QUASI-UNIFORM STRUCTURES

A Thesis

Presented to

the Department of Mathematics

Kansas State Teachers College of Emporia

In Partial Fulfillment of the Requirements for the Degree Master of Arts in Mathematics

Вy

ALBERT YU-MING CHI July 1973 Theois il.e

Approved for the Major Department 1 1-1 Approved for the Graduate Council

342545

ACKNOWLEDGMENTS

I wish to thank Dr. John Carlson for his assistance and encouragement in writing this thesis , and my professors , Dr. Marion Emerson , Dr. Donald Bruyr , Dr. George Poole , and Dr. Thomas Bonner who taught and guided me during the last two semesters at Kansas State Teachers College .

Acknowledgment and thankfulness are also expressed to my wife , Tonia , who spent many hours typing this thesis .

TABLE OF CONTENTS

CHAPTER		PAGE
Ι.	QUASI-UNIFORM STRUCTURES	1
II.	PERVIN QUASI-UNIFORM STRUCTURE	11
III.	SEPARATION AXIOMS	14
IV.	COMPLETENESS AND COMPACTNESS	24
BIBLIOGRAPHY		47

4

.

CHAPTER I

QUASI-UNIFORM STRUCTURES

INTRODUCTION

A quasi-uniform structure is a natural generalization of a uniform structure . In this chapter it is shown that every topological space admits a quasi-uniform structure . In general , a topological space will admit more than one compatible quasi-uniform structure . As with uniform structure , it is possible to study the concepts of completeness and totally boundedness and a notion of uniform or quasi-uniform continuity and other related concepts which can not be studied in a topological space .

DEFINITION 1.1 Let X be a non-empty set . A quasi-uniform structure \mathcal{U} for the set X is a non-empty collection , \mathcal{U} , of subsets of X × X satisfying :

(1). $\Delta = \{ (x,x) : x \in X \} \subset U \text{ for each } U \in \mathcal{U},$ (2). U, and $U_2 \in \mathcal{U}$ implies that $U_1 \cap U_2 \in \mathcal{U},$ (3). $U_1 \in \mathcal{U}$ and $U \supset U_1$ implies that $U \in \mathcal{U},$ (4). For each $U \in \mathcal{U}$ there exists $V \in \mathcal{U}$ with $V \cdot V \subset U$. $(\cup V = \{ (x,y): \text{there exists } z \in X \text{ with } (x,z) \in U \text{ and } (z,y) \in V \})$ Then the pair (X , \mathcal{U}) is called a quasi-uniform space.

DEFINITION 1.2 Let \mathcal{U} be a quasi-uniform structure for a set X satisfying :

(5). For each U in \mathcal{U} , then $U^{-1} = \{ (x,y): (y,x) \in U \} \in \mathcal{U}$, and \mathcal{U} is called a uniform structure for X. The pair (X, \mathcal{U}) is called a uniform space.

DEFINITION 1.3 If $A \subset X \times X$, then A is symmetric if and only if $A^{-1} = A$, A is anti-symmetric if and only if $A \cap A^{-1} \subset \Delta$.

THEOREM 1.1 Let (X, \mathcal{U}) be a uniform space, then for each U in \mathcal{U} there exists a symmetric V in \mathcal{U} such that V•V \subset U.

PROOF. For each U in \mathcal{U} there exists a W in \mathcal{U} such that $W \circ W \subset U$. Since $W^{-1} \in \mathcal{U}$, it follows that $V = W \cap W^{-1} \in \mathcal{U}$. Now V is symmetric and $V \circ V \subset U$.

DEFINITION 1.4 Let \mathcal{U} be a quasi-uniform structure for X, and let x be a point in X. Then $U[x] = \{ y:(x,y) \in U \}$ for $U \in \mathcal{U}$, and $\mathcal{U}[x] = \{ U[x]: U \in \mathcal{U} \}$.

THEOREM 1.2 Let \mathcal{U} be a quasi-uniform structure for the set X . Set

 $\begin{aligned} & \star_{\mathcal{U}} = \{ 0 < X: \text{ if } x \notin 0 \text{ then there exists } U \notin \mathcal{U} \text{ such that } x \notin U[x] < 0 \} . \\ & \text{Then } \pounds_{\mathcal{U}} \text{ is a topology for } X . \end{aligned}$

PROOF. Suppose for each $\alpha \in \Lambda$, $0_{\alpha} \in \mathcal{I}_{\mathcal{U}}$. If $x \in U \{ 0_{\alpha} : \alpha \in \Lambda \}$, then $x \in 0_{\alpha}$ for some α in Λ . There exists a $U_{\alpha} \in \mathcal{U}$ such that $x \in U_{\alpha} \{x\} \subset 0_{\alpha} \subset U \{ 0_{\alpha} : \alpha \in \Lambda \}$. Therefore $U \{ 0_{\alpha} : \alpha \in \Lambda \} \in \mathcal{I}_{\mathcal{U}}$. Clearly $\phi \in \mathcal{I}_{\mathcal{U}}$.

Suppose 0_1 , $0_2 \in I_{\mathcal{U}}$. If $x \in 0_1 \cap 0_Z$, then $x \in 0_1$ and $x \in 0_Z$. There exist U_1 , $U_2 \in \mathcal{U}$ such that $x \in U_1(x] \subset 0_1$, $x \in U_2(x] \subset 0_Z$. However, $x \in (U_1 \cap U_2)(x] = U_1(x) \cap U_2(x) \subset 0_1 \cap 0_Z$. Hence $0_1 \cap 0_2 \in I_{\mathcal{U}}$. Clearly X belongs to $I_{\mathcal{U}}$. Therefore $I_{\mathcal{U}}$ is a topology for the set X.

THEOREM 1.3 Let \mathcal{U} be a quasi-uniform structure for the set X , then the collection $\mathcal{N} = \{ U[x]: U \in \mathcal{U}, x \in X \}$ is a neighborhood system for the topology $\mathcal{I}_{\mathcal{U}}$.

PROOF. For each $x \in X$, $\mathcal{U}\{x\}$ forms a neighborhood system of x which satisfy four axioms as follows :

- (N-1). For each x in X and for each U in $\mathcal{U}, x \in U[x]$, since $\Delta \subset U$, for each U in \mathcal{U} .
- (N-2). U(x], V(x) $\in \mathcal{N}$ implies that U(x) \cap V(x) = (U \cap V)(x) $\in \mathcal{N}$, since U \cap V is in \mathcal{U} .
- (N-3). Suppose that $U[x] \in \mathbb{N}$ and $U[x] \subset A$. Set $V = \bigcup \cup A \times A$, then $\bigcup \subset V \in \mathbb{U}$, and V[x] = A. Hence $A \in \mathbb{N}$.

(N-4). Let U[x] ∈ 𝒯, then there exists a V in 𝔄 such that V•V⊂U. Thus V⊂V•V⊂U. Let t∈V[x] and p be an arbitary point of V[t]. Then (x,t)∈V and (x,p)∈V•V⊂U. This implies that V[t]⊂U[x]∈𝒯 by (N-3). Hence for every U[x]∈𝒯, there exists V[x] such that U[x] is a neighborhood of each point of V[x]. Therefore 𝒯 is a neighborhood system. Clearly, the topology generated by the neighborhood system 𝒯 is 𝒆𝔅. Hence 𝒯 is a neighborhood system for the topology 𝒆𝔅.

DEFINITION 1.5 Let (x, t) be a topological space and \mathcal{U} be a quasiuniform structure on X. Then \mathcal{U} is said to be compatible with the topology t if t = $\mathcal{I}_{\mathcal{U}}$.

The following are some examples of quasi-uniform spaces. EXAMPLE 1.1 Let X be a non-empty set and $\mathcal{U} = \{ U: A \subset U \subset X \times X \}$. Then \mathcal{U} is a quasi-uniform structure and $\mathcal{I}_{\mathcal{U}}$ is the discrete topology for X.

EXAMPLE 1.2 Let X be a non-empty set, and let $\mathcal{U} = \{X \times X\}$ then (X, \mathcal{U}) is a quasi-uniform space. $\mathcal{I}_{\mathcal{U}}$ is the trivial topology for X.

EXAMPLE 1.3 Let R denote the set of real numbers and let r > 0. Set $D_r = \{ (x,y): | x - y| < r \}$. Then $\mathcal{U} = \{ U: D_r < U < R \times R, r > 0 \}$ is an uniform structure for R , and $\mathcal{I}_{\mathcal{U}}$ is the usual topology for R . This follows since $D_{r}[x] = (x - r, x + r)$.

EXAMPLE 1.4 Let (X, d) be a metric space, and let $S_{\epsilon} = \{ (x,y) \in X \times X: d(x,y) < \epsilon \}$. Then the collection $\mathcal{U} = \{ U: S_{\epsilon} \subset U \subset X \times X, \epsilon > 0 \}$ is an uniform structure. $\mathcal{I}_{\mathcal{U}}$ is the original topology for X.

EXAMPLE 1.5 Let X be a non-empty set linearly ordered by < and let W = { (x,y):x \le y } . \mathcal{U} = { U:W < U < X × X } is a quasi-uniform structure for the set X , and $\mathcal{I}_{\mathcal{U}}$ is generated by the family of all intervals of the form {a , ∞) = { x:x ≥ a } for any a \in X .

EXAMPLE 1.6 Let X be a non-empty set linearly ordered by <. Let $W_a = \{ (x,y): x = y \text{ or } a < x < y \}$ for $a \in X$. Then $\mathcal{U} = \{ U: W_a < U < X \times X \}$, $a \in X \}$ is a quasi-uniform structure for the set X. $t_{\mathcal{U}}$ is the discrete topology for the set X.

EXAMPLE 1.7 Let X be a non-empty set linearly ordered by <. For some fixed points a , b of X , define $V_{a,b} = \{ (x,y): x = y \text{ or } a \le x \le b \}$ then $\mathcal{U} = \{ U: V_{a,b} \in U \in X \times X , a \le b , a , b \in X \}$ is a quasi-uniform structure for the set X , and $\mathcal{I}_{\mathcal{U}}$ is a discrete topology for the set X . In fact , for each $x \in X$ there exists a , $b \in X$ such that x < a < b and $x = V_{a,b}(x)$. EXAMPLE 1.8 Let X be a non-empty set linearly ordered by < , and let a and b be fixed points of X. Define $T_{a,b} = \{ (x,y):a \le x \le y \le b \} \cup A$. Then $\mathcal{U} = \{ U:T_{a,b} \subset U \subset X \times X , a \le b , a , b \in X \}$ is a quasi-uniform structure for the set X , and $\mathcal{I}_{\mathcal{U}}$ is a discrete topology for the set X. This follows by the fact that for each $x \in X$ there exists a , $b \in X$ such that x < a < b and $x = T_{a,b}[x]$.

EXAMPLE 1.9 Let X be a non-empty set linearly ordered by < , and let $a \in X$ be given . If $H_{\alpha} = \{ (x,y): x = y \text{ or } a \leq x \}$, then $\mathcal{U} = \{ U: H_{\alpha} \in U \in X \times X, a \in X \}$ is a quasi-uniform structure for the set X and $\mathcal{I}_{\mathcal{U}}$ is a discrete topology for the set X. In fact for each $x \in X$, there exists a point a in X such that x < a and $x = H_{\alpha}[x]$.

EXAMPLE 1.10 Let X be a non-empty set linearly ordered by <, and let $a \in X$ be given . If $L_a = \{ (x,y) : x \le a \le y \} \cup A$, then $\mathcal{U} = \{ U: L_a \subset U \subset X \times X$, $a \in X \}$ is a quasi-uniform structure for the set X and $\mathcal{I}_{\mathcal{U}}$ is a discrete topology for X since for each $x \in X$, $x = L_a[x]$ by choosing $a \in X$ such that x < a.

EXAMPLE 1.11 Let R denote the set of real numbers with the usual order < and let $\epsilon > 0$ be given. Set $W_{\epsilon} = \{ (x,y): y < x + \epsilon \}$. Then $\mathcal{U} = \{ U: W_{\epsilon} \in U \subset X \times X , \epsilon > 0 \}$ is a quasi-uniform structure for R, and $\mathcal{I}_{\mathcal{X}}$ is the left-hand topology for X generated by the base consisting of all intervals of the form $(-\infty, a) = \{ x: x < a \}$ for any real number a. EXAMPLE 1.12 Let N denote the set of natural numbers and $U_n = \{ (x,y) \in N \times N : x = y \text{ or } x \ge n \}$, then $\mathcal{U} = \{ U: U_n \subset U \subset X \times X , n \in N \}$ is a quasi-uniform structure for the set N , and $\mathcal{I}_{\mathcal{U}}$ is the discrete topology since $U_{n+i}(n) = \{ n \}$ for each $n \in N$.

DEFINITION 1.6 Let \mathcal{U} be a quasi-uniform structure on X. The conjugate \mathcal{U}^{-1} of \mathcal{U} is the collection of subsets of X × X defined by $\mathcal{U}^{-1} = \{ U^{-1} : U \in \mathcal{U} \}.$

THEOREM 1.4 The conjugate of a quasi-uniform structure is a quasi-uniform structure .

PROOF. Let (X, \mathcal{X}) be a quasi-uniform space, and let \mathcal{X}^{-1} be the conjugate of \mathcal{X} . $\mathcal{A} \subset U^{-1}$ for every $U^{-1} \in \mathcal{X}^{-1}$, since $\mathcal{A} = \mathcal{A}^{-1} \subset U^{-1}$. Let U^{-1} , $V^{-1} \in \mathcal{X}^{-1}$ then $U^{-1} \cap V^{-1} = (U \cap V)^{-1}$. Hence $U^{-1} \cap V^{-1} \in \mathcal{X}^{-1}$. Let $U^{-1} \in \mathcal{X}^{-1}$ and $U^{-1} \subset A \subset X \times X$, then $U \subset A^{-1}$ and $A^{-1} \in \mathcal{X}$. Hence $A \in \mathcal{X}^{-1}$. Let $U^{-1} \in \mathcal{X}^{-1}$, then $U \in \mathcal{X}$. There exists a V in \mathcal{X} such that $V \circ V \subset U$. This implies that $V^{-1} \circ V^{-1} = (V \circ V)^{-1} \subset U^{-1}$. Thus \mathcal{X}^{-1} is a quasi-uniform structure for the set X.

DEFINITION 1.7 Let $f: X \to Y$, and $g: S \to T$, then the function $f \times g: X \times S \to Y \times T$ is defined by $(f \times g)(x,y) = (f(x), f(y))$ for every $(x,y) \in X \times S$. In particular, if f = g and Y = T, and then denoted $f \times f$ by f_z . DEFINITION 1.8 Let \mathcal{C} be a non-empty collection of subsets of $X \times X$.

 ${\cal B}$ is a base for a quasi-uniform structure on X if and only if

- (1). $\Delta \subset B$ for every $B \in \mathcal{B}$,
- (2). If B_1 , $B_2 \in \mathcal{B}$, then there exists a $B \in \mathcal{B}$ such that $B \in B_1 \cap B_2$,
- (3). For each $B \in \mathcal{B}$ there exists a $B' \in \mathcal{B}$ such that $B' \circ B' \subset B$.

THEOREM 1.5 Let $f: X \to Y$, and let \mathcal{U} be a quasi-uniform structure on Y, then the collection $f_{\mathbf{z}}^{-1}(\mathcal{U}) = \{f_{\mathbf{z}}^{-1}(U): U \in \mathcal{U}\}$ is a quasi-uniform base on X.

PROOF. Since $\Delta_{Y} \subset U$ for each $U \in \mathcal{U}$, it follows that $\Delta_{X} \subset f_{2}^{-1}(U)$. Let $f_{2}^{-1}(U)$, $f_{2}^{-1}(V) \in f_{2}^{-1}(\mathcal{U})$. Then $f_{2}^{-1}(U) \cap f_{2}^{-1}(V) = f_{2}^{-1}(U \cap V) \in f_{2}^{-1}(\mathcal{U})$. Let $f_{2}^{-1}(U) \in f_{2}^{-1}(\mathcal{U})$, then there exists a V in \mathcal{U} such that $V \circ V \subset U$. Hence $f_{2}^{-1}(V) \circ f_{2}^{-1}(V) \subset f_{2}^{-1}(U)$. Thus $f_{2}^{-1}(\mathcal{U})$ is a quasi-uniform base on X.

DEFINITION 1.9 Let (X, \mathcal{U}) and (Y, \mathcal{V}) be quasi-uniform spaces. A function $f : X \rightarrow Y$ is said to be quasi-uniformly continuous if and only if for every V in \mathcal{V} , $f_{a}^{-!}(V)$ in \mathcal{U} .

THEOREM 1.6 Let (X, \mathcal{U}) and (Y, \mathcal{V}) be quasi-uniform spaces, and let $f: X \rightarrow Y$. Then the following statements are equivalment.

f is quasi-uniformly continuous .

(2). For each $V \in \mathcal{Y}$ there exists a $U \in \mathcal{U}$ such that $(x,y) \in U$

implies that $(f(x), f(y)) \in V$.

(3). \mathcal{U} is finer than $f_{\mathbf{2}}^{-1}(\mathcal{V})$.

PROOF. (1) \Rightarrow (2). For each $V \in \mathcal{V}$, $f_z^{-1}(V) \in \mathcal{U}$. Let $U = f_z^{-1}(V)$, then $f_z(U) = f_z(f_z^{-1}(V)) \subset V$.

(2) \Rightarrow (3). For each $f_2^{-1}(V)$ in $f_2^{-1}(\mathcal{V})$ there exists a $U \in \mathcal{U}$ such that $U < f_2^{-1}(V)$. Hence $f_2^{-1}(V) \in \mathcal{U}$.

 $(3) \Rightarrow (1). \text{ Since } \mathcal{U} \text{ is finer than } f_2^{-1}(\mathcal{V}) \text{ , then for every}$ $V \in \mathcal{V} \text{ , } f_2^{-1}(V) \in f_2^{-1}(\mathcal{V}) \text{ and therefore } f_2^{-1}(V) \in \mathcal{U} \text{ .}$

THEOREM 1.7 Every quasi-uniformly continuous function is continuous . PROOF. Let $f: (X, \mathcal{U}) \rightarrow (Y, \mathcal{V})$ be a quasi-uniformly continuous function. For each $V \in \mathcal{V}$, V[f(x)] is a neighborhood of f(x). Then there exists a $U \in \mathcal{U}$ such that $f_2(U) \subset V$. Hence $f(U[x]) = (f_2(U))[f(x)]$ $\subset V[f(x)]$. Therefore f is a continuous function.

Let R denote the set of real numbers . For each r > 0, set $D_r = \{ (x,y) \in \mathbb{R} \times \mathbb{R} : |x - y| < r \}$. Then $\mathfrak{D} = \{ D_r : r > 0 \}$ forms a quasi-uniform base for R. Let \mathfrak{U} be the quasi-uniform structure on R which is generated by \mathfrak{D} . If $f : (\mathbb{R}, \mathfrak{U}) \rightarrow (\mathbb{R}, \mathfrak{U})$ is a quasi-uniformly continuous function, then, equivalently, for each U in \mathfrak{U} there exists $U' \in \mathfrak{U}$ such that $f_2(U') \subset U$. In other words, for each $U \in \mathfrak{U}$ there exists a $D_{\mathfrak{S}}$ with $\mathfrak{S} > 0$ such that $f_2(\mathbb{D}_{\mathfrak{S}}) \subset U$. That is, for each base element D_{ϵ} of \mathfrak{D} there exists another base element D_{δ} such that $f_{\mathfrak{z}}(D_{\delta}) \subset D_{\epsilon}$. Or equivalently, for each $\epsilon > 0$ there exists a $\delta = \delta(\epsilon) > 0$ such that $(x,y) \in D_{\delta}$ implies that $(f(x), f(y)) \in D_{\epsilon}$. Hence, for every $\epsilon > 0$, there exists a $\delta = \delta(\epsilon) > 0$ such that $|x - y| < \delta$ implies that $|f(x) - f(y)| < \epsilon$. Thus f is a uniformly continuous function on the reals R.

CHAPTER II

PERVIN QUASI-UNIFORM STRUCTURE

DEFINITION 2.1 Let $\overset{\circ}{\mathscr{A}}$ be a non-empty collection of subsets of X × X . $\overset{\circ}{\mathscr{A}}$ is called a subbase for a quasi-uniform structure on X if and only if

(1). $\Delta \subset S$ for each S in \mathcal{A} ,

(2). For each S in \mathscr{A} , there exists a T in \mathscr{A} such that $T \circ T \subset S$.

DEFINITION 2.2 Let (X, t) be a topological space. Set $\mathscr{S} = \{ 0 \times 0 \ \mathsf{u}(X - 0) \times X : 0 \ \mathsf{et} \}$. Let \mathscr{P} denoted the family of subsets of $X \times X$ which are supersets of finite intersections of members of \mathscr{S} . \mathscr{P} is called the Pervin quasi-uniform structure for the topological space (X, t). The following theorem justifies the above terminology.

THEOREM 2.1 Let (X , t) be a topological space , ${\cal P}$ as defined in definition 2.2 , then

(a). P is a quasi-uniform structure, (b). $\mathcal{T}_{P} = t$.

 $0.0F \quad (a) \quad |e^{+}S = 0 \times 0 \ u(X = 0) \times X F$

PROOF. (a). Let $S = 0 \times 0 \cup (X - 0) \times X \in \mathscr{A}$. Clearly $\Delta \subset S$. Suppose $(x,y) \in S$ and $(y,z) \in S$. If $x \in 0$ then $y \in 0$ and $z \in 0$. This implies that $(x,z) \in 0 \times 0 \subset S$. If $x \in X - 0$ then $(x,z) \in (X - 0) \times X \subset S$. Hence $S \circ S \subset S$. Therefore the collection \mathscr{S} forms a quasi-uniform subbase which generates the quasi-uniform structure \mathscr{P} .

