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CHAPTER I 

QUASI-UNIFORM STRUCTURES 

INTRODUCTION 

A quasi-uniform structure is a natural generalization of a uniform 

structure. In this chapter it is shown that every topological space 

admits a quasi-uniform structure. In general , a topological space will 

admit more than one compatible quasi-uniform structure. As with uniform 

structure, it is possible to study the concepts of completeness and 

totally boundedness and a notion of uniform or quasi-uniform continuity 

and other related concepts which can not be studied in a topological 

space . 

DEFINITION 1.1 Let X be a non-empty set. A quasi -uniform structure 

'U for the set X is a non-empty collection, 'U , of subsets of X x X 

satisfying 

(1) . A = {(x,x) :xEX} c: U for each U Elf).,
 

(2). U. and UZ Ef). implies that u.n Uo& E U ,
 

(3). U. 6'l1. and U::>U, implies that UE 1J. ,
 

(4). For each UE"U there exists V e 1i. with V-VcU •
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UoV = {(x,y):there exists z~Xwith (x,z)~U and (z,y)~V}) 

Then the pair ( X , tl ) is called a quasi-uniform space. 

DEFINITION 1.2 Let'!J. be a quasi-unifonn structure for a set X 

satisfying: 

(5). For each U in U , then U-I = { (x.y):(y,x)f: U } E U , 

and v.. is called a unifonn structure for X. The pair ( X , 'U ) is 

called a uniform space. 

DEFINITION 1.3 If Ac X lC X , then A is symmetric if and only if 

A-I = A , A is anti-symmetric if and only if AnA-Ie L1 • 

THEOREM 1.1 Let ( X , U ) be a uniform space, then for each U in U 

there exists a symmetric V in ~ such that VoVC U • 

PROOF. For each U in 'U there exists a W in 'U such that WoWC U • 

I
Si nce W- E U , it fall OIlS that V = W() W-I E U . NOlI Vis symmetri c 

and VoVc U • 

DEFINITION 1.4 Let 1.< be a quasi-unifonn structure for X , and let x 

be a point in X. Then U(xJ = {Y:(X,y)E U} for U E U , and 'U(xJ = 

{ ULxJ :U" 1). } • 

THEOREM 1.2 Let ~ be aquas i -uni form structure for the set X. Set 
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Xu = {OcX:if x.O then there exists UEt{ such that XEU(X)CO} • 

Then :tv. is a topology for X • 

PROOF. Su ppose for each D( E..A , Oco< E t.1J. . If x(: U { 0", : oc EO J- 1 , 
then x E 00< for some 0< in A. There exists a UD( E: 'U such that 

XEUo«X)CO",cU {00<:0( E.A.} . Therefore U {O«:O(~..A} t tu 

Clearly .; E: tu . 

Suppose OJ, O2 E: tu. If X~O,"'O% ,then xeD, and xEOz. 

There exist U, , U,2E:1,l such that XE U.(x}cO, ,XEU2(X]C:OZ. However, 

xe( u,nU~)(xJ = UI (xJnU2(xJcO.nO.z. Hence 0,t'I0,aE- try,. Clearly X 

belongs to Xu . Therefore l,tJ. is a topology for the set X • 

THEOREM 1.3 Let U be a quasi-uniform structure for the set X , then 

the collecti on 11. = { U(xl :U E 1,( , X ~ X } is a nei ghborhood system for the 

topology :tU . 

PROOF. For each XE X , Z{txJ forms a neighborhood system of x which 

satisfy four axi oms as follows 

(N-1). For each x in X and for each U in U, x E U(x) , since ,;1 c. U , 

for each U in 'Zl • 

(N-2). U(xl ,V(X)6'?l implies that U(x]nv(x) = (U"'V )(x]e'f/. , 

sin ce Un Vis i n U . 

(N-3). Suppose that U(xl E 12 and U(x] cA. Set V = Uu A J( A , then 

UeVE 'U , and V(x) = A. Hence A E 7l . 
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(N-4).	 Let U(xl E '?l , then there exi sts a V in 1A such that 

v·vc U. Thus vc V-Vc U. Let tEV(X) and p be an 

arbitary point of V(t). Then (X,t)E V and (x,p)E: VoVc. U . 

This implies that VCt}C U(x) ~n by (N-3). Hence for 

every U(xI E '?Z , there exists V(xl such that U(X) is a 

neighborhood of each point of V(x1 • Therefore '1 is a 

neighborhood system. Clearly, the topology generated 

by the neighborhood system '7Z is t.'t(. • Hence n is a 

neighborhood system for the topology :tU . 

DEFINITION 1.5 Let ( x , t ) be a topological space and !l be a quasi-

uniform structure on X. Then U is said to be compatible with the 

topology t if t =:tZl . 

The following are some examples of quasi-uniform spaces. 

EXAMPLE 1.1 Let X be a non-empty set and U = { U: A c Uc X" X}. Then 

U is a quasi-uniform structure and tu is the discrete topology for X . 

EXAMPLE 1. 2 Let X be a non-empty set , and let 1). = { XlC X} then 

( X , 'U ) is a quasi-unifonn space. l.U is the trivial topology for X • 

EXAMPLE 1. 3 Let R denote the set of real numbers and let r > O. Set 

Dr = { (x,y): I x - y I < r} . Then 'U = { U: Dr cue R)( R , r >O} is an 
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uni form structure for R , and ;t'U is the us.ual topology for R. Thi s 

follows since Dr(x) = ( x - r , x + r ) . 

EXAMPLE 1.4 Let ( X , d ) be a metric space, and let S~ = { (x,y) E-


Xx X:d(x,y) < E- J . Then the collection U = { U:SEc Uc Xx X , E '7 a} is
 

an uniform structure. t.u. is the original topology for X .
 

EXAMPLE 1.5 Let X be a non-empty set linearly ordered by < and let
 

W= { (x,y):x~ y} . U = { U:WC UC XJC X} is a quasi-uniform structure
 

for the set X , and ZZl is generated by the family of all intervals of
 

the form {a , oa ) = { x:x ~ a} for any a i: X .
 

EXAMPLE 1. 6 Let X be a non-empty set 1inearly ordered by <;. Let
 

WA = { (x,y):x = y or a<x<y} for aEX. Then 11. = { U:Wa. c Uc Xx X ,
 

a E Xlis aquas i -uni form structure for the set X. Z11. is the di s crete 

topology for the set X . 

EXAMPLE 1. 7 Let X be a non-empty set 1i nearly ordered by <:: • For 

SOOle fixed points a , b of X , define V..,J,= ( (x,y):x = y or a~ x~ b J 
then 'U = { U:VA,b c UCXXX , a~b , a , bEX} is a quasi-uniform 

structure for the set X , and ~ '!J. is a di s crete topology for the set X 

In fact, for each X4E X there exists a , bE-X such that x< a< band 

x = VA,b (x) • 
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EXAMPLE 1.8 Let X be a non-empty set linearly ordered by < , and let 

a and b be fixed points of X. Define T...,i> = { (x,y):a~x~y:!:b} uA 

Then ~ = { U:T...,IJ cue X" X , a~ b , a , bE X } is a quasi-uniform 

structure for the set X , and t.U is a discrete topology for the set X • 

This follows by the fact that for each x ~ X there exists a , bE X such 

tha t x < a < b an d x = T_, b (x J . 

EXAMPLE 1. 9 Let X be a non-empty set 1inearly ordered by < , and let 

aEX be given. If Ha..= { (x,y):x = y or a~x J , then U = { U: 

H..cUcXxX,aEXJ is a quasi-unifonn structure for the set X and t.U is 

a di s crete topology for the set X. In fact for each x EX, there exi s ts 

a point a in X such that x<a and x = Ha.(x) . 

EXAMPLE 1.10 Let X be a non-empty set linearly ordered by <:, and let 

aeX be given. If La..= { (x,y):x~a~y J u~ , then 'U. = { U: 

La.CUCX.lC X , aEX} is a quasi-unifonn structure for the set X and tu 

is a discrete topology for X since for each x EX, X = Lo..(x) by choosing 

aEX such that x< a • 

EXAMPLE 1.11 Let R denote the set of real numbers with the usual order 

<: and let E ~ 0 be given. Set \~e = { (x,y) :y-<. x + Eo j . Then 

1). = { U:WECUCXllX ,E > 0 J is a quasi-uniform structure for R , and 

t~ is the left-hand topology for X generated by the base consisting of 

all intervals of the fonn (-OGI ,a) = { x:x< a} for any real number a . 



EXAMP LE 1. 12 Let N denote the set of natural numbers and 

Un = { (x,y) EN'" N: x = y 0 r x ~ n J , then 'U = { U: Un c. Uc: X ~ X , n EN} 

is a quasi-uniform structure for the set N , and itU is the discrete 

topology since Unfol (n} = { n 1 for each n EN. 
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DEFIN ITION 1. 6 Let U be a quasi-uniform structure on X. The 

conjugate ~C' of1J. is the collecti on of subsets of X l( X defined by 

2[1 = { U-I : U E. 'U } . 

THEOREM 1. 4 The conjugate 

quasi-uniform structure. 

of a quasi-uniform structure is a 

PROOF. Let ( X , 2{ ) be a quasi -uni form space , and let 'ZCI 
be the 

_I -I -I -1-1
conjugate of 'U . .d C U for every U E U , since A =.1 cU. 

-I -I t:J,-I -I -1 (-I -I -I .q,-I
Let U , V E U\. then U "V = Un V) • Hen ce U '"' V E "" • 

-I ..,,-1 -/ -I -/.q,
Let U E "'" and U c: A c. X .lC X , then uc A and A E "" • Hence 

-I -I tJ'J,-1
A E U . Let U E "'" , then U Eo tl. There exists a V in ~ such that 

VoVc. U. This implies that V-'ll V-I = ( VoV r' c U-I • Thus '2£-1 is a 

quasi-uniform structure for the set X • 

DEFINITION 1. 7 Let f : X -+ Y , and g : S ~ T , then the function 

f)l.g: X" S --+ yx T is defined by ( f"g )(x,y) = ( f(x) , f(y) ) for 

every (X,y)EXxS. In particular, if f = g and Y = T, and then 

denoted f)l. f by f.z . 
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DEFINITION 1.8 Let e be a non-empty collecti on of subsets of Xl( X • 

(8 is a base for a quasi-uniform structure on X if and only if 

(1). A C B for every BEe , 

(2). If B., B2 c!S, then there exists a BEca such that 

BcB,rtB.z , 

(3). For each BEV3 there exists a B' E(8 such that B'oB'CB . 

THEOREM 1.5 Let f : X ~ Y , and let U be a quasi-uniform structure
 

0"1 Y , then the collection f;1 (1.l) = { f;' (U):U E 'Zl } is a quasi-uniform
 

base on X .
 

PROOF. Since Ayc.U for each Ue '2l, it follows that Axcf;'(U) .
 

Let f;'(U) ,f;'(V)6f~'(U). Then f;'(u)nf~'(V) = f;'(Uf)V)~f~'(ll) .
 

Let f;' (U) E f~' (U) , then there exists a V in U such that Vovc U .
 

Hence f~ (V)of;' (V) C f;' (U). Thus f;' (1.£) is a quasi-uniform base on X •
 

DEFINITION 1. 9 Let ( X , 'U ) and ( Y , 11' ) be quasi-uniform spaces.
 

A function f : X ~ Y is said to be quasi-uniformly continuous if and
 

only if for every V in 11 , f;" (V) in U .
 

THEOREM 1. 6 Let ( X , 1). ) and ( Y , 11 ) be quasi-uniform spaces, 

and let f : X ~ Y Then the follCMing statements are equivalment . 

(1). f is quasi-uniformly continuous. 

(2). For each V€ '11 there exists a UE U such that (x,y) E U 
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implies that ( f(x) , f(y) ) E V • 

(3). U is finer than f;' (1f) • 

PROOF. (1) => (2). For each VE '1f , f;' (V) E 21.. Let U = f;' (V) , 

then f 2 (U) = fz( f~' (V) )c V . 

(2) ~ (3). For each f;! (V) in f;' ('11) there exists a U~ 11. such 

th at UC f ;.' (V). Hence f 2,' (V) E ~ • 

(3) ~ (1). Since ~ is finer than f;' (rt') , then for every 

V f '1t , fz-I (V)E f;' (1f) and therefore f;' (V) E 1J. . 

THEOREM 1. 7 Every quasi-uniformly continuous function is continuous. 

PROOF. Let f : ( X , U ).-, ( y , 11 ) be aquas i -uni formly continuous 

function. For each VE '11 , v(f(x)1 is a neighborhood of f(x). Then 

there exists a UE 'U such that fz(U) C V. Hence f(U(x)) = ( fz(U) )(f(x)] 

c V(f(x)J . Therefore f is a continuous function. 

Let R denote the set of real numbers. For each r ~ 0 , set 

Dr = { (X,y)E Rx R:lx - yl< r J . Then ~ = { Dt:r>O J forms a 

quasi-uniform base for R Let'Zl be the quasi-uniform structure on R 

which is generated by ~ If f : ( R , 2( ) ----, ( R , 'Z< ) is a 

quasi-uniformly continuous function , then , equivalently , for each U in 

'21 there exi s ts UlEU such that f 2,(U I) cU. In other words , for each 

UE U there exists a D~ with f> ~ 0 such that f.z(D~)C U. That is , for 
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each base element D~ of S there exists another base element D~ such that 

f2 (D 6 ) C DE. Or equi valently , for each ~;;> 0 there exists a 

~ = ~ (E» 0 such that (x,y)~ D~ implies that ( f(x) , f(y) )E D~ 

Hence , for every ~ > 0 , there exis ts a ~ = &(E );;> 0 such that 

Ix - y I~ ~ implies that I f(x) - f(y) I ~ e. Thus f is a uni fonnly 

continuous function on the reals R . 



CHAPTER II 

PERVIN QUASI~UNIFORM STRUCTURE 

DEFINITION 2.1 Let..A3 be a non-empty collection of subsets of X)C X . 

~ is called a subbase for a quasi-uniform structure on X if and only if 

(1). A C S for each Sin ~ , 

(2). For each S in .-J , there exists a T in ~ such that ToT<::S • 

DEFINITION 2.2 Let ( X , t ) be a topological space. Set 

.s8 = i 0 x 0 u( X - 0 ) 11- X:O Eo t \. Let rP denoted the fami ly of subsets 

of Xx X whi ch are supersets of fi nite i ntersecti ons of members of RS • 

~ is called the Pervin quasi-uniform structure for the topological space 

( X , t ). The following theorem justifies the above terminology. 

THEOREM 2.1 Let ( X , t ) be a topological space, P as defined in 

definition 2.2 , then 

(a). rP is a quasi-uniform structure, 

(b). t:.rp = t . 

PROOF. (a). Let S = OlCou( X - O)x X~ ~. Clearly Lies. 

Suppose (x,y)E Sand (y,Z)ES. If XEO then yEO and ZEO. This 
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EXAMPLE 2.2 Le t X = { I, 2,3} , t = { <P ,X, {n ,{I ,2},H ,31}. Then 

( X , t ) is a topological space. The Pervin quasi-uniform structure 

q:; for ( X , t ) is generated by the subbase .J = {i I} )( tIl U 

{2,3}xfl,2,3}, {1,2}xh,2jU{3}xil,2,31 ,{1,3~X{I,3J u 

f2})({1,2,311 . These subbasic elements are illustrated in figure 2.2 . 

:3 

A. 

s, :: f I J)C t I } U f1/ 3 J" ~ " 2,.3} E: J 

3. :I . 

3 

..z 

S.z := f 1/ ~ 1~ {,,2}U f ~ 1x l' ,~ . :3 JE is 

I .z 3 

a 

.2 

~3:: t/, ~ J~ tI, ~ Jut ~ ~ x f I ,~. 3 j c reB 

z 3 

FIGURE 2.2 



CHAPTER III 

SEPARATION AXIOMS 

DEFINITION 3.1 A topological space ( X , t ) is a Ro-space if and only 

if for every open set 0 in t , containing x in X , it follCMS that xc 0 . 

THEOREM 3.1 Every subspace of a Ro-space is a Ro-space • 

PROOF. Let ( V , s ) be a subspace of ( X , t ) , and let O' be an
 

open set in V containing y with 0' = Vno, where 0 is open in ( X , t ) .
 

Then y f 0 and clxf yfc. 0 , since X is a Ro-space. Now Clyf yJ =
 

VI) Cl (y~c Vn 0 = 0' and V is a Ro-space .
x 

THEOREM 3.2 Let ( X , t ) be a topological space. Then the follCMing 

three statements are equivalent • 

(1) •	 (X, t ) is a R,,-space . 

(2).	 For any closed subset A , and a point x not in A there exists 

a neighborhood of A not containing x . 

(3) •	 If x 1- y , then ei ther x = y or xny = ep . 

PROOF. (1)===* (2). Let A be closed and XE X - A. Since ( X , t ) is 
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a Ro-space , it follOr'/s that xc X - A. Thus X - x is a neighborhood of 

A which does not contain the point x . 

(2).=>(1). Let 0 be an open set containing x~X. Let yf: X, 

then every neighborhood of y contains x. Suppose ytO, then ycX - 0 

and, by (2) , there exists a neighborhood containing X - 0 , but not 

containing x. This is impossible. Therefore yEo 0 and hence xc: 0 . 

(1)~ (3). Suppose that x 'I y and x 'I y , then it may be assumed 

that there exists an alE X and a fY. Now x f.y for otherwise XE xcy and 

aExc:y contradicts the fact that a~Y. Since xG-Y then XE-X - y. By 

the Rohypothesis, it follows thatxc:X -y. Thereforexny= fJ . 

(3)=:t (1). Let 0 be an open set and XEO. Let YlX and y 'I x , 

then by (3) , either x= y , or xny = ep . But the second case is 

impossible, since y EX ny. Thus x= y and x E y and therefore every 

open set 0 contai ni ng x mus t contai n y. Hen ce xc 0 . 

THEOREM 3.3 Let ( X , t ) be a topological space. Then the follOr'/ing 

statements are equivalent 

(1). (X, t) is a Ro-space 

(2). (X, t ) has a compatible quasi-uniform structure 'U such 

th at for each x in X and for each U in CZL there ex i s ts a 

symmetri c VE 'lL wi th V(xl c U(x] . 

(3). (X, t ) has a compatible quasi-uniform structure ttl. such 

that the collection {V(X):V symmetric and V~ U. J forms a 
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local	 base at the point x EX. 

(4).	 (X, t) has a compatible quasi-uniform structure U such 

that for each x in X and for each U in ~ there exists a V 

in U such that V
-I 1xl C Ufx) • 

(5).	 (X, t ) has a compatible quasi-uniform structure 11, such 

that t = i.'l1.. C j fl.-I . 

PROOF. (1)==*(2). Let (p be the Pervin quasi-uniform structure for 

the set X. For each x in X , and each U E U , there exists an open set 

oE t with x ~ 0cUrx] • 

De fi ne So = 0" 0 U ( X - 0 ) '" X ,
 

-c _c -

SiC =xxxux"X
 

-G -c

V=OxOUxxx
 

Set A = 0 1C 0 ,
 

B=(X-O)JCX,
 

_( -c
C=xxx , 

D=x>X. 

Then sons;;c = (AnC )tJ( AnD )lJ( BIlC )U( BnD) 

where A fl C = ( 0 - x )( ( 0 - x ) cOlt 0 C V , 

AIlD=XxOcOXOl:.V, 

-c -c -c
BOC= ( X-O ) xxcxxxcv, 

BOD=ep • 

Hence So n s oK c C V and V E fl... Furthermore, Vis symmetri c and 

o = V{xl C Uex) • 
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(2)~(3). For each XE X , the collection { V(x):V syrnrnetric 

and VE U} is a local base at x if and only if for each x~ X and each 

U E f1. , there exis ts a syrrmetri c V£ 11. wi th Vlxjc U(x) . 

(3) ~ (4). For each x E: X and each U~ 11. there exists a symmetric 

V~U with V(x]cUlxl . Since V is symmetric it follows that 

V-I [x J = V(x] c U(x J • 

(4) =+(5). Let U be a compatible quasi-uniform structure for 

the set X which satisfies condition (4) , then t = I.", . For each open 

set 0 E-f'tl' there exists a U in eu with x~U(x)cO ,and by (4) there 

exists a V in 2L with V-1{xlCU(x). Therefore XE V-'[X]C U(x)c 0 

This implies that 0 belongs to i U - I • Hence t = i u C tu.- I 

(5)~(4). For every x in X and each U in 'U , X€ U(x] 

However , U(x) is a neighborhood of the point x , and there exists an 

open set 0 in i u such that xfOcUfxl. But 0 E t u - f ,since 
-/ -I - t

;t.u c ifJ,-r . Therefore there exists a V E U such that x ~ V (xl c: 

OcU(X] . 

(4) ~(l). The point y belongs to x if and only if U[yJ fl {xj 'I rp 

for each U ~ 'Ii. , or equivalently , x E UCyJ for every U in 'U.. That is , 

y~ U-l[x] for each U in U. Hence x= n[ U-'Cxl:U e U Jc: n[ UrX]: 

U € 'U by condition (4) . This implies that x is contained in every 

nei ghborhood of x. Thus for each open set 0 ~ t = t"u containing the 

point x~ X there exists U ~1l. with Xf U(x]c:O. Since xcUCxJ for each U 

in U it follows thatxcUtxlCO. Hence (X, t) is a Ro-space. 
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THEOREM 3.4 A quasi-unifonn space ( X ,11, ) is Ro if and only if 

nfu:uf!uJ is symmetric. 

PROOF. (X, "lL ) is a R/)-space , if and only if for each x~ X , 

X = n l U-'(X]:U EU}cnlUlxl:UfU} by theorem 3.3. Now 

nt U-I:U ~ U j c nlu:u f. U J and this is equivalent to the statement 

that () l U:U ~ 1J. Jis symmetric. 

COROLLARY ( X , U. ) is a Ro-space if and only if x= n{U(X]:U~ UJ . 
The proof follows immediately from theorem 3.4 . 

THEOREM 3.5 A quasi-unifonn space ( X , ~ ) is TD if and only if 

() l U:U E 'U t is anti-symmetric. 

PROOF. Suppose ( X , 1). ) is To-space. If x , yare two distinct 

points in X , then there exists an open set 0 ~ tit which contains one of 

them but not the other. Suppose that XE 0 , y<l 0 , then there exists a 

U in 'U such that x £ U(xl cO and yf U(xl. Hence x 'I y impl ies that 

there exists a U in 'U such that either y~ U(xJ or x f U[y]. In other 

words, for each U in f.L ,yEUlxl and x~U[y] implies that x = y . 

Therefore n [U:U Eul is anti-symmetric. 

If collection (l {U:UEU} is anti-symmetric, then for any two 

distinct points x and y in X , there exists a U in 11 with either (x,y)1'l U 

or (y,x)fU. HenceeitheryfU{xl orx4Uly]. ThereforeXmustbea 

T. -space . 
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THEOREM 3.6 A quasi-uniform space ( X , Zl ) is T. if and only if 

A = (l {U:U ~ 11. f . 

PROOF. Suppose ( X , 'U ) is a T, -space. Clearly, A en l U:U € 21.. J . 
Suppose x 'I y , then there exists a U in 'Zt. with ytU(x]. Therefore 

(x,y) f n {U:U ~ 1J. t. Hence n {U:U ~ U teA and therefore L1 = 11 [ U: 

U E"U. i. The other part of the proof is natural and omi tted • 

THEOREM 3.7 A quasi-uniform space ( X , ~ ) is T, if and only if it 

is To and Ro • 

PROOF. Let the quasi-uniform space ( X , ~ ) be T, , then for every 

open set 0 in /11. containing x in X , it follCMS that x= {xico • 

Hence ( X , 11 ) is a Ro-space. Clearly, every T,-space is a To-space. 

Suppose that ( X , ~ ) is a TD and Ro-space , then, by theorems 

3.4 and 3.5 , it follCMS that S = n l U:U E 'U} is both syrrrnetric and 

-I -, A -/anti-symmetric. Thus S = S and so S = LI • Hence S = sns = A 

and ( X , ~ ) is a T,-space by theorem 3.6 . 

THEOREM 3.8 Let ~ andrbe two quasi-uniform structures for a set X • 

If tJlc:-XltX, then M= t1 f U-MoV -/ :ue'tL, V£ r.I 
PROOF. The ordered pair (X,Y)E Mif and only if for each U in ~ and 

for each V in r , U(x))I V(Yl n M 'I + . Equivalently, for each U in eu 
and for each V in jr, there exists a point (a,b)E Msuch that a~ U[xl , 
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bf- V[Y]. This is true, if and only if (x,y) E.UoMoV- 1 for each U in V. 

and for each V in r . 

THEOREM 3.9 A quasi-uniform space ( X , U ) is To1 if and only if
 

A = n {uou-l:u ~'UJ.
 

PROOF. A topological space is T.z if and only if A is closed in XII X , 

that is , A = A - . By theorem 3.~ , .LI - = f1 i UoAoU -/ :U e'U j ,but 

UoAo U-I = UoU- I for each U € eu. Thus ( X , 11. ) is To! if and only if 

L\ =~ = n f UoU- 1 :U ~ U } . 

DEFINITION 3.2 A topological space ( X , t ) is a R,-space if and only 

if x 1 y implies that x and y have disjoint neighborhoods. 

THEOREM 3.10 Every subspace of a RI-space ;s a RI-space • 

PROOF. Suppose ( V,s) is a sUbspace of ( X , t ) , let y, 'Yz. be 

points in V, then ClyfYd = VnClx{y,f and Cly{y~l = VnClxlyd 

If C1'( { y I \ 1 C1r ~ y2. t ' then C1x {y I \ 1 C1x {Y.d. Sin ce ( X , t ) i s a 

. R,-space , then there exist two disjoint neighborhoods Ny, ' N1a 

containing Cll(ly.f ,Clxly~\ respectively. That is ,there exist open 

sets 0 1 and 0,2 such that Cl x IY,\ c:: O.c.N t , ,and Clx(YAtc OoleN,•• 

This implies that Cly~y.t = VrlClxfy,tcVt)0,cVnN1. and ClyfY&l = 

vnclxfYJ.fcvnozcVflNYl • NON, (VON y, )n( VflNf~ ) = Vfl 

( NYt fl NY.z ) = <P • 



21 

Hence Clyfy,\ ,Cly{Ya\ have disjoint neighborhoods Yf'lN y, and Y"Ny~ • 

Therefore the subspace ( Y , s ) is a R,-space . 

THEOREM 3.11 A R,-space ( X , t ) is a Ro-space . 

PROOF. Let 0 be any open set in t whi ch con tai ns x ~ X , and 1et 

YE X - 0 , then yc X - 0 and x f y. Hen ce x =I y Since ( X , t ) is a 

R,-space , there exist disjoint neighborhoods Ni ' Ny such that xC N; , 

YCN y . Thereforey~x andxcO. Hence (X, t) is a Ro-space. 

THEOREM 3.12 The following three statements are equivalent. 

(1). (X, t ) is a R,-space 

(2). For any points x , y in X , x =I y implies that x and y have 

disjoint neighborhoods 

(3) . V = { (x ,y ) :x= y j = A . 

PROOF. (1) ~ (2). For any points x , y in X , if x =I y , then there 

exist disjoint neighborhoods N;c and Ny of x and y , respectively. Since 

x~x and ye:y ,there exist disjoint neighborhoods of x and y . 

(2) ===> (3). For any open set OJ( containing x , and for any point 

z~X - 0 ,then zeX - 0 • Hence x,'Z and x, z have disjoint 

neighborhoods Nl( and Nt respectively. This implies that z~x and 

xc:O 

Let (x,y) t- V' ' then x = y. Let OJ( , 0t be arbitary open sets of 
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x and y , respectively. Then (x,x) .. X,< Yr:::. O,,>C 0 1 and 0t" Or nA =I P . 

This implies that (x,y) t A and VC A. On the other hand, let 

(x,y) ~A ' then Ott Or nA =I 4> for any open sets Ox and Or of x and y , 

respectively. That is to say, O,crlOy =I 1> for any open sets Ox and Or 

of x and y , respectively. Therefore, by (2) , x= y and hence 

(x,y) Eo V . 

(3)~ (1). For any point x ,y in X , if x =I y , then (x,y)~ V. 

That is (x,y) in X - V = X -A which is open in the product topology of 

X"X. Hen ce there exi s t open sets 0 r , 0 y of x and y res pecti ve 1y wi th 

(x,y)€OxXOycX-V =X-A". ThereforeOll'nOy{)A=~ and 

0xnOy = + . Hence ( X , t ) is a RI-space . 

THEOREM 3.13 A quasi-uniform space ( X , ~ ) is R, if and only if 

\]= nt uou-\:u~ui· 

PROOF. By theorem 3.12 , ( X , U ) is R, if and only if 'V = A 
A = n fU .. AoU-':u EU! = n{ueu-':UE "'tt! by theorem 3.7. Thus 

( X , eu ) is R, if and on 1y if V = fl { UoU-I: U€ 'lLJ. 

THEOREM 3.14 A quasi-uniform ( X , 'Ii) is T,,2 if and only if it is T, 

and R I 

PROOF. It is well-known fact that every TJ-space is also a T,-space . 

Let ( X , ~ ) be a T~-space , then x =I y implies that x =I y since x= x , 
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and y = y. Since ( X , ~ ) is T~ , then there exist disjoint 

nei ghborhoods N1 and N'I of x , y respecti vely. Hence x , y have 

disjoint neighborhoods N,c and Ny. Therefore ( X ,11.) is aRt-space. 

Let ( X , 'U. ) be a T I and R,-space. Clearly,.t/ c t7. Let 

(x,y) '" V , then x= yand , since X is T. ' x = y. Therefore, A = V 

and V =4 , since X is R, by theorem 3.12. Thus A = nl uoU-t :Uf?J~ 

and by theorem 3.9 ( X , U ) is a T.l -space • 



CHAPTER IV 

COMPLETENESS AND COMPACTNESS 

DEFINITION 4.1 Let X be a non-empty set, then a non-empty family ~ 

of subsets of X is a filter on X if and only if 

(1). 'I'f':f, 

(2) . FI , F2 E: ~:9 F, n Fz E: ':f , 

(3) . F, Eo' d and F, C F ~ FE ':£ • 

DEFINITION 4.2 A collection a3 of subsets of the set X is said to be a 

base for a filter:F on X if and only if ~ = { E:Bc E for some B Eo S 1. 

DEFINITION 4.3 A collection ~ of subsets of the set X is said to be a 

subbase for a filter '::J on X if and only if the collection of all finite 

intersection members of ,J is a base for the fi lter ':J . 

EXAMPLE 4.1 Let ( X , t ) be a topological space and let x be a fixed 

point of X , then the set Sx = {Nx:XEOxCNx , for some OxEtJ is a 

filter on X. This is called the neighborhood filter of the point x . 

EXAMPLE 4.2 Let X be a non-empty set , and let x be a fixed point of 
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x , then the collection Sx = { N:XE NCX} is a filter on X . 

EXAMPLE 4.3 Let X be a non-empty set and let A be a non-empty subset 

of X. Then the collection SA= f N:ACNCX] is a filter on X. 

EXAMPLE 4.4 Let ( X , t ) be a topological space. The collection ~ 

of all neighborhoods of an arbitary non-empty subset A of X is a filter, 

called the neighborhood filter of A . 

EXAMPLE 4.5 Let X be an infinite set, then the set tg' = f F:X - F is 

fi ni te in X} is a fi lte r on X . 

EXAMPLE 4.6 I f X r 4> ,then ~ = { xli s a fi 1te r on X . 

THEOREM 4.1 Let 1:J. be a co11 ecti on of subsets of X , then there exi s ts 

a filter Y on X which contains 11- if and only ifJJ. has the finite 

intersection property. 

PROOF. The proof of this theorem is irrmediately from definitions 4.1 

and 4.3 

THEOREM 4.2 Let f be a functi on from X onto Y , and rg be a fi 1ter on 

Y , then f-'(.1) = { f-I(F):FE~} is a filter on X . 

PROOF. ep, f-/(~) , since ep 4 ~ and f is an onto function Let 
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f-'(F,) ,f-I (F,&)E:f-'(.1). Then f-'(F,) f1 f-'(Fz ) = f-I(F,nF.z) which 

is in f-'(.1) ,since F,nF.zE'::F. If f-'(F)Ef-'(3) and f-'(F)CA then 

FCf(A) E ~. Therefore AEf-'(:1) and f-'(~) is a filter on X . 

THEOREM 4.3 Let f be a function from X onto Y , and let ~ be a filter 

on X, then f(.1) = f f(F):FE~J is a filter on Y. 

PROOF. 4>4 f(1) ,otherwise f= f(F) for some FE'3 which is 

impossible. Let f(F J ) ,f(F.z.)E:f(.7'). Then f(F,flF.z)Cf(F,)l1f(F.z) 

This implies that Fin F.zc.f-I ( f(F,f"IF.z) )C.f-'( f(F,)nf(Fz ) )Ej . 

Since f is onto, f(Fd nf(Fz) = f( f-/(f(FI )llf(Fz )) ). Hence, 

f(F,)nf(F.z)~f(:1). If f(F)Ef(~) and f(F)cA, then FC.f-'(A)E.~, 

and f-I(A)~"3. Since f is onto, A = f( f-'(A) ) and hence A€f(~) . 

COROLLARY. Let f be a function from X onto Y , and let cB be a filter 

base on X, then f(0) = t f(B):BE-(jJ i is a filter base on Y. 

DEFINITION 4.4 An ultrafilter d on a set X is a filter on X which is 

_maximal in the collecti on of all fi 1ters parti ally ordered by inclusi on 

that is to say , a fi lter whi ch is not properly contained in any other 

filter. 

EXAMPLE 4.7 Let X be a non-empty set and let a be fixed point of X , 

then the collection '3 = i F:aE Fc.X j is an ultrafilter. This follows 
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since if rJ is a filter with :'}c,J and rJ '! ftJ , then there exists a 

S ~ ~, S 4: ff. This implies that a+S. However {a} f ~cJ8. Thus 

{ a 1n S = c; E ~ whi ch is a contradi cti on . 

ZORN'S LEMMA. Let X be a non-empty partially ordered set such that 

every linearly ordered subset has an upper bound , then X contains a 

maximal element. 

THEOREM 4.4 If r::J is any filter on a set X , then there exists an 

ultrafilter finer than 'J' . 

PROOF. Let ~ be a fil te r on a set X , and 1et J:J. be the co11 ecti on of 

all fi 1ters containi rig '(f. Then J:J. is non-empty set , s ince ~ E J#. , 

and is partially ordered by inclusion. Let L be a linearly ordered 

subset of }J , then for any pai r ~J' ':f~ E L , it foll ows that ei ther 

'3, c 'Y.z. or '3'z. c:1, . Let H be a set defined by H = { E:E ~ eg & L J , 
then H is a filter containing every filter in L. This is true because 

it satisfies the following three properties. 

(1). ep t$ H , since no filter '3 in L contains <P . 

(2). Let E, , E.z.~H , then there exist filters:/' ,~. in L 

such that E I E (I, , E,2E J.z. . Since L is a linearly ordered 

set , then ei ther ~, C fZ or 7;& c. "!f I and hence ei ther 

E, E ~z. , EI (l E,2 E 7Jz 0 r E.z E 7, ,E I" Ez ~ '7, . In both 

cases E,n EzEH for every pair E, ,EzEH . 
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(3) .	 Let EIcE , and E, € H , then there exi s ts a fi lter~, E L 

wi th E, Eo:1, . Si nce E,cE , hence EE ;], ELand hence 

E~ H • 

Thus H is a filter which is finer than any other filters in L . 

Therefore ~ is a non-empty partially ordered set such that every linearly 

ordered subset L has an upper bound H ! then 4- contains a maximal 

element by Zorn's Lemma. This maximal element is by definition an 

ultrafilter finer than ~ . 

THEOREM 4.5 Let X be a non-empty set and ;r be a filter on X. The 

following three statements are equivalent. 

(l) . ~ is an ultrafi lter on X .
 

(2). If AUB€j' then either AE-~ or B~~.
 

(3) .	 If Ec. X ! then ei ther E f: '1 or X - E ~ ~ . 

PROOF. (1) ==* (2). Let J be an ultrafilter on X. Suppose condition 

(2) is not true, then there exist subsets A , B in X ., such that A. ~ 

and B~d and AuBE-rg. Let Ji. be defined as follows, 

Jd. = f ECX:AUEE7}. 

Then J#. is a filter on X. This is true because it satisfies the 

following three properties. 

(a) .	 <p 'JI. since BE 14 . 

(b).	 If E, and E,l belong to ~ , then AUE,E:d" and AUEz~ ~ . 

Now (AlJEI)"(AuE~)E-':1 ,therefore AU(E,nE2)E~ and 
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E,f"lEz'IJ. 

(c). If EIE-~ and E.c. E , then AUE,cAuE. Hence AUEE-3" and 

EEAt. 

Since BE..!! and B~ ~ , it follows that 11 is a filter strictly 

finer than '3 . This contradicts the fact that 3 is an ultrafilter. 

Hence for every pairs of subsets A , B in X , with ALJB in an ultrafilter 

~ it follows that either Af:f or B~ f . 

(2) ~ (3). If EcX ,then Eu( X - E) = XE'g. By condition 

(2) , it follows that either E f: rg or X - E Eo '1 . 

(3) =* (1). By theorem 4.4 , ~ is contained in an ultrafilter 

~ I. For each subset E in .., I , X - E" "J I. Hence X - E. '1 and by 

condition (3) it follows that E tr '1. This implies that ~Ic. '7. Since 

:11 is an ultrafilter, then "3 1 = "3 • Therefore ~ is an ultrafilter. 

DEFINITION 4.5 Let ( X , t ) be a topological space, and let ~ be a 

filter on X. A point X6 X is called a limit point of ~ , denoted by 

XE-lim'J , if and only if every neighborhood Nx of x belongs to ~ . 

"DEFINITION 4.6 Let ( X , t ) be a topological space, and let 3r be a 

filter on X. A point xE X is an adherence point of the filter 'g , 

denoted by x E: adh 0.7 , if and on ly if for every F E ~ and for every 

nei ghborhood Nx of x , N){ n F 'I;' . 

THEOREM 4.6 Let ~ be a filter on ( X , t ) , then x is an adherence 
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poi nt if and on ly if x En { F: F Eo l' } . 

PROOF. Let x be an adherence point of 7 , then for every FE ']= and 

for every neighborhood Nx of x , it follows that N)(fl F 'I ~ . That is to 

say , for every F E ~ , X 4: F. Hence x E n f F: F E 7} . 

On the other hand , if x 6 n { F: F , 7f J ' then x E F for every 

F ~ '1. That is for every F E '3 , and for every nei ghborhood N,x of x , 

N.x fl F r 4> • Hence xis an adherence poi nt of ':f . 

DEFINITION 4.7 Let f XnJ~ be a given sequence, and set FK::: f xi: 

i ~ k } . Then the collection { FK:k = 1 , 2 ... J is a filter base. The 

generated filter :J will be called the natural filter generated by the 

given sequence . 

Let i Xn}~ be a sequence of real numbers and let '(J be the 

natural filter generated by the sequence. The point x is a limit point 

of Y if and only if every neighborhood Nx of x belongs to;; and this is 

true provided every open set of the form ( x - € , x + E ) containing x 

belongs to '3. Or equivalently, for every E :> 0 there exists F in ':J 

containing x such that Fe ( x - E , x + € ) , that is for every E-:>O 

there exi sts an integer k:> 0 such that FKc F C ( x - E , x + € ) where 

Ff(::: { X I< , X K+ I' ••• }. Hence for every Eo:> 0 there exists an integer 

k>O such that for n>k , xn4( x - E , x + E: ). Thus xElim d: if and 

only if lim x" ::: X • 
" ... .-0 
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The point x is an adherence point of a fi lter ~ on X , if and 

only if for every neighborhood N)C of x and for every F E ~ , 

Nx n F 1- 4> , or equivalently if every open set of the form 

( x - E , x + e ) intersets every member F in ~. That is , for every 

E->O and for any integer k="O ,then (x - ~ ,x + € )nFK1- + . And 

this is equivalent to the statement that for every E:;;. 0 , and for every 

integer k~O there exists a n>k such that XnE( X - C ,x + e ) . 

Hence xEadh ~ ,if and only if x is a cluster point of the sequence. 

In examples 4.8 through 4.15 , sequences are considered in the set 

of real numbers with the usual topology. 

EXAMPLE 4.8 The sequence {n}7 generates a filter'g with lilTl~ = <P 

and adh '3 = 4> • 

EXAMPLE 4.9 The sequence {l/n Jc;a generates a fi 1ter do wi th 

1i m ';J = f 0 land adh ~ ={O} . 

EXAMPLE 4.10 The sequence I (-1)"}~ generates a filter":f , with 

1im 'J = <P an d ad h '3 = f -1,1 } . 

EXAMPLE 4.11 Let { 2+n/n+51';' be a gi ven sequence whi ch generates a 

fil ter J , then lim ~ = ~ 1} and adh ~ = f 1 } . 

EXAMPLE 4.12 Let { (-1)n(n+1/n)J7 be a sequence which generates a 
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fil ter -:J , then 1i m '3= = 4> and adh ~ = f -1,1} . 

EXAMPLE 4.13 Let { (-l)n(l/n)J~ be a sequence which generates a filter 

'3- , then 1i m ~ = f O} , and adh 7 = f O} . 

EXAMPLE 4.14 Let f xnl~ be defi ned by 

n+1 when n is even , 
xn = { 

lin when n is odd. 

Let ~ denote the natural filter generated by this sequence. Then 

1i m ':! = cf and adh ""J = f °1. 

EXAMPLE 4.15 The sequence f 1 , 1/2 , 1 , 1/3"'} generates a fi 1ter 

:J with lim ~ = ~ and adh '5 = {l,O} . 

THEOREM 4.7 Let ( X , t ) be a topological space, and let jr be a 

filter on X , then every limit point of':f is an adherence point of ~ 

PROOF. Let x E: lim ~ , then every neighborhood rl)C of x belongs to ~ . 

Therefore Nx f"l F =I ~ for every nei ghborhood Nx of x and for every Fin 

'"J. Hence x E adh ~ . 

THEOREM 4.8 Let ( X , t ) be a topological space , and let ~ be a 

filter on X, then xEadh~ if and only if xElim? I for some ':7' finer 

than 'J= • 
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PROOF. Let x ~ adh ~ ,then , by defini ti on , for every nei ghborhood 

Nx of x and for every F 4& ~ , Nxn F 1- + . Let (8 = I Nxn F:N)( is a 

neighborhood of x , FE: J J . Then fi3 is a base for a filter ~I and 

xElim~'. 

On the other hand , let ':7' be a fi 1ter finer than ~ and let
 

x Eli m '3 I Then, by theorem 4. 7 , X E adh d I Hen ce x Eo adh '3 .
 

THEOREt~ 4.9 Let ( X , t ) be a topological space. If AcX is closed 

then adh ~ C A for every fi 1ter containing A . 

PROOF. Let ~ be a filter containing the set A. Then adh~ a:" { F: 

F~jt}cA=A. 

THEOREM 4.10 Let ( X , t ) be a topological space. Then ( X , t ) is 

T2 if and only if every filter has at most one limit point. 

PROOF. Let ~ be any fi 1ter on a T.z-space ( X , t ) , and let x , yare 

distinct limit points of jr. Then there are two disjoint open sets 0, 

and Oz containing x and y respectively. Since x , yare limit points of 

. ~ , then 0, , 0,2 are members of ~. This implies 4> = 01 n Oz E7 whi ch 

is impossible. Hence the filter? has at most one limit point. 

Suppose the condition holds and ( X , t ) is not T.z. Then there 

exist two points x , y in X such that any open sets Ox , Oy in t 

containing x and y respectively, have a non-empty intersection. 
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Therefore, the collection 13 = {OxnOy:x~O)(~t ,ycO.t~t} has the 

finite intersection property and hence generate a filter ':J on X . 

However, the filter:l has two distinct limit points x and y which 

contradicts the hypothesis. Therefore ( X , t ) must be a T~-space . 

THEOREM 4.11 Let ( X , t ) be a topological space, then the following 

statements are equivalent. 

(1). (X, t ) is compact 

(2). Every non-empty collection of closed sets with the finite 

intersection property has a non-empty intersection 

(3). Every filter has a non-empty adherence. 

(4). Every ultrafilter has a non-empty limit. 

PROOF. (1) ~ (2). (X, t ) is compact if and only if every open 

cover has a finite subcover. That is , every collection of closed sets 

with an empty intersection has a finite subcollection with an empty 

intersection. Or equivalently, every non-empty collection of closed 

sets with the finite intersection property has a non-empty intersection. 

(2) ~ (3). Suppose condition (2) is true, then 4> ~ f\ (F:F~.'1} 

= adh'] ,where':! is arbitary filter on X . 

(3) ~ (4). Suppose condition (3) is true. Then every 

u1trafi 1ter ? on X has a non-empty adherence. Therefore by theorem 4.8 

every ultrafilter has a non-empty limit. 

(4) ~ (2). Let l: be a non-empty collection of closed subsets of 
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x with the finite intersection property. Then c: generates a filter ~ 

on Xwhich is contained in an ultrafilter ~I • By condition (4) , it 

follows that adh J ~ <f>. Now adh ~ == f"\{ F:F i: ':f} c n { A:A E ~}. 

Hence n { A: AE c-:} ~ <P 

DEFINITION 4.8 Let ( X , 2l ) be a quasi-uniform space , ( X , ~ ) is 

totally bounded if and only if for each U in !£ there exist finite number 

of subsets AI , A;z. , ... , An such that 

(1). u{ Ai:1~i~n J = X , 

(2). Ai" Ajc U , for each 1~ i~ n . 

DEFINITION 4.9 Let ( X , Zl ) be a quasi-uniform space, ( X , Zl ) is 

pre-compact if and only if for each U in!l there exists a finite set 

A = { x, , x~ , x ~ , ... , x" } C X such that UCAl = X • 

THEOREM 4.12 If a quasi-uniform space ( X , ~ ) is totally bounded 

then it is pre-compact. 

PROOF. Let ( X , U ) be a totally bounded quasi-uniform space. Let 

UE 1.1-. Then there exist a finite number of subsets AI , A~, ... , An 

such that u{Aj:1::o:i='n} = X and AiXAIC.U for each l~i~n. Let 

xjEA , l~i~n, then U(XiJ = Ai for each i and u{U(xil:1~i~n}J 

U { Ai: 1 ~ i ~ n} :;I X. Therefore ( X , tl ) is pre-compact. 
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THEOREM 4.13 In a unifonn space, totally boundedness and 

pre-compactness are equivalent. 

PROOF. Let ( X , ~ ) be a pre-compact uniform space. For each U in 

?,.l there exi s ts a syrrmetri c V in U such that VoV c. U. Si nce ( X , U ) 

is pre-compact, there exists a finite set A = f x I , X.a , ... , x" J 
such that u { V(XI) :1 ~ i ~ n} = X. Let Aj = V(xil , 1:$ i ~ n. For each 

ordered pair (y,z) in AjlC Ai , l~i~n , (Xi,y)E V and (Xj,Z)E V. Then 

(y,z)E V-foV = VoVC.U. Hence Ai)!' AiCU for each U in U and l~i~n . 

Since U{V(xil:16i~nl = X, it follows that u{Ai:1~i~n} = X. 

Hence every pre-compact uniform space is a totally bounded uniform space. 

The proof is now completed by theorem 4.12 • 

THEOREM 4.14 Every topological space has a compatible totally bounded 

quasi-uniform structure. 

PROOF. Let ( X , t ) be a topological space and let 0' be the 

compatible Pervin quasi-uniform structure. The Pervin quasi-uniform 

structure has a totally bounded subbase and hence it ;s totally bounded. 

THEOREM 4.15 The inverse image of a totally bounded quasi-uniform 

structure is totally bounded. 

The proof of this theorem is natural and omitted. 

THEOREM 4.16 A quasi-uniform space ( X , ~ ) is totally bounded if 
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and on1y if ( X , 2C' ) is totally bounded . 

PROOF. ( X , 'U ) is totally bounded if and only if for each U in U 

there exist AI , A~, ... , An such that Aj)( AiC.U for each l~i~ nand 

u{ Ai:l~i~ n} = X. Or equivalently, for each U-'E U- f there exists 
-I _I

A I , A2 , ••• , An such that Aj)C. Ai = (AI)( AI) c:: U for 1~ i~ nand 

U { Ai: 1~ i~ n} = X. Hence ( X ,1l ) is totally bounded if and only if 

( X , U- I 
) is totally bounded. 

DEFINITION 4.10 Let ( X , Zi ) be aquas i -uni form space. A fil ter j 

on ( X , ~ ) is said to be a Cauchy filter if and only if for each U in 

'U there exists a point x in X such that U(xJ Eo '3 . 

DEFINITION 4.11 A filter base o.s is said to be a Cauchy filter base if 

and on ly if the generated fi 1ter 3 is Cauchy • 

THEOREM 4.17 Let ( X , 'U ) be a quasi -uni form space. Then ( X , 'U ) 

is pre-compact if and only if every ultrafil ter 3 on X is a Cauchy 

fi lter • 

PROOF. Suppose ( X , 'U ) is pre-compact , then there exi s ts a fi ni te 

setA=fxI ,x.z,··· ,xn} suchthatU(Al=ufU(XiJ:l~i~nj=X. 

Let.:'1 be an ultrafilter on X, then there exists a xKcAwith U(XK)eJ. 

Hence ~ is a Cauchy filter. 
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Let every ul trafil ter 'a on X be Cauchy. Suppose that X is not 

pre-compact, then there exists a U in U , such that for any finite 

subset A of X , X - UrAl 'I 4>. Hence the collection R& = f X - U!A1: 

A is a finite subset of XJ has the finite intersection property. Now) 

;s contained in an ultrafilter"3. Since every ultrafilter ~ is 

Cauchy , for each U€ ~ there exists a point z e X such that U(zJ e ~ . 

But X - U(zJ E] . This implies that 4> = U(z) n ( X - U(z) ) E 1 which 

is impossible. Hence ( X , U ) must be pre-compact. 

THEOREM 4.18 Let f8 be a fi 1ter base for ( X , U ). (f3 is a Cauchy 

filter base if and only if for each U in U there exists a point x in X 

such that Be U(x] for some BE- tS . 

PROOF. Let fi3 be a Cauchy fi lter base , then Ci3 generates a Cauchy 

filter ~. That is to say, for each U in ~ there exists a point x in 

X such that U(xJ€ ':J. Since fB is a filter base for ~ , it follows 

that Be U(x] for some BE (f3 • 

If for each U in ~ there exists a point x in X such that Bc.U(xl 

for some BE V3 , then for the fil ter:1 generated by a , U!xl E J' since 

BEd. Hence the fi lter base (f3 is a Cauchy filter base. 

THEOREM 4.19 Let:1 be a fil ter on aquas i -uni form space ( X , '!L ) . 

If for each U6 '!J, , there exists F€~ such that FJ( Fe U , then ~ is a 

Cauchy fi lter . 
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PROOF. Suppose the given condition is true. Then for each U in ~ 

there exists F-J with F" Feu. Let xc F , then F = (F)C F)(xJc U(xJ 

and hence U(x)E '3 . Therefore 3 is a Cauchy filter. 

THEOREM 4.20 Every convergent filter is Cauchy. 

PROOF. Let ~ be a filter on a quasi-uniform space ( X t!£ ) , and 

let xElirn3 • Then for each U in U ,U(xJE3. Hence ~ is Cauchy. 

EXAMPLE 4.16 Let R denote the set of real numbers with the usual 

order. Let W= {(x,y)~RxR:x~yJ then{WJ forms a quasi-uniform base 

Let { 1/n}o;o be a sequence and 3 the natural filter generated by this 

sequence. Then ~ is convergent and hence ~ is a Cauchy filter. 

However, there does not exist a FI< with k>O such that FK)( FKC W • 

Therefore the converse of theorem 4.19 is not always true. 

THEOREM 4.21 Let F be a filter on a uniform space ( X , ~ ). ~ is 

Cauchy if and only if for each U in U ,there exists an element F of:; 

such th at Fx FeU • 

PROOF. Let'(J be a Cauchy filter on a uniform space. For each U in 

Z< there exists a symmetric V in U such that V6VC U. Since:J is 

Cauchy, there exists a point x in X such that Vex] E::J. Set F = V(x) 

Let (y ,z)" F lC F = V(xJ)t V(x). Then (x ,y) E V and (x ,z) E V. And thus 
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(y,z)~ V
-I 

0 V = VoVc.U Hence F)( Fe VoVc U for each U in U. The 

result now follows by theorem 4.19 . 

THEOREf'i1 4.22 A filter finer than a Cauchy filter is a Cauchy filter. 

PROOF. Let 3 be a Cauchy fi Her on ( X , f,( ) and '3 ~ ~ I • For each 

U in U there exists a point x6 X such that U(x} sin ce ~ i s Cau chy . 

Since ~I is finer than:5 , it follows that U(X]E 3- • Hence '3 1 is aI 

Cauchy fi Her . 

THEOREM 4.23 If ~ is a Cauchy filter on ( X , 'U ) and '1.1.' is coarser 

than U then 3 is a Cauchy fi Her on ( X , U I ) • 

PROOF. Let U' be a quasi -uni form structure coarser than the 

quasi -uniform structure U on X , and 1et ~ be a Cauchy fil ter on 

( X ,U ). Let U in U 1 then U in U and there exists a point x in X , 

such that U(X] E:J . Hence 3- is Cauchy on ( X , Zt l
) • 

THEOREM 4.24 Let f be a functi on of X onto Y , and let ~ be a Cauchy 

filter on (Y, U ). Then the filter f-'Ut) = f f-'(F):FG3'} is a 

Cauchy filter on ( X , f~' (fi) ) 

PROOF. f-'(3) is a filter on (X, f;'(U)) by theorem 4.2. Let V 

belongs to fi'(U) then V = f;'(U) for some U in U . Since ~ is Cauchy 

on ( Y , U ) , there exists a point y in Y such that U(yJ ~ ~. Now 
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f-I( UCf(x)J )6 f-'(3') where y = f(x) and Vex} = (f;'(U))(xJ = 

f-'( U(f(x)) )e f-I(j). Therefore f- I (1) is a Cauchy filter on 

( X , f;' (u) ) . 

The next example shONs that the image of a Cauchy fi lter need not 

be a Cauchy fi 1ter . 

EXAMPLE 4.17 Let Dr = t (x,y) E. R-+· R+: Ix - yl <: r I and let U be a 

quasi-uniform structure on R+ • the set of positive real numbers, 

generated by the quasi-uniform base t Dr:r>O j . Let f be a function of 

R+ into R+ defined by f(x) = 1/x for every x6 R+. Let f lIn l~ be a 

given sequence in the domain of f , then the filter (J generated by the 

sequence f lIn Jc;o is Cauchy. But the filter f(3') generated by the 

sequence {n}~ is not a Cauchy fi lter . 

THEOREM 4.25 Let f be a quasi-uniformly continuous function of 

( X ,U ) onto ( Y , 11 ) and let ~ be a Cauchy fi lter on X , then f( ~) 

is a Cauchy filter. 

PROOF. f(~) is a filter on ( Y ,'1t' ) by theorem 4.3. For each V in 

11 there exists an entourage U in U such that fz(U)c V , since f is 

quasi-uniformly continuous function. Since ~ is Cauchy on X , there 

exists a point xE X such that U(xJ€ ~. Hence f(U(xJ)€ f(3). Now 

f(U(xJ)cfz(U)(f(x)JEf(3) ,since f(3) is a filter on Y. Hence for 

each V in 1J' there exists f(x) E Y such that v(f(x)l~ f(~) , and f(~) is 
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a Cauchy fil ter . 

DEFINITION 4.12 A quasi-uniform space ( X ,Zt ) is complete if and 

only if every Cauchy filter has non-empty adherence. 

DEFINITION 4.13 A quasi-uniform space ( X , U ) is strongly complete 

if and only if every Cauchy filter has non-empty limit. 

THEOREM 4.26 A strongly complete quasi-uniform space ( X ,U ) is 

compl ete • 

PROOF. This follows since every limit point of a filter d is an 

adherence point by theorem 4.7 . 

THEOREM 4.27 In a uniform space, completeness and strong completeness 

are equivalent. 

PROOF. A strongly complete uniform space is always complete by theorem 

4.26. Let 3 be a Cauchy filter in the uniform space ( X , U ) and let 

x6adhj . For each U inU there exists a symmetric V inU such that 

VovcU. Since '3 is a Cauchy filter on a uniform space ( X ,U ) there 

exists a FE3 such that Fx Fev. Since xEadh:!f ,there exists a point 

yE:V(x]('\ F t .p • That is (x,y)~ V and ye F. Let z be any point in F , 

then (y,z)E Fll Fev. This implies that (x,z)e V"VcU and zEU(xl • 
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That is Fe U(xJ and hence U(xJE 3- . Therefore, in a uniform space, 

every Cauchy filter converges to its adherence point. Hence every 

complete uniform space is strongly complete. 

THEOREM 4.28 Completeness and strong completeness are invariant under 

quasi-uniformly continuous function. 

PROOF. Let f be a quasi-uniformly continuous function from a 

quasi-uniform space ( X , U ) onto a quasi-uniform space ( Y ,"1J' ) • 

Let ( X , U ) be a complete space. Suppose ( Y ,'1!" ) is not 

compl ete. Then there is a Cauchy fi lter :J on ( Y ,"P' ) such that 

adh'a = 4' . For every XE X , then y = f(x)cf: adh:5 . That is to say, 

there exists a Vo in 1)' and a Fo in ~ such that Vo(y]" Fo = + . Now 

that fz'(Vo)(xJnf-'(Fo ) = f-'(Vo[yJ)nf-'(Fo) = f-'(VoCyJI1Fo) = 4> 

where f;'(Vo ) is in U and f-I(Fo) is in the Cauchy filter f-'(3') . 

This implies that x~ adh f-'(j) for every XE: X , or equivalently 

adh f-'(~) =cf' which is impossible. Hence ( Y ,'1t ) must be a 

complete quasi-uniform space . 

Let ( X , U ) be strongly complete. Suppose ( Y ,"P' ) is not 

strongly complete. Then there is a Cauchy filter;; on ( Y ,"P' ) such 

that ltrn:J = 4' . For every x E: X , then y = f(x) .lim d , or 

equivalently, there is a Vo in 11' such that VoCyJ \f':J or f- I (Vo(yJ)'­

f-'(:1). Now that f;'(Vo)(xJ = f-'(Vo(yJ). Hence f~I(Vo)(xJtf-/(3) 

for every x Eo X and then the Cauchy fi lter f -I (3') has empty 1imi t whi ch 



44 

is impossible. Therefore ( Y , '1t ) is strongly complete. 

THEOREM 4.29 Every closed subset A of a complete quasi-uniform space 

is complete. 

PROOF. Let A be a closed subspace of a complete quasi-uniform space. 

Let 3 be a Cauchy fi 1ter on A , then ~ is a collecti on of subsets of X 

which has the finite intersection property. Let jl be the Cauchy filter 

on X generated by ~. Since ( X , U ) is complete, it follows that 

there exists a xE-adh jl· n{ C1 X F:FE: '[}' J . Now, xE A. Since A 

is closed, then x, A. However, C1A F = An Cl XF. Hence, 

x € () { C1A F: FE: 'J J . Therefore A is complete . 

THEOREM 4.30 Every closed subset A of a strongly complete quasi-uniform 

space ( X , U ) is strongly complete. 

PROOF. Let 'a: be a Cauchy filter on a closed subspace A , then 'g is a 

collection of subsets of X with the finite intersection property and 

hence generates a Cauchy filter '3 1 on X. Since ( X , U) is strongly 

complete , then there exists a point x Eo X such that U(xl E ~I for each 

Ue U. Hence each nei ghborhood of xis contained i n ~I and therefore 

meets A. Thus Xe A = A. Therefore A is strongly complete. 

THEOREflil 4.31 Let ( X , 'U ) be a T;z. , uni form space and let A be 

compl ete subspace of ( X , U ) , then A is closed . 
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-PROOF. Let x belongs to A. Then for each U in U , it follows that 

U(x]n A 'I ep • Let» = f U(xJo A:U E U}. Then 1& has the finite 

intersection property and hence generates a fi lter 3" on A. Since 

( X , U ) is a uni form space , then for each U in U there is a symmetri c 

V in U such that VOVC U. This implies that (V[x] (l A})( (Vex] n A}e U 

n (AxA) and hence j is a Cauchy filter on A. Then there exists a point 

x'E lim ~ and Xl': A. However '1 is a Cauchy filter base in X and 

generates a Cauchy filter 'JI on X. Furthermore Xl E lim ~ I and Xl = x 

by theorem 4.10. Therefore AcA and A is closed. 

THEOREM 4.32 Every compact quasi-uniform space ( X ,U ) is strongly 

complete . 

PROOF. Let ( X , 2l ) be a compact quasi-uniform space. Suppose 

( X , f,t ) is not strongly complete. That is to say, there exists a 

Cauchy 'fi lter 3 on ( X , U ) such that for every point x in ( X , U ) 

there exists a Ux in U with U)l(x] 4: ~. Let V" be in U such that 

VxoVXCUx. Since X is compact, then there exists a finite set 

A = { x, , x.& , ... , xn} such that X = U { V)(j (XiJ :VXIE U and 

V}(j 0 V"j C UXi , 1~ i ~ n J . Set V = n f Vx, : 1~ i ~ n } E U , then there 

exists a point aeX such that Veal = "f VXi (aJ:l~ i~ n JE 'g. ,since ~ 

is Cauchy. For each point y in VCa] , then (a,y) ~ V = f'I f VXj : 1~ i ~ n J . 
However aEV""j(XjJ for some i ,hence (a,y}6V"i for this i. That is 

(Xi,y}E VXjOVXjCUXi . Hence V(a]C UXj(Xi)Es . This contradicts our 
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assumpti on , hence ( X ,U ) mus t be strongly compl ete . 

THEOREM 4.33 Aquasi-uniform space ( X , ZL ) is compact if and only if 

it is complete and pre-compact. 

PROOF. Let (X, U ) be a compact quasi-uniform space. Then by 

theorem 4.11 every ultrafilter is Cauchy. Hence by theorem 4.17 

( X , U ) is pre-compact . 

Since ( X , tG ) is compact, then by theorem 4.11 every Cauchy 

filter has a non-empty adherence. Hence ( X , U ) is complete. 

Suppose ( X , ~ ) is a complete and pre-compact quasi-uniform 

space Then every ultrafilter ~ on ( X , U ) is Cauchy by theorem 

4.17. Since ( X , U ) is complete , then adh J 'I <f • However:7 is 

an ultrafi lter , then adh 'J = 1im ~ 'I 4' . Therefore every ultrafi lter 

~ con ve rges. Hen ce ( X ,U ) is compact by theorem 4. 11 . 

COROLLARY. Aquasi-uniform space ( X , tl ) is compact if and only if 

it is strongly complete and pre-compact 

The proof follows immediately from theorem 4.32 and theorem 4.33 . 
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