QUASI-UNIFORM STRUCTURES

A Thesis
Presented to
the Department of Mathematics

Kansas State Teachers College of Emporia

In Partial Fulfillment
of the Requirements for the Degree

Master of Arts in Mathematics

By
ALBERT YU-MING CHI
 July 1973



—

he

Y

Approved for the MaJ or ﬁ}epqrtment
i .
& / UI,»" .//
! i . P L

u......v»" '

/ / N e

S

ﬁ,ﬁroved for the Graduate Council

342545/



ACKNOWLEDGMENTS

I wish to thank Dr. John Carlson for his assistance and
encouragement in writing this thesis , and my professors , Dr. Marion
Emerson , Dr. Donald Bruyr , Dr. George Poole , and Dr. Thomas Bonner
who taught and guided me during the last two semesters at Kansas State
Teachers College .

Acknowledgment and thankfulness are also expressed to my wife ,

Tonia , who spent many hours typing this thesis .



TABLE OF CONTENTS

CHAPTER PAGE
I. QUASI-UNIFORM STRUCTURES . . . . . . . . . . . . . .. . 1
IT. PERVIN QUASI-UNIFORM STRUCTURE . . . . . . . . . . . . .. 11
IIT.  SEPARATION AXIOMS . . . . . . . . .« . o . o v v v v .. 14
IV.  COMPLETENESS AND COMPACTNESS . . . . . . . . « . . « . . . 24



CHAPTER 1

QUASI-UNIFORM STRUCTURES

INTRODUCTION

A quasi-uniform structure is a natural generalization of a uniform
structure . In this chapter it is shown that every topological space
admits a quasi-uniform structure . In general , a topological space will
admit more than one compatible quasi-uniform structure . As with uniform
structure , it is possible to study the concepts of completeness and
totally boundedness and a notion of uniform or quasi-uniform continuity
and other related concepts which can not be studied in a topological

space .

DEFINITION 1.1 Let X be a non-empty set . A quasi-uniform structure
U for the set X is a non-empty collection , ¢« , of subsets of X x X
satisfying :

(1). 4 = {(x,x):xeX }c U for each U e %,

(2). U, and Uz e« implies that UynUz€ A ,

(3). U,€e#u and U>U, implies that Ue€ 2 ,

(4). For each U€ % there exists Ve# with VeVvc U



( Uev = { (x,y):there exists zeX with (x,z)eU and (z,y)eV})

Then the pair ( X , & ) is called a quasi-uniform space .

DEFINITION 1.2 Let U be a quasi-uniform structure for a set X
satisfying :

(5). For each U in ¥ , then T { (xoy):(y.x)eU e U,
and U is called a uniform structure for X . The pair ( X , U ) is

called a uniform space .

DEFINITION 1.3 If AcXxX , then A is symmetric if and only if

AT = A, A s anti-symmetric if and only if Anp'c A

THEOREM 1.1 Let ( X , & ) be a uniform space , then for each U in ¥«

there exists a symmetric V in 2 such that VeVcU .

PROOF . For each U in U there exists a W in % such that WeWcU .
Since W' e U , it follows that V = WnW' e 2 . Now V is symmetric
and VeVc U .

DEFINITION 1.4 Let A be a quasi-uniform structure for X , and let x
be a point in X . Then U{x] = { y:(x,y)eU} for U€ U , and U(x] =

{Uxj:ue } .

THEOREM 1.2 Let 2« be a quasi-uniform structure for the set X . Set



X9 = { 0cX:if x €0 then there exists U €2 such that xeU{(xJcO0 } .

Then Zg is a topology for X .

PROOF . Suppose for each ox€ A , Ox€ L9 . IfxeV { Ox:exe A ],
then x € 0 for some « in .A . There exists a Ux€ 2 such that
xeUux(xJcO0xcl { Ox:x€ A} . Therefore U { Ox:xc A}c¢ T
Clearly ¢ € Ly .

Suppose 0y , 02 € L9, . If xe0,n0z , then x€0,; and x €0z .
There exist U, , Uz €% such that xe U,(xJc 0, , xeUz(xJc 0z . However ,
x€( UnUz)(x] = U(xJnV2x}c 0,n 02 . Hence 0,n0z€ Zg . Clearly X

belongs to £g . Therefore Zg is a topology for the set X .

