x]c A for some Ue4 . Choose
Ve , such that V o VcU. Let ye V(x}, then V[ylecV o V
[xJcU[x]JcA. Hence y€B and V{xJcB. Therefore B is an open
subset of A and hence it 1s the Iinterlor of A,

THEOREM 3,8 Let "uB be a base for the uniform space
(X,%), AcX, then X =a {v{a]|v eu .

PROOF Let xe€ A. For each Ve ‘UB, there exists a
symmetric W € ‘Z(B, such that W o WV, Now W[x]NA # &.

Suppose ye W[x] N 4, then yeli and yew[x] . Hence



revwly] ¢ viyl « v [4). Thus XEO{V [A]\v € ‘itB]]. Let
X € H{V [A]\VE Gl{le. Then for each Ve U, there exists
a symmetric We U with WCV., Since x€W (4], then for
some y€ A, (y, x)€ W and hence (x, y)€ W, Hence yeW [x]C
Vv [x]. Thus v [xJna ¢ 4 for each V€ U, which implies
x€ 4 . Therefore & = N {V (a1l v e ‘UB}.

LEMMA 5.7 Let (X,% ) be a uniform space, xeX and let
U, V€« . Then U (x] x V[xJeu lo v,

LEMMA 3,8 Let (X, &) be a unlform space, Uedas, Ve
and V 1s symmetrie. Then Vo Uo V =V {v (x} x v [y] |
(x, y)e U}. Thus Vo U o V 1s a neighborhood of U in the
rroduct space X x X,

PROOF (1) Let (a, b)€V o U o V, then there exists
x, y€ X, such that (a, x)eV, (x, y)€U and (y, ble V. Since
V 1s symmetric, then aeV{x}and be V{yl. Hence (a, b) e
V[x] X V[y], (x, y)eU. Thus Vo U o V < U{V[x] X V[y]’
(x, y)& U}.

(2) Let (a, b)e U V[x] X V(] l(x, y)EU}. Then
(a, b)e V[x] X V[y] for some (x, y)c U, Hence ac V[x]which
implies (a, x)€V. beV[y] implles (y, b)€ V. Thus (a, b)E
VoUoV. Therefore Vo Uo V= U{V[x] x V[y]\(x, yle U}.

THEORFM 3.9 Let (X, ) be 2 uniform space, and let
McX x X. Thenﬁ=n{VoMov|ve‘u} .

PROOF Let (x, y)€ M, then for each Ve % , V [x] = V
[¥JanM + @, For each V € % , there exists a symmetric U € «
such that UcU o U<V. Now U [x] x U[y] ¥ 3 ¢ 1f and only

1f (x, y)e U[a]x Ufv]c v(a] x V[b] for some (a, b)&M, that is
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if and only if (x, y)eU{V (] x v[b) | (a, b) € M} By lemma
3.8, it follows that (x, y)e M if and only if (x, y)e (\{V )
Mo v\veu} . Hence ﬁ:n{v oMo v|veu}.

LEMMA 3.9 The interliors of the surroundlinges 1n the
uniform space (X,”W) form a base for the uniform structure
that 1s 2L has a base of open sets.

PROOF If Ue4 , then there exlists a symmetric V € 2,
such that Vo Vo VC U, By lemma 3,8, Vo Vo V 1s a nelgh-
borhood of V. Therefore the lnterior of U contaelns V and
hence int (U)e 2« . Thus the set of interiors of U& U form
a base of 2, .

LEMMA 3.10 The closures of the surroundings in the
uniform space (X,“Ud) form a2 base for the uniform structure 9¢ .

PROOF Let U€egq , then there exlsts a symmetrliec V€ 2L ,
such that Vo V o VcU., By theorem 3,10 VeV o Vo VcCU,
Thus by definition 3.6 the lemma 1s established.

THEQREM 3,11 ZEvery uniform structure has a base of
symmetric surroundings.

PROOF If Ue , then by lemma 3.2 V = UNU™L

is
symmetric, Since VCU, the theorem 1s established.

LEMMA 3,11 Let (X,%2L) be a uniform space, then for each
vew , (T)"L = (v1)

THEOREM 3.12 ZEvery uniform structure 4 has a base of
symmetric closed surroundings.

PROOF Let U€ % , then by theorem 3.3, there exlists

Ve % , such that Vo V o VcU. By theorem 3.10 V =ﬂ{ Wo Vo w\
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We‘lf-} . Tus Vc Vo Vo Vand hence V < U, By lemma 3,11
-1
)

= (v™%). Henmce (V)™! is a closed surrounding. There-
fore V N V'l is a closed symmetric surrounding and eontained

(v

in U. Hence the theorem 1s established.

LEMMA 3.10 Let (X, ) be a uniform space, then each
Ue? 1s a neighborhood of & . (However, not every neighbor-
hood of A 1s necessarily an element of X .)

PROOF (1) Por each Ue 4« , there exists a symmetric
Ve such that Vo VCU. Then for each xeX V[x] x V[x]c
Vo VcU. HenceU{V Ix] xv (g |xe X} C U, But uiv [x]
x V [x] | x € x} 1s an open set in the product topology on
X ¥ X which contains /A . Hence U is a neighborhood of A .,

(2) Let (R, %) be a uniform space where R is the set
of real numbers, and % is the usual uniformity on R. The
set {(x, y)‘ Ix - y|< 1/ (1 + Iy\)} is a neighborhood of A
but not a member of 4 .

THEOREM 3,14 Let (X,2() be a uniform space, then the
followlng are equivalent.

(1) X 1s T,- space (2) 0 %U’UE‘?{} =N .

PROOF (1 ) Let X be TQ- space and assume that there
exist two points x, y€X, x # y such that (x, y)GO{U[U e‘u}.
For each Uc 4, chose a symmetric V€U such that V o VCU,
Then (x, y)€ V. Hence xe V[y|c U[y) end ye vixlcu[x].
Thus U [x] NW{y] # # for each U and We« . Hence X is not T,
vhich is a contradiction., Therefore, n{U | Ue‘u}: A .

(2) Assumeﬂ{Uer‘u}:A . Ifx, y€X and x # 7y,
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then there exlsts U€%« such that (x, y) ¢ U. This implies

¥ ¢ U{x] . Also (y, x)¢ V for some Ve U and hence x¢ V[y].
Thus X is a T2- space.

THEOREM 3.15 Let (X,2{ ) be a uniform space, Ac X such
that U[a] = A for some Ue<4 , then A is both open and closed.
PROOF (1) Let xei. Since X =nﬁJ[A] ]Ueu}, then

er[AJ which implies x€ A, Hence A 1s closed.
(2) Let x€ A, then U[x]C A and A is open.

COROLLARY 3.1 Let (X,”A) be a uniform space, then for
any ACX and U&E€¥U , UiUn[A]\n =1, 2,...} 1s both ocpen and
closed, .