(b). Let $x \in 0 \in t$. Then $S = 0 \times 0 \cup (X - 0) \times X$ belongs to \mathcal{P} and $x \in S[x] \subset 0$. Therefore $t \leq \mathcal{T}_{\mathcal{P}}$. Clearly, $\mathcal{T}_{\mathcal{P}} \leq t$ and hence $t = \mathcal{T}_{\mathcal{P}}$.

EXAMPLE 2.1 Let t be the usual topology for the set of real numbers R. Then the Pervin quasi-uniform structure \mathscr{P} for R is generated by the subbase $\mathscr{S} = \{ (a,b) \times (a,b) \cup ((-\omega,a] \cup (b,\infty)) \times X: (a,b) \in t \}$.

Let 0 = (a,b) , then figure 2.1 illustrates the subbasic element $S = 0 \times 0 u(X - 0) \times X$.

FIGURE 2.1

EXAMPLE 2.2 Let $X = \{1,2,3\}$, $t = \{\phi, X, \{1\}, \{1,2\}, \{1,3\}\}$. Then (X, t) is a topological space. The Pervin quasi-uniform structure \mathscr{P} for (X, t) is generated by the subbase $\mathscr{I} = \{\{1\}\times\{1\}\cup\{2,3\}\times\{1,2,3\}, \{1,2\}\times\{1,2\}\cup\{3\}\times\{1,2,3\}, \{1,3\}\times\{1,3\}\cup\{2\}\times\{1,2,3\}\}$. These subbasic elements are illustrated in figure 2.2.

CHAPTER III

SEPARATION AXIOMS

DEFINITION 3.1 A topological space (X, t) is a R_{\bullet} -space if and only if for every open set 0 in t, containing x in X, it follows that $\overline{x} \subset 0$.

THEOREM 3.1 Every subspace of a R_o-space is a R_o-space .

PROOF. Let (Y, s) be a subspace of (X, t), and let 0' be an open set in Y containing y with 0' = YAO, where 0 is open in (X, t). Then $y \in 0$ and $Cl_x \{y\} < 0$, since X is a R_o -space. Now $Cl_y \{y\} =$ $YACl_x \{y\} < YAO = 0'$ and Y is a R_o -space.

THEOREM 3.2 Let (X, t) be a topological space. Then the following three statements are equivalent.

(1). (X, t) is a R_o-space.

(2). For any closed subset A , and a point x not in A there exists a neighborhood of A not containing x .

(3). If $x \neq y$, then either $\overline{x} = \overline{y}$ or $\overline{x} \cap \overline{y} = \phi$.

PROOF. (1) \Rightarrow (2). Let A be closed and $x \in X - A$. Since (X, t) is

a R_o-space , it follows that $\overline{x} \in X - A$. Thus $X - \overline{x}$ is a neighborhood of A which does not contain the point x .

 $(2) \Longrightarrow (1)$. Let 0 be an open set containing $x \in X$. Let $y \in \overline{x}$, then every neighborhood of y contains x. Suppose $y \notin 0$, then $y \in X - 0$ and , by (2) , there exists a neighborhood containing X - 0 , but not containing x. This is impossible. Therefore $y \in 0$ and hence $\overline{x} \in 0$.

(1) \Longrightarrow (3). Suppose that $x \neq y$ and $\overline{x} \neq \overline{y}$, then it may be assumed that there exists an $a \in \overline{x}$ and $a \notin \overline{y}$. Now $x \notin \overline{y}$ for otherwise $x \in \overline{x} \subset \overline{y}$ and $a \in \overline{x} \subset \overline{y}$ contradicts the fact that $a \notin \overline{y}$. Since $x \notin \overline{y}$ then $x \in X - \overline{y}$. By the R, hypothesis, it follows that $\overline{x} \subset X - \overline{y}$. Therefore $\overline{x} \cap \overline{y} = \phi$.

 $(3) \Longrightarrow (1)$. Let 0 be an open set and $x \in 0$. Let $y \in \overline{x}$ and $y \neq x$, then by (3), either $\overline{x} = \overline{y}$, or $\overline{x} \cap \overline{y} = \phi$. But the second case is impossible, since $y \in \overline{x} \cap \overline{y}$. Thus $\overline{x} = \overline{y}$ and $x \in \overline{y}$ and therefore every open set 0 containing x must contain y. Hence $\overline{x} \subset 0$.

THEOREM 3.3 Let (X, t) be a topological space. Then the following statements are equivalent.

- (1). (X, t) is a R_o -space.
- (2). (X, t) has a compatible quasi-uniform structure \mathcal{U} such that for each x in X and for each U in \mathcal{U} there exists a symmetric $V \in \mathcal{U}$ with $V[x] \subset U[x]$.
- (3). (X, t) has a compatible quasi-uniform structure \mathcal{U} such that the collection { V(x): V symmetric and $V \in \mathcal{U}$ } forms a

local base at the point $x \in X$.

- (4). (X, t) has a compatible quasi-uniform structure \mathcal{U} such that for each x in X and for each U in \mathcal{U} there exists a V in \mathcal{U} such that $V^{-1}[x] \subset U[x]$.
- (5). (X, t) has a compatible quasi-uniform structure \mathcal{U} such that t = $t_{\mathcal{U}} \subset t_{\mathcal{U}}$.

PROOF. (1) \implies (2). Let \mathcal{P} be the Pervin quasi-uniform structure for the set X. For each x in X, and each $\cup \in \mathcal{U}$, there exists an open set $\cup \in t$ with $x \in \cup \subset \cup [x]$.

Define $S_0 = 0 \times 0 \cup (X - 0) \times X$, $S_{\bar{x}}c = \bar{x}^c \times \bar{x}^c \cup \bar{x} \times X$, $V = 0 \times 0 \cup \bar{x}^c \times \bar{x}^c$. Set $A = 0 \times 0$, $B = (X - 0) \times X$, $C = \bar{x}^c \times \bar{x}^c$, $D = \bar{x} \times X$. Then $S_0 \cap S_{\bar{x}}c = (A \cap C) \cup (A \cap D) \cup (B \cap C) \cup (B \cap D)$, where $A \cap C = (0 - x) \times (0 - x) \subset 0 \times 0 \subset V$, $A \cap D = \bar{x} \times 0 \subset 0 \times 0 \subset V$, $B \cap C = (X - 0) \times \bar{x}^c \subset \bar{x}^c \times \bar{x}^c \subset V$, $B \cap D = \phi$.

Hence $S_0 \cap S_{\overline{x}} \subset V$ and $V \in \mathcal{U}$. Furthermore, V is symmetric and $0 = V[x] \subset U[x]$.

(2) \iff (3). For each $x \in X$, the collection { V[x]:V symmetric and $V \in \mathcal{U}$ } is a local base at x if and only if for each $x \in X$ and each $U \in \mathcal{U}$, there exists a symmetric $V \in \mathcal{U}$ with $V[x] \subset U[x]$.

(3) \implies (4). For each $x \in X$ and each $U \in \mathcal{U}$ there exists a symmetric $V \in \mathcal{U}$ with $V[x] \subset U[x]$. Since V is symmetric it follows that $V^{-1}[x] = V[x] \subset U[x]$.

 $(4) \Longrightarrow (5). \text{ Let } \mathcal{U} \text{ be a compatible quasi-uniform structure for}$ the set X which satisfies condition (4), then $t = \mathcal{I}_{\mathcal{U}}$. For each open set $0 \in \mathcal{I}_{\mathcal{U}}$, there exists a U in \mathcal{U} with $x \in U[x] \subset 0$, and by (4) there exists a V in \mathcal{U} with $V^{-1}[x] \subset U[x]$. Therefore $x \in V^{-1}[x] \subset U[x] \subset 0$. This implies that 0 belongs to $\mathcal{I}_{\mathcal{U}}^{-1}$. Hence $t = \mathcal{I}_{\mathcal{U}} \subset \mathcal{I}_{\mathcal{U}}^{-1}$.

 $(5) \Longrightarrow (4)$. For every x in X and each U in \mathscr{U} , $x \in U[x]$. However, U[x] is a neighborhood of the point x, and there exists an open set 0 in $\pounds_{\mathfrak{U}}$ such that $x \in 0 \subset U[x]$. But $0 \in \pounds_{\mathfrak{U}} = i$, since $\pounds_{\mathfrak{U}} \subset \pounds_{\mathfrak{U}} = i$. Therefore there exists a $V^{-1} \in \mathscr{U}^{-1}$ such that $x \in V^{-1}[x] \subset 0 \subset U[x]$.

 $(4) \Longrightarrow (1)$. The point y belongs to \overline{x} if and only if $U[y] \cap \{x\} \neq \phi$ for each $U \in \mathcal{U}$, or equivalently, $x \in U[y]$ for every U in \mathcal{U} . That is, $y \in U^{-1}[x]$ for each U in \mathcal{U} . Hence $\overline{x} = \bigcap \{ U^{-1}[x]: U \in \mathcal{U} \} \subset \bigcap \{ U[x]: U \in \mathcal{U} \}$ U $\in \mathcal{U}$ by condition (4). This implies that \overline{x} is contained in every neighborhood of x. Thus for each open set $0 \in t = t_{\mathcal{U}}$ containing the point $x \in X$ there exists $U \in \mathcal{U}$ with $x \in U[x] \subset 0$. Since $\overline{x} \in U[x]$ for each U in \mathcal{U} it follows that $\overline{x} \in U[x] \subset 0$. Hence (X, t) is a R_o-space. THEOREM 3.4 A quasi-uniform space (X, \mathcal{U}) is R if and only if $\cap \{U: U < \mathcal{U}\}$ is symmetric.

PROOF. (X, \mathcal{U}) is a R_o-space, if and only if for each $x \in X$, $\bar{x} = \bigcap \{ U^{-1}[x]: U \in \mathcal{U} \} \subset \bigcap \{ U[x]: U \in \mathcal{U} \}$ by theorem 3.3. Now $\bigcap \{ U^{-1}: U \in \mathcal{U} \} \subset \bigcap \{ U: U \in \mathcal{U} \}$ and this is equivalent to the statement that $\bigcap \{ U: U \in \mathcal{U} \}$ is symmetric.

COROLLARY (X, \mathcal{U}) is a R_o-space if and only if $\overline{x} = \bigcap \{ U[x] : U \in \mathcal{U} \}$. The proof follows immediately from theorem 3.4.

THEOREM 3.5 A quasi-uniform space (X, \mathcal{U}) is T_o if and only if $\cap \{U: U \in \mathcal{U}\}$ is anti-symmetric.

PROOF. Suppose (X, \mathcal{U}) is T₀-space. If x, y are two distinct points in X, then there exists an open set $0 \in t_{\mathcal{U}}$ which contains one of them but not the other. Suppose that $x \in 0$, $y \notin 0$, then there exists a U in \mathcal{U} such that $x \in U[x] \subset 0$ and $y \notin U[x]$. Hence $x \neq y$ implies that there exists a U in \mathcal{U} such that either $y \notin U[x]$ or $x \notin U[y]$. In other words, for each U in \mathcal{U} , $y \notin U[x]$ and $x \notin U[y]$ implies that x = y. Therefore $n \{ U: U \in \mathcal{U} \}$ is anti-symmetric.