THEOREM 1.3 Let &« be a quasi-uniform structure for the set X , then
the collection 77 = { UxJ:U€%X , xeX } is a neighborhood system for the
topology Ly

PROOF. For each x¢ X , % (x] forms a neighborhood system of x which
satisfy four axioms as follows :
(N-1). For each x in X and for each U in % ,xeU(x) , since dc U ,
for each U in %
(N-2). U(x1 , VIxXJ € 2T implies that U(x]JNV(x) = (UNAV )(x]e? ,
since UnV is in ¥« .
(N-3). Suppose that U(x]€ 70 and U(x]JC€ A . SetV =UuA=A , then
UcVe? , and V(x] = A . Hence Ae 7l .



(N-4). Let U(xJ € 71 , then there exists a V in &« such that
VeVe U . Thus VeVeyel . Let teV(x] and p be an
arbitary point of V{t] . Then (x,t)eV and (x,p)eVeVec U .
This implies that V(t]Je U(x} €7 by (N-3) . Hence for
every U(x] € 7 , there exists V(xJ such that Ufx] is a
neighborhood of each point of V(x] . Therefore 71 is a
neighborhood system . Clearly , the topology generated
by the neighborhood system 72 is X9 . Hence 72 is a
neighborhood system for the topology A 4

DEFINITION 1.5 Let ( x , t ) be a topological space and & be a quasi-
uniform structure on X . Then « is said to be compatible with the

topology t if t = Ly

The following are some examples of quasi-uniform spaces.

EXAMPLE 1.1 Let X be a non-empty set and ¥ = { U:ac UcX=X}. Then

2« is a quasi-uniform structure and %fg is the discrete topology for X .

EXAMPLE 1.2 Let X be a non-empty set , and let & = { XxX} then

( X, &« ) is aquasi-uniform space . Xg is the trivial topology for X .

EXAMPLE 1.3 Let R denote the set of real numbers and let r>0 . Set

Dr = { (Xs¥):Ix - yl<r} . Then %« = { U:DycU<RxR , r>0} is an



uniform structure for R , and Xg is the usual topology for R . This

follows since De(x]J = (X -1+ 4, X + 1 ) .

EXAMPLE 1.4 Let ( X , d ) be a metric space , and let Se¢ = { (x,y) €
X xX:d(x,y)< € } . Then the collection % = { U:SegcUcX*X ,€>07} is

an uniform structure . Zg is the original topology for X .

EXAMPLE 1.5 Let X be a non-empty set linearly ordered by < and let
W= { (x,y):xsy} . %«={UWcUcXxxX} is a quasi-uniform structure
for the set X , and Zg; is generated by the family of all intervals of

the form{a , 00 ) = { x:x2a} for any aeX .

EXAMPLE 1.6 Let X be a non-empty set linearly ordered by < . Let
Wa={ (X,y):x =y ora<x<y} for aeX . Then U ={ U:WacUcXxX,
aeX} is a quasi-uniform structure for the set X . Zg is the discrete

topology for the set X .

EXAMPLE 1.7 Let X be a non-empty set linearly ordered by < . For
some fixed points a , b of X , define Va,5= { (x,y):x =y or asx<b }
then & = { U:V,pc UCX*X , a¢b , a , beX} is a quasi-uniform
structure for the set X , and X4 is a discrete topology for the set X .
In fact , for each xe X there exists a , b € X such that x<a<b and

X = Va'b[X] .



EXAMPLE 1.8 Let X be a non-empty set linearly ordered by < , and let
a and b be fixed points of X . Define Ta,b = { (X,y):asx<sy<b}u4
Then % = { U:TapcUcX*xX , asb , a , b€X} is a quasi-uniform
structure for the set X , and Zg is a discrete topology for the set X .
This follows by the fact that for each x€ X there exists a , b€X such

that x<a<b and x = Te,b(X] .

EXAMPLE 1.9  Let X be a non-empty set linearly ordered by < , and let
aeX be given . If Ha= { (X,y):x =y oragx} , then Z = { U:

HecUcXxX,ae X} is a quasi-uniform structure for the set X and Zg is
a discrete topology for the set X . In fact for each xe X , there exists

a point a in X such that x<a and x = Halx] .