PROOF Let U[AJU U?(4]U... be such set. Then U olU[a]U
v2Ju...} = v [aJue[aJu...cua) U vBl4] ... . Thus, by
theorem 3,15, this set is both open and closed.

DEFINITION 3,11 ZLet (X,%{) be a uniform space. A uni-
form neighborhood of ACX is a set which includes U{4] for
some Ue U« .

LEMMA 3,11 Every uniform nelghborhood of A 1ls a neigh-
borhood of A.

THEOREM 3,16 Every nelghborhood of a compact set is
a uniform nelghborhood,

PROOF Let X be a neighborhcod of a compact set K. For
each x€ K, choose U € % such that Uy o Uy [x]e ¥. Since
K 1s compact and is covered by {Ux [x] | X € K} , then 1t has
a finite subcover {Uxi [xﬂli =1, 25000, n} . KcX =
ﬂ{U [x] IU E‘u}c w[K]JcN. Hence N is a uniform neighborhood
of K.
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EXAMPLE 3.9 The interval (o, 1) is not a uniform neigh-
borhood of its subset of rational points with the usual uni-
form structure. ILet A ='{x [x € Q, xe&(o, l)}where Q 1s the
set of rationals. Assume that (o, 1) is & uniform neigh-
borhood of 4, then there exists U, = {(x, y)l |x - yk%(e > o)
such that AcU [A} € (o, 1). But this is impossible. There-
fore (o, 1) is not & uniform neighborhood of its subset of

rational points.

B. UNIFORM CONTINUITY

DEFINITION 3.12 Zlet (X,4) and (Y,V ) be two uniform
spaces, then the function f: XY 1s called uniformly cont-
lnuous if for each Ve4/ , there exists Ue4{ such that (a, D)€ U
implies (f (a}, F (b} )€ V.

DEFINITION 3,13 Let f: X—Y, then define the function
f x f denoted by f, from X x XY x Y by £, (a, ) = (£ (a),
£ (v) ).

LEMMA 3,12 Let f XxX-=>Y xY, then f 1s uniformly

o°
continuous if and only if fEl (V) € U for each Ve , where
U and %V are uniform structures on X and Y respectively.

EXAMPLE 3,10 The function f: R—>R defined by f (x) = 13,
where R 1s the set of real numbers, ls a homeomorphism of R
onto itself which is not uniformly continuous with respect to
the usual uniform structure.

LEMMA 3.13 If the function f: (X, %)— (Y,47) 1is
uniformly continuous, then f 1s continuous iIn the 1lnduced
topologies.

EXAMPLE 3.11 The identity mapplng of a uniform space

onto itself is uniformly continuous.
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EXAMPLE 3.12 Every mapplng of a dlscrete unliform space
into a unlform space 1s unlformly contlnuocus,

DEFINITION 3,14 If'»t:L and ‘uE are uniform structures on
a set X, then %, 1s said to be finer than MQ if U5 «%,.
(or ‘u-e

THEOREM 3.17 Let %

15 saild to be coarser than & 1).

10 ‘%2 be two uniform structures on

X. Then @Ll is finer than w©, if and only 1f the ldentity
mapping 1: (X, 44-’-1)_>. (X, u2) 1g uniformly contlnuous.
PROOF (1) ZLet % O 4, and conslder 1: (X, %)—>
(x, ‘?f"e). Glven Ve %,, then 171 (v) = ve %, end hence 1
1s uniformly contlnuous, -
(2) Let 1: (X, ‘“1) - (X, &2) be uniformly continuous,

then given Ve#%,_, 171 (v) = Ve %,, Hence %, D 462 .

1
THEOREM 3,18 1Let ‘ul, ?(, be two uniform structures on
X. Then ‘«’él is stronger than if-—e 1f and only 1f the ldentlty

mapping 1: (x,ﬂl)—+(x, ‘ZLQ) 1s continuous.

DEPINITION 3.15 A& cover®C =1{C,} of a uniform space
(X, ) 1s called a uniform cover, if there exists U € % ,
such that for each xe€X U[x] c Ci for some Cie C . That
1s {U[x] | xe X} refines ‘C .

THEOREM 3,19 Let f: (X, %«)—>(Y,%). Por each Ve Y
set Ty = {f'l (v [y] ) | y € Y}. Then f is uniformly cont-
lnuous 1f and only if‘-cv ls a uniform cover of X for each
Ve 97 .

PROOF (1) Suppose that f 1s uniformly continuous and

Ve 47 . Ify=1 (x)€Y, then there 1s U€ 2« , such that
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£ (U {x] )< v[y] and so that U[x]c =L (v [y] ). Hence
CCV i1s a uniform cover of X.

(2) Conversely 1f V€ 97 , then there exists a
symmetric W€V such that W o WCV. By hypothesisTy is a
uniform cover of X. Hence there exists U€ %, such that
U[x) is included 1n some member of T, for each x€X. Let
(x, X,)€U, then there exists y € Y with £1 W [y > U[xl-) .
Hence (f (xl), f (x2) e H[y] x W[y}c:w o WV and therefore
f 1s uniformly continuous.,

THEOREM 3,20 Every open cover<C of a compact uniform
space (X, ) 1s a uniform cover,

PROOF Tet C = [ci} be an open cover of X, then for each
xy € X, choose Cy € ¢ with xy € Ci and a surrounding Vy
such that v, [xi]C Ci . For each Vie U , choose a sym-
metric U, € 4 with U, o U, V, . The class iUi [_xi]lxie‘-: X}
1s an open cover of X. Slnce X 1s compact there 1s a2 finlte
subcover gUik [xik] tk =1, 2500e, n} « Set U = ]ﬁl Uik .
Then xe€ X lmplies x € U4y [xik] and hence U[x]CU o Usy [xik]C
Uje © Usy [xik]cvik [xikjccike C . Thus Tis a uniform
cover.

THEOREM 3.21 Every contlnuous function f from a compact
uniform space (X,%) into a uniform space (Y,4”) 1s uniformly
contlinuous.,

PROOF Given V€ 47, then for sach xeX, £ - (v [f (x)])
1s a neighborhood of x, since f is contlnuous and V [f (x)]

1s a nelghborhood of f (x). Set CCV = {i‘"l (Vv [f (x)] )Ixe X}.
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Then %1v 1s an open cover of X. Slnce X 1s compact then
by theorem 3.20, ‘Cv is a uniform cover. Hence by theorem
3.19 £ 1s unlformly contlinuous.

THEOREM 3,22 A compact topologlcal space has atmost
one unlform structure which 1s compatible wilth 1it.

PROOF Let (X, t) be a topologlcal space. Assume there
exist two uniform structures 4"1' %, on X compatible with t.
Define the ldentity functlon 1: (X, 4¢l)->(x, %,). The family
GCU :{U [xillxié X, Ue @(2‘3 1s an open cover of X. Also
{i‘l 1§ [xi] ‘ x, € X} = {U [xi_]} 1s an open cover of X. Then
by theorems 3,20 and 3.19 1 1§ uniformly contlinuous and hence
it 1s continuous. Therefore by theorem 3,18 ‘u’l 1s stronger

than U . which 15 a contradiction, Hence ‘2(1 = U .

2 2

EXAMPLE 3.13 Consider the interval (o, o0) with the
usual uniformity. Then the collection T = {(x - %, x) \ x> 1}
1s a cover for (o,-c) but 1t is not a uniform cover,

EXAMPLE 3.14 Consider the interval (0, oc0) with the
usual uniformity. Then the collection “TC = {(x, %)‘ o<x<1}
is a2 uniform cover.

DEFPINITION 3.16 A pseudometric on a set X is a function
d on X x X Inte R, the set of real numbers, satlsfylng for all

X, ¥, 2€X:

(1) d(x, y)2> o (2} d(x, x) = o

(3) d(x, y) = d(y, x) (4} d(x, z}<£d(x, y) + d(y, z)

LEMMA 3.14 Let d be a2 pseudometric, then for each pos-
itive number r, let Uy . = {(x, y) | d (x, y)<’r} . Then the
]
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family %y = { Uy o | r e R+§ 1s a base for a uniform structure
y
on X.
LEMMA 3.15 A non-empty family D of pseudometrics on X

forms a unliform structure on X if 1t satisfies the following

axioms:
(1) If d1, d2 € D, then d1v d2€ D where dtv d2 = sup
(d1, d2)t

(2) If e is a pseudometric, and if for everye > o,
there exists d ¢ D and 8 > o, such that d (x, y)< 8 implies
e (x, y)€€ for all x, ye %, then e € D.

LEMMA 3,16 Tet $ be a ¢ollectlon of covers of a set X
such that (1) If @ ,(Bare members of$, then there is a
member of $ which is a refinement of both®@ and (3, (2) if
@& &, then there 1s a member of % which is a star refine-
ment of @ ; and (3) 1f (B 1sg a cover of X and some refinement
of Bbelongs toP , then B € P . Then the family Q‘B :{
T‘.Ia ] @€‘%j’ where UQ = U {G x G |G€a‘} is a base for a
uniform structure on X. é% ls precisely the family of all

uniform covers of X.



CHAPTER IV
UNIFORMIZATION PROBLEM

DEFINITION 4.1 A topological space (X, t) is sald to
be unliformizable 1f there 1s a uniform structure % on X
compatible with 1it.

LEMMA 4.1 ZLet (X, 2¢) be a uniform space, A < X, then
w ={U NAXA |U€‘u3 1s s uniform structure on A called
the relative uniform structure.on A. (A, 4%) 1s called a
subspace of (X, % ).

THEOREM 4.1 Every subspace A of a uniform space (X, %)
is uniformizable.

DEFINITION 4,2 Let (X, t) be a topological space, then
1t is called quasi-uniformizable 1f there is a quasl-uniform
structure on X compatible with it.

THEOREM 4,2 Every topological space 1s quasi-uniformizable.

PROOF Tet (X, t) be a topological space. Set %s =
{o xovo® xxloe t} . Claim that % is a subbase for
8 quasli-uniform structure on X. To show this we need to
verify axloms Us[i]and US[B]. Axlom Us[i] 1s satlisfied since
A < s for each S e Q(s. let (x, y)€ 8 o S, where S & ‘ZLS,
then (x, z) € 8, (z, y)eS for some z€ X. Since S=01x QU
0 x X, then there are two possibilities: (1) If xe€0,
then y, z € 0 and hence (x, y)€0 x 0cS. Thus 8 o Sc 8.

(2) If xeo0°%, since yeX, then (x, y)e 0° x X< S. Thus

31



32

S o 5<S. Hence axiom U (3] 1s satisfied.

The quasl-uniform structurefP Induced by QLS ls ecalled
the Pervin-quasl unlform structure,

THEOREM 4.3 Every pseudometrlc space 1s uniformizable,

PROOF Let 4 be a pseudometrlec on a set X, t 1s the top-
ology 1nduced by d. Conslder the sets v, ='{(x, y)|l 4 (x, )

<€}where €50, then the family < _ of all sets V. 1s a base

B
for a uniform structure A on X. Denote by t, the uniform
topology assoclated with % . Then a set OcX 1s open in t,,
1f and only if for each x € 0, there exlists U e % such that

x € U[x] 0. But Ue % 1if and only 1f UD V_ for some¢ ) o.
Now 0 € t, 1f and only if O€ t and thus tuz t.

DEFINITION 4.3 A topological space {X, t) 1s completely
regular 1f for any closed set F and for any xﬁtF, there exists
a continuous function f: X— [o, 1] such that £ (x) = o
and f (F) = 1,

DEFINITION 4.4 A diladic scale of open sets 1s a family

{Od} where d € D the set of diadlo ratlonals d = m , where
51

m=o, l,ese, 28, n =1, 2, 3,..., and 0, < 044 for each

4 < dy.

LEMMA 4.2 A topologlical space (X, t) is completely
regular if and only if for any closed set F and xgﬁF, there
exists a dladic secale of open sets {Qd} ‘de D such that
X € Odc F¢ for each deD.

PROOF (1) Let (X, t) be completely regular. Suppose

that F 1s a closed subset of X and x ¢ F. Then by definition



33

4,3 there exlsts a continuous function f: X——)l_g, llwith

f (x) =0 and £ (F) = 1. Since f 1ls contlnuous, then f"l[o, di)
= Oy is open in X, and contalns x. If di(dﬂ’
[o, dj]. Hence f~1 [o, di)c:f"l \:o, dj) which impliles

then[:o, di)c

dl
, then f (a) e (k, 1) which 1s open 1n Eo, l] .

odicodj. Tet ae€0 . Assume that a¢0dj, then f (a.))uzlj .

Let d) <k <d,

Hence a€ g1 (k, 1) = G where G 1s open in X. Hence G('Iod:L :{:
g, 1If beGNOy,, then f (b)€ (k, 1) and £ (b)e (o, d,) which

contradlets our assumption. Thus aé&€ odj and hence 1< od;]'

Therefore {Oda is a diadiec scale of open sets. Clalm that

d dn F. ©Slnce yeF,

then f (y) = 1. ye 045 then f (y) = [o, d) and hence £ (y)=

0.C F® for each d€ D, otherwlse let y&O

1 which 1s a contradictlion, Therefore 0d C F,

(2) Define a function f such that f (x) = o 1if

d
i— [o, l] » Slnce xe0

x€ 0, for each de D, and f (x) = sup{ d |l x 45 Odehere f:
dc:Fc for each d € D, then f (x) = o .
f (F) = sup {m/2n| B =0, l,eee,28, =1, 2,0.. 3: 1.
To show that f 1s contlinuous, conslider the two klnds of open
sets [o, a)and (b, 2] . 1 [0, a) = {x | £ (x)(ﬁa} =
Y { 0glwhich 1s an open set in X, £=% (v, 1] = {

xlf (x))b}: d\;b{ Eg}which is open in X, Hence f is a
continuous functlon,

THEOREM 4.4 WEIL'S THEOREM
A topological space (X, t) 1s uniformizable if and only 1if
it is completely regular.

PROOF (1) Suppose that (X, t) 1s uniformizable, ILet

Xx € 0 where 0 e€t, Hence there exists a uniform structure
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% on X which induces t, with U; [x]CO for some U € %
Select a sequenceiU -n} (n =0, 1,...) of symmetric surround-
2

ings such that U ~(n+1) oU -(n+1)C:'U -n for every n < N.
2 2
0 ===0 U _ for each positive diladic
a'S
n 2P -n

Deflne Ud =U
2
ratlonal 4 = 2 + 2 + 0o + 2 k. Clearly Uy o Uy <
1 1

=N

o=

U for each 4, , d2€iD satlsfylng d

+d. < 1. If
d1 + d2 1 2
O<d1< d2 then Ud 0 Ud - d C—Ud and hence Ud [xj<1int
1 2 1 2 1
(Udeljx]). Define 0,; = 1int (Ud Ix} ). Then Odl . 0d2 .

Since U [x_]co, then x€0,C 0 for each d <1, Hence{OdEis
a scale of open sets satlsfylng the conditlon of lemma 4,2
and thus (X, t) 1s completely regular.

(2) Suppose (X, t) i1s completely regular. Let C (X)
be the collectlon of contlnuous real-valued functlons on X.
Define a set Sf, e = {(x, yl€X x x| I (x) - £ (y)l < eE
(e >o), where fe€ C (X) . Then the family ﬁks of the sets
Sf’ e i1s a subbase for a uniform structure U on X, To show
this 1t suffices to verify axiom Ug (3], since clearly

A< 8, ,ands is symmetric. If S, _ & U let

f, f, e f, 3’
8 = % y then Sf' g ° Sf' g < Sf’ o+ let U be the base
generated by QLS. Suppose F 1s a closed set 1n t, and
X ¢ F. Since X 1s completely regular there exists a feC (X)
with £ (F) = 1 and £ (x) = o, If zeS, ,{x], then|f (x) -
£ (z)]<% . Hence | £ (2)] < % and thus Z¢&F. It follows
that Sf’ 3 [x](\F = @ and so F is closed in the uniform
topology t4 . Thus 'I:c:t,mL . lLet V & Q4B, then V =

1+ 1 n* ©n fy»
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v [x] = Sfl’ ey Cx]n .- F\an, e, [x] .
1

ka’ ey [I] = {-Yi |fk (x) - fk (y) |<eki = f; (fk (x) -

e r Ty (x) + ey ), since £ (x) - e£ (y) (fk (x) + e.

It follows that ka’ ey [x]is open in t and thus V [x]

is open 1n t. Hence t A < t and thus t t .

H

COROLLARY 4,1 Every normal space is uniformizable.

This follows from the fact that every normal space 1s
completely regular,

THEQOREM 4.5 Every compact Hausdorff space is unifor-
mizable.

Since every compact Hausdorff space 1s normal the

result follows by corollary 4.1 .



CHAPTER V

COMPLETENESS AND COMPLETION OF UNIFORM SPACES

A. COMPLETENESS OF UNIFORM SPACES

DEFINITION 5.1 Let (X,9L) be a uniform space and Ue w .
A subset A of X 1s sald to be U-small if A x AC U,

LEMMA 5,1 Tet (X,4L) be a uniform space., If two sub-
sets of ¥ A and B are U~small, ther AUB 1s Ug-small,
provided ANB = (@ .

PROOF Let (a,b)e (AUB) x (AUB) . Since ANB $ ¢4 ,
there exlists a ¢ &€ ANB , Then {(a, c)e A x A or (&, c)&

B x B and hence (a, c)e€ U, Also {e¢, b)EU and thus (a, ble
U o U, Therefore AUB 1ls U2-small.

DEFINITION 5.2 A filter.? in a uniform space (X,2)

13 a Cauchy filter 1f and only 1f for each surrounding U,
there is a l-T‘c-:,§£ which 1s U-small,

LEMMA 5.2 A filter % in a uniform space (X,%) is a
Cauchy fllter if and only 1f for each U€e %« , there exlists a
point x € X, such that Ufx]e.F .

PROOF (1) If.% is a Cauchy filter in (X,“¥), then for
each Ue %, there exists Fe$ which is U-small, There exists
axeF. Let yeF, then (x, y)e U and y « U[x]. Hence
FcU[x] which implies Ulxle F .

(2) Let Ue & , then there exists a symmetric Ve %«

with Vo Vo U, By hypothesls, there exists xe X, such that
36
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V(xJeF. V[x] x V[x]cV o YcU and hence & is a Cauchy
fllter.

LEMMA 5,3 An elementary filter % generated by a
sequence {xn}el is a Cauchy filter if and only 1f for every
Ue¥U we can find a natural number N such that (xn, xm) €U
for each n, m>N .,

LEMMA 5.4 Let f be a function from X onto (Y,%V).

Then the family ¥ = {fgl (v) | ve"V} 1s a uniform structure
on X. Furthermore if{3 is a Cauchy filter base on Y, then
g1 (B) 18 a Cauchy filter base on X.

THEOREM 5.1 Every conve;gent filter 1s a Cauchy filter.

PROOF Let.# be a filter on a set X which converges
to x€ X. Then U [x]€% for each Ue %. Hence by lemma 5.1, %
is a Cauchy fllter.

The converse of theorem 5,1 1s not true 1n general; that
is a Cauchy filter need not be convergent.

EXAMPLE 5.1 Consider the metric d on R defined by

a (x, y) = X - ¥
1 +1x| L +1yi

is a Cauchy sequence bhut does not converge. The elementary

\ . The sequence {1, 2y eue }

fllter generated by the sequence 1s a Cauchy fllter which does
not converge.

EXAMPLE 5.2 Let X be a non-empty set. For each finite
partitionw = {Ai ' 1£1<nn } of X, let U = Y A x Ai .
Then the sets U, form a base for a uniform structure<( on
X. The topology induced by A i1s the discrete topology since
for each x € X, the sets {x} and { x} © form a finite
partition of X, Hence if V = ( {x} X {x} YU ( ix} ¢ x {x}c),
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then V [i] = {xj .
An important property for thls uniform space is that
every ultra filter $on X 1s a Cauchy fllter with respect
to U . TFurthermore if X is an infinite set and since 1t
has the discrete topology, then 1t 1is not compact. Hence by
theorem 2.8 there are ultrafilters on X which do not converge.
THEOREM 5.2 A uniformly contlnuous mapplng preserves
Cauchy fllters.
PROOF 1let f be a uniformly contlinuous mapplng from
(X,%) into (Y,¢V) and P is a Cauchy filter on X. Given

VeV, then ;'

(V)e %4 . Hence there exlsts FPe F wlth
FxFCf, (V). This implies that f, (Fx F) = £ (F) x
f (F)cV, Since f (F)e f (%), then £ (%) 1s a Cauchy
fllter.

EXAMPLE 5.3 Let V_ :{(x, y)er* x Y| \z - yl(e}.
Then the sets Vv (€)> o) 1s a base for a uniform structure
on RY . Define a function f: R+——) rY by £ (x) = 1.

X

Conslider the sequence {;;TZ in the domaln of f, Then the
filter .¥ generated by tge sequence 1s Cauchy. Now f (&)
1s not a Cauchy fllter slince 1t 1s generated by the segquence
{n};, which 1s not a Cauchy sequence.

LEMMA 5.5 If .% 1s a Cauchy filter on X and if % 1s
a filter on X finer than % , then 34’ is a Cauchy filter.

LEMMA 5.6 Let % and 47 be two uniform structures on X,
such that 9 is finer than < , If 54 is a Cauchy filter

relative to 4 , then it 1s a Cauchy filter relative to 94 .
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LEMMA 5,7 If F or-{/ 1is a Cauchy filter on (X,4L) and
1f FNG # @ for each F€} and G€/ , then the family ¢ =
{F nelred , Geﬂ}is a Cauchy filter on X.

THEOREM 5.3 Let (X, %) be a uniform space. If .F 1is
a Cauchy filter on X, then 1im % = adn & .

PROOF Let ac adh-% and Uc & . Then there exlsts a
symmetric Ve %« with V o V< U, Since % is Cauchy, then there
exists Fe § , such that F x FcV. Since FNV {a] $ @, then
let e FNV [(al] and (a, b) € V. Suppose x& F, then (b, x)E
Fx FcV. Thus (a, x)e€V o V<U. This implies xeU [a] .
Hence FcU [a) and thus U [a]€ % . Therefore a€ lim. %
Clearly i1f a € lim % , then a € adh ¥ . Hence lim Z =
adh & .

EXAMPLE 5.4 TLet X = {1, 2, 3, 4, 5} . Define V_ =
i(x, y)| both x, ydn or x = y} . Then the sets V, form a
base for s uniform structure on X. Let 5 ={{2} R {1, 2} ’
{o. 3} . {1, 2, 3 L {2, 3, 4, {1, 2, 3, 4}, {2, 3, &, s}
X } . Then % is a Cauchy filter on X, For example
5= {01, 1), (2,2), (3, 3) , (&, 4), (5, 5) , (4 5),
(5, #)} and vy [2] = {2}6,55 . Also lim % = adh.% .

DEFINITION 5.3 Let (X,?) be a quasi~-uniform space
and .# a fllter on X, % 1is % -Cauchy if for every Ue %
there exists x € X, such that U [x]e Z .

In the case of a quasli-uniform space the adherence of a
Cauchy filter is not necessarily equal to its limit. The
following example will show this.
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EXAMPLE 5.5 Let X = {1, 2, 3, 4, 5} and W = {(x, 7))

x < y} » Then W 1s a base for a quasl-unlform structure .
Set $ = ix, {2, 3, 4, 5} } , then % 1s a Cauchy filter
since W[Q) = {2, 3, 4, 5§ } € 4 . Yow adh (F) = X, while
lim 3 = {1, 2} .

A questlon arlises 1f there are quasl-uniform spaces
that are not uniform spaces 1n which the 1llmit of every
Cauchy fllter equals 1ts adherence,

DEFINITION 5.4 A quasl-uniform structure 1s R3 1f
glven x€X and Ueg U , there exlsts a symmetric V &€ 9 such
that Vo V [x] < U[x] .

THEOREM 5.4 Let (X, U) be a Ry~ quasi-uniform space.
If % 1s a Cauchy fllter on X, then 1lim % = adh % .

PROOF Let x* € adh (%), Ue 2 . Slnce % 1s Ry o
there exlsts a symmetric Ve€ <, such that V o V o V [x]eU[x].
There exists a€X with V{ale 5. Slnce V{al] NV [x]# &,
let b € V [a]lNnV [x] . Suppose yeV(al , thenyeVo VoV
[(x]cU[x] and hence V[g]< Ufx] . Thus U[x]€? and x € lin %,
Hence 1im.% = adh.? .

THEOREM 5.5 ILet (X, t) be a compact space. Then every
ultrafilter on X is a Cauchy filter with respect to any uniform
structure compatible with it.

PROOF Let % be a uniform structure compatible with t,
and let.? be an ultrafilter on X. By theorem 2.8 éz converges
and hence by theorem 5.1 5% is a Cauchy filter.

Let (X, 4) be a uniform space and F a filter on X.

Define ' ={U (F] | Feg Ue‘z{} .
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LEMMA 5.8 " 1s a filter on X.

LEMMA 5.9 _;'76* 1s coarser than $ ; that is 3’:*(_‘_ F.

LEMMA 5.10 54* 1s a Cauchy fllter on (X,%) if and only
1f % 1s a Cauchy filter on (X, ).

PROOF (1) Let %" be a Cauchy filter, then given Uea( ,
there exists Vv [F]€ %' such that Vv {F} x v [FlcU . Since
FcV [Fl, then F x FcU and hence .+ 1s a Cauchy fllter.

(2) Suppose ¥ is a Cauchy fillter., If U€ 2 , there
exists a symmetrlc V€4 , such that Vo Vo VoU ., There
exists Fe.f such that P x Fcv . ¥Now V[F] x v [Flev o V o VU,
Hence ,:?v* is Cauchy.

DEFINITION 5.5 A filter $on a set X 1s called an open
filter 1f it has filter base of open sets.

LEMMA 5,11 j;* has an open filter base.

PROOF let U€e4 , then by lemma 3.9, there exists an
open surrounding We U, Tus W [F] € %" and ¥ [FlcU [F] .
Since W[ F] is open, then the sets W [F] form an open filter
base for _7'7* .

LEMMA 5.12 If.% and.,/ are Cauchy filters such that %
is finer than ,/ , then-{is finer than %" .

PROOF Tet U [F]e 54 , then there are two cases:
case (1) If Fe-J , then since FcU[F] , U(Fle 4 .

Hence > is finer ,34* .

Case (2) If F¢ )<7 « There exlsts a symmetric V&€ 4 , such
that V o V€ U. Since> is Cauchy, there exists x€ X with

v [x}eﬂ , and consequently V[x]e$ . Since V [XOF :F g,
let ye V [x]aF. Then x € V[y} . Hence V[x]cV o V[5lcU[y]



and thus U [y]€727. Since y€F, then U [ y]Jc U[F}. Hence
U[F]e {7 and thus 737 i1s flner than _?’*.

LEMMA 5,13 If % 1is a Cauchy filter, then & 1s
a minimal Cauchy filter on X.

LEMMA 5.14 If % and ,J/ are Cauchy filters, then _sc,* =

7(7* if and only if &n )57 i1s a Cauchy fllter.

LEMMA 5.15 If § 1s a filter on X, then ( $ ) ¥ = &%,

THEOREM 5.6 Every nelghborhood fllter J‘ﬂx for
x€X is a minlmal Cauchy filter,

PROOF Since lim u{fx + ¢ , then by theorem 5.1 r/V;
1s a Cauchy fllter., Assume there exists a Cauchy filter.‘i"{
on X which 1s properly contalned in Jﬁx. There exlsts
U [x] Q’.—':;‘r . Choose a symmetric V€ % , with V o V€U, Then
V(x] ¢ P . YNow V[a]e Frfor some a€ X, which implies V[a]e Jlﬂx,
Thus xe€ V[a] end hence a€ V[x], Therefore V[a]<C V o V{xjcU [x]
and consequently U(x}€.% which is a contradiction. Thus d\ﬂx
is 2 minimal Cauchy filter.

DEFINITION 5,6 A uniform space (X, ) is complete if
and only 1f every Cauchy fllter on X converges.

DEFINITION 5.7 A quasi-uniform space (X,™) 1s complete
if and only 1f every Cauchy filter hes non-empty adherence,

DEFINITION 5.8 A quasi-uniform space (X,/) 1s strongly
complete if and only 1f every Cauchy filter converges,

LEMMA S5.16 In a uniform space completeness and strong
completeness are equivalent.

PROOF TLet (X,) be a uniform space, If % 1s a Cauchy

filter on X, then by theorem S.,3 1lim FH = adh % .
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THEOREM 5,7 In a uniform space completeness is invarlant
under uniform isomorphism,

PROOF ILet (X, %) be a complete uniform space, ILet f
be a uniformly continuous function from (X, ) onto (Y,4 ).
let & be a Cauchy filter on (Y, ). Then £ (%) 18 a Cauchy
filter on X which converges to some point x&€ X, Now for
each VeV, £°' (v [£ (n)]) = £;' (V) [x]e £7! (#). Hence
v [f (x)] € % for each VE ¥V , Thus f (x) & lim?: and
hence (Y,% ) is complete,

EXAMPLE 5.6 On any set X, the discrete uniform structure
{U v <X x X, U:Dﬂ}is complete.

THEOREM 5.8 A closed subspace of a complete unlform
space 1s complete.

PROOF let (X,4 ) be a complete uniform space and (Y,*@)

a closed subspace of X, where "V—Y = {U Ny xy | U€‘u]. If F
18 a Cauchy filter on Y, then .2 1s a Cauchy filter bvase on X,
Since X 1s complete, _?; converges to a point a€ X. Since FcY,
then adh #=NFcY . Now a ¢ adh_ % <Y and hence Y is complete.

THEOREM 5.9 ZEvery complete subspace of a Hausdorff
uniform space 1s closed,

PROOF Suppose (Y,"uY) 1s a2 complete subspace of the
uniform Hausdorff space (X,% ). Let y ¢ Y, then U [y} N Y + &
for each U€ % . The family of sets .F ={U (y] 0 vlve u}
1s a Cauchy filter in Y. Hence & converges to acY. Now .f
1s a filter base in X and since U[y]is an element of the filter
in X generated by P for every U € % , then yelim % . By

theorem 2,4 a =y € Y. Hence Y 1s closed.
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THEOREM 5.10 A compact subspace of a complete Hausdorff
uniform space is complete.

THEQOREM 5.1l Every compact uniform space 1s complete.

THEOREM 5,12 Let Y be a dense subspace of the uniform
space (X, ), such that every Cauchy filter in Y converges to
a point in X, then X 1s complete,

PROOF Let.F be a Cauchy filter on X. Consider the
family (/3 ={U [(F]ny lueu and FGS"} . Then J is a Cauchy
filter in Y which converges to a point xeX . lLet Ug U ,
then there exlsts a symmetric Ve , with V o VvCU, Slnce
v[x]a(v[F]OY) + 8, 1t follows that V [x]o V[F1$ 8.
Therefore U [x] N F + @ for each Fe% . Hence F converges
to x and X 1s complete.

EXAMPLE 5.7 Consider the space (C* (X), d) where C* (X)
is the set of all bounded contlinuous real functlions on X and
d is a metric on it defined by d (f,g) = sup {|f (x) - g (x)]
|x:ex} then G (X) is complete,

DEFINITION 5.9 A (quasi) uniform space (X,%{) is called
totally bounded i1f for every U€4 , there are finlitely many
sets Al""' A in X such that:

n

(1) Ai x Air:.U and (2) Uy Ai

DEFINITION 5.10 A (quasl) uniform space (X,«) is

= X for 1<1i4n .

called precompact 1f for every Ue€ 24, there are flnitely many
points X;,..s, X € X, such that Li U [xilz X .

LEMMA 5,17 Every totally bounded gquasli-uniform space
ls precompact,

THEOREM 5.13 A unlform space 1s precompact 1f and only

if it 1s totally bounded,



PROOF (1) If (X,%U) 1s & totally bounded uniform
space, then by lemma 5,15 1t 1s pre-compact.

(2) Suppose that (X, ) 1s pre-compact. Let Ue 2 ,
then there exists a symmetrle V€ % such that V o VCU,

There are flnltely many points X1y eesy an.X, such that

U V[xi]: X where 1 £ 1 € n. Fow V[x,] x V[xi]cv o VU
and hence (X,4% ) is totally bounded.

THEOREM 5.14 A uniform space is totally bounded if and
only i1f every ultrafilter is a Cauchy fllter.

PROOF (1) Suppose (X, 4% ) is pre-compact, then given
U ¢ ¢« there are finitely many poilnts xl,..., xh_e X, such
that U U {x,]= X where 1 £ 1 ¢ n. Let % be an ultra-
filter on X. Since X € 3, then at least one of the U [xi']e.?'.
Hence % 1is a Cauchy filter,

(2) Assume that (X,%) 1s not pre-compact. Then set
B = fx -~ U (4] ]2 1e a finite subset of x} for some U€ U .
Then (3 1s a filter base on X. Let . be an ultrafilter on X
containing (B . If -3 is a Cauchy filter, then U [x] e %
for some x€X. But X - U [x]€ F which 1s a contradiction.
Hence 4? 1s not a Cauchy filter on X.

THEOREM 5,15 A uniform space is totally bounded if and
only 1f every fllter 1s contalned in a Cauchy filter.

THEOREM 5.16 A uniform space is compact 1f and only if
1t is totally bounded and complete,

PROOF (1) Suppose (X, ) is a compact uniform space.
Then by theorem 5.5 every ultrafilter 1s a Cauchy filter,

Hence (X, 9U) 1s totally bounded and complete,
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(2) Assume that (X,%) 1s totally bounded and com-
plete. Hence every ultrafllter on X 1s a Cauchy fllter
which converges 1n X, Thus X 1s compact.

THEOREM 5.17 Every topologlcal space has a totally
bounded quasl-unliform structure compatlble with 1t.
PROOF The Pervin quasi-uniform structure is totally

bounded.

B. THE HAUSDORFF UNIFORM SPACE ASSOCIATED WITH UNIFORM SPACE
Let (X, ) be a uniform space. Set C =ﬂ{V [ Ve‘u.}.
LEMMA 5,18 (1) C >4 (2) Cc=¢2=ct
DEFPINITION 5.10 Deflne a relation~ on a unlform space

(X,%) by x~y 1f and only if (x, y) € C.

LEMMA 5,19 The relatlion~ on X 1ls an equlvalence
relatlion,

LEMMA 5,20 Let E denotes the set of equlivalence classes
of ~on X. Then X = [x] ={yexl x~y} =c[x}.

LEMMA 5.21 Define ¥V by (X, ¥) € V if and only if there
exists x e X, Yo € ¥, such that (xyy ¥,) € V. Then (x, ¥)
€ ¥ if and only if (a, b) € C o Vo C, for all a€ X and
b e §'.

v v

LEMMA 5,22 Set Uy ::{V lve ‘u], then U, forms a

uniform structure base on i.

A
THEOREM 5.18 If % is the uniform structure generated by

\4

v v Y
U,, then % 1is Hausdorff. (X,%) is called the Hausdorff

uniform space assoclated with (X, 4%().
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PROOF Suppose (X, }) < I} for each \Ifle 4t . Then
(x, YY) € Co Vo C for each x-s;, ye;r and Ve« . Now
(x, y)e N {c o VoC(C lVe‘u}Cﬂ[V o Vo vl\re'u} = C,
since‘{v15 |V€‘u} 1s a base for %« , Thus (x, y) € ¢
and X = ¥. Hence (X,4%) is a Hausdorff space.

LEMMA 5.23 The function f from X onto X = X /~ defined
by P (x) = X is uniformly continuous.

PROOF Let {IG ‘EI « Since U €« Co Uo C, then C o U o CeU.
Let (x, y)e C o U o ¢, then (x , xo)e c , (xo, yo) € U and
(yo, ¥) € C for some (xo, yo)€U. Now x € 5’:, Yo€ yv, hence
(x, ¥) € {J. Hence £ 1s uniformly continuous.

DEFINITION 5.11 Let (X, t) be a topologlecal space, Y is
a set, Let f be a function from X onto Y. Then the guotlent
topology on ¥ is @ ={0<¥ | £71 (0) 1s open 1n t].

THEOREM 5,19 The uniform topology of (\f,&) coincides
with i1ts quotient topology under the mapping _f .

PROOF (1) Let % denotes the uniform topology assoclated
with Qzand Q denotes the quotient topology. By lemma 5.18
FP 1is continuous. Let O 6%1. Since f 1is continuous, then

}l (0)e€t. Hence 0€Q and thus \{:CQ.

(2) Let G€Q. Then }1 (G)=t. Hence for each
x € P~1 (G) there exists U € « with U [x}c F! (6). It follows
that f(U [x) } € G. There exists a symmetric V € “« such
V2 € U. Iet ¥ € ;I[;] . Then (x, })E‘} and thus (x,, y )€
CoVoCcC VBCU for all x, € X and Yo € } Hence

(x, y) € U which implies ye€ U (x] . Therefore P(y) =
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ye £ (u [x] ). Thus v [x]<$ (U [x] <6.) It follows

v Vv
that G € * and hence Q < t. Thus Q = t.

C. COMPLETION OF UNIFORM SPACES

Let ‘}\{ be the set of all minimal Cauchy fllters on a
uniform space (X,% ) . Define v = s\( F,V)F, 4 are
minimal Cauchy filters on X such that -#N ¥ contalns e

V=gmrall set .S .
A

A
LEMMA 5.24 Set JU'B = { Vv|veawand v1s symmetric}.

A
Then QLB forms a base for a unlform structure on X.
A
PROOF (1) Let % € X. Then glven a symmetric Ve %,
there exists F € 3~ which 1s & V-small. Hence (F ,% )¢ %.

A

fa) ~
(2) Let Vi, V€ ‘uB and let W = V, 0V,

A A
symmetric, which implies W € ‘L‘zB. If (% ,Y)e W, thenFaH

Then W 1s

contalns a W-small set and consequently _?»n*ﬂcontains a

A A
V,-small set and a V,-small set. Thus (& , )€ v,0v
A

A A
and hence WC Vlr\ V2. R

A
(3) From the definition each V € {MB 1s symmetric and

2

hence axlom UB [3] 1s satlsfled,
A A
(4) Let Ve ‘MB, then there exists a symmetric WeU ,
2 A A A
such that wcvV., If (% ,4/)ewo W, then (F, H )< W,
A A
(H,#] )e W for some HeX. Let F, be a W-small set such that

P € % A Hand F. be a W-small set such that F.€ HA S .

2 2
By lemma 5.1 Fll.lF2 is a H2-sma11 set and hence V-small.
A A A A
Since F,UF, € Fnt, then (P, ) € V and hence W o WC V.

" A A

Thus "MB 1s a base for a uniform structure % on X.



LEMMA 5.25 (ﬁ,é}.) is a Hausdorff space.

PROOF By theorem 3.14 1t 1s sufficlient to prove that
N {6 \V is symmetric} = AD . Let us assume the contrary,
then suppose (F , ) € nﬂ\?}. set B = { FUF(IFe,?s,
P'e J |, then (B 1s a filter base on X. Let H be the filter
generated by 43 . If Flle H, then F > FUF  for some Fe F,
F’E;(7 . Hence FQZD F, FﬁD F and therefore H 1s coarser
than & and %/ . Now glven any symmetric Ve «, there is
a V-small set ¢ € Fn 7U and hence GUG = Ge€H, Thus H 1s
a Cauchy filter. Since.? and x/ are minimal Cauchy filters,
then # = X/ = H., Hence N i‘?} = ZAS and thus ;( 1s Hausdorff,

LEMMA 5,26 Define a function 1: X——-r;( by 1 (x) =
(/fﬂx where %ﬁx is the nelghborhecod filter of x. 1 is
uniformly continuous.

PROOF By lemma 5.8 the neighborhood filter :/V;[ of
2€ X is a minimal Cauchy filter and hence L/V;ii i‘. Let
‘;? € ’?2 , then there exists an open symmetric W& % , such
that Woc V. If (x, y)€ W then 1, (x, 5) = ( N, d‘/y)-
Since W [y] € \)V; then W [y] x W [y] < W o WeV. Hence W(y]
c (_/t/; n r/‘/)y and thus ( /x’ /y)e‘?. This implies
that 1 is uniformly continuous,

LEMMA 5.27 Let (X, %) be a Hausdorff uniform space,
then the function 1: X—-)% defined by 1 (x) = t/‘px is
one to one., Purthermore 171 4 (X)=»(X) 1s uniformly
continuous,

PROOF Assume for two distinct elements x, y€ X that
1 (x) =1 (y); that 1is /}ﬂ = / This contradicts

X y
the assumption that (X,4 ) is Hausdorff. Thus 1 is one to
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one mapping, Iet U € U , If ( d'ﬂx, Wy)eﬁ then
there exists N € c/lf 2| J? such that N x NCU. Hence
(x, y) = 171 ¢ c/f/’x, VV;) € U. Thus 1~ is uniformly
continuous.

LEMMA 5,28 Let (X, ) be a uniform space, then i (X)
is dense in X, where 1 is the function defined in lemma 5,26 .

PROOF Let ,5 € % If € U , there existe an open
symmetric V € % such that VOc U, There exists F € F with
FxPFPcV, By lemma 5,11 there exlists an open set 0€ 7 such
that 0 x 0oc Vv {F) x v {FJC v’cvu. 1If xe0, thenxe V [F]
Hence V[F] € c/l/;. Thus (.9, dl/x) ) € U and hence

Jie 0 ( % ). Therefore g (% )In1l (X) 4 § for each
P e £ end § € 4t . Hence 1 (X) is dense in %.

THEOREM 5,20 Let (X,% ) be a uniform space, then (?C,:l)
s complete.

PROOF Let A7 be a Cauchy filter on i (X), them 1~1 (W)
= H 1s a Cauchy filter on X. E' ={U[F}|Fe, veu] is
a minimal Cauchy filter on X coarser than H. Then 1 (H*) =%
is a Cauchy filter on 1 (X) coarser than X/ ., If U€ U ,
there exlsts an open symmetric V € « wilth V3 < U . Slnce H
1s Cauchy, there exists F€H such that F x FcV. Hence V [F)
xV [fcv’cu ., letae Vv [(F], then Vv [F} € JK:. Hence
(5%, N) € U and thus N € U{E*]. ohis implies
I? [H*JG A/ and nence 7 converges to B i Therefore
by theorem 5.12 (}?,‘ﬁ) 1s complete.
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DEFINITION 5.12 Wher (X, ) 1s a Hausdorff uniform
space, then (ﬁ,ﬂg) 1s said to be the completion of (X,%).

LEMMA 5.29 Let f be a uniformly continuous mapping of
X into s complete Hausdorff uniform space Y, then there 1s
a unique uniformly contlinuous mapping g: f—4'Y such that

N
the dlagram x;___l_*wx comrputes; that is f = g o 1 .

f‘L s
ny’ g

PROOF  Define a mapplng g, : 1 (X)— Y, such that
g (1 (x) )} = 1im £ ( 04/;) . Since f 1s uniformly contin-
uous, hence it is continuous, then lim f ( ﬂA/Ox) = £ (1lim dVQx)
= f (x). Thus g, © 1 = f. To show that g  is uniformly
contlinuous in 1 (X), let U* be 2 surrounding in Y. Since
f: X—> Y 1s uniformly contlnuous then there exlists a symmetric
surrounding V in X, such that if (x, ) e Vv, then {f (x),
£ (x) ) il LIt (1 (x), 1 (X)) e G , then 1 (x),
i (t’) have a neighborhood of both x , ¥ 1in common which
1s V-small and hence (x, x' ) €V, which implies (go (1 (x) ),
g, (1 (X)) e U* since f (x) = &o (1 (x) ) end £ (X ) e Eq
(1 (x’) ). Hence €, 15 uniformly continuous in i (X).
Since 1 (X) is dense in i by lemma 5,28, then g  can be exten-
ded to g: §—4 Y such that f = g o 1 and it is clear that g
is the unique uniformly continuous mapping from % into Y.

LEMMA 5,30 The completion of a Hausdorff unliform space
is unique; that 1s any two Hausdorff completions of a Hausdorff
uniform space (X, %} are uniformly isomorphic.

FRCOF This follows immediately from lemma 5,.29.



THEOREM 5,21 If (X, ) 1s a totally bounded uniform
A A
space, then (X,4¢) is compact,

A

PROQF By theorem 5,20 (5\{,3{) 1s complete. Let ?Je A,
then there exists a symmetric )\\Te ‘22 y such that "\J o ?fc: %.
% = an (1 (X) x 1 (X) ) is symmetric in the relative uniform
structure on i(X)., ILet W = 1'2'1 (F?’), then since (X,%) 1is
totally bounded, there are finltely many polnts X1y Xpgenns

N
x, € X such that U w [xj].: X where 1 £ ] £ n. Hence

U 1’:*]:1 (xj)] =1 (X) where 1 £ J £ n, If F € E, then
(%.,1(x))e€ v for some 1 (x) <€ 1 (X), since 1 (X) 1s

A A
dense in X. Now (i (x), i1 (x,) ) € WcV and hence (9, 1

(
A A A j A A
(xj) )< Vo ValU. Tus F € U[i (xj)] . Hence X =
A A A
U{U [1 (xj)]], where 1 £ J € n and 1t follows that (X, %)
A A
is totally bounded. Therefore by theorem 5,16 (X, %)

is compact.



CHAPTER VI

SUGGESTIONS FOR FURTHER STUDY

An interested problem 1s to characterlze spaces with
unique uniform structures. The following condltions are
equivalent for any completely regular space X [5] :

(1) X admits a unigue uniform structure,

(2) The stone-¥ech compactification @ X contains
at most one point not in X.

(3) l®x - x| ¢ 1-

(4) X has a unique compactification.

(5) Every function in c* (X) is uniformly continuous
in every admissable structure on X,

(6) For any two normally seperated closed subsets of
X at least one of them is compact., This 1s due to Doss (1349)

[10].

The space of ordinals W and the Tychonoff plank T are
exemples of non compact spaces with unique uniform structures,

In 1959 Ga1l [10] proved that there 1s a one to one
correspondence between all totally bounded uniform structures
and all Hausdorff compactification that can be defined on =&
completely regular space.

An lmportent theorem due to Shirota [5] which states
that a completely regular space in which every closed discrete

subspace has non-measurable cardinal admlts a complete uniform
53
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structure i1f and only if it 1s real compact.

The concept of locally uniform spaces has been recently
discussed. The interested 1s referred to James William [12].,

If (X, t) is completely regular space and ch =V {‘uf@t
15 a compatible uniform structure.} v+ One would l1ike to have
a description of Qif.

The concept of fine spaces which are the spaces having
the finest uniform structure compatible with the topology
has been recently studied. Central results are Shirota's
Theorem and Glicksberg's (1959). One would llke to have a
complete answer of the gquestion '"When is the product of
fine spaces flne [7] . ‘

Unifeorm structures on topologleal groups were first
studied by Weill (1937). There are by now a number of texts
devoted to the subject such as Pontrajagin (1939), and Mont-
gomery and Zippin (1955). Now every topological group is
completely regular and hence it is uniformizable.

A different approach to a uniform and quasi-uniform
structure is due to Csaszar [ 3] who considered them as part-

lcular cases of syntopogenous structures.
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