If collection $\cap \{ U: U \in \mathcal{U} \}$ is anti-symmetric, then for any two distinct points x and y in X, there exists a U in \mathcal{U} with either $(x,y) \notin U$ or $(y,x) \notin U$. Hence either $y \notin U\{x\}$ or $x \notin U\{y\}$. Therefore X must be a T_{\bullet} -space.

THEOREM 3.6 A quasi-uniform space (X, \mathcal{U}) is T, if and only if $\Delta = \Lambda \{ U: U \in \mathcal{U} \}$.

PROOF. Suppose (X, \mathcal{U}) is a T₁-space. Clearly, $\Delta \subset \Lambda \{ U: U \in \mathcal{U} \}$. Suppose $x \neq y$, then there exists a U in \mathcal{U} with $y \notin U[x]$. Therefore $(x,y) \notin \Lambda \{ U: U \in \mathcal{U} \}$. Hence $\Lambda \{ U: U \in \mathcal{U} \} \subset \Delta$ and therefore $\Delta = \Lambda \{ U: U \in \mathcal{U} \}$. U $\in \mathcal{U} \{ \}$. The other part of the proof is natural and omitted.

THEOREM 3.7 A quasi-uniform space (X , \mathcal{U}) is T, if and only if it is T, and R.

PROOF. Let the quasi-uniform space (X, \mathcal{U}) be T₁, then for every open set 0 in $f_{\mathcal{U}}$ containing x in X, it follows that $\overline{x} = \{x\} \subset 0$. Hence (X, \mathcal{U}) is a R₀-space. Clearly, every T₁-space is a T₀-space.

Suppose that (X, \mathcal{U}) is a T_o and R_o-space , then , by theorems 3.4 and 3.5 , it follows that $S = \bigcap \{ U: U \in \mathcal{U} \}$ is both symmetric and anti-symmetric . Thus $S = S^{-1}$ and $S \cap S^{-1} = \varDelta$. Hence $S = S \cap S^{-1} = \varDelta$ and (X, \mathcal{U}) is a T₁-space by theorem 3.6 .

THEOREM 3.8 Let \mathcal{U} and \mathcal{W} be two quasi-uniform structures for a set X. If $M \in X \times X$, then $\overline{M} = \bigcap \{ U \cdot M \circ V^{-1} : U \in \mathcal{U}, V \in \mathcal{W} \}$.

PROOF. The ordered pair $(x,y) \in \overline{M}$ if and only if for each U in \mathcal{U} and for each V in \mathcal{V} , U(x) × V(y) ∩ M ≠ ϕ . Equivalently, for each U in \mathcal{U} and for each V in \mathcal{V} , there exists a point $(a,b) \in M$ such that $a \in U[x]$, $b \in V[y]$. This is true, if and only if $(x,y) \in U \circ M \circ V^{-1}$ for each U in \mathcal{U} and for each V in \mathcal{W} .

THEOREM 3.9 A quasi-uniform space (X, \mathcal{U}) is T_2 if and only if $\Delta = \bigcap \{ U \circ U^{-1} : U \in \mathcal{U} \}$.

PROOF. A topological space is T_2 if and only if \varDelta is closed in $X \times X$, that is, $\varDelta = \overline{\varDelta}$. By theorem 3.8, $\overline{\varDelta} = \bigcap \{ U \circ \varDelta \circ U^{-1} : U \in \mathcal{U} \}$, but $U \circ \varDelta \circ U^{-1} = U \circ U^{-1}$ for each $U \in \mathcal{U}$. Thus (X, \mathcal{U}) is T_2 if and only if $\varDelta = \overline{\varDelta} = \bigcap \{ U \circ U^{-1} : U \in \mathcal{U} \}$.

DEFINITION 3.2 A topological space (X, t) is a R₁-space if and only if $x \neq y$ implies that \overline{x} and \overline{y} have disjoint neighborhoods.

THEOREM 3.10 Every subspace of a R_1 -space is a R_1 -space.

PROOF. Suppose (Y, s) is a subspace of (X, t), let y_1 , y_2 be points in Y, then $Cl_Y \{y_i\} = Y \cap Cl_X \{y_i\}$ and $Cl_Y \{y_2\} = Y \cap Cl_X \{y_4\}$. If $Cl_Y \{y_i\} \neq Cl_Y \{y_2\}$, then $Cl_X \{y_i\} \neq Cl_X \{y_4\}$. Since (X, t) is a R_1 -space, then there exist two disjoint neighborhoods N_{y_1} , N_{y_2} containing $Cl_X \{y_i\}$, $Cl_X \{y_4\}$ respectively. That is, there exist open sets 0, and 0, such that $Cl_X \{y_4\} \in O_1 \subset N_{y_1}$, and $Cl_X \{y_4\} \in O_2 \subset N_{y_4}$. This implies that $Cl_Y \{y_4\} = Y \cap Cl_X \{y_4\} \subset Y \cap O_1 \subset Y \cap N_{y_1}$ and $Cl_Y \{y_4\} =$ $Y \cap Cl_X \{y_4\} \subset Y \cap O_2 \subset Y \cap N_{y_2}$. Now, $(Y \cap N_{y_1}) \cap (Y \cap N_{y_2}) = Y \cap$ $(N_{y_1} \cap N_{y_2}) = \phi$. Hence $Cl_{\gamma} \{y_i\}$, $Cl_{\gamma} \{y_i\}$ have disjoint neighborhoods $Y \land N_{y_i}$ and $Y \land N_{y_2}$. Therefore the subspace (Y, s) is a R₁-space.

THEOREM 3.11 A R,-space (X, t) is a R,-space.

PROOF. Let 0 be any open set in t which contains $x \in X$, and let $y \in X - 0$, then $\overline{y} \in X - 0$ and $x \notin \overline{y}$. Hence $\overline{x} \neq \overline{y}$. Since (X, t) is a R_1 -space, there exist disjoint neighborhoods $N_{\overline{x}}$, $N_{\overline{y}}$ such that $\overline{x} \in N_{\overline{x}}$, $\overline{y} \in N_{\overline{y}}$. Therefore $y \notin \overline{x}$ and $\overline{x} \in 0$. Hence (X, t) is a R_0 -space.

THEOREM 3.12 The following three statements are equivalent .

- (1). (X, t) is a R₁-space.
- (2). For any points x , y in X , $\overline{x} \neq \overline{y}$ implies that x and y have disjoint neighborhoods .
- (3). $\nabla = \{ (x,y): \overline{x} = \overline{y} \} = \overline{A}$.

PROOF. (1) \implies (2). For any points x , y in X , if $\overline{x} \neq \overline{y}$, then there exist disjoint neighborhoods $N_{\overline{x}}$ and $N_{\overline{y}}$ of \overline{x} and \overline{y} , respectively . Since $x \in \overline{x}$ and $y \in \overline{y}$, there exist disjoint neighborhoods of x and y .

 $(2) \implies (3)$. For any open set 0_x containing x , and for any point $z \in X - 0$, then $\overline{z} \in X - 0$. Hence $x \notin \overline{z}$ and x , z have disjoint neighborhoods N_x and $N_{\vec{x}}$ respectively . This implies that $z \in \overline{x}$ and $\overline{x} = 0$.

Let $(x,y) \in \nabla$, then $\overline{x} = \overline{y}$. Let 0_x , 0_y be arbitary open sets of

x and y, respectively. Then $(x,x) \in \overline{x} \times \overline{y} \in 0_x \times 0_y$ and $0_x \times 0_y \cap \Delta \neq \phi$. This implies that $(x,y) \in \overline{\Delta}$ and $\nabla \in \overline{\Delta}$. On the other hand, let $(x,y) \in \overline{\Delta}$, then $0_x \times 0_y \cap \Delta \neq \phi$ for any open sets 0_x and 0_y of x and y, respectively. That is to say, $0_x \cap 0_y \neq \phi$ for any open sets 0_x and 0_y of x and y, respectively. Therefore, by (2), $\overline{x} = \overline{y}$ and hence $(x,y) \in \overline{\nabla}$.

 $(3) \Longrightarrow (1). \text{ For any point } x \text{ , y in } X \text{ , if } \overline{x} \neq \overline{y} \text{ , then } (x,y) \notin \nabla \text{ .}$ That is (x,y) in $X - \nabla = X - \overline{A}$ which is open in the product topology of $X \times X$. Hence there exist open sets 0_x , 0_y of x and y respectively with $(x,y) \in 0_x \times 0_y \subset X - \nabla = X - \overline{A}$. Therefore $0_x \cap 0_y \cap A = \phi$ and $0_x \cap 0_y = \phi$. Hence (X, t) is a R_1 -space .

THEOREM 3.13 A quasi-uniform space (X, \mathcal{U}) is R, if and only if $\nabla = n \{ U \circ U^{-1} : U \in \mathcal{U} \}$.

PROOF. By theorem 3.12, (X, \mathcal{U}) is R, if and only if $\nabla = \overline{\Delta}$. $\overline{\Delta} = \bigcap \{ U \cdot A \circ U^{-1} : U \in \mathcal{U} \} = \bigcap \{ U \cdot U^{-1} : U \in \mathcal{U} \}$ by theorem 3.7. Thus (X, \mathcal{U}) is R, if and only if $\nabla = \bigcap \{ U \circ U^{-1} : U \in \mathcal{U} \}$.

THEOREM 3.14 A quasi-uniform (X, \mathcal{U}) is T₂ if and only if it is T₁ and R₁.

PROOF. It is well-known fact that every T__space is also a T__space . Let (X, \mathcal{U}) be a T__space , then $\overline{x} \neq \overline{y}$ implies that $x \neq y$ since $\overline{x} = x$, and $\overline{y} = y$. Since (X, \mathcal{U}) is $T_{\mathcal{I}}$, then there exist disjoint neighborhoods N_x and N_y of x, y respectively. Hence x, y have disjoint neighborhoods N_x and N_y. Therefore (X, \mathcal{U}) is a R₁-space.

Let (X, \mathcal{U}) be a T_1 and R_1 -space. Clearly, $\Delta \subset \nabla$. Let $(x,y) \in \nabla$, then $\overline{x} = \overline{y}$ and, since X is T_1 , x = y. Therefore, $\Delta = \nabla$ and $\nabla = \overline{\Delta}$, since X is R_1 by theorem 3.12. Thus $\Delta = \Omega \{ U \cdot U^{-1} : U \in \mathcal{U} \}$ and by theorem 3.9 (X, \mathcal{U}) is a T_2 -space.

CHAPTER IV

COMPLETENESS AND COMPACTNESS

DEFINITION 4.1 Let X be a non-empty set , then a non-empty family ${\mathcal F}$ of subsets of X is a filter on X if and only if

(1). $\phi \notin \mathcal{F}$, (2). F_i , $F_2 \in \mathcal{F} \Rightarrow F_i \cap F_2 \in \mathcal{F}$, (3). $F_i \in \mathcal{F}$ and $F_i \subset F \Rightarrow F \in \mathcal{F}$.

DEFINITION 4.2 A collection \mathcal{B} of subsets of the set X is said to be a base for a filter \mathcal{F} on X if and only if $\mathcal{F} = \{ E: B \subset E \text{ for some } B \in \mathcal{B} \}$.

DEFINITION 4.3 A collection \mathscr{S} of subsets of the set X is said to be a subbase for a filter \mathscr{F} on X if and only if the collection of all finite intersection members of \mathscr{S} is a base for the filter \mathscr{F} .

EXAMPLE 4.1 Let (X, t) be a topological space and let x be a fixed point of X, then the set $S_x = \{ N_x : x \in O_x \subset N_x, for some O_x \in t \}$ is a filter on X. This is called the neighborhood filter of the point x.

EXAMPLE 4.2 Let X be a non-empty set , and let x be a fixed point of

X, then the collection $S_x = \{ N: x \in N \subset X \}$ is a filter on X.

EXAMPLE 4.3 Let X be a non-empty set and let A be a non-empty subset of X. Then the collection $S_A = \{ N: A \subset N \subset X \}$ is a filter on X.

EXAMPLE 4.4 Let (X, t) be a topological space. The collection \mathcal{F} of all neighborhoods of an arbitary non-empty subset A of X is a filter, called the neighborhood filter of A.

EXAMPLE 4.5 Let X be an infinite set, then the set $\mathcal{F} = \{F: X - F \text{ is finite in } X\}$ is a filter on X.

EXAMPLE 4.6 If $X \neq \phi$, then $\mathcal{F} = \{X\}$ is a filter on X.

THEOREM 4.1 Let \mathcal{A} be a collection of subsets of X , then there exists a filter \mathcal{F} on X which contains \mathcal{A} if and only if \mathcal{A} has the finite intersection property .

PROOF. The proof of this theorem is immediately from definitions 4.1 and 4.3 .

THEOREM 4.2 Let f be a function from X onto Y, and \mathcal{F} be a filter on Y, then $f^{-1}(\mathcal{F}) = \{ f^{-1}(F): F \in \mathcal{F} \}$ is a filter on X.

PROOF. $\phi \notin f^{-1}(\mathcal{F})$, since $\phi \notin \mathcal{F}$ and f is an onto function. Let

 $f^{-1}(F_1)$, $f^{-1}(F_2) \in f^{-1}(\mathcal{F})$. Then $f^{-1}(F_1) \cap f^{-1}(F_2) = f^{-1}(F_1 \cap F_2)$ which is in $f^{-1}(\mathcal{F})$, since $F_1 \cap F_2 \in \mathcal{F}$. If $f^{-1}(F) \in f^{-1}(\mathcal{F})$ and $f^{-1}(F) \subset A$ then $F \subset f(A) \in \mathcal{F}$. Therefore $A \in f^{-1}(\mathcal{F})$ and $f^{-1}(\mathcal{F})$ is a filter on X.

THEOREM 4.3 Let f be a function from X onto Y, and let \mathcal{F} be a filter on X, then $f(\mathcal{F}) = \{ f(F): F \in \mathcal{F} \}$ is a filter on Y.

PROOF. $\phi \notin f(\mathcal{F})$, otherwise $\phi = f(F)$ for some $F \in \mathcal{F}$ which is impossible. Let $f(F_1)$, $f(F_2) \in f(\mathcal{F})$. Then $f(F_1 \cap F_2) \subset f(F_1) \cap f(F_2)$. This implies that $F_1 \cap F_2 \subset f^{-1}(f(F_1 \cap F_2)) \subset f^{-1}(f(F_1) \cap f(F_2)) \in \mathcal{F}$. Since f is onto, $f(F_1) \cap f(F_2) = f(f^{-1}(f(F_1) \cap f(F_2)))$. Hence, $f(F_1) \cap f(F_2) \in f(\mathcal{F})$. If $f(F) \in f(\mathcal{F})$ and $f(F) \subset A$, then $F \subset f^{-1}(A) \in \mathcal{F}$, and $f^{-1}(A) \in \mathcal{F}$. Since f is onto, $A = f(f^{-1}(A))$ and hence $A \in f(\mathcal{F})$.

COROLLARY. Let f be a function from X onto Y, and let \mathcal{B} be a filter base on X, then $f(\mathcal{B}) = \{ f(B) : B \in \mathcal{B} \}$ is a filter base on Y.

DEFINITION 4.4 An ultrafilter \mathcal{F} on a set X is a filter on X which is maximal in the collection of all filters partially ordered by inclusion ; that is to say , a filter which is not properly contained in any other filter .

EXAMPLE 4.7 Let X be a non-empty set and let a be fixed point of X, then the collection $\mathcal{F} = \{ F:a \in F \subset X \}$ is an ultrafilter. This follows since if \mathscr{I} is a filter with $\mathscr{F} \subset \mathscr{I}$ and $\mathscr{F} \neq \mathscr{I}$, then there exists a $S \in \mathscr{I}$, $S \notin \mathscr{F}$. This implies that $a \notin S$. However $\{a\} \in \mathscr{F} \subset \mathscr{I}$. Thus $\{a\} \cap S = \varPhi \in \mathscr{I}$ which is a contradiction.

ZORN'S LEMMA. Let X be a non-empty partially ordered set such that every linearly ordered subset has an upper bound , then X contains a maximal element .

THEOREM 4.4 If ${\mathcal F}$ is any filter on a set X , then there exists an ultrafilter finer than ${\mathcal F}$.

PROOF. Let \mathcal{F} be a filter on a set X, and let \mathcal{F} be the collection of all filters containing \mathcal{F} . Then \mathcal{F} is non-empty set, since $\mathcal{F} \in \mathcal{F}$, and is partially ordered by inclusion. Let L be a linearly ordered subset of \mathcal{F} , then for any pair \mathcal{F}_1 , $\mathcal{F}_2 \in \mathbb{L}$, it follows that either $\mathcal{F}_1 \subset \mathcal{F}_2$ or $\mathcal{F}_2 \subset \mathcal{F}_1$. Let H be a set defined by $H = \{ E: E \in \mathcal{F} \in \mathbb{L} \}$, then H is a filter containing every filter in L. This is true because it satisfies the following three properties.

(1). $\phi \notin H$, since no filter \mathcal{F} in L contains ϕ .

(2). Let E_1 , $E_2 \in H$, then there exist filters \mathcal{F}_1 , \mathcal{F}_2 in L such that $E_1 \in \mathcal{F}_1$, $E_2 \in \mathcal{F}_2$. Since L is a linearly ordered set, then either $\mathcal{F}_1 \subset \mathcal{F}_2$ or $\mathcal{F}_2 \subset \mathcal{F}_1$ and hence either $E_1 \in \mathcal{F}_2$, $E_1 \cap E_2 \in \mathcal{F}_2$ or $E_2 \in \mathcal{F}_1$, $E_1 \cap E_2 \in \mathcal{F}_1$. In both cases $E_1 \cap E_2 \in H$ for every pair E_1 , $E_2 \in H$. (3). Let $E_1 \subset E$, and $E_i \in H$, then there exists a filter $\mathcal{F}_i \in L$ with $E_i \in \mathcal{F}_i$. Since $E_i \subset E$, hence $E \in \mathcal{F}_i \in L$ and hence $E \in H$.

Thus H is a filter which is finer than any other filters in L. Therefore \mathcal{A} is a non-empty partially ordered set such that every linearly ordered subset L has an upper bound H, then \mathcal{A} contains a maximal element by Zorn's Lemma. This maximal element is by definition an ultrafilter finer than \mathcal{F} .

THEOREM 4.5 Let X be a non-empty set and \mathcal{F} be a filter on X. The following three statements are equivalent.

(1). \mathcal{F} is an ultrafilter on X .

(2). If $A \cup B \in \mathcal{F}$ then either $A \in \mathcal{F}$ or $B \in \mathcal{F}$.

(3). If $E \subset X$, then either $E \in \mathcal{F}$ or $X - E \in \mathcal{F}$.

PROOF. (1) \Rightarrow (2). Let \mathcal{F} be an ultrafilter on X. Suppose condition (2) is not true, then there exist subsets A, B in X, such that $A \notin \mathcal{F}$ and $B \notin \mathcal{F}$ and $A \cup B \notin \mathcal{F}$. Let \mathcal{A} be defined as follows,

 $\mathcal{H} = \{ ECX: AUE \in \mathcal{F} \}.$

Then 4 is a filter on X . This is true because it satisfies the following three properties .

(a). **¢∉**∦ since B**∈**∦.

(b). If E_1 and E_2 belong to 4, then $A \cup E_1 \in \mathcal{F}$ and $A \cup E_2 \in \mathcal{F}$. Now $(A \cup E_1) \cap (A \cup E_2) \in \mathcal{F}$, therefore $A \cup (E_1 \cap E_2) \in \mathcal{F}$ and EinEze#.

(c). If $E_1 \in \mathcal{U}$ and $E_1 \subset E$, then $A \cup E_1 \subset A \cup E$. Hence $A \cup E \in \mathcal{F}$ and $E \in \mathcal{U}$.

Since $B \notin \mathcal{A}$ and $B \notin \mathcal{F}$, it follows that \mathcal{A} is a filter strictly finer than \mathcal{F} . This contradicts the fact that \mathcal{F} is an ultrafilter. Hence for every pairs of subsets A, B in X, with AUB in an ultrafilter \mathcal{F} it follows that either $A \notin \mathcal{F}$ or $B \notin \mathcal{F}$.

(2) \Rightarrow (3). If $E \subset X$, then $E \cup (X - E) = X \in \mathcal{F}$. By condition (2), it follows that either $E \in \mathcal{F}$ or $X - E \in \mathcal{F}$.

(3) \Rightarrow (1). By theorem 4.4, \mathcal{F} is contained in an ultrafilter \mathcal{F}' . For each subset E in \mathcal{F}' , X - E $\notin \mathcal{F}'$. Hence X - E $\notin \mathcal{F}$ and by condition (3) it follows that E $\notin \mathcal{F}$. This implies that $\mathcal{F}' \subset \mathcal{F}$. Since \mathcal{F}' is an ultrafilter, then $\mathcal{F}' = \mathcal{F}$. Therefore \mathcal{F} is an ultrafilter.

DEFINITION 4.5 Let (X, t) be a topological space, and let \mathcal{F} be a filter on X. A point x $\boldsymbol{\epsilon}$ X is called a limit point of \mathcal{F} , denoted by x $\boldsymbol{\epsilon}$ lim \mathcal{F} , if and only if every neighborhood N_x of x belongs to \mathcal{F} .

DEFINITION 4.6 Let (X, t) be a topological space, and let \mathcal{F} be a filter on X. A point $x \in X$ is an adherence point of the filter \mathcal{F} , denoted by $x \in adh \mathcal{F}$, if and only if for every $F \in \mathcal{F}$ and for every neighborhood N_x of x, N_x $\cap F \neq \Phi$.

THEOREM 4.6 Let \mathcal{F} be a filter on (X,t), then x is an adherence

point if and only if $x \in \cap \{\overline{F}: F \in \mathcal{F}\}$.

PROOF. Let x be an adherence point of \mathcal{F} , then for every $F \in \mathcal{F}$ and for every neighborhood N_x of x, it follows that N_x $\cap F \neq \phi$. That is to say, for every $F \in \mathcal{F}$, $x \in \overline{F}$. Hence $x \in \cap \{\overline{F}: F \in \mathcal{F}\}$.

On the other hand, if $x \in \cap \{\overline{F}: F \in \mathcal{F}\}\)$, then $x \in \overline{F}$ for every $F \in \mathcal{F}$. That is for every $F \in \mathcal{F}$, and for every neighborhood N_{\times} of x, $N_{\times} \cap F \neq \Phi$. Hence x is an adherence point of \mathcal{F} .

DEFINITION 4.7 Let $\{x_n\}_{i}^{\infty}$ be a given sequence , and set $F_K = \{x_i: i \ge k\}$. Then the collection $\{F_K: k = 1, 2\cdots\}$ is a filter base. The generated filter \mathcal{F} will be called the natural filter generated by the given sequence .

Let $\{x_n\}_1^{po}$ be a sequence of real numbers and let \mathcal{F} be the natural filter generated by the sequence. The point x is a limit point of \mathcal{F} if and only if every neighborhood N_x of x belongs to \mathcal{F} and this is true provided every open set of the form $(x - \epsilon, x + \epsilon)$ containing x belongs to \mathcal{F} . Or equivalently, for every $\epsilon > 0$ there exists F in \mathcal{F} containing x such that $F \subset (x - \epsilon, x + \epsilon)$, that is for every $\epsilon > 0$ there exists an integer k > 0 such that $F_{K} \subset F \subset (x - \epsilon, x + \epsilon)$ where $F_{K} = \{x_{K}, x_{K+1}, \cdots\}$. Hence for every $\epsilon > 0$ there exists an integer k > 0 such that for n > k, $x_n \in (x - \epsilon, x + \epsilon)$. Thus $x \in \lim \mathcal{F}$ if and only if $\lim_{n \to \infty} x_n = x$.

The point x is an adherence point of a filter \mathscr{F} on X, if and only if for every neighborhood N_x of x and for every $F \in \mathscr{F}$, N_x $\cap F \neq \Phi$, or equivalently if every open set of the form $(x - \epsilon, x + \epsilon)$ intersets every member F in \mathscr{F} . That is, for every $\epsilon > 0$ and for any integer k>0, then $(x - \epsilon, x + \epsilon) \cap F_{K} \neq \Phi$. And this is equivalent to the statement that for every $\epsilon > 0$, and for every integer k>0 there exists a n>k such that $x_n \in (x - \epsilon, x + \epsilon)$. Hence $x \in adh \mathscr{F}$, if and only if x is a cluster point of the sequence.

In examples 4.8 through 4.15, sequences are considered in the set of real numbers with the usual topology. EXAMPLE 4.8 The sequence $\{n\}_{1}^{\varphi}$ generates a filter \mathcal{F} with lim $\mathcal{F} = \phi$ and adh $\mathcal{F} = \phi$.

EXAMPLE 4.9 The sequence $\{1/n\}_{i}^{\infty}$ generates a filter \mathcal{F} with lim $\mathcal{F} = \{0\}$ and adh $\mathcal{F} = \{0\}$.

EXAMPLE 4.10 The sequence $\{(-1)^n\}_{i}^{\infty}$ generates a filter \mathcal{F} , with lim $\mathcal{F} = \Phi$ and adh $\mathcal{F} = \{-1,1\}$.

EXAMPLE 4.11 Let $\{2+n/n+5\}_{i}^{\infty}$ be a given sequence which generates a filter \mathcal{F} , then $\lim \mathcal{F} = \{1\}$ and $\operatorname{adh} \mathcal{F} = \{1\}$.

EXAMPLE 4.12 Let $\{(-1)^n(n+1/n)\}_{i}^{\infty}$ be a sequence which generates a

filter \mathcal{F} , then $\lim \mathcal{F} = \phi$ and $\operatorname{adh} \mathcal{F} = \{-1, 1\}$.

EXAMPLE 4.13 Let $\{(-1)^n(1/n)\}_{i}^{\infty}$ be a sequence which generates a filter \mathcal{F} , then $\lim \mathcal{F} = \{0\}$, and $\mathrm{adh} \mathcal{F} = \{0\}$.

EXAMPLE 4.14 Let $\{x_n\}_{i}^{\infty}$ be defined by $x_n = \begin{cases} n+1 & \text{when n is even ,} \\ 1/n & \text{when n is odd .} \end{cases}$

Let \mathcal{F} denote the natural filter generated by this sequence. Then lim $\mathcal{F} = \mathcal{F}$ and adh $\mathcal{F} = \{0\}$.

EXAMPLE 4.15 The sequence $\{1, 1/2, 1, 1/3 \cdots\}$ generates a filter \mathcal{F} with lim $\mathcal{F} = \mathbf{4}$ and adh $\mathcal{F} = \{1, 0\}$.

THEOREM 4.7 Let (X, t) be a topological space, and let \mathcal{F} be a filter on X, then every limit point of \mathcal{F} is an adherence point of \mathcal{F} . PROOF. Let $x \in \lim \mathcal{F}$, then every neighborhood N_X of x belongs to \mathcal{F} . Therefore $N_X \cap F \neq \Phi$ for every neighborhood N_X of x and for every F in \mathcal{F} . Hence $x \in adh \mathcal{F}$.

THEOREM 4.8 Let (X, t) be a topological space, and let \mathcal{F} be a filter on X, then $x \in adh \mathcal{F}$ if and only if $x \in lim \mathcal{F}'$ for some \mathcal{F}' finer than \mathcal{F} .

PROOF. Let $x \in adh \mathcal{F}$, then, by definition, for every neighborhood N_x of x and for every $F \in \mathcal{F}$, $N_x \cap F \neq \Phi$. Let $\mathcal{B} = \{N_x \cap F: N_x \text{ is a neighborhood of x, } F \in \mathcal{F}\}$. Then \mathcal{B} is a base for a filter \mathcal{F}' and $x \in \lim \mathcal{F}'$.

On the other hand , let \mathcal{F}' be a filter finer than \mathcal{F} and let $x \in \lim \mathcal{F}'$. Then , by theorem 4.7 , $x \in \operatorname{adh} \mathcal{F}'$. Hence $x \in \operatorname{adh} \mathcal{F}$.

THEOREM 4.9 Let (X, t) be a topological space. If A < X is closed then adh $\mathcal{F} \subset A$ for every filter containing A.

PROOF. Let \mathcal{F} be a filter containing the set A. Then adh $\mathcal{F} \equiv \cap \{ \overline{F} : F \in \mathcal{F} \} \subset \overline{A} = A$.

THEOREM 4.10 Let (X, t) be a topological space. Then (X, t) is T_2 if and only if every filter has at most one limit point.

PROOF. Let \mathcal{F} be any filter on a T_z -space (X, t), and let x, y are distinct limit points of \mathcal{F} . Then there are two disjoint open sets 0_i and 0_z containing x and y respectively. Since x, y are limit points of \mathcal{F} , then 0_i , 0_z are members of \mathcal{F} . This implies $\phi = 0_i \cap 0_z \in \mathcal{F}$ which is impossible. Hence the filter \mathcal{F} has at most one limit point.

Suppose the condition holds and (X, t) is not T_z . Then there exist two points x, y in X such that any open sets 0_x , 0_y in t containing x and y respectively, have a non-empty intersection.

33

Therefore, the collection $\mathcal{B} = \{ 0_x \cap 0_y : x \in 0_x \in t , y \in 0_y \in t \}$ has the finite intersection property and hence generate a filter \mathcal{F} on X. However, the filter \mathcal{F} has two distinct limit points x and y which contradicts the hypothesis. Therefore (X, t) must be a T₂-space.

THEOREM 4.11 Let (X, t) be a topological space, then the following statements are equivalent.

- (1). (X, t) is compact.
- (2). Every non-empty collection of closed sets with the finite intersection property has a non-empty intersection .
- (3). Every filter has a non-empty adherence .
- (4). Every ultrafilter has a non-empty limit.

PROOF. (1) \Leftrightarrow (2). (X,t) is compact if and only if every open cover has a finite subcover. That is, every collection of closed sets with an empty intersection has a finite subcollection with an empty intersection. Or equivalently, every non-empty collection of closed sets with the finite intersection property has a non-empty intersection.

(2) \Rightarrow (3). Suppose condition (2) is true, then $\Phi \neq \cap \{\overline{F}: F \in \mathcal{F}\}\$ = adh \mathcal{F} , where \mathcal{F} is arbitary filter on X.

(3) \Rightarrow (4). Suppose condition (3) is true . Then every ultrafilter \mathcal{F} on X has a non-empty adherence . Therefore by theorem 4.8 every ultrafilter has a non-empty limit .

 $(4) \Rightarrow (2)$. Let \mathcal{L} be a non-empty collection of closed subsets of

X with the finite intersection property. Then \mathcal{C} generates a filter \mathcal{F} on X which is contained in an ultrafilter \mathcal{F}' . By condition (4), it follows that adh $\mathcal{F} \neq \phi$. Now adh $\mathcal{F} \equiv \cap \{ \overline{F}: F \in \mathcal{F} \} \subset \cap \{ A: A \in \mathcal{C} \}$. Hence $\cap \{ A: A \in \mathcal{C} \} \neq \phi$.

DEFINITION 4.8 Let (X, \mathcal{U}) be a quasi-uniform space , (X, \mathcal{U}) is totally bounded if and only if for each U in \mathcal{U} there exist finite number of subsets A_1 , A_2 , \cdots , A_n such that

(1). $\bigcup \{ A_i : 1 \le i \le n \} = X$, (2). $A_i \times A_i \subset \bigcup$, for each $1 \le i \le n$.

DEFINITION 4.9 Let (X, \mathcal{U}) be a quasi-uniform space, (X, \mathcal{U}) is pre-compact if and only if for each U in \mathcal{U} there exists a finite set $A = \{x_1, x_2, x_3, \dots, x_n\} \subset X$ such that U(A] = X.

THEOREM 4.12 If a quasi-uniform space (X , \mathcal{U}) is totally bounded then it is pre-compact .

PROOF. Let (X, \mathcal{U}) be a totally bounded quasi-uniform space. Let $U \in \mathcal{U}$. Then there exist a finite number of subsets A_1, A_2, \cdots , A_n such that $\cup \{A_i: 1 \le i \le n\} = X$ and $A_i \times A_i \subset U$ for each $1 \le i \le n$. Let $x_i \in A$, $1 \le i \le n$, then $U[x_i] = A_i$ for each i and $\cup \{U[x_i]: 1 \le i \le n\} > \cup \{A_i: 1 \le i \le n\} > X$. Therefore (X, \mathcal{U}) is pre-compact.

THEOREM 4.13 In a uniform space , totally boundedness and pre-compactness are equivalent .

PROOF. Let (X, \mathscr{U}) be a pre-compact uniform space. For each U in \mathscr{U} there exists a symmetric V in \mathscr{U} such that VoVCU. Since (X, \mathscr{U}) is pre-compact, there exists a finite set $A = \{x_1, x_2, \dots, x_n\}$ such that $\cup \{V\{x_i\}: 1 \le i \le n\} = X$. Let $A_i = V\{x_i\}, 1 \le i \le n$. For each ordered pair (y,z) in $A_i \times A_i$, $1 \le i \le n$, $(x_i,y) \in V$ and $(x_i,z) \in V$. Then $(y,z) \in V^{-1} \circ V = V \circ V \subset U$. Hence $A_i \times A_i \subset U$ for each U in \mathscr{U} and $1 \le i \le n$. Since $\cup \{V\{x_i\}: 1 \le i \le n\} = X$, it follows that $\cup \{A_i: 1 \le i \le n\} = X$. Hence every pre-compact uniform space is a totally bounded uniform space. The proof is now completed by theorem 4.12.

THEOREM 4.14 Every topological space has a compatible totally bounded quasi-uniform structure .

PROOF. Let (X, t) be a topological space and let P be the compatible Pervin quasi-uniform structure. The Pervin quasi-uniform structure has a totally bounded subbase and hence it is totally bounded.

THEOREM 4.15 The inverse image of a totally bounded quasi-uniform structure is totally bounded .

The proof of this theorem is natural and omitted .

THEOREM 4.16 A quasi-uniform space (X, 22) is totally bounded if

and only if (X , \mathcal{U}^{-1}) is totally bounded .

PROOF. (X, \mathcal{U}) is totally bounded if and only if for each U in \mathcal{U} there exist A₁, A₂, ..., An such that A_i × A_i ⊂ U for each $1 \le i \le n$ and $\cup \{A_i: 1 \le i \le n\} = X$. Or equivalently, for each $\bigcup^{-1} \in \mathcal{U}^{-1}$ there exists A₁, A₂, ..., An such that A_i × A_i = $(A_i × A_i)^{-1} \subset \bigcup^{-1}$ for $1 \le i \le n$ and $\cup \{A_i: 1 \le i \le n\} = X$. Hence (X, \mathcal{U}) is totally bounded if and only if (X, \mathcal{U}^{-1}) is totally bounded.

DEFINITION 4.10 Let (X, \mathcal{U}) be a quasi-uniform space. A filter \mathcal{F} on (X, \mathcal{U}) is said to be a Cauchy filter if and only if for each U in \mathcal{U} there exists a point x in X such that $U(x) \in \mathcal{F}$.

DEFINITION 4.11 A filter base \mathcal{B} is said to be a Cauchy filter base if and only if the generated filter \mathcal{F} is Cauchy .

THEOREM 4.17 Let (X, \mathcal{U}) be a quasi-uniform space. Then (X, \mathcal{U}) is pre-compact if and only if every ultrafilter \mathcal{F} on X is a Cauchy filter.

PROOF. Suppose (X, \mathcal{U}) is pre-compact, then there exists a finite set $A = \{x_1, x_2, \dots, x_n\}$ such that $U[A] = \cup \{U[x_i]: 1 \le i \le n\} = X$. Let \mathcal{F} be an ultrafilter on X, then there exists a $x_K \in A$ with $U[x_K] \in \mathcal{F}$. Hence \mathcal{F} is a Cauchy filter. Let every ultrafilter \mathcal{F} on X be Cauchy . Suppose that X is not pre-compact, then there exists a U in \mathcal{U} , such that for any finite subset A of X, X - U[A] $\neq \Phi$. Hence the collection $\mathscr{B} = \{X - U[A]:$ A is a finite subset of X $\}$ has the finite intersection property . Now \mathscr{J} is contained in an ultrafilter \mathcal{F} . Since every ultrafilter \mathcal{F} is Cauchy, for each $U \in \mathcal{U}$ there exists a point $z \in X$ such that $U(z] \in \mathcal{F}$. But X - U[z] $\in \mathcal{F}$. This implies that $\Phi = U[z]n(X - U[z]) \in \mathcal{F}$ which is impossible. Hence (X, \mathcal{U}) must be pre-compact.

THEOREM 4.18 Let \mathcal{B} be a filter base for (X, \mathcal{U}) . \mathcal{B} is a Cauchy filter base if and only if for each U in \mathcal{U} there exists a point x in X such that BCU[x] for some B $\in \mathcal{B}$.

PROOF. Let \mathcal{B} be a Cauchy filter base, then \mathcal{B} generates a Cauchy filter \mathcal{F} . That is to say, for each U in \mathcal{U} there exists a point x in X such that $U(xJ \in \mathcal{F}$. Since \mathcal{B} is a filter base for \mathcal{F} , it follows that $B \in U(xJ)$ for some $B \in \mathcal{B}$.

If for each U in \mathcal{U} there exists a point x in X such that $B \subset U[x]$ for some $B \in \mathcal{B}$, then for the filter \mathcal{F} generated by \mathcal{B} , $U[x] \in \mathcal{F}$ since $B \in \mathcal{F}$. Hence the filter base \mathcal{B} is a Cauchy filter base.

THEOREM 4.19 Let \mathcal{F} be a filter on a quasi-uniform space (X, \mathcal{U}) . If for each $U \in \mathcal{U}$, there exists $F \in \mathcal{F}$ such that $F \times F \subset U$, then \mathcal{F} is a Cauchy filter. PROOF. Suppose the given condition is true. Then for each U in \mathcal{U} , there exists $F \in \mathcal{F}$ with $F \times F \subset U$. Let $x \in F$, then $F = (F \times F)(x) \subset U(x)$ and hence $U(x) \in \mathcal{F}$. Therefore \mathcal{F} is a Cauchy filter.

THEOREM 4.20 Every convergent filter is Cauchy.

PROOF. Let \mathcal{F} be a filter on a quasi-uniform space (X, \mathcal{U}), and let $x \in \lim \mathcal{F}$. Then for each U in \mathcal{U} , $U(x] \in \mathcal{F}$. Hence \mathcal{F} is Cauchy.

EXAMPLE 4.16 Let R denote the set of real numbers with the usual order. Let $W = \{ (x,y) \in \mathbb{R} \times \mathbb{R} : x \le y \}$ then $\{W\}$ forms a quasi-uniform base. Let $\{ 1/n \}_{i}^{\infty}$ be a sequence and \mathcal{F} the natural filter generated by this sequence. Then \mathcal{F} is convergent and hence \mathcal{F} is a Cauchy filter. However, there does not exist a F_{K} with k > 0 such that $F_{K} \times F_{K} \subset W$. Therefore the converse of theorem 4.19 is not always true.

THEOREM 4.21 Let F be a filter on a uniform space (X, \mathcal{U}) . \mathcal{F} is Cauchy if and only if for each U in \mathcal{U} , there exists an element F of \mathcal{F} such that $F \times F \subset U$.

PROOF. Let \mathcal{F} be a Cauchy filter on a uniform space. For each U in \mathcal{U} there exists a symmetric V in \mathcal{U} such that $V \circ V \subset U$. Since \mathcal{F} is Cauchy, there exists a point x in X such that $V(x] \in \mathcal{F}$. Set F = V(x]. Let $(y,z) \in F \times F = V(x] \times V(x]$. Then $(x,y) \in V$ and $(x,z) \in V$. And thus $(y,z) \in V^{-1} \circ V = V \circ V \subset U$. Hence $F \times F \subset V \circ V \subset U$ for each U in \mathcal{U} . The result now follows by theorem 4.19.

THEOREM 4.22 A filter finer than a Cauchy filter is a Cauchy filter.

PROOF. Let \mathcal{F} be a Cauchy filter on (X, \mathcal{U}) and $\mathcal{F} \leq \mathcal{F}'$. For each U in \mathcal{U} there exists a point $x \in X$ such that U[x] since \mathcal{F} is Cauchy. Since \mathcal{F}' is finer than \mathcal{F} , it follows that $U[x] \in \mathcal{F}'$. Hence \mathcal{F}' is a Cauchy filter.

THEOREM 4.23 If \mathcal{F} is a Cauchy filter on (X, \mathcal{U}) and \mathcal{U}' is coarser than \mathcal{U} then \mathcal{F} is a Cauchy filter on (X, \mathcal{U}') .

PROOF. Let \mathcal{U}' be a quasi-uniform structure coarser than the quasi-uniform structure \mathcal{U} on X, and let \mathcal{F} be a Cauchy filter on (X, \mathcal{U}) . Let U in \mathcal{U}' then U in \mathcal{U} and there exists a point x in X, such that $U(x] \in \mathcal{F}$. Hence \mathcal{F} is Cauchy on (X, \mathcal{U}') .

THEOREM 4.24 Let f be a function of X onto Y, and let \mathcal{F} be a Cauchy filter on (Y, \mathcal{U}). Then the filter $f^{-1}(\mathcal{F}) = \{ f^{-1}(F): F \in \mathcal{F} \}$ is a Cauchy filter on (X, $f_2^{-1}(\mathcal{U})$).

PROOF. $f^{-1}(\mathcal{F})$ is a filter on $(X, f_2^{-1}(\mathcal{U}))$ by theorem 4.2. Let V belongs to $f_2^{-1}(\mathcal{U})$ then $V = f_2^{-1}(U)$ for some U in \mathcal{U} . Since \mathcal{F} is Cauchy on (Y, \mathcal{U}) , there exists a point y in Y such that $U(y_3 \in \mathcal{F})$. Now

 $f^{-1}(U(f(x)J) \in f^{-1}(\mathcal{F}) \text{ where } y = f(x) \text{ and } V(xJ = (f_z^{-1}(U))(xJ = f^{-1}(U(f(x)J)) \in f^{-1}(\mathcal{F}) \text{ .}$ Therefore $f^{-1}(\mathcal{F})$ is a Cauchy filter on $(X, f_z^{-1}(\mathcal{U}))$.

The next example shows that the image of a Cauchy filter need not be a Cauchy filter . EXAMPLE 4.17 Let $D_r = \{ (x,y) \in R^{+x} R^{+} : |x - y| < r \}$ and let **2** be a

EXAMPLE 4.17 Let $D_r = \{ (x,y) \in R * R': |x - y| < r \}$ and let 22 be a quasi-uniform structure on R^+ , the set of positive real numbers, generated by the quasi-uniform base $\{ D_r: r > 0 \}$. Let f be a function of R^+ into R^+ defined by f(x) = 1/x for every $x \in R^+$. Let $\{ 1/n \}_{i}^{\infty}$ be a given sequence in the domain of f, then the filter \mathcal{F} generated by the sequence $\{ 1/n \}_{i}^{\infty}$ is Cauchy. But the filter $f(\mathcal{F})$ generated by the sequence $\{ n \}_{i}^{\infty}$ is not a Cauchy filter.

THEOREM 4.25 Let f be a quasi-uniformly continuous function of (X, \mathcal{U}) onto (Y, \mathcal{U}) and let $\mathcal F$ be a Cauchy filter on X, then f($\mathcal F$) is a Cauchy filter .

PROOF. $f(\mathcal{F})$ is a filter on (Y, \mathcal{V}) by theorem 4.3. For each V in \mathcal{V} there exists an entourage U in \mathcal{U} such that $f_z(U) \subset V$, since f is quasi-uniformly continuous function. Since \mathcal{F} is Cauchy on X, there exists a point $x \in X$ such that $U(x) \in \mathcal{F}$. Hence $f(U(x)) \in f(\mathcal{F})$. Now $f(U(x)) \subset f_z(U)(f(x)) \in f(\mathcal{F})$, since $f(\mathcal{F})$ is a filter on Y. Hence for each V in \mathcal{V} there exists $f(x) \in Y$ such that $V(f(x)) \in f(\mathcal{F})$, and $f(\mathcal{F})$ is

a Cauchy filter .

DEFINITION 4.12 A quasi-uniform space (X , \mathcal{U}) is complete if and only if every Cauchy filter has non-empty adherence .

DEFINITION 4.13 A quasi-uniform space (X , 2ℓ) is strongly complete if and only if every Cauchy filter has non-empty limit .

THEOREM 4.26 A strongly complete quasi-uniform space (X , 2L) is complete .

PROOF. This follows since every limit point of a filter ${\mathcal F}$ is an adherence point by theorem 4.7 .

THEOREM 4.27 In a uniform space , completeness and strong completeness are equivalent .

PROOF. A strongly complete uniform space is always complete by theorem 4.26. Let \mathcal{F} be a Cauchy filter in the uniform space (X, \mathcal{U}) and let $x \in adh \mathcal{F}$. For each U in \mathcal{U} there exists a symmetric V in \mathcal{U} such that $V \circ V \subset U$. Since \mathcal{F} is a Cauchy filter on a uniform space (X, \mathcal{U}) there exists a $F \in \mathcal{F}$ such that $F * F \subset V$. Since $x \in adh \mathcal{F}$, there exists a point $y \in V[x] \cap F \neq \Phi$. That is $(x,y) \in V$ and $y \in F$. Let z be any point in F, then $(y,z) \in F * F \subset V$. This implies that $(x,z) \in V \circ V \subset U$ and $z \in U[x]$. That is $F \subset U[x]$ and hence $U[x] \in \mathcal{F}$. Therefore, in a uniform space, every Cauchy filter converges to its adherence point. Hence every complete uniform space is strongly complete.

THEOREM 4.28 Completeness and strong completeness are invariant under quasi-uniformly continuous function .

PROOF. Let f be a quasi-uniformly continuous function from a quasi-uniform space (X, \mathcal{U}) onto a quasi-uniform space (Y, $\mathcal{\Psi}$).

Let (X, \mathcal{U}) be a complete space . Suppose (Y, \mathcal{F}) is not complete . Then there is a Cauchy filter \mathcal{F} on (Y, \mathcal{F}) such that adh $\mathcal{F} = \Phi$. For every $x \in X$, then $y = f(x) \notin$ adh \mathcal{F} . That is to say, there exists a V_0 in \mathcal{F} and a F_0 in \mathcal{F} such that $V_0(y) \cap F_0 = \Phi$. Now that $f_2^{-1}(V_0)(x) \cap f^{-1}(F_0) = f^{-1}(V_0(y)) \cap f^{-1}(F_0) = f^{-1}(V_0(y) \cap F_0) = \Phi$, where $f_2^{-1}(V_0)$ is in \mathcal{U} and $f^{-1}(\mathcal{F})$ is in the Cauchy filter $f^{-1}(\mathcal{F})$. This implies that $x \notin$ adh $f^{-1}(\mathcal{F})$ for every $x \notin X$, or equivalently adh $f^{-1}(\mathcal{F}) = \Phi$ which is impossible . Hence (Y, \mathcal{F}) must be a complete quasi-uniform space .

Let (X, \mathcal{U}) be strongly complete. Suppose (Y, \mathscr{V}) is not strongly complete. Then there is a Cauchy filter \mathcal{F} on (Y, \mathscr{V}) such that $\lim \mathcal{F} = \mathcal{P}$. For every $x \in X$, then $y = f(x) \notin \lim \mathcal{F}$, or equivalently, there is a Vo in \mathscr{V} such that $V_0(y] \notin \mathcal{F}$ or $f^{-1}(V_0(y)) \notin$ $f^{-1}(\mathcal{F})$. Now that $f_2^{-1}(V_0)(x] = f^{-1}(V_0(y))$. Hence $f_2^{-1}(V_0)(x] \notin f^{-1}(\mathcal{F})$ for every $x \in X$ and then the Cauchy filter $f^{-1}(\mathcal{F})$ has empty limit which is impossible . Therefore (Y, \mathscr{V}) is strongly complete .

THEOREM 4.29 Every closed subset A of a complete quasi-uniform space is complete .

PROOF. Let A be a closed subspace of a complete quasi-uniform space. Let \mathcal{F} be a Cauchy filter on A, then \mathcal{F} is a collection of subsets of X which has the finite intersection property. Let \mathcal{F}' be the Cauchy filter on X generated by \mathcal{F} . Since (X, \mathcal{U}) is complete, it follows that there exists a $x \in adh \ \mathcal{F}' \equiv \cap \{Cl_X F: F \in \mathcal{F}'\}$. Now, $x \in \overline{A}$. Since A is closed, then $x \in A$. However, $Cl_A F = A \cap Cl_X F$. Hence, $x \in \cap \{Cl_A F: F \in \mathcal{F}\}$. Therefore A is complete.

THEOREM 4.30 Every closed subset A of a strongly complete quasi-uniform space (X, \mathcal{U}) is strongly complete.

PROOF. Let \mathcal{F} be a Cauchy filter on a closed subspace A, then \mathcal{F} is a collection of subsets of X with the finite intersection property and hence generates a Cauchy filter \mathcal{F}' on X. Since (X, \mathcal{U}) is strongly complete, then there exists a point $x \in X$ such that $U[x] \in \mathcal{F}'$ for each $U \in \mathcal{U}$. Hence each neighborhood of x is contained in \mathcal{F}' and therefore meets A. Thus $x \in \overline{A} = A$. Therefore A is strongly complete.

THEOREM 4.31 Let (X, \mathcal{U}) be a T_z , uniform space and let A be complete subspace of (X, \mathcal{U}) , then A is closed.

PROOF. Let x belongs to \overline{A} . Then for each U in 2ℓ , it follows that $U(x] \cap A \neq \phi$. Let $\mathfrak{S} = \{ U(x] \cap A : U \in 2\ell \}$. Then \mathfrak{S} has the finite intersection property and hence generates a filter \mathfrak{F} on A. Since (X, \mathfrak{U}) is a uniform space, then for each U in 2ℓ there is a symmetric V in \mathfrak{U} such that V•V⊂U. This implies that $(V(x] \cap A) \times (V(x] \cap A) \subset U$ $\cap (A \times A)$ and hence \mathfrak{F} is a Cauchy filter on A. Then there exists a point $x' \in \lim \mathfrak{F}$ and $x' \in A$. However \mathfrak{F} is a Cauchy filter base in X and generates a Cauchy filter \mathfrak{F}' on X. Furthermore $x' \in \lim \mathfrak{F}'$ and x' = xby theorem 4.10. Therefore $\overline{A} \subset A$ and A is closed.

THEOREM 4.32 Every compact quasi-uniform space (X , \mathcal{U}) is strongly complete .

PROOF. Let $(X, 2\ell)$ be a compact quasi-uniform space. Suppose $(X, 2\ell)$ is not strongly complete. That is to say, there exists a Cauchy filter \mathcal{F} on $(X, 2\ell)$ such that for every point x in $(X, 2\ell)$ there exists a U_x in 2ℓ with $U_x(x) \notin \mathcal{F}$. Let V_x be in 2ℓ such that $V_x \circ V_x \subset U_x$. Since X is compact, then there exists a finite set $A = \{x_1, x_2, \dots, x_n\}$ such that $X = \cup \{V_{x_i} \{x_i\} : V_{x_i} \in 2\ell$ and $V_{x_i} \circ V_{x_i} \subset U_{x_i}, 1 \le i \le n\}$. Set $V = \cap \{V_{x_i} : 1 \le i \le n\} \in \mathcal{F}$, then there exists a point $a \in X$ such that $V(a] = \cap \{V_{x_i} \{a\} : 1 \le i \le n\} \in \mathcal{F}$, since \mathcal{F} is Cauchy. For each point y in V(a], then $(a,y) \in V = \cap \{V_{x_i} : 1 \le i \le n\}$. However $a \in V_{x_i} \{x_i\}$ for some i, hence $(a,y) \in V_{x_i}$ for this i. That is $(x_i, y) \in V_{x_i} \circ V_{x_i} \subset U_{x_i}$. Hence $V(a] \subset U_{x_i} \{x_i\} \in \mathcal{F}$. This contradicts our assumption , hence (X , $\mathcal U$) must be strongly complete .

THEOREM 4.33 A quasi-uniform space (X , \mathcal{U}) is compact if and only if it is complete and pre-compact .

PROOF. Let (X , \mathcal{U}) be a compact quasi-uniform space . Then by theorem 4.11 every ultrafilter is Cauchy . Hence by theorem 4.17 (X , \mathcal{U}) is pre-compact .

Since (X, \mathcal{U}) is compact, then by theorem 4.11 every Cauchy filter has a non-empty adherence. Hence (X, \mathcal{U}) is complete.

Suppose (X, \mathcal{U}) is a complete and pre-compact quasi-uniform space. Then every ultrafilter \mathcal{F} on (X, \mathcal{U}) is Cauchy by theorem 4.17. Since (X, \mathcal{U}) is complete, then adh $\mathcal{F} \neq \Phi$. However \mathcal{F} is an ultrafilter, then adh $\mathcal{F} = \lim \mathcal{F} \neq \Phi$. Therefore every ultrafilter \mathcal{F} converges. Hence (X, \mathcal{U}) is compact by theorem 4.11.

COROLLARY. A quasi-uniform space (X, \mathcal{U}) is compact if and only if it is strongly complete and pre-compact.

The proof follows immediately from theorem 4.32 and theorem 4.33 .

BIBLIOGRAPHY

- 1. Bourbaki, N. <u>General Topology</u>, chapter I and II. Hermann, Paris, 1961.
- J.W. Carlson and T.L. Hicks. "Some Properties of Quasi-Uniform Structures," <u>Archiv der Mathematik</u>, (24), 82-86 (1973).
- 3. G.F. Simmons. <u>Introduction to Topology and Modern Analysis</u>. New York: McGraw-Hill, 1963.
- 4. M.G. Murdeshwar and S.A. Naimpally. <u>Quasi-Uniform Topological Spaces</u>. Groningen, 1966.