EXAMPLE 1.10 Let X be a non-empty set linearly ordered by <, and let
aeX be given . If La={ (x,y):x<agsyjud , then % = { U:

LpoclUeXxX, aéX} is a quasi-uniform structure for the set X and Zg
is a discrete topology for X since for each xeX , x = La(x] by choosing

a€X such that x<a .

EXAMPLE 1.11 Let R denote the set of real numbers with the usual order
< and Tet € >0 be given . Set We= { (x,y):y<x +&} . Then
U=1{UWgeUecXxX , €>0} is a quasi-uniform structure for R , and
X9 is the left-hand topology for X generated by the base consisting of

all intervals of the form (-o0,a) = { x:x¢ a} for any real number a .



EXAMPLE 1.12 Let N denote the set of natural numbers and
Un={ (x,y)eNxN:x =y orxzn)} , then % = { UsUpcUcX=*X , neN}
is a quasi-uniform structure for the set N , and Xz is the discrete

topology since UnsyCnT = { n} for each neN .

DEFINITION 1.6 Let & be a quasi-uniform structure on X . The

conjugate Z(" of # is the collection of subsets of Xx X defined by
u' = {uv'ueul}.

THEOREM 1.4 The conjugate of a quasi-uniform structure is a

quasi-uniform structure .

PROOF. Let ( X , A ) be a quasi-uniform space , and let Zl" be the
conjugate of U . 4 ¢ U" for every U"é Z(" , Since 4 = a” ¢ U"l .
et U7, v7'e ™ then U v = (Unv ) . Hence uT'n v e %
let U e 2™ and UT'e AexxX , then Uc A” and A€ % . Hence

ne ' . Letu'e ! | thenue® . There exists a V in % such that
VeVe U . This implies that V'ev™ = (vov e u? . Thus %™ is a

quasi-uniform structure for the set X .

DEFINITION 1.7 let f : X—=>Y ,andg : S-—- T, then the function
fxg : XxS— YxT is defined by ( fxg )(x,y) = ( f(x) , f(y) ) for
every (x,y)€XxS . In particular , if f=gandY =T , and then
denoted f*f by f2 .



DEFINITION 1.8 Let & be a non-empty collection of subsets of Xx X .
® is a base for a quasi-uniform structure on X if and only if
(1). 4c B foreveryBemd ,
(2). If By, B2€@®, then there exists a BE® such that
BCB,NB: ,

(3). For each B€® there exists a B'e€® such that B'eB'cB .

THEOREM 1.5 Llet f : X — Y , and let A be a quasi-uniform structure
on Y , then the coHection} f;'(z() = { f;‘(u):ue‘zﬂ is a quasi-uniform

base on X .

PROOF.  Since AycU for each U€ % , it follows that 4x € 3 (U) .
Let 31 (U) , £2 (V)ef3 (%) . Then £3 (U)nFF (V) = €3 (Unv)e £3' () .
Let f3 (U) €3 (%) , then there exists a V in % such that VeVe U .

Hence f3 (V)of3 (V) 7/ (U) . Thus £3' (%) is a quasi-uniform base on X .

DEFINITION 1.9 let ( X , % ) and (Y , ¥ ) be quasi-uniform spaces .
A function f : X —» Y is said to be quasi-uniformly continuous if and

only if for every V in ¢ , f3 (V) in % .

THEOREM 1.6 let ( X, & ) and ( Y , ¥ ) be quasi-uniform spaces ,
and Tet f : X — Y . Then the following statements are equivalment .
(1). f is quasi-uniformly continuous .

(2). For each Ve ¥ there exists a U€ 2 such that (x,y)€U



implies that ( f(x) , f(y) )e Vv .
(3). % is finer than f3 (¥) .

PROOF. (1) => (2). For each Ve , f2 (V)e ¥ . LetU = f3 (V) ,
then f2 (U) = fz( f3 (V) )ev .

(2) = (3). For each fZ (V) in 3 (#F) there exists a U€ % such
that Uc f2/(V) . Hence f3'(V)e % .

(3) = (1). