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CHlPTER I 

INTRODUCTION 

The theory of abelian groups is that branch of algebra which 

deals with groups that have the additional property of cOlllBl1tativity. 

Although this may not seem to be that striking a deviation from 

general group theory. this added property almost completely changes 

the lIethods an:! basic ideas of the stlldy of these groups. Since 

every abelian group is, of course, a group, all the results that can 

be determined about general groups .hold for abelian groups. However, 

there is an 1Jmnense amount of knowledge that has been added by simply 

allowing the oolllllltltative property as part of the structure. This is 

why the stlldy of abelian groups is such an interesting field. 

One of the basic problems whioh confront group theorists is 

dete~1ng the structure of a given group and then classifying the 

group with others which have the same or siBilar structure. TbWl. it 

can be said that the classification of groups l118ana a schelll8 that 

tells when two systellB are essentially the same. This idea manifuts 

itself in trying to set up isollorph1sDlS between two groups so that 

theorems that state when groups are isomorphic are of extrelllEl 1IIIportance. 

Another problem conoerning the structure of groups is in stating the 

conditions which force a group to decompose into familiar subgroups or, 

hopefully, less cOlllplicated groups. In other words. the group theorists 

try to break down a group in hopes that it beco_s a little more 

fSlll1liar. 

It is the purpose of this paper to present the results that deal 
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specifically with classifying and decomposing abelian groupe. In the 

finite case, the problems haw been resolved, where as for infinite 

abelian groups, the structure of 01'l1,y special cases has been determined. 

Although there is an immense amount of material concerning the structure 

of abelian groups, this paper is intended to provide a reasonable 

comprehensive SUlllll&ry of the main results concerning the stncture of 

abelian groups. It is assumed that the reader has had SOIlll!l exposure 

to abstract algebra, set theory and use of transfinite tools, such as, 

Zorn's Le_ and the Axiom of Choice. 

In Chapter n, a brief review of SOJlll!l of the more common terms 

and theorems in ele_ntary group theory which will be used throughout 

the paper is presented. 501118 of the terms are basic and are not 

defined although a source is listed which explains the terms in depth. 

Likewise some of the theorems are stated without proofs. Finally, 

there are some defini tions which may be new to the reader or are 

presented because they have been defined differently according to 

various authors. The heart of the paper begins in Chapter III where 

the theorems which ultimately classify all finite abelian groups are 

presented. In Chapter IV attention is focused on in!1.n1te abelian 

groups and a discussion of.torsion and torsion free groups is presented 

as well as the classification theorem for the divisible, free and 

finitely generated groups. 

FrOlll this point on, whenever the tem group is used, it is 

understood that the group is abelian and, as is custom&!7, that the 

binary operation is addition (+). Also the identity is 0 and the 

:1rJTerses of ele_nts are the negatives. Note that there will be no 

distinction made in notation between the integer 0, the group identity 
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CHAPTER II 

BASIC DEFINITIONS AND THEOREMS 

Even though the term abelian group has been used a number of 

times already, a precise definition is given to avoid confusion. 

DEFlllITION 2.1. An abelian group G is a non-elllpty set with a 

binary operation + defined on the eleJIIBnts in G such that 

(1) the operation is closed. a.binG illlplies a+b is in Gr
 

(2) there is an identity 0,
 

(:3) each eleJIIBnt has an inverse in G,
 

(4) the operation is associativel (a+b)+C = a+(b+c) for all a.b,c, 

(5) the operation is cOllllll1tative I a+b = b+a for all a.b. 

The following table of notation is common and definitions or 

explanations. if needed, can be found in the book Infinite Abelian Groups 

by FUchs [2J • 

na = a+a+a+•••+a (n times) multiple of a 

I GI order of a group G 

BfA B is a subgroup of A 

B(A B is a proper subgroup of A 

a+B coset of a modulo B 

I AI B' index of B in A 

AlB quotient group 

<a> cyclic group genera ted by a 

(S) '" (ai) iEI subgro'¥' of It. generated by 
S = {ai~ • a subset of A 
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{ ~ai 1Ii integers linear combination of the ai's 

I (a>1 order of an element a 

H~G H is isomorphio to G 

en cyclio group of order n 

Zn group of integers modulo n 

z group of integers 

Q group of rationals 

{B:t5 iU family of groups or subgroups 

DEFINITION 2.2 It. hOlllomorphism fIG...,.H is a function from one 

group G into another H with 

f(a+b) =f(a)+f(b) for all a,b in G. 

f is a monomorphism if f is one to one and an epimorphism if f is onto. 

DEFINITION 2.). An isomorphism is a homomorphism which is also 

a one-to-one an:! onto oorrespondence. An endoDlOrphism is a homomorphism 

from one group into itself. 

DEFINITION 2.4. If f is a homomorphism from G into H. then the 

kernel of f is the set br(f) ={XE.GI f(x) = OJand the image of f is 

the set h(f) = fyE HI y = f(x) for some xE. G.} 

The following tbeorellS are presented without proofs which in lIIost 

cases are quite easy and straightforward. If neoessary. the reader ...y 

refer to the book IS!. TheOry .2f. GrouP! by Rotman [7Jfor details of the 

proofs. 

T!lEOREM 2.1. If S is a subset of a group G, then S is a subgroup 

of G it an:! only if 

(1) OEs. 
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(2) aES implies -aE5, 

(3) a,bES implies a+b€ 5. 

THEOREM 2.2. It 5 is a subset of a group G, then 5 is a 

subgroup of G if and only 11' 5 is non-eMPty, and whenever a,b€ 5, 

then a-bf5. 

Using this criteria, it is easy to check that ker(f) and 1m(f), 

defined in Definition 2.4, are subgroups of G and H respectively. 

THEoREM 2.3. The intersection of any family of subgroups of 

G is a subgroup of G. 

DEFINITION 2.5. Let S and T be non-empty subsets of a group G. 

Then 5+T =~+tl s ES and tE T.3 

THEOREM 2.4. (Lagrange) If S is a subgroup of a finite group G, 

thenlGI S\.. IGI/lsL that is, the order of 5 divides the order of G. 

COROLLARY 2.5. If G is a finite group auch that IGI .. p for a~ 

prime, p, then G is cyclic. 

COROLLARY 2.6. If G is a finite group and aEG, thenl<a)ldivides 

IG I . 

DEFINITION 2.6. A subgroup B of a group A is fully invariant 

in case B is carried into itself under every endomorphism of A. 

THEOREM 2.7. (First Isomorphism Theorem) Let fl G~H be a 

homomorphism with ker( f) .. I. Then G/I::::.1m( f) • 

This theorem is e~remely important and shows that there is no 
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significant difference between a quotient group and the image of a group 

under a homomorphism. 

DEFINITION 2.7. The function f. G~/I defined by f(a) " a+I is 

called the natural homomorphism of G onto GIl, where I is any subgroup 

of G. 

THEOREM 2.8. (Second Isomorphism Theorem) Let S and T be 

subgroups of G. Then S I\T is a subgroup of S and 

S/(SI\T) Z (S+T)/T. 

THEOREK 2 .9. (Third Isomorphism Theorem) Let l' H'= G where 

am H are subgroups of a group G. Then BII is a subgroup of GIl am 

(GIl) I (Ii/K) ~ G/H. 

DEFINITION 2.8. If H and I are subgroups of G such that 

(1) HotI" G and 

(2) Hl\l. 0, 

then G is the (internal) direct SUIII of H and K and is denoted by 

G =Ii~I. 

DEFINITION 2.9. A subgroup Ii of G is called a direct summand 

of G is there is a I ~G such that G • HIDI. In this case, 1 is a 

coapl1l118ntsry direct sulllMnd or s1Jlply a compliment of H is G. 

THEOREM 2.10. If G " HEllK, then G/H~K, that is, the cOllP11Jlent 

of Ii in G is unique up to iSOlllOrphi••, 

DEFINITION 2.10, If H and K are groups, the (external) direct 

SUll of H and I, denoted by R0I, is the set of .11 ordered pairs (h,k), 

where hE R and k£K , with the binary operation 
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(h,k) + (h',k') =(h+h', k+k'). 

Noy it is clear that if G .. B0K is an external direct SUIII, it 

is also an internal direct I!IUJa ot BeO and 06)1, Thus there is no 

distinction in notation and since the two ideas yield isomorphic 

groups, the use of direct SUIII usually does not ino1ude either adjective 

internal or external, It is useful to extend the idea of direct SUIII 

to a tudly of subgroups, 

DEFINITION 2.11. Letf~1iU be a tamily of subgroup. suoh that 

£.
(1) i<;.I Bt .. A (the Bj,'. generate A) 

L
(2) tor every i& I, Bj, () i;¢J Bj .. o. 

Then A i. a direct SUIII of its subgroups E1. 

Finslly this review is conoluded with some elementary properties 

of hOlllollOrphisllllJ. 

Let t I G-.,H be a homomorphism. Then 

(1) t(O) .. 0 

(2) t(na) =nf(a) tor all integers n 

(3) (tIA), the mapping t restricted to a subgroup 

A ot G, is a hOlllolllorphislll from A into H. 
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CHAPTER ill 

FINITE ABELIAN GROOPS 

1. TIlE BASIS THEOREM 

DEFINITION 3.1. Let p be a pri!ll9. A group G is p-prilllB.ry 

(or is a p-group) in case every element 1n G has order a power of p. 

THEOIlEK 3.1. (PriJU.ry Decompcsition) Every finite abelian group 

G is a direct sum of p-prillary groups. 

Proof. For arry prime p, let ~ be the set of all elell8nts in G 

whoae order is a power of p. Now O€,G is non-empty. Furthermore 
p 

if a,b are in G , then rl"a '" 0 and p~ '" ° for aOlll8 integera m and n. 
p 

Thus pllU1(a_b) '" 0 and so a-b ia in G ao that G ia a subgroup. Now 
p p 

it auffices to show that G" 2: G as p rangea over all pru.a p which 
pH p 

divide the order of G. The criteria of definition 2.11. i. now used 

tc establiah this fact. 

(1) To show G '" :r G , let x £G and assume x ,. O. Furthermore 
p 

assU1118 that x has order n. By the fundamental theorem of arithmetic, 

n = P1e. P2e,2, •••PJce\( where the Pi are distinct pri_s and e i ~1. Let 

ni = n/Piet for eaoh i and observe that the greateat common divisor of 

the n is 1. Therefore there exists integers m such that
i i 

1I1~ + 1Iz~ +...+ ~'\ =~mi~ .. 1 and hence (~-ini)x '" I:.(lIli ni )x .. x. 

e'For each i, Pi ~ (-i~x) = minx .. 0 and so ~nix is in Gp . • Hence for, 
any x in G, x can be written as an ele"",nt of rG so that G l: 2:G and 

p p 

since L Gp~ G clearly, G '" LG ' p 

(2) Let XEGpfl ~Gq. Since xE:Gp ' pex " 0 for some el since 
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x E ~Gq' x .. :L~, where each x £ G • Then qe,. x = 0 for each pr1m8q q q 

q and some exponent eq • Set t =1Tqe~ and then tx ~ t'tXq .. o. Now 

(t, pel has greatest cOlllllOn divisor 1 so that there exists integers 

a and b with ape + bt = 1. Hence x .. apex + btx = 0 so that 

GpnI:Gq .. O. Thus, G=~G • 
p+q p 

IBFINITION 3.2. The subgroups G of G are called the primaryp 

components of G. 

DEFINITION 3.3. Let G be an abelian group and II a positive 

integer. Then mG .. (1lX1 X(GJ. 

This section is directed toward establishing that every finite 

group is a direct sum of cyclic groups (&.sis Theorem). Because of 

t.heorem 3.1. , it is sufficient to consider only the special case of 

finite p-primary groups. The proof is based on the following Ie_ whioh 

is much 1I0re powerful than is needed since it will be stated in the 

infinite version. However, it is quite useful to demonstrate an 

application of Zorn's Lelllllla and also will be referred to when the 

infinite groups are considered. 

LEMMA 3.2. Let G be a p-group and assw. that a is an element 

of maximal order rJe (that is, there is no other element in G of larger 

order than a). Then <a> is a direct S\lJIlIII&nd of G. 

Proof I First Zorn's Lemma is used to obtain H, a subgroup of G, 

maximal with respect to H (\<a) .. O. Let ~ be the collection of all 

subgroups of G whose intersection with <a> is only O. Then ~ is 

non-empty since 0 is in t:. Partially order the elell18nts in ~ by 

set inclusion and let tFitl be any chain in ~. It should be clear·J iEI 
that this chain has an upper bound in ~ , namely the set-theoretic 
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union of the ~'s. Henoe Zorn's Le_ is applied to ~to obtain H 

am let G' '" H $<a') • 

Clearly G'S G am to show GfG' an imtrect proof is used. Suppose 

G is not a subset of G', then there exists xEG such that x ;G'. 

Furthe1'\!l0re, since x£G, for 80me i, P~€G" (p~ ~ 0), othel"W1se 

(H,x >~a} '" 0 am this would contradict the ...xl ...lity of H. Assume 

px EG', then px '" Mna where hE H am nE Z. Also pk-l(px) '" pk-lna + pk-1h 

'" 0 by IUx1Jnality of the order of a. Hence pk-1na .. 0 so that Je-1n 

IllUst be divisible by pk, that is n '" pj for some integer j. So 

px " pja + hand p(x-ja) '" h is in H, however, x-ja is not in H. 

Now (H,x-ja)f\{a) ~ 0 since Ji is maxiul in this property. Let 

ra be in the intersection. Thus ra '" h'+s(x-ja) where h'E Bam sX€.HEtl<a). 

Also (s,p) '" 1 since p(x-ja)€H am Hf'l(a)" O. Since sx, px are in G' 

am (s,p) '" 1, then XtG', a contradiction. Thus GSG' am 80 G '" H<ll(a). 

THEOREM 3.3. (Basis Theore.) Every finite group G is a direct 

sum of cyclic groups. 

Proof. Bacause of le_ 3.2., the proof is trivial, Assume G is 

p-pr1mary (theorem 3.1.) am if in G an element of maxilllll.l order, a, 

is choosen, then G = HG)(a) where H is determined as in the proof of 

the lemma. Next, apply the sa.e process to H whim. is of 8111R1Ier order 

than G. Continuing in this manner, G can be represented as a direct 

sum of cyclic groups. 

2. FUNDAMENTAL THEOREK OF FINITE ABELIAN GROUPS 

It has been shown that every finite group is a direct sum of 

p-primary groups am furthermore is a 811l1l of priaary cyclic groups. However, 

the badc question of when two finite groups are isomorphic has still 
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not been resolved. To do this a unique factorization theorem, 

analogous to the fundamental theorem of arithmetic ie needed, where 

pri_ry cyclic groups would correspond to prime I'IIIII.bers. This 

theorem doee ex1et and is called the fundamental theorem of finite 

abelian groups. The following eeries of def1n1tione and theorell8 

viII lead to this theorem. 

DEFINITION 3.3. Let G be a group. Then the n-soole of G, 

denoted by GOO, is the set of all elemants g in G such that ng • O. 

COROlLARY 3.4. The n-socle of G is a f'ully invariant subgroup. 

Proof I Let a,bCiG(it]. Then na nb = 0 and hence n(a-b) ·0I: 

so that a-beG£!!J and GCIl1 is a subgroup of G. Also if fl ~G is 

a homomorphislll and f(a)E f(G[n]), then na = 0 and n(f(a» = f(na) I: f(O) I: 0 

by properties of hOllOlllorphislIIS. Hence f(a)E G[n'] and thus f(G(n]) ~ 

G[nJso that G(nl is fully im'ariant. 

The next definition is motivated by a desire to find a way to 

count the number of cyclic subgroups of a lixed order pn of a finite 

p-primary group. 

DEFINITION 3.4. If G is a finite p-primary group and if n~O 

is an integer, then U(n,G) I~ )I: d 
l~] 

where d(H) is the dimension of H as a vector space OTer Zp. Notice for 

H • ~~ , pH I: 0 and hence H is called an elementary p-primary 

~ 
group and it is easy to see that any two decompositions of H into a 

direct sum of cyclic groups have the sa.., number of SUlllllandS. denoted 

by d(H). 
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Because of the technical nature of this definition, an illustration 

of its meaning is provided in the following example. 

Let G I: C (i)c 3::::.z G)Z 3 am if p I: 2, then G = Z2G)ZS'
p p p P 

Now G [2] = {(O,O), (1,0), (1,4), (0,4)1 

2G = 2ZzG)2Z = ocP2ZS I: £(0,2), (0,4), (0,6), (O,O)J
S
 

4G = oQl4za I: [(0,0), (O,4~
 

8G = O~ZS = [(0,0)3.
 

0

So lJ(o,G) = d (2 GAJGBt) I: d(~) it(o.o). (0.4~. (1.0~1 (1,4~).I: 

2G G ~ ~ [(0,0 , (0,4 

Now 1f t(O,O), (0,4)1 = H, then the cosets of the factor group are 

(0,0) + H = H I (0,4) + H = H 

(1,0) + H = (1,0) + H 1 (1,4) + H = (1,0) + H. 

Thus the quotient group has only two elements am hence is a vector 

space over Zz of dimension 1 since every veotor spaoe over a field has 

dimension equal to the number of oopies of the field. 

Now V(l,G) =d(~~~R~~) I: d(f~g:g~: ~g::~n= ° 
\J(2,G) = d(22Gt\G 2l) = d{[(O.~, (Ot4)JJ I: 1 

2 GnG 2 \ t 0,0) 

lJ{3,G) =d(2
3
GI\G ) = d(~)1: 0, 

2 GflG 2 ~ 

am so on. 

In this example, U<n,G) gave the number of cyclic summams of G 

of order pn+l which is what was desired. 

THEOREM 3.5. Let G be a finite p-primary group. Arw two 

decolllpositions of G into direct sums of cyclic groups have the same 

llWlIber of 5U11D11amS of each order. In fact, the number of cyclic 

S11llllllands of order p
n+l 

is \.I(n, G) • 

Proof I Let G I: ~Ci' where each C1 is a cyclic subgroup of G. 
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It is to be shown that the number of Ci of order pn+1 is U(n,G) and 

to do so the following notation is used 

G" ~Ci =~Cp<tl.rCp2<tl... @LCpt. 

If there are no summands of order pk, then L ctf = o. 

Nov G[p) = ~Cp[Pl @ ~ Cp2[p] ~ ... G) LCpt(P]. 

"~CpQ) LpCl@ ... Q)L pt-1Cpt. 

Also pDQ .. pilL Cp @ pill: Cp2 @ ... Ql p112 cpt 

.. OQ)O@... Q)pn 2epn+18 ... (ipftLCpt, n~t. 

Then for all n <; t 

G[p] ()pnG " L pncpn+1 (f)L pn+1cpn+2 (i) ••• (!) L pt-1cpt 

" 2. pncpn+1@G[p](\pn+1G• 

Thus G[Pj (\PDo/G[p] (\pn+1G ~! pncpn+1 by theorem 2.10. Therefore 

U(n,G) " d (~ O~ ) is the number of cyclic summands of order 
G[p. (\-'IG 

pn+1. Furthermore, since U(n,G) is defined solely in te1'lll8 of G and 

does not depend on any particular deco.position of G, this nwaber is 

the same for any two decompositions. 

COROLLARY 3.6. Let G and H be finite p-primary groups. Then 

G~H it aDd only it U(n,G) .. U(n,H) for all n ~O. 

Proof. Suppose fl G-tH is an isomorphis.. Nov G .. LCi where 

each Ci is cyclic by theore. 3.3. By theore. 3.5., U(n,G) is the 

number of cyclic summands of order pII+1. H = f(G) ,. f(I'C ) =Lf(C ) andi i 

f(Ci)~Ci for all i under the isoaorphis.. So for each n, there are U(n,G) 

summands f( Ci ) of H of order pn+1. Bat this number is precisely U(n, H) • 

Conversely I It U(n,G) .. U(n,H) for all n~O, then G is 

isolllOrphic to H because they have the BUIll type of direct sum 

decomposition into cyclic groups. Hence sny decOllposition of H ill a 
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decOlllPosition of G and the groups are clearly uOlllorphic. 

lE~ 3.7. Let G and H be finite groups and fl G"'H be a 

hOlllOlllorphislll. Then for each pr1Jne p, f(G ) CH •
P P 

Proof I Let x E.G for a fixed prime p. Then ~ = 0 for so_p 

integer n. Then prtr(x) =f(pDx) = f(O) = 0 by properties of a 

hOlllOlllorphism. Henoe f(x)E~ so that f(Gp)CH •p

The last two theorema are merely a restatement of theore. 3.5. 

am the corollary 3.6. in terms of general finite groups instead of 

p-priury groups. One can easily see that since every finite group 

is a direot S\IIII of p-pr1mary groups (theorem 3.1.), the theorems are 

essentially complete. 

THEOREH 3.8. Let G am H be finite abelian groups. Then G~H 

if and only if Gp~Hp for all primes p. 

THEOIlEH 3.9. (FlIndamental Theorem of Finite Abelian Groups) 

Let G be a finite group. Then any two decompositions of G into a 

direot sum of primary oyclio groups have the same number of swmu.ms 

of each order. 

This theorem concludes the presentation on finite groups. It is 

interesting to note that JlUob of tbe early studies of group theory 

dealt almOllt exclusively with finite groups. In faot, the primary 

decomposition theore. am basis theore. were known to be proven in the 

19tb century. 
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CHAPTER IV 

INFINITE JJEL:wJ GROUPS 

1. INTRODUCTION 

In the early part of the 20th century, the attention of rellearchera 

in group theory was directed to infinite abelian groups. At this 

time the lItructure of countable torsion groups was developed by 

H. Priifer (1923), H. Uh (1933) and L. Zippin (1935) [2). In the 

theory of torsion-free grOUPll the lItructure problelll hall been resolwd 

only for spllcial callell of torsion-free groups. 

DEFINITION 4.1. Let G be an arbitrary abelian group. Then 

T denotell the set of all elelllllntll in G of finite order. 

IEFINITION 4.2. A group G is torsion in case G '" T and torsion-

free in caae T '" 0, that ill, G contains no elelllllnts of finite order 

other than O. 

THEOREM 4.1. T is a f'Ully invariant subgroup of G and the 

factor group G/T is torsion-free. 

Proof 1 T is a subgroup. Clearly T ill non-empty since 0 €T. 

Let a,b € T. Then na = IIlb = 0 for so_ pOllitive integers III and n. 

Then _(a-b) = 0 so that a-b E. T and T is a subgroup of G. 

T is tully invariant. Let fl G-'G be an endomorphisll and 

suppose f(.) €f(T). Then na '" 0 for some integer n and nf(a) = f(na) 

'" f(O) O. Hence f(.) ET and f(T) ST.Ie 

G/T is torsion-free. It nffices to show that T ill the only 
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element of finite order i!I G/T o Let a+T be an element in G/T of finite 

order m. Then m(a+T) = T and ma£T so that there exists an integer n 

nth n(lIII.) = O. Hence a E. T and a+T = T so T is the only elelll9nt of 

finite order in G/T. 

Now the study of abelian groups can be split into three partsl 

1) the classification of torsion groups, 2) the classification of 

torsion-free groups, and 3) the study of how the two are put together 

to form an arbitrary group. 

As previously noted, much work has been done i!I the first of 

these parts and the follonng two theorems have counterparts i!I the 

theory of finite groups. 

THEOREM 4.2. ~ torsion group is a direct sum of p-primary groups. 

Proof I As in theorem 3.1., let Gp be the primary component of 

a torsion group G. The proof of this theorem follows the proof of 

theorem 3.1. Tha t is, the Gp generate G as p ranges over the primes 

and the intersection of G am VG for p , q is only O.p q 

THEOREM 4.3. Let G and H be torsion groups, Then G'=H if 

and only if G~ ~ for all primes p. 

Proof I (Since this was not proven for the finite case, a proof 

is included here to take care of both situationa, ) Let fIG ....H be 

an isomorphism, Then as i!I theorem 3.7., it is easy to show f(Gp)C~ 

am g(Hp)C.~ where gl H+G is the inverse of f. 

Then f = (fIG) and g = (g/H ) are isomorphisMS from G to H 
P P P P P P 

and Ii to G respectively. Hence G~ H • 
-j:l P pp 

Conversely if fpl Gp...... H is an isomorphism for each PI then define p 

ft G"H by f(:l),) = fp(X ) and f then is an isomorphism,p
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Now the study of torsion groups reduces to the study of p-priJury 

groups. It uy not be clear to the reader that infinite torsion 

groups exist, however, they do since any direct SUIII of a finite group 

over an infinite index set is torsion and clearly infinite. One of the 

more interesting torsion infinite groups is Z(pCO) which plays a very 

illlportant role in the next few sectiona. Z(pClO) .. (c \ pei .. 0,
i 

pe2 .. c ' pe3 .. c ... ) i. an ascending lU'don of finite cyclic groups.2 1
i 

It is clearly torsion since SOlll8 power of p will annihilate any element 

and also is infinite since the generators c are infinite.
i 

2 • DIVISIBLE GROUPS 

Besides the groups that are direct sums of cyclic groups, another 

1IIlportant class of groups are the divisible groups. In an abelian 

group, any element can be II1Ul.tipl1ed by an integer but "dividing" by an 

integer is a different story. The result _y not exist in the 

partioula.r struoture or if it does, it lII8y not be unique. The most 

cOllllllon examples of divisible groups are the rationals and the real 

numbers. Although it is not obvious, Z(pOO) is also divisible. It 

shall be shown that every group is !l direot sum of a divisible group 

and a reduced group. 

DEFINITION 4.3. A group G is divisible if nG .. G for every integer 

n , 0 or equivalently if for each x £ G an:! non-zero integer n. there 

exists y £ G with ny .. x. 

DEFINITION 4.4. A group G is reduced if it has no non-trivial 

subgroup. which are divisible. 

It should be clear that a sUbgroup of a divisible group is not 



19 

necessarily divisible since the sUbgroup Z at Q is not divisible. To 

better understand the concept at divisibility and to establish some 

results that will be helpful in the proofs at the theorelllS which tallow, 

the tollOlfing elementary consequences at divisibility are presented. 

LEMMl 1j..1j.. A quotient or hOlllOlIJOrphio wge at a divisible group 

is divisible. 

Proot: Suppose t: G~H is a hOll101llOrpbis. fro. a divisible group 

G into a. Let x( t(G). Then x = tea) tor some a£.G. Let n be any 

integer and sinoe G is diviaible, there e>xists b(G with nb = a. Then 

nt(b) .. t(nb) =t(a)" x and sinoe t(b)~t(G), then x is divisible by 

n. 

LEMMA 1j..5. G is divisible it and only it G = p:; tor each p. 

This should be clear sinoe tor any integer n. n can be written as 

r. r: r. 
a produot at primes and so rG .. Pl' P2~'" Pk"G .. G. 

LEMMl 4.6. It [Gi]i' I is a tami.l.y at divisible groups, then 

their direct sumI:Gi is divisible. 

Proot: For aIV integer n, it is clear that n~Gi!:IGi' To show 

the reverse inolusion, let x&. 'f'Gi • Then x .. 1:'ai where eaoh ai t Gi. 

Now since the Gi are divisible, there exists bi € Gi with nbi .. ai tor 

each i. Let b =Xbi' Then nb =n'1:bi =:Inbi =~ai" x and henoe 

xEnLGi' Thus, nI'Gi =!Gi and the direct sua is divisible. 

LEMMA. 4.7. It G is divisible and a is a direct II11IIIIII8.nd at G, 

then a is divisible. 

Proot: Let aE.G .. aliK. Then a is divisible by n and hence 

nb .. a tor some bEG. Thus n(h+k) .. h'+k' where a .. h'+k' and b .. h+k. 
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So nh-h' ., k'-nk " 0 since Hl'\I "' O. Hence h' " nh and H is divisible. 

LEMMA 4.8. If G is torsion-free divisible, then roc "' a has a 

unique solution. 

Proof' SUppose roc "' a and ny "' a for non-zero elements x and y in 

G. Then n(x-y) "' 0 and since G is torsion-free, x-y .. 0 or x " y. 

With these results, the goal of classifying divisible groups is 

resUlB8d. 

IlEFINITION 4.5. A group D is said to be injective it, given A a 

subgroup of B and a hOlllOlDorphis. f trom A to D, f can be extended to a 

ho.omorphism F from B into D, and f .. F 0 i where i is the inclusion IIl&p. 

The following diagram illustrates this definition I 

'D

YIF
 
o 'A. ~"5 

£ 

The next theorem shows that divisible groups are exactly the groups 

which have this property. 

THEOREM 4.9. A group G is divisible it and only if G is injective. 

Proof' SUppose G is divisible and the above diagram is given. 

Consider J" [(S,h) , 5 is a subgroup of B containing A and hi 5 ...G 

extends f]. Now ri is non-e.pty since (A,f) is inti. Partially order 

~ Qy decreeing (51,h1)~(S2'~) if 51 is a subset of 82 and, ~ restricted 

to 81 , (~\ 51) .. h • Let [(Si' ~)1 if! be a chain in J and it is to
l 

be shown that (S,h) where 5 "' USi and hi 5-+(} defined Qy h(s) "' ~(s) 

where s E S is in 51 for some i I is an upper bound for the chain. 
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Clearly S is a subgroup of B and contains A. Also h extends f 

since each ~ extends f. Then (S ,h) £ J and since S contains each Si 

of the chain and h restricted to each Si is exactly \' (S1'~) 

~(S,h) for each i. Thus the chain has an upper boun:l. Hence Zorn's 

Le1llll\& may be applied to obtain a IIIaX1mal pair (SO' hO)' 

It suffices to show that So • B. Suppose there ensts b EB such 

that b'SO' Define S' '" So + (b). Let k be the smallest positive ,
integer such that kbESO' Nov, every element y in S has a unique 

expression y '" So + tb where O"t'-k dnce if y = So + tb '" sO' + t'b, 

then sO-sO' '" b(t'-t) ESO' Thus b(t'-t) • 0 or t' = t and hence sO = sO'. 

Let c = kb and since c E:SO' h(e) is defined, and there exists 
, ,

x£G with lex '" h(c) since G is dirtsible. Define n: I ~ ~G by 
, , ,

h (sO + tb) '" h(sO) + txt Then h is a homomorphislll and h extends h. 

Then (So'ho) L.(S' ,h'), a contradiction of the max1Jllal pair (So,ha)' 

Now if kb¢So except when k '" 0, then define h', 5''''G by 

h'(s + tb) '" h(sO) + rx for any fixed xEG and r~O and again h' is a 

homomorphism extending h. Thus the same contradiction is demonstrated. 

Henee So '" B. 

Conversely, suppose G is injective. Consider the diagram. 

Y~
If 

o h.7... "Jl
I 

L 
where f(nz) '" ng for g£G, arbitrary but fixed. Then clearly f is a 

homomorphism. 

So by the injectifll property of G, there exists F. Z-+G such that 

II' extends f, that is FOi '" f. 

Hence n(lI'(l» '" F(n) '" I" 0 i(n) = fen) = g and so g is divisible by 

n. Therefore G is dirtsible. 
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With this result it is possible to show that a divisible subgroup 

of a group is a direct summand. 

THEOREM 4.10. 11' H is a divisible group, then H is a direct 

summand of every group containing it. 

Proof a Suppose G is any group containing H. Consider the diagram 

;/iF
H

O--tH~(; 
c. 

where I is the identity map. Now by theorem 4.9., there exista F. G~H 

which extends I. Hence F 0 i .. I and so F(a} .. a for each a E.G. Then 

the proof is simply to show that G .. Haker( F} • 

(i) H()ker(F} = O. Let xe.HI'tker(F}. Then F(g} .. x for some 

g€G	 on one hand, while F(x) = 0 on the other. 

Then x .. F(g} .. F(F(g» =F(x} =O. Hence x =o. 

(11) Let x E.G. Then x = F(x) + x-F(x} and F(x} is in H while 

x-F(x} is in ker(F} since '(x-F(x» =F(x} - F(F(x)} = F(x) - F(x) =O. 

Thus G .. H(j}ker(F) and H is a direct aUllllll&nd. 

THEOREM 4.11. Every group G is a direct SUIII of a divisible group 

D and a reduced group R(G .. Dlj)R). 

Proofa Given a group G, consider D the subgroup generated by all 

divisible aUbgroups of G. Then D 1a divisible by lellMB 4.6., and is 

called the JIl8x111l.91 divisible sUbgroup. Hence by theOrelll 4.10., D is 

a direct SUIIIIII&nd of G and the complimentary a_nd R of D is reduced 

since it could not have any divisible subgroups. 

Now theorem 4.11. reduces the classification of abelian groups to 

that of the divisible and reduced casea. Furthermore in the case or 

the divisible groups, the classifioation is oompletely known and 
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presented in the following theorem. It shows that the only divisible 

groups are direct SUIIIS of the rationals Cl and Z(p~ for various 

primes p. 

THE:OREM 4.12. A. divisible group G is a direct sum of groups 

each isolllOrphic to the rational numbers Cl or Z(pCO) for so_ prime p. 

Proof I Let T be the torsion subgroup of G and it will be shown 

that T is divisible. Let x E.T and let n be an integer. Since G is 

divisible, there exists y in G with ny" x. Since xlT, then k:x" 0 

for SOM k and hence k(ny) '" kx .. 0 and so yET. Thus for any integer 

n, there exists a solution in T to the equation ny .. x so T is divisible. 

Then by theorem 4.10., T is a direct summand of G so that G .. TeF 

where F must be isomorphio to G/T by theorem 2.10., and henee torsion

free by theorell 4.1. Furthermore F is divisible by lellllllll 4.7. Nov 

the s_nds T and F v1ll be studied separately. 

The discussion of F will be carried out in standard vector space 

theory. Let x be any elelll8nt in P' and n a non-zero integer. Sinee F 

is divisible and torsion-free, there is a unique elelll8nt y in P' with 

ny .. x, lellllll& 4.8. Thus the expression (l/n)x .. y is l118aningtul, as is 

(p/q)x where p/q is any rational number, that ia, (p/q)x .. py, where 

x = qy. With this definition of acalar multiplioation of elellente! in 

F by rational numbers, F becomes a vector apace over the field Q. It 

i8 a routine exercise to check the wctor spaoe axiOlllJ. Thus, frOIl a 

result in vector space theory, F is isomorphic to a direct sum of 

copies of Q over an index set I Whose oardinality is the number of 

elements in & basis for F. Hence F ~r Qi' 
:IIll 

Now the divisible torsion group T, by theorem 4.2., is a direct 

sum of p-pr1Jllary groups T and each direct summand T IllUst again be 
p p 
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divisible, I.e1lll1ll. 4.7. 50 for the remainder of the proof, asllUllle 

that T itself is a p-primary group. Zorn's Le.... is used to show that 

T is a direct SUlll of groups isomorphic to Z(poo,. 

Consider the collection of all subgroups of T which are isomorphic 

to Z(pCO). 5ince it is to be shawn that T is a direct SUlll of such 

subgroups, it is necessary to consider only independent sets of such 

subgroups. Let B be the set of all collections of independent sets 

of subgroups of T isolllorphic to Z(pCO). Hence each ele.nt in B is a 

collection of independent sets of subgroups which may be partially ordered 

b.v sat inclusion. The proof that every chain in B has an upper bound 

in B is straightforward and so that. Zorn's I.ellllll& is applied to B to 

obtain a marlmal independent set of subgroups of T isomorphic to Z(pOJ) , 

say	 [5~ iH' 

Let 5 .. 1:5 and the proof is completed by shoving that 5 .. T. lIowi 

5 is divisible by Le_ 4,6., and so sinoe 5 is a subgroup of T, T .. S(J>R 

by theorem 4.10. 50 it nrust be shown that R .. O. In an indirect manner, 

&SSU1118 R #J and let ~ E. R such that ~ has order p. 

Using tIle divisibility of R, there exists ~ such that p~ .. ~ and x) 

such that ~ .. ~ and in general xn+l with ~1 .. x ' Then there isn 

an obvious way of defining an isomorphism from the subgroup of R 

generated by the ~'s and Z(pOO), that is, f(~) .. C1' for each i 

where the Ci are the generators of Z(p~. Hence R contains a SUbgroup 

isomorphic to Z(pCD), a contradiction. Thus R .. 0 and T .. 5 so that 

T .. L Z(pc:o,P. 
klIC, 

In the proof of the previous theorelll, two sets of cardinal nUllibers 

were used. one for the number of rational swnmands and another for 

every prime, p, givil1!l the DWllber of su-nds of Z(pCD) for each p-primary 
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s_nd of T. These cardinal numben are invariants and for- a 

complete set of inva:f'iants trom which the divisible group D can be 

uniquely constructed. Hence, any divisible group D decOllipos8s as 

follows 1 

D oo,l"Q1 e~IZ(pClO)k' 
if:! p€'P kl:k' 

The concept of a free group which has properties that are in a 

sense dual to those of divisible groups. rill be discussed in the 

next section. 

3. FREE ABELIAN GROUPS 

DEFINITION 4.6. F is a free abelian group on {xtt~EI in case F 

is a direct sum of infinite cyclic groups Zk' where Zk = <xtt). 
It should be clear that every non-zero element x of a free group 

F on fxtt1 has a unique representation x .'1:~ for non-zero integers 
~ kEK 

BIJc' since it x .z: ~'1c: and x .~~. then 1(IIIJc-Jlic)X)c .. 0 and hence 

III\c .. ~ for each k. So each elelll8nt doss have a unique expression, 

this result is stated in the following theorem. 

TIlEOREK 4.13. If F is a free group on [xk1k~' then eTery non-zero 

elelllflnt x in F is a unique 11near combination of the xtt'S, x ooIIIIJcXk 

for non-zero integers •• 

DEFINITION 4.7. The set of tltk1 kElt 1a called a free 8llt of 

generators of F and F. rill denote the tree group of m tree generators, 

that is, F... ~Zk and m is the cardinality of the set K. 
k~K 

TIlEOBEH 4.14. The tree groups '. and , n are isomorphic it and 

only if m .. n for the cardinals m and n. 
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Proof. SUppOS!l. = n. Then F.. and Fn are direct sums of the 

sam number of infinite cyclic groups Zt and are clearly i.omorphic. 

Comersely suppose F"~Fn' Then let p be any prilllEl and consider 

the quotient group F./pF.. 'n!.is group beCOIllElS a Yector space over 

Zp when a scalar aultiplication is defined on F./pF. by n(X+PF.) = 
nx+pF. where n is in Zp and the coset X+PF. is in F./pF. and, the 

vector space axioaa are verified. Hence F./pF. has a basis which is 

clailllEld to be the set fXi+PF~where the xt are the generators of F•• 

It is clear that this set spans the vector spaoe so it only needs to 

be shown that the set is independent. 

LetI' /Ai(xt+PF.) be in pF., the zero of F./pF., where each /Ai is 

in Zp and not all IIItxt are in pF.. Then IIItxt is in pF. and hence 

IAixt = p(ntxt) where pni = ~ for each i, that is, each lilt is divisible 

by p. Hence, each IIItxt i. in pF., a contradiction, and so F./pF. has 

a basis, {xt+PF.J. Thus, F./pF. bas dimension. and since the di_lUIion 

of iso.orphic .eotor spaces is an iDYariant, • '" n. 

DEFINITION 4.8. The rank of a free group F is the cardinal nuaber 

associated with the number of eleaents in the set of free generators of Ii'. 

TIlEOREJI 4.15. A set::z: '" £xJl€I of generators of a free group Ii' 

is a free set of generators if and only if every upping fl X -+A where 

A is any group can be extended to a unique hOlllODlOrphis. hi F ....A. 

Proofl Let~ '" [xt1iU be a set of free generators of F. If 

fl xt~ai is any upping fro. I into A, then define hi F ....A by 

h(x) .. 2Dtai where x has the unique representation as a.. h(tDtxt) 

linear co.bination of the xt's. x "',rnixi. by theorem 4.8. This 
IE! 

unique representation is precisely wb;y h is well-defined. To show 
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h is a	 homomorphism, if x .. L ~~ and y = 1: 1I:l.~ are in F, then 

h(rty)	 .. h(I:~~+2:~xi) 

.. h( ~(~~)~) 

.. .L(~~)ai = !:.niai + L~ai' 
Thus h	 is a homomorphism and since h is defined in terms of f, h is 

unique	 for a given mapping f. 

Conversely, assume that 1.SF has the property that every mapping 

fl1-.. can be extended to a homomorphism hi F...... Then let. be a 

free group with a free set of generators £yJi€I' where the index I 

is the salll8 as that for X. Then the map fl X"'. defined by f(x ) .. Y1'i 

for eaoh i, can be extended to a ho_orphism hi F". an:! furthermore 

h is obviously an isomorphism. Thus F is isomorphic to J. an:! hence the 

set X is a free set of generators of F. 

THE:ORE!! 4.16. Every abelian group G is a quotient of a free 

abelian group. 

Proof I First it will be demonstrated that given any set 'I. there 

exists a free group F with.!, as its basis. ill: is a set ccntaining 

a single elelll8nt x, an infinite cyclic group ~ can be constructed that 

has x as its generator. In general, F = L Z and in particular for the 
xliX x 

group	 G, F ..L Za' Then F is free and G is a basis for F. The identity 
a&G 

function I I G-+G can be extended to a homomorphism hi F -+G by theorem 

4.15.	 Now h is clearly onto so that G is a quotient of F by theorem 2.7. 

The next theorem shows that a free group F has the projective 

property, which is the dual to the injective property. 

DEFINITION 4.8. J. group F is projective if to each diagram 
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h// 

;-F'
I~ 

"B~* '0 
there exists a homomorphism hi F"'B with f 0 h .. g, where f: B-+. i. 

a homomorphism onto. and gl F-+. i. also a homomorphism. 

THE:OREK 4.17. If a group i. free, then it is projeotive. 

Proof I Let fl B.... be a homomorphism onto. and suppo.e F is 

free and gl F ..... is also a homomorphism. Let X .. fxJ ieI be a basis 

for F. Sinoe f is onto, for eaoh i, there exists an element bi in 

B with f(~) .. g(~.>. Then define a IIlapping h'l !"'B by h'(~) .. bi' 

Then by theorem 4.15., there exi.ts 'hI F+B where h i. a hOmoMOrphism 

extending h', that i., h(~) .. h'(x ) .. b • Furthermore fO h .. gi i 

sinoe on the set of generators f~\ of F, fOh(~) .. f(bi ) .. g(xi ). 

Hence F is projective. 

COROLLARY 4.18. Let G be a group and let fl G"'F be onto, 

where F is free. Then G c ker(f)E9s, where S~F. 

Proof I Consider the dia~ 

....... r
 
~/ ~I 

Gv' ~f .0:r 
where I is the identity IIlap. Since F is free, it is projective by 

theorem 4.17., and there exists a homomorphism hi F ...G with fo h .. I. 

Now h is one-to-one and so S .. 1JII(h) is isomorphio to F. Cla1Jll that 

G .. ker(f)E9S. This is the same situation that was present in 

theorem 4.10., and so the lll80hanics will not be repeated and the 

proof is oomplete. 

Another way of stating the above corollary is that G/K is free 
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implies that It is a direct s_nd of G since quotients and homomorphic 

images are similar. 

One might suspect that the converse of theorem ~.17. is true 

because of its similarity to the injective property of divisible groups. 

It can be proven. However, to do so, it must first be established that 

a subgroup of a free group is again free, the next theorem. 

THEOREM ~.19. Every subgroup H of a free group F is free. 

Proof. Let fxJ iEI be a bRsis of F, that is, F "L.(~~. AsSUllIe 

that the set It is well-ordered in some way (that every non-empty set 

can be well-ordered is an axiom of set theory called Ze1'll8lol s version 

of the axiom of choice and is equivalent to Zornls Le_). 

For each k~K, let F .. ~(Xj) and 1'Jc" R{\Fk • Thus F .. IJFk kj<k 
and H .. U~. Also 1\:" Fk{\~ so that \+/\ .. \+/\+It\Fk~ 

(\+1 + Fk)/Fk~Fk+1/FkZ.Z. 

The first isomorphism is a result of theorem 2.8., where as the 

seoond is set up by the -pping of ~1 + Fk to 1, where ~+1 + Fk is 

in Fk+1/Fk and 1 is the generator of Z. Since ~1/~ is free, by 

oorollary ~.18., I'Jc is a direct SUllllllllnd of i1c+l' So \+i .. i1c or 

~ .. i1ciJ<~) where <~)~Z. Then for eaoh k an ~ is obtained which 

...y or may not be O. Claim that H is free on the set of ~IS. 

Let H" be the set generated by the ~ IS. Since F .. U'k' eaoh 

h (H is in scme Fk+1' Define 1.1.. F...1t by u.(h)" k where hE: Fk+l and 

hjtF k,k+l. Assume R" ~ H and oonsider [l.(h)a hEH and hIlH"),
k

, 

Then there is a least suoh element j of the set It, for K is well-ordered. 

Choose hi in H with U.(h') .. j and hi ¢H"'. 

Then hiE H{\F + so that h'E.Hj+1 .. Hj'd)(h ), and hi .. a + mhjj 1 j

where a [Hj and m is an integer. 
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CASE I Suppose m = 0 (that is, B + .. H ), Then h' .. a and so
j 1 j 

h' € Hj • Thull U(h') < j, a oontradiction. 

CASE II Suppose III f. O. Then a = h'-lIh is in H. Also a is not
j 

in B* since this would 1JIply that h' is in H". HCMlver W(a) (, j in 

this case, again, a contradiction, 

Hence H = H*. All that ill needed now is to show that linear 

cOlllbinatioll8 of the ~'s are un1que, that is, if 1: lII ~i .. 0, then
i 

each lIIi = O. Assume ~ f. 0 for so_ i. Then ~~ is in <~;'~i' 

a oontradiction. So H is free on the \ 'so 

With this theorem the converse of theorem 4.17. will now be 

established. 

THEOREM 4.20. A group G that has the projective property is free. 

hooof. Consider the diagram G 

/~//!:I 

F1--+Q, '>0 
where I is the identity III.p and fl F...G is a homomorph1s111 of a free 

group F onto G which exists by virtue of theorem 4.16. Nov by the 

projective property of G, there exists a hOlllolllOrphism hi G-.F with 

f 0 h .. I. Nov h is one-to-one and G is then isomorphic to a subgroup 

of F. Hence, by theorem 4.19., G is free. 

With these results, attention is returned to divisible groups to 

present two results which ultimately prove the converse of theorem 4.10. 

THEOREM 4.21. Every group G can be imbedded in a divisible group. 

hooofl It is clear that Z can be 1mbedded into a divisible group, 

naJIIl!lly Q. Hence every free group F can be imbedded into a direct SUII 

of oopies of Q since F is a direct SUII of infinite cyclic groups which 
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are isomorphic to Z. Now given any group G, by theorem 4.16.,
 

G':!.r/N for so,. free group F and subgroup N of F. Hence G'Zr/N C ~ Q/N
 

and the laat group is divisible by lemma 4.4.
 

COROlLARY 4.22. A group G is divisible it and only it it is a 

direct S1lmlll&nd of every group containing it. 

Proof. Necessity is precisely theorelll 4.10., as _s noted earlier. 

To prove the sufficiency, first iJllbed G into a divisible group D via 

theorem 4.21. Then G is divisible since every direct Sl1llllll&nd of a 

divisible group is divisible, le_ 4.7. 

4. FINITELY GENERATED ABELIAN GRO~ 

DEFINITION 4.8. A group G is finitely generated in case there 

is a finite subset X of G such that, the subgroup of G generated b.r 

the setX is G. 

It is clear that every finite group G is finitely generated, but 

in this section, it will be shollTl that the theorems that were proven 

in Chapter III concerning finite groups can nov be proven for finitely 

generated groups. In partioular, a Basis Theorem and a FundaJllllntal 

Theorem for finitely generated groups will be established. 

THEOREM 4.23. Every t1n1tely generated torsion-tree group G is 

free. 

Proof. The proof is shollTl by 1n:iuotion on n, where G "(X1'''''Xn)' 

that G is free. If n .. 1, then G .. (x) and since G is torsion-tree, 

G is clearly an infinite cyclic group or 0 if x '" O. Thus G is free. 

Induction hypothesis. ASSUllle that for any group G generated by 

n-1 elements and also torsion-free, G is tree. Define <Xn).=~EG' 
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myE<X ) for 801118 m ,. oJ . Then it is easy to check that (x) 18 a n n. 
8ubgroup of G and that G/<~) ..i8 torsion-free. Also G/(~)'llr.iS 

generated by[x. +(x\ • x +(x) ••••• x 1 +(x) 1, that is. 
1 n'1E 2 n ~ n- n ., 

n-1 element8 and so by the induction hypothe818, G/(X). is free. By 

corollary 4.18•• G "(x \ $1 where X i. isomorphic to G/(x' and 
n 1.: rr. 

hence is free. Thu8 it only needs to be 8hown that <~'>it18 isomorphic 

to Z. 

If y is in (x:> • then my .. kx for some II ,. O. Define fa (x).-'tQ
-~. n 

by fey) .. kIm where my .. Ian' Now f is well-defined since elelll8nts in 

<~are in G and hence have unique representation. Also f i8 a•homomorphism since if my .. ~ and Pl'y' .. k'~. then IIIIII'(M') .. (km'ik'lI)xn 

and 80 f(M') .. (kII'+k'm)/ma' .. kIm + k'/m' " fey) + fey'). Finally 

f is one-to-one. for if y is in ker(f). then my " kxn for SOIl8 m ,. 0 

and 0 .. fey) .. k/II. Bence my " 0 and so y .. O. That is. ker(f) .. O. 

Thus (lrn~. i8 i80morphic to a subgroup H of Q. Let H .. <a1/b1 .... , 

at/b >and let b .. 1f'bi • Then define f*a B+Z by f*(b.) .. by. Againt 

f* i8 a well-defined homomorphism which is one-to-one so that H and hence 

<~),*,iS isomorphic to a subgroup of Z. ThuS(X \ .. i8 free.n

THEOREM 4.24. (Basis Theorem) Every finitely generated group G 

is & direot SUII of cyclic groups. 

Proofs G/t is a finitely generated torsion-free group by theorem 

4.1 •• and hence G/T is free by theorem 4.23. So G~T@K where I: is 

again free by corollary 4.18., and theorem 2.10. Hence I: is & direct 

SUlll of infinite cyolic groups. Now T is & finite group since it is 

finitely generated and each generator has finite order. Therefore, T 

is a direct 8_ of cyclic groups by the basis theorem for finite groups, 

theorem 3.3. 
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THEOREM 4.2.5. (Fundamental Theorem of Finitely Generated Groups) 

g"ery finitely generated group G is a direct sum of primary and 

infin1tely cyclic groups I and the number of SU1l\lllllnds of each kind depends 

only on G. 

Proof. Maw G~TeK where K is free. The uniqueness for T is 

precisely the fundamental theorem for finite groups, theorem 3.8.1 the 

uniqueness of the number of infinite cyclic summands in theorem 4.14. 

Then the presentation on finitely generated groups is ca.plete • 

.5. TORSION GROUPS. PURE SUBGROUPS 

The main theorem in this section is a result known as Kulikov's 

theorem, that every torsion group G contains a basic sUbgroup. To 

establish this result, a very usefUl concept in abelian group theory, 

that of pure subgroups must be investigated. This notion is generally 

attributed to H. Prufer and is an intermediate step between subgroupa 

and direct summands. The value of these sUbgroups is their usefulness 

in proving the existence of direct BUl!IIIl&ndS. 

DEFINITION 4.9. Jr. subgroup H of a group G is pure in G if h in 

H and h = ny for some integer n and y in G, imply the existenoe of h' 

in H with h = nh'. In other words, if an element of H is divisible by 

n in G, it IllUSt be divisible by n in H abo. 

For example, the subgroup H =lO,21 of Q = Z4 • ~0,1,2,31is not 

pure in G since 2 is a multiple of 2 in G but not in H. The following 

consequences are presented to help the reader understand more fully 

the concept of purity. 

LE!lMA 4.26. Any direct summand is pure. 
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This is clear since for H a sUbgroup of G to be divisible, its 

elements ho.ve to be divisible by every integer n. Consequently, every 

element in H is divisible by an integer n in H whenever they are 

divisible by n in G. 

LEMHA. 4.28. A pure sUbgroup of a divisible group is divisible. 

Proof. Let x be in H a pure subgroup of a divisible group G. 

Then x is divisible by every integer n in G sinoe G is divisible and 

henoe for any n, there exists y in H with ny = x sinos H is pure in G. 

Thus, H is divisible. 

~ 4.29. The torsion sUbgroup of a group is pure. 

Proof. Let x be in the torsion subgroup T of a group G and 

suppose X is divisible by n in G, that is ny = x for some y in G. 

Sinoe x is in T, x has finite order, that is, !IX = 0 for some integer 

Ia. Nov Ia(ny) = IIIX = 0 so that Y is in T also. Thus, T is pure in G. 

LEMMA 4.30. Every ascending union of pure subgroups is pure. 

Proof I Let fsJ i£1 be an asoending chain of pure subgroups, that 

is, ~c Sk+1 for all k in I. Consider S =USi and 1st x be in S 

suoh that x is divisible by n in the group that oontains the Si's. 

Then there exists y in G with ny = x. Let j be the smallest suoh 

index that x ~S j and x ~S j-1' !lclv since 5 j is pure in G, and x i. 

divisible by n in G, there exists y' in Sj with ny' = x. Clearly then 

y' is in S and so S is pure in G. 

~ 4.31. Purity is transitive, that is, if K is pure in H 

am H is pure in G, then K is pure in G. 

Proof. Suppose k EK is divisible by n in G, that is, there exists 
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gE;G with ng =k. Now since It'H, k =h for some hfH and so h is 

dirtsible by n in G. Furthermore, since H is pure in G, there exists 

h' E: H such that nh' = h = k. Hence I is divisible by n in H and 

since It is pure in H, there exists k'E.K with nk' =k. Thus I is pure 

in G. 

Since many proofs to follow deal with quotient groups and cosets 

as elements in these quotient groups, the following convention is 

adopted. If GiS is a group and x is in Gt then it is the corresponding 

element in GiS to x, that is, i represents the coset x + S. 

LEMMA. 4.32. Let S be pure in G and y be in Gis. Then there 

exists an x in G oorresponding to Y·in GiS having the salllll order as "y. 

Proof. Suppose f. G-'G/S is any hOlllOlIIOrphislll onto GIs. Then if 

y has infinite order, then any ellllll8nt z such that f(s) =y will 

suffice. If y has finite order n, then first choose any zinG with 

fez) =7. 
'1'b8Il nil is in S and sinoe S is pure in G, there exists h in S 

with nz" nh (that is, nz is divisible by n). Let x = IO-h and x has 

the desired propertie•• 

TlIEOREM 4.". Let G be a group and H a pure subgroup of G, 

such that G/H is a direct sum of cyclic groups. Then H is a direct 

IIUlIIIUnd of G. 

Proof. Suppose f. G-.G/H is any hOllOlIIOrphislII onto G/H. And 

suppose G/H = 1: (Y'i)' Then for each generator 7 , there exists
iiel 

~ in G with f(xi ) = :1i for eaoh i and the order of lI:t is the order 

of Yi by le_ 4.32. (An application of the ax1.011 of choice is 

8IIployed. in the selection of the lI:t for the index set I is taken to 
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be well-ordered.) Let K be the sUbgroup of G generated by the ~'s. 

It sUffices to show that G • HSK• 

(i) G • H~. Let t be any elelllllnt in G and suppose f(t) .. t iD 

G/H. Then t .. raiYi for integral coefficients a i • Then f(t - I:ai~) • 

t -1:ai Yi .. 0 in G/B. Hence t -i:ai~ is in H al'ld t· (t -1:ai~) + 

r: ai~ ill in H+K. 

(11) HnI • O. Let 1f be in HOK. Then w .!:biX since w is in
i 

K and further r biYi = 0 aince w is in H. If Yi has infinite order, 

this _ans that ~ • 0, if Y has finite order ni' then b ia a
i i 

III\lltiple of ni • In either case, aix • 0 and so w = O. 
i 

lB14KA 4 •.34. Let T be pure in G. If TCSCG, and SiT is Jl'Il~ in 

G/T, then S is pure in G. 

Proof I Let s be in S and suppose s Ie IlX where x is in G. It IIIIlSt 

be proven that s is divisible by n in S. Let i and i be the 

corresponding cosets in G/T. Then i .. ni', and by purity of SiT in G/T, 

ii • ny where Yis in SiT. Let Y be an element in S that maps to y. 
Than s .. ny+t for SOIll4l tinT. Hence t = ~-nx, so by purity of T in 

G, there exists t' in T with t .. ~-nx = nt'. Thus s .. n(y-t') and 

since TeS, y-t' is in S, so S is pure in G. 

LBMIIA 4.35. A p-prisry group G which is not divisible contains 

a pure cyclic subgroup. 

Proof. Jl'irst the fact that if the p-socle of G, G[p] , is not 

divisible, then there exists a y in G, such that (Y) is pure, is proven. 

So let x E G[P1al'ld a.sU1D8 that x is divisible by pk and not pk+l. Let 

pky = x and ciaiM that ( y) is pure. It is sufficient to only check 

powers of p and multiples of y of the fOrlll p\r since if x in G has 
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order n and (m,n) .. 1, then It is diV'1.aible by n. Suppose p!Iz .. piy. 

Then II .. pi-ny which is in(:r) if i-nfk+1. If i-n)k+1, then II =0, 

otherwise, It would be div1J!lible by pII where • is greater than k, a 

contradiction. Hence (1'> 1s pure. 

Next it ill shown that 11' G(p] 1s d1V'1.s1ble, then G is d1V'1.s1ble, 

and th1s contrad10t10n completes the proof. AaSlDl8 that fNery x in 

G[p] is d1vis1ble by every power of p. The proof 18 by induct10n on 

k that if Ix .. 0, for allY ll: 1n G, then It 1s d1V'1s1ble by p. If k .. 1, 

then px .. 0 and 80 x 1s in G[pJ and hence :It 1s d1vis1ble by p. 

The induot10n hypothes1s states that if pkx .. 0, then x 1s d1V'1s1ble 

by p. Then suppose pk+1x .. O. If yo .. Tf-x, then l' 1s in G[p] and 

hence 1s d1v1sible by p so that there exi8t8 zinG with pk+1z .. l' .. ~. 

Then pk(ps-x) .. 0 and by the 1n:iuot10n hypothesill, there ensta 11' 1n 

G, with pw .. P2O-lt. Therefore, It .. p( 20-11') and hence x 1n G 1s 1n pG. 

lienee by lellllll8 4.5., G 18 d1vis1ble. So by the above relllB.rks, the proof 

1s complete. 

DEFINITION 4.10. It subset:I' of non-sero elelll8nts of a group G 

18 1ndependent in case I"II:Lxt .. 0 implies eaoh 1I:Lll:1 .. 0, where ~ 1s 

in:I:.and II:L 18 an integer. 

DEFINITION 4.11. It sUbset:I of G 1s pttre-1n:iependent if:I ill 

independent Snd(X)iS pure in G. 

LEMMA 4.36. Let G be a p-pr1lllary group. If':I is a maximal 

pure-independent subset of G (thetis.:I is contained in no larger 

such subset), then G/(x) is divisible. 

Proof I By lellllll8 4. 35., 11' it is allBWIIEld thet G/(%) ill not 

divisible, then it contains a pure cyclic IIUbgroup,~y) • NOlI since 
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(1.)iS pure in G, there exists y in G with the order 01' y am y the 

same by lelllllla 4.)2. NowX* .{T,y] will be pure-1n:I.ependent. First 

'.	 of all ,(x>Cti~c Gclearly and so<l.*)/(1) is iSOlllOrphic to (y>' 
which ia pure in G/(I}. Tbua(I*> ia pure in Gby lellllll& 4.34. 

5ecomly, suppose ~rllltltj, = 0, where ltj,EIand 111:1' 11 are integers. 

In G/(x) , thia equation becOIl8S m; =0 so 'lIlY = 0 since 7 and y have 

the same order. Furthe1"lll0re, since X is independent, each lIliXi = 0, 

and 110 Y* is pure-imependent, a contradiction of the url-lity of'1.. 

Thus GI(X) is diviaible. 

DEFINITION 4.12. Let G be a torsion group. A subgroup B of G 

is a basic subgroup of G in case 

(1) B is a direct sum of cyclic groups, 

(2) B is pure in G, 

(3) G/B is divisible. 

Now, by using the previous lelllll&s, it can be shown that every torsion 

group contains a basic sUbgroup. The basic lIubgroup, B, allows the 

study of torsion groups to reduoe to an extension problem of a direct 

SUIB of cyclic groups by a divisible group since B is a direct sum of 

cyclic groups and G/B is divisible. 

THEOREM 4.37. (Kulikov) Every torsion group contains a basic 

subgroup. 

Proof. Ir G is divisible, then B =0 is a basic subgroup. Ir 

G is not divisible, then G contains pure-i1iIdepement sets by le_ 4.35. 

Now purity is preserved in asoending unions and so ia independence. 

Thus pure-independence ia preserved. Therefore, a straightforward 

application of Zorn's Lelllll& to the collection of all pure-1D::I.ependent 
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subsets of G yields a IUximal pure-1rxIependent subset1:of G. Then 

B =(X)iS a direct sum of cyclic groups sinoe<I}=L<x~where 
~€ 1 follows immediately from the 1rxIependence of the set I. Thus by 

le_ 4.36., B is a basic subgroup. 

This section is ooncluded with another le_ concerning the 

behavior of purity with respect to hOIllODlOrphislllS or quotient groups. 

IEMM1 4.38. Let S be a pure sUbgroup of G with lIS = O. Then 

(S+nG)/nG is pure in G/rIJ. 

Proof. Anume that'i in (S+nG)/nG is divisible by m in G/rIJ so 

that x = .,,;; where y is in G/nG. Then let x am y correspond to xam 

y such that x is in S. Thus x and my differ by an element in nO, that i. 

x = mytnz. If r is the greatest cOllllllon divisor of m and n, then divide 

m and n by r to obtain III = rm' and n = rn'. Now the greatest COllllllClD 

divisor of III' and n' is 1 so that there exists integers a and b with 

am' + !:In' = L Since:le = my + m; '" r(III'n + n'z), :Ie is a multiple Clf r 

in G. Thus there exists sinS with x '" rs. Hence x = rs = r(am'+!:ln')s = 

_s + nbs '" mas since nS = O. Now converting back to elelll!lnts in the 

factor groups, there is 'i '" m(a8) and so 'it is divisible by m in S+nG/nG. 

6. Torsion Groups of Bounded Order 

DEF'INITION 4.13. A group G is of bounded order if it is torsion 

and there is a fixed upper bound to the orders of the elements. 

Thus there IllUSt exist a positive integer n such that nx '" 0 for 

all x or more simply nG = O. Of course, arw finite group is of bounded 

order, but an infinite torsion group can also be of beunded order. 

Take. for example, the direct sum of an infinite number of finite cyclic 
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group. each of which has order 2. 

It will be proven that aflY group of bounded order is a direct 

SUII of oyclio groups. This. in a way, i. the most satisfacto1'7 

generalisation of theoreu 3.4. am 4.25. 'l'he next lellllll. demonstrates 

an easy way to obtain a pure cyclio subgroup. Sinoe it i. not obV'iOl18 

that a cyclic sW!IIIlllm can be constructed in a ginn group of bounded 

order, this will amply illustrate the advantage of a pure subgroup as 

a substitute for a direct summand. 

LEMMA 4.)9. Let a be a p-pr1lllS1'7 group with pra .. 0 for some r. 

Let x be an element of order pr in G. Then (x) is pure in a. 

Proof. As in the proof of le_ 4.35., it i. necessary to checlc 

i
only powers of p am multiples of x of the form p x. SUppose, then, 

that pix .. p~ tor some y in G (that u, pix is divisible by pj in G). 

It must be shown that pix u div1llible by pJ in(x). If j f i, then 

y .. pi-;lx which is in (x). If j >i, we han 0 .. prY' .. pr-j(pix) and 

so x has order pr-J+1, a contradiction that x has order pro Thus (x) 

is pure in G. 

At this point, enough information has been aocumulated to show 

that from a finite group of bouD::Ied order, a cyclic direct summand 

of the group can be constructed. LeIllllL 4.39. gi'Yes a pure cyclic 

subgroup <:i:) and by induction G/{x) is a direct SUII of cyclic groups; 

hence, by theorem 4.33., (:1)1s a direct s_m. However, this 

procedure does not lend itself to the infinite ease since no inductin 

aSll\Dlption can ~r1ty that G4)1s a direct sum ot cyclic groups. 

Instead Iulikov'. Theorem will be ...ed together with ths basio subgroup 

B, which was generated by a lI.xl..l independent-pure Bet. 
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THEOREM 4.40. A group of bounded order is a direct SUl!l of 

cyclic groups. 

Proof I Suppose G is of bounded order such that nG .. 0 for some n. 

Then theorem 4.37. is applied to obtain B a basic subgroup of G. Thus, 

G/B is divisible and hence G/B .. rr/..G/B). This last group contaiJIs 

the single coset O+B .. B, so that G/B .. B and hence G .. B. Then by 

definition of a basic subgroup, G .. B is a direct sum of oyclic groups. 

In the theo!"Y of finite groups, it vas determined vhen tvo finite 

p-groups are isomorphic in terms of the DWIlber of cyclic SlUUU.nds of 

order yrtl. The problem of vhen two infinite p-pr1u.ry groups that 

are direct SUIIIS of cyclic groups are isomorphic will now be re.olved. 

It i. intere.ting that the answer is es.entially the .... as for the 

f11Iite case. 

IlEFIliITIOO 4.14. It G is p-primary, consider the Yector space 

over ~ I G In}'' ~. Then U(n,G) is the dimension of 

~J 
GfnJ as a Yeator space oysr ~ and is called the nth U1II invariant. 

Then if G aD:!. H are p-priJlary groups, G aD:!. H haYS the sallie O1m 

invariants in case G~1 and H(nJhan the SU18 diJaension for each n~O. 

Notice that for infinite p-pr1u.ry groups, U(n,G) may be infinite. 

THEOREM 4.41. Let G be a p-pr1u.ry group that is a direct SUlll 

of cyclic groups. The number of summands of G isomorphio to the cyolio 

group of order pn+l is the dblension of Gtnj. More oysr, if H is 

p-priJlary and a direot SUIII of cyolio groups, then G:::H if and onl,. if 

the,. han the same U1m invariants. 

Note I The proof of this theorem i. essentially the sal,e as the 
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proofs of theore. 3.4. "nd 3. 5' since the allowance that U(n,G) may 

be infinite offers no obstacles. 

Next it is shown th&t there does exist a situation when a pure 

subgroup is necessaril;r a direct summand. Before this is shown, a 

le_ will be presented which will aid in the proof of the theorem. 

LEMMA 4.42. Let SandT be subgroups of G with SOT"' 0 and 

suppose 5+1IT is a direct summand of G/T. Then S is a direct SUII.mAnd 

of G. 

Proof. (This proof is set-theoretic.) Let R/T be the complimentary 

summand to S+'r/T in G/T. Then (S+T)iR = G and R n(5+T) = T. It 

suffices to show that G =S(f)R. Since TC.R, SiR "' S+T+R =G and hence 

Sand R generate G. Also (Rfls)C.Rn(S+'r) = T and hence RIISc.Tt\s '" O. 

Thus G = R(t)S. 

THEOREM 4.43. Let G be a group and S a pure subgroup of bounded 

order. Then S is a direct SUlllllland of G. 

Proof. Suppose nS = 0 for some n. Then by lemma 4.38., (S+nG)/nG 

is pure in G/nG. Also G/nG is olearly of bounded order since n(G/nG) '" nG. 

Hence G/nG is a direct sum of cyclic groups by theorem 4.40. Then by 

theorem 4.33. (s+nG)/nG is a direct s_nd of G/nG. Next S nnG = nS "' 0 

so that we may now apply le_ 4.42., with nG playing the role of T. 

Hence S is a direct summand of G. 

As a special oase of this theorem, consider the torsion subgroup 

T of any group G. Now T is always pure by le_ 4.29., and henoe T 

is a direct summand of G if T is also of bounded order. FUrthermore, 

since every divisible subgroup is a direct summand, it can now be said 

that T is a direct summand of G if T is a direct sum of a divisible 
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group and a group of bounded order. These remarks are now stated in 

the form of a theorem. 

THEOREM 4.44. Let G be a group and T its torsion subgroup. Thsn 

T is a direct S\Ulllll&nd if (i) T is of bounded order or (11) T is a direct 

Sulll of a dirlsible group and a group of bounded order. 

The final result in this section deals with groups which are 

indeoomposable, that is, they cannot be written as a direct SUII 

exoept in the trivial way. G=G(f)O. 

THEOREM 4.45. An indecomposable group cannot be III1xed. that is, 

it is either torsion or torsion-free. 

Proof I Assl1lll8 that G is an indecoaposable lIl1xed group. Then 

the torsion subgroup T is not dirlsible since this would torce T to 

be a direct swmnand by theorem 4.10. So by lemma 4.34., T contaim: 

a pure cyclic subgroup, say (x). Now since x is in T, x has finite 

order and thus (x} is of bounded order. Also <x} is pure in G by 

Ie_ 4.31. Hence by theorem 4.43•• <x) is a direct summand, a 

contradiotion. Hence G is not 1Il1xed, so G is either torsion or torsion-tree. 

Recall that in theorem 4.12., it was shown that the torsion subgroup 

of a dirlsible group, G, is divisible and isomorphic to copies of Z(poo,. 

Thus if an indecomposable torsion group G is dirlsible, then it is 

isomorphic to Z(Poo,l where as if it is reduced, it is a cyclio group and 

so all indecomposable torsion groups have been determined. However, 

the classification of torsion-free indecomposable groups is quite a 

different story and in fact, an unsolved problem. 

7. TCRSION-FREE GROUPS 
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DEFINITION 4.15. The rank of a torsion-free group G is the 

number of elements in a MaXImal in::!.epen::!.ent subset of G. 

Note that a free abelian group is torsion-free an::!. its rank is 

the number of 1nfinite cyclic s\lJlllu.n::!.s, or the cardinality of the 

index set of the set of generators. It is easy to see that the tvo 

notiens of rank agree tor these groups. In this section, the torsion

tree groups of rank 1, that is groups such as the integers Z and 

rationals Q w11l be classified. At the present t1llle, there is not 

even an adequate classification ot groups of finite rank and so only 

the groups of l"llnk 1 will be considered. 

LEMMA. 4.46. Every torsion-tree group G can be 1JIIbedded in a 

vector space V over Q. 

First G is 1JIIbedded in a divisible group D by theorem 4.16., an::!. 

then consider the natural homomorphism from D onto D/T where T is the 

torsion SUbgroup ot D. law D/T is torsion-tree alld is isomorphic to 

copies of Q. 

LEMMA 4.47. A torsion-free group G has rank at most r it and only 

it G can be 1JIIbedded in an r-cl1mensional vector space over Q. 

With these le_s, the study of l"llnk 1 torsion-free groups begins 

by realizing that they are isomorphic to a subgroup of Q. The following 

are non-isomorphic subgroups of Q. 

G 1 all rationals whose denOll1nator is square-free,
1 

G2 I all rationals of the fora m/2!', that is, dyadic rationals, 

G,. all rationals whose deoimal expression if finite ( that is, 

whose denominators are powers of 10). Together with Z and Q, these 

groups are all non-isomorphic subgroups of Q and one might observe 
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that they can all be expressed by- the numbers allowed in the 

denoll1nators of ele.nts of the groups. 

Let Pl' P:2. ... Pn. ... be the sequence or primes. 

DEFINITION 4.16. A characteristic 1s a sequence (k1 , k2, ••• kn , ••• ) 

where each k is a non-negati.e integer or ClO. n 

If G is a subgroup of Q and if x is in G and X ~ 0, then x 

determines a characteristic in the following way. in the nth oomponent 

of the characteristic of x, plaGe the highest power ot the prime Pn 

that divides x in G, that is, the largest non-negathe integer k such 

that there is an element y in G with Pnky = x. It there is no largest 

such k, set k = CD. Some 1I0re advanced studentll of group theory might 

recognise that kn is the lin-height or x. The conoept of height will 

be discussed in greater detail in the next section. 

It is con.enient to write each non-zero integer as a formal 

infinite product ot primeslnrPia• where Pi ranges over all primes p 

and ai~ O. Let m =lTPia< and n =lTPib. be given integers. If x in 

G has characteristic (kl'k2' ••••kn , ••• ), then the definition of 

characteristic states that there exists y in G satisfying ~ .. na if 

and only if ai!: ki + ~ for all 1, 

It will now be demonstrated how to determine a oharaoteristic 

for the element x =1 in G =ZCQ. For Pl =2, the largest non-negathe 

integer k, suoh that, there exists y in G satisfying 2k (y) = 1 is 

k .. O. Likewise for P:2 = 3, the largest k satisfying -fey) .. 1 i. 

k = °and for P3 .. 5, 5°(y) .. 1, has solution y .. 1. Cont1mrl.ng tor 

each prime Pi' k i is °and hence the characteristic of 1 in Z is 

(0,0,0 •••• ,0, ••• ). The characteristll ot 2 in Z i. (1,0,0, ••••0,0, ••• ) 

and for 12 in Z i. (2,1,0,0, ••• ,0, ••• ). 
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U, however, G .. Q, then for x .. 1 in Q, x has characteristic 

(00 ,00 ,CO , ••• , 00 , ... ) since Q is a divisible group. Thus it is 

clear that distinct non-zero element. of the same group G may give rise 

to distinct characteristics. So the following definition is given I 

DEFDlITIOli 4.17. Two characteristics are equivalent if 

(i) they have 00 in the same coordinates and 

(11) they differ in at most a finite number of coordinates. 

Then this definition of equivalenoe is an equivalence relation 

(that is, it satisfies the refiex1ve, symmetrio aOO transiti'Ye properties), 

an equivalence class of oharacteristics is called a type. The next 

theorem states that the characteristics of distinct elements of a 

subgroup of Q are equivalent. 

IEJOIl 4.48. Let G be a subgroup of Q aOO let x and x' be non-sera 

elements of G. Then the characteristics of x and x' are equivalent. 

Proof. First if x' .. IU for some integer, then the characteristics 

of x and x' are equivalent because' 

(i) x' is divisible by every power of the pr1llle Pi that divides x 

(plus only a finite number more) aOO 

(11) x' is divisible by every power of Pi if and only if x is. 

Hence their characteristics have 00 in the same coordinates and differ 

in at most a finite number of coordinates. 

Now for the more general case, since G is a subgroup of Q, there 

are integers III and n with IIIX .. !IX'. The charaoteristic of x is 

eqUivalent to the oharacteristic of IU .. !IX' which is eqUivalent to 

that of x'. 

DEFINITION 4.18. As a result of this lelllDl8, if G is a torsion-free 
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group of rank 1. then define the type of G. denoted by t(G). as the 

type of any non-zero element of G. 

THEOREM 4.49. Let G and G' be torsion-free groups of rank 1. 

then GZG' it am only it t(G) '" t(G·). 

Proof, Suppose f,G+G' is an iSOlllOrphism. Then it x is in G. 

the charaoteristic of x am f(x) are equivalent. In fact. tbey are 

th
the same for it CO is in the n coordinate slot of the characteristic 

of x. then there is no largest power of the prime Pn which divides x 

am so there could not be a largest power of p that divides f(:I:) under 
n 

th
the isomorphism. Likewise. if k is any non-sero integer in the i 

. th 
slot of the characteristic of x, k is in the i slot of the characteristic 

of f(x) due to the fact that divisibility is preserved umer a 

hOlllOlllOrphism. 1_ 4.4. Hence t(G) = t(G·). 

Conversely. assU1119 t(G) = t(G') where G and G' are torsion-free 

groups of rank 1 and hence are subgroups of Q. It g and g' are non-sero 

elelll9nte in G and O' respectively. then their characteristics 

(k1.kz •••••k •••• ) and (k·1.k· •••••k· ••• ) differ in only a finite n 2 n 

nUlllber of coordinates. Set the notation 00- CO = 0 and define the 

k. -k'. 
rational nUlllber 1 by 1 '" "ITPi' • • Notice that k i -k' i = 0 for alJlost 

all i. 

De:fine flG"'Q by f(x) = IIX where C(= 19/9' and note that f is a 

homomorphism since f(rty) =~(rty) = 1Ix+ cey =f(x)+f(y). Now any 

1T, a'rational !\WIlber x is in 0 it and only it there are integers m '" Pi' 

-rr b'
and n = IIP 'where IIX = ng and ai~ bi-+k for all il likewise a

i i 

rational !\WIlber y is in 0 it and only it there are integers m and n 

with my = ng' and a bi-+k' i for all i.i ~ 

Claim that f(O)CO·. Let x be in G, then IIX = ng and aif:bi-+ki' 
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hence m(/(x) = n(lCg) = nlg'. Since a i f,(bi-+ki-k'i)-+k'i, it follows 

that &eX = f(x) is in G'. In a siDdlar manner. if hIG· ...Q is defined 

by h(x') = CA.-lx', then it o..n be shown that h(G')CG. Therefore. f 

and h are inverses so that G ~ G'. 

The final theorem of this section shows that for a~ type, t, 

there is a group of rank 1 whose type is exactly t. By taking a~ 

representative characteristic from t. say (kl.k2 .....kn .... ). define 

G to be the subgroup of Q generated by all rationals of the form. l/m, 

where. for all n, Pri
t 

divides 18 if and only if tfk • It is olearn

that G is torsion-free as a subgroup of Q and that the _xi_l independent 

sets of elements in Q are the singleton sets so that G has r ..nk 1. Also 

the element 1 in G bas the given characteristio for the largest power 

of Pn that divides 1 is exactly kn for each n. by definition of • 

above. Hence, the following theorem has been proven. 

THEOREM 4.50. If t is a type. then there exists a group G of 

rank 1 with t(G) =t. 

So for torsion-free groups of rank 1, the importance of the 

characteristic has been demonstrated as well as the fact that all 

torsion-free groups of rank 1 are subgroups of Q. 

8. ULM'S THEOREl!l 

The !Min theorem presented in this section is U1:m's Theorem and 

it accoaplishes the complete cl..ssif1c..tion of countsble reduced torsion 

groUp8. The theorem does not stste that a countsble reduced torsion 

group looks like a partioular group as is the case of the divisible 

groups where theorem 4.12. classifies the divisible groups as a direct 
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sum of copies of Q and Z(p~. Rather, a cOlllplete set of invariants 

is defined so that it is pollsib1e to determine when tvo such groups 

are isomorphic. Again, by theorem 4.2., any torsion group decOlllp08es 

into its p-priJnary components and so throughout this section, assU1118 

that G and H are countable reduced p-pr1lllary groups. 

The theorem uses both the cardinal and ordinal numbers in a very 

essential way. Definition 4.14. of the nth Ulm invariant used only 

the natural rtUlllbers and so the nth U1m invariant, U(n,G), is a function 

froll the natural numbers to the cardinal numbers. '!'his definition can 

be extended to the transfinite ordinals in the folloving manner. 

Let G .. pna (n .. 0,1,2,J, ••• )~ Then G +1 .. pGn I Gw .. nGnn n
new 

where w is a 11mit ordinal and again, ~1 .. pOw. Thus, for any ordinal 

d., GoI+1 .. pG.", and if d. is a 11m1t ordinal ~.. () GQ. Hence the
II (fA '" 

chain G .. GO~G1:)G2':) ... :;)G,,:::lGV+1'" U a decreasing chain of subgroups. 

DEFINITION 4.19. The first ordinal i\ such that GJI." 0 is 

called the length of G (Note I There does exist suoh a iI for every 

p-priJnary countable reduced group.). 

Now, in order to emphasize the use of the ordinal numbers, definition 

4.14. is stated in slightly different notation. 

DEFINITION 4.20. [l'or each ordinal ClI , define fG(c:l) .. dJ~). 
\~+1[J~ 

th
Then fG(QI.) is called the d;. Ulm invariant and f is a function frcaG 

the ordinals to the cardinals. 

It has already been shown that 11' G is a direct sum of cyclic groups, 

then f G (n) is the number of cyclic Sl1llllllllnds of G iSOlllorphic to the 

n+1cyclic group of order p • Thus direct SUlll8 of cyclic groups are 

completely characterized by the U1II invariants (theorell 4.41. ) • 
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DEFINITION 4.21. Let x be in G. The height of x in G, ht(x) , 

is ~ if X i5 in Gal, but not in GGl+1 • 

Thus this definition assigns to each non-zero element x in G a 

well-defined ordinal less than a, the length of G. As for the element 

0, it is desirable to write ht(O) '" CD with the ulrlerstanding that CO 

exceeds any ordinal. The following le_ states SODle f'undamental 

inequalities concerning height which follOl< immediately froll the 

definition. 

LEMMA 4.51. Let x ,1 be in G and p be a fixed prilD8. 

(a) If ht(x)(ht(y), then ht(rty) .. ht(x). 

(b) If ht(x) .. ht(y), then ht(rty)~ht(x). 

(c) If x ~ 0, then ht(px) )ht(x).
 

The proof of the le_ i5 not difficult and is left to the reader.
 

THEoREM 4.52. (Ulm's Theorem) Two countable reduced p-priJury 

groups G and H are isomorphic if and only if fG(d.) .. fg(d.) for eaoh 

ordinalO, that is, they have the sa_ Ulm inwriants. 

The proof that the eondition i5 necessary, that is, if G and Hare 

iSODlorphie, then they have the same Ulm invariants, is the easy 

direction since the dimension of iSOllorphic veotor spaces is an invariant. 

The other direction is quite complicated so a brief outline will be 

given and then additional deUnitillDe and important lellllll4s will be 

presented in order to make the proof as clear as possible, 

The idea of the proof is roughly this I Choose two sequences in 

G and H, Bay [0" x O' ~, ~, x), .. ,1 and (0" Yo' Y1' Y y)....) where2 , 

G .. (Xi) and H .. <Yi~. This can be done since G and H are countable. 

NGll suppose U! G and V! H are finite subgroups with ; I U"V a height 
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preserving isomorphism. Thus for any x in U, hta(x) .. htH(~(x». 

The heart of the proof then lies in being able to extend ~ to larger 

subgroups U. and V. of G and H respectively. 

DEFINITION 4.22. Let S be a subgroup of G and x be an element 

in G. Then x is proper with respect to S if ht(x) ~ ht(x+s) for all 

s in S, that is, x has maximal height in the coset x+S. 

It is easy to see that in this case, ht(x+s) .. min { ht(x), ht(s)1 

for each sinS since ht(x) ~ ht(x+s). 

LEMMA 4.52. Let ~IU~V be a height preserving iSOlllorphism 

between subgroups U and V of G and H respectively. Suppose that x and y 

are proper with respect to U and V respectively, and also that px is 

in U and py is in V with ht(x) .. ht(y). Then the map g,U+Zx .... V+Zy 

defined by 9( L(+nx)" ~(L()+ny is a height preserving isomorphism 

that extends _. 

Proof. To show that 9 is well-defined suppose L(+nx"",,~ or 

c.(- U' .. (m-n)x which is in Uf\Zx. Now P is the order of x+U since 

px is in U and so (II-n) .. sp for some integer s. Thus 6(L(-"") .. 

s9(px) .. spy '" (m-n}y. Hence ~(",)+ny .. ~(f.(..)+my, that is 9(1(.+nx) • 

6( I.(. .~). 

Now 9 is onto since ~ is onto and 9(x) .. y. 

9 is one-to-one. Suppose c.c,+nx is in ker9, that is, 9('C.+nx) .. 

_( &()+ny .. O. Thua ny ., -~( CL) which is in V. Thus p divides n so 

....+nx is in U. Hence I.(+nx is in Unker9 .. ker ; • O. Hence ker9 .. 0 

and g is one-to-one, 

Finally to show 9 is height preserving. consider 9( "l +nx) .. 

;(c.c.)+ny. If p divides n. then L(+nx is in U and 80 ht(c.c.+nx) .. 
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ht(~«,(inx» '" ht(8(W.inx» since ~ is height preserrlng. Therefore 

assume that P and n are relatively pr~ where 1 '" tn+ Itp am t and p 

are relativel,y prime. Then let (.(0 '" tK- c.cpX, which is in U, and 

hence t(&oc.inx) "'UO-tx. Now ht«((inx) co ht(t(Uinx» '" IIl1nfht(LI.). ht(X)J 

since t and p are relatively prime and x is proper with respect to U. 

Similarly ht( ~( 14)+ny) '" ht(t(~( U. )+ny» '" IIl1n fht( ~( (,(0»' ht(y)J 
Now since ht(~( U O» '" ht( (.(0) and ht(x) '" ht(y), it is clear that 

ht«(,(inx) '" ht(8(f.(inx» so that 8 is height preserving. 

If it were not for the fact that x in G-O may not be proper with 

respeot to U, lellllll8 4.52. would be quite valuable in the proof of 

Uht's Theorem almost immediately. This problem can be easily solved 

since in the extension process, U will be finite at each step am so 

it will be possible to fim x' .. x+lk in x+U with x· propel' in 0 am 

px in U. Now tha problem is to find a y in H-V which has the desired 

properties stated in the lemma, that is, y is proper with respect to 

V, py '" ~(px) and ht(x) '" ht(y). The next two lellllllSs show that such 

a y can be found. 

Before lellllll& 4.53. can be stated, the following notation is needed. 

LetU~G. ThenU" =unGal , p-1GGI. +2 "'fxlPXiS in Gct.+21 , 

,. -1 
U~ '" Oct ' I P Gc:l +2' So for any- x in U", • px is in Uct. +1 • UsuallJ

this is all that oan be said, however, there are so_ elements that 

are carried "past" Uel +1 am this set is called U-"". Now for any- x 

in U-"" ' px _y be written as px' where x' is in G1(+1 and thus px '" px·.
 

Since x is in Gd. am x· is in GCC+1' then x-x' is in Gd.[P1 and is
 

used to def1ne the hOIllOlllorphism T.U-...~ Gd. [P]/G..,+1{i>] , that is,
 

T(x) '" (x-x' )+Gdt,+1 (pJ is the mapping that takes x in Uj. to x-x' in
 

Gc( [pJ followed by the natural homomorphism frOJll Gel. (P1 into G",[pl/GJ.+1 [P].
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Now ker(T) is exactly Ud.+1 so that T*, U*d. /Uo.+1 -+G-.(P]/GeI.+1[P] 

is a monomorphism. 

LEMMA 4.53. The statements (a) T* is not onto and (b) there 

exists w in Gel. (pJ such that ht(w) =0. and w is proper with respect 

to U, are equivalent. 

Proof' (a) implies (b). Suppose w+G d +1 [pl is not in the 

range of T*. Then w is not in Gel. +1 [p] and so ht(w) =CIIo since w 

is in Goe [P] . To show w is proper with respect to U, suppose the 

contrary. Then there exists lot in U with ht( u -w) >at • Since l(-w 

is in ~+1' lot-w = pt where t is in Gd,' Since pw = 0, p&t= p(u.-w) 

= ~t which i_ in GeI.+2 so that W, is in U*d,' Now, applying the 

definition of T* to the coset lA+lJ cI.+1' T*( c.c +lJ ""+1) = w+G d,+1 [pJ . 
a contradiction since w+GcI.+1 [pJ vas assumed to be not in the range 

of T*. Thus w i_ proper with respect to U. 

(b) implies (a). Suppose w is in Gc( [p] t ht(w) '" do and w is 

proper with respect to U. Then w+GoI+1 [p] is not in the range 

of T* since. if it were, there would exist x in U and y in Gd, +1 such 

that p(x-y) = 0 and w+Go(+1 (pJ = (x-y) + G~+1 [pJ. Hence ht(x-w»CfI. 

a contradiction that w is proper with respect to U. 

The following situation is set up to help the reader understand 

the proof of Ula's Theorem and to demonstrate the need of the next 

leDIIIB. • 

Suppose U and V are finite subgroups of G and H respectively and 

x is in G-U. b_~ that px is in U (if' px i_ not in U. but p(p~) i_ 

in U. then redefine x as pllx). Consider the elements in x+lJ and 

suppose that {X+£l1' x+W,2 .... 'x+lA.k) are the elements in r+U with 

maximal height ~. These elements can be found since U is finite. 
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Among these, find one, sayx+Wt, such that ht(p(x+Ut» is maximal. 

Now redefine x as x+ i4.. 

Thus. (1) x is in G-U, (2) px is in U, (3) ht(x) '" d., (4) x is 

proper with respect to U, (5) ht(px) is maximal, and finally (6) 

~(px) '" 11o where ~IU"'V is & height preserving isollO:rphism. Now, with 

this situation given, it is necessary to find y in H-V with py = l1o, 

ht(y) "'Q and y is proper with respect to V so that le-. 4.52. can 

be applied to extend;. 

LEMMA 4.54. Given the situation just described. it is possible 

to find y in B-V with py '" Ii '" ~(px), ht(y) = ell and y is proper with 

respect to V. 

Proof I Taro cases must be considered. 

Case I ht(z) = ~+1. Now neither Ii nor px are zero since ht(O) 

'" CO which is larger than any cardinal. In this case, an;y element y 

with py = z will Buffice to prove the theore••in HllIo 

First ht(y) '" d.. since if ht(y) >ca. ,then ht(py) '" ht(Ii» 11.+1, 

a contradiction. 

Seoond, y is not in V since if it were, then ~(w) '"' y where V is in 

U. Thus px = pw since ;(pw) '" py = ~(px). Also x-w is not in U lest x 

be in U. Furthermore, ht(x-w) '" a. since ht(w) '" d,. and x is proper 

with respect to U. fut ht(px-pw) = ht(O) '" 00 which is greater than 

Cll,. +1. This is a contradiction of the marlmal1ty of ht(px). So y is 

not in V. Finally to show y is proper with respect to V, assume that 

it is not, that is, suppose ht(y+y) ~ d.+1 where v is in V and ;( 14) = 

v for some u in U. Since y is not in V, then y+v '" 0 and so ht(p;r+pv) ~ 

0. +2. Therefore ht(px+pLl )~oI.+2. Now v must have height at least 0. 

and so does U. since ~ is height preserving. Then ht(x+ lA.) '"' ~ which 
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again contradict. the maximal1ty of ht(px). Hence y is proper with 

respect to V. 

Case II ht(z) >do +1. ht(px) >al.+l lI\8ans that px = pw for some 

w in Ga.+l. Then x-w is in ~[PJ and ht(x-w) = cJ.. so that x-w is 

proper with respect to U since ht(x) = r:A and ht(w),?; d,+1. Now part 

b of le_ 4.53., is satisfied by x-w so that part a is also true. 

Since U*IIII /UoI,+l is finite and T't is not onto, part a of lellllllB. 4.53., 

then the d1lll8nsion of U*cI /U el +1 as a vector space over Zp is strictly 

less than the Ulm invariant f G (d-). Since ~ is a height preserving 

isomorphism, Uel is mapped on Vel ' likewise U*cI. is I118pped onto V*o. 

and U*. /U l1li+1 is upped onto V*d. /V"r:I.+l. Therefore the d1lllension of 

V~ / VC\+l is less than fG (01.) which equals fa("') by hypothesis. 

Applying le_ 4.53. again, there exists an element Yl in a with 

py1 = O. ht(y1) =d, and y1 is proper with respect to V. Next noting 

that ht(z) >d.+l, z = PY2 where Y2 i. in Hct.+l. Taking Y = Yl-+:r2' Y 

has the properties that Py = z, ht(y) cd. and y is proper with respect 

to V. 

Now the proof of the sufficient condition of Olm's Theorem can 

be given. Thus, if G and H are countable reduced p-pr1lllary groups 

such that they have the same Olm invariants, then they are isomorphic. 

Proof I Since both G and R are countable. let G =[0 = XQ.Xl.lI2 •••• ] 

and H =fo = YO'Yl'Y2' •••}. 

Step 11 Let U = V = 0 and ~ 1 Uof' be a height preserving iSOlllOrphism. 

Assume xt satisfies the hypothesis of le_ 4.54. Then there exist. 

Yk, in H with the properties described in the conclusion of lemma 4.54. 

Now by lellllllS 4.52., ~ can be extended to a height preserving isomorphism 

~11 Ul"'V1 where Ul = <0,x17 and '1 = <O'Yk,) • 
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Step 2, AuWlll> t.hat. Yk:2 is the first element in H not in V
1 

and satisfies t.he hypothesis of le_ 4.91- where the height preserv1!lg 

isomorphism is the inverse of -1 obtained in step 1, that is, _1-1 ,vl-'U1• 

By lemma 4.91-., there exists ltJ4: in G with the propert.ies stated in 
2 1 

the conclusion of the le.... By lemma 4.52., -1- can be extended to 

-2 IV2-+U2 where V2 "'(V1 , Yk ) and U2 "'(Ul'~)'2
Step 31 Assume ltJ4: is the first element in G not in U2 and satisfies 

3 1 
the hypothesis of lemma 4.54., where ;2- IU2~V2 is the height preserring 

-1 
iSOlllOrphism. Then there exists Yk3 in H and 80 again;2 can be 

extended to ;3'U -+V where U .. (U2 , ~3} and V "(V2 'Yk ) ,
3 3 3 3 3 

Step 4. Assume Y~ is the first element in H not in V3 and proceed 

as in step 2. 

Using this alternation between G and a, that is, in the 2n-l step, 

th th thconsider the n element of G and in the 2n step consider the n 

element in H, the isollorphiSlll between G and a can be established in the 

following manner, 

First of all, recall that ;1 is a function from a subset, U1 , of 

G onto a subset, V1 , of H so that ;1 is a subset of the cartesian 

product of G and H, GXa. Also;2 is a function from a subset, V2 , of 

H onto & subset, U2 , of G so that -2 is a subset of the cartesian product, 

1HXG, Now the inverse of ;2' _2- , is a subset of GXH and contains ;1 

because U2 contains U1 and V2 contains "1' ;3 is a subset of GXa whicb 

contains ;2-1 and ;4-1 is a subset of G)('H which contains ;3' Thus, ;lC;2-1 

C;3C ;4-1C... C;2n_1C;2n-1c .oo is an increasing chain of subsets of 

G)('a. Now in order to obtain the isomorphism between G and H, define 

the mapping _.. from G 1Jlto H as the union of the set of all ;2n_l's 

with the set of all -2n-l,s, that is ; .. '" ( U -2n-l) U( \,)-2 -1), 
nEli nfl n 
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Now any element ~ in G is a member of some subset Uk of G 

by induction and thus is in the domain of some :!"unction~. Hence 

the domain of ¢* is all of G. F11rtbermore, because of the alternation 

between G and H in the steps of the proof, any elelll8nt Yt in H is a 

member of some subset V of H and thus is in the domain of somet 

:!"unction ¢t' 
-1 

Bence Yt is in the range of ¢t and so the range of t/J* 

is all of H. 

9. EXTENSIONS OF ULM'S THEOREM 

At the time it first appeared, Ulm's Theorem was considered tc 

be the most striking result yet obtained in the theory of abelian groups. 

Since that tiJne muc=h work has been done in extending U1Jn's Theorell t. 

larger classes of reduced p-pr~ry groups. This section will state 

SOlll8 of the more important generalizations of Olm's Theorem, No 

attempt v1ll be made at proving these extensions since the proofs are 

in general quite difficult, however, a reference is given where the 

details can be found. 

Iolettis [5] extended Ulm's Theorem to direct sums of countable 

reduced p-pr~ry groups. The general idea of the proof of OlmOs Theorem 

for direc=t sums of such groups was to get a canonical decomposition .f 

such a group that is uniquely determined by the Ulm invariants of the 

group. More specifically, 1C01ettis proved the following. 

THEOREM 4.55. Let the reduced. pr~ry group G be an uncountable 

direct 8UII of oountable groups and let fG(e!.) be the d.,th Olm invariant 

of G. Then G ~L1C8 where the 1l1lllllllation is over those ordinals PllUob 

that f G(8) , 0 and for such a B, the group 18 is the unique reduoed 

countable primary group whose Ulm invariants are given by. 
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fr..c. (~) = 0 if ~ >P or if «<pam fG(o.)( N 01 f K, (d-) = K 0 if 

c( <" am f G( Ill) > No' fK, (~) = in.f(fG(~)' No)' 

The next extension of Ub's Theorem that will be mentioned involves 

a class of groups called totally projective groups. First the concept 

of nice subgroups will be defined and then the totally projective groups. 

DEFINITION 4.23. A subgroup A of G is nice if every coset of A 

has a representative of the same height, that is, for each g in G. 

ht(g+A) = ht(g+s) for some a in. A, where the two heights are computed 

in. G/" and in G respectively. 

DEFINITIOli 4.24. A reduced p-group G is totally projective if 

it has a system L of nice subgroups such that 

(a) 0 is in L 

(b) the sUbgroup generated by al\Y subset of L is in L 

(c) if S is in. Land A/S is countable, then there exists B in L 

with B!A am B/A countable. 

Now countable reduced p-groups are totally projective, since it 

G is such a group. lIIimply let L = to.G1, More generally if G =I' Gi 

~ 1 
iEI 

with each Gi countable. then L = ~ Gi • J ~I is a nice sYllltem of 
iEJ 

subgroups satisfyi:ng the conditions that make G totally projective. 

Thus totally projective groups contain the two claSllles of groups 

for which Ub's Theorem has been proven. Next, Ub'. Theorem was 

extemad to totally projective groups of l.ngth less thann,w by Parker 

and Walker [6] am then to all totally projective groups by Hill (3] . 
Walker [9] presented a proof that simplifies Hill's proof for totally 

projective groups by giving one that is in essence the same as the proof 

of Ub's Theorem for the countable cue presented in the previous 
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section. After some preliminary le_s and def1n1tiOM, Walker 

defined the doth U1m invariant of G relative to A. and then proved 

the main theorem which is essentially the same as lellllll& 4 •.52. 

DEFINITION 4.25. Let A be a subgroup of G and d. be an ordinal. 

The doth UIm invariant of G relative to A is 

fG,A(cil) .. d1m«p" G) [p]lA( do». 

THli.:OREH 4 •.56. Let G/A. and alB be totally projective with A and 

B nice ~bgroups such that f (0.) .. fa B(o..) for each d.. Then any
G,A , 

height preserving isomorphism _.A-'B extends to an isomorphism G-'H. 

With this theorem, U1Jn's Theorem for totally projective groups 

beoomes quite s1:mple. Notioe that this theorem is quite a bit more 

powerful than 1_ 4 •.52. in the previous section, however, the very 

same approach was used in the proof to obtain this result. 

TIlEORE.M 4.57. Two totally projeotive groups are isomorphic 

if and only if they have the salll8 Olm invariants. 

The most reoent extension of Olm's Theorem was completed by 

Warfield [10] , who extended O1a's Theorem to a olass of mixed modules 

called the IT-module. 

DEFINITION 4.26. If Ais a limit ordinal, then M is a il
elementary IT-module if p), M='R, where R is a disorete valuation ring, 

regarded as a module over itself, and M/plt M is a reduced torsion 

totally projective aodule. 

The theorem that Warfield proved is the following. 

THEOREM 4 •.58. If A and B are IT-modules, then A and B are 
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isomorphic if and only if for all ordinals ~ and }t., fA(ct.) = f B( "') 

am hA( A) = hB( il.) where hA(j\) = dim (V A(A» where V.i\ (A) = 

pA Alp A+tA+T.i\ where T.i\ is the torsion submodule of pA A. 

It is easy to see that this last extension of Olm's Theoram takes 

the reader clearly beyond the scope of this paper but was presented 

to give a more cOlllplete picture of the work that has resulted from 

the study of abelian groups. 
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SUMMARY AND SUGGESTIONS FOR FURTHER STUDY 

As stated in the introduction, this paper is by no means an 

exhaustive treatment of the theory of abelian groups, However, it is 

fairly complete in the study of the general classification and decomposition 

of theorems without being too technical or abstract. The lII8terial 

covered was intended to convey a considerable amount of infOl'll8.tion 

concerning the basic ideas, methods and fundamental rellults of abelian 

group theory. There are as many unanswered and unsolved problelllS in 

this area as one might expect. 

The interested reader has IlI8ny directions of further study, One 

might be in following the progress of Ulm°s Theorem and examining the 

different proofs of the sa_ theorem. There is room for a very 

detailed exploration in this area. The final theorelll in section 9. 

Chapter IV, was concerned with an algebraic structure other than the 

group structure. It III1ght be interesting to see which results or 

theorems presented in this paper could be extended to other structures 

such .. the modules or cOllllllltative rings. Also there are many result. 

dealing specifically again with abelian groups which have not been 

presented in this paper, as well as whole new concepts. For example. 

nice subgroups were defined in section 9, Chapter IV, however very 

little was established about the.. It might be interesting to try to 

prove whether direct s_nds are nice or if finite subgroups are nice. 

and so on. 

Thus it is easy to see that there is as much to consider for the 

interested reader .s has been covered in this paper. 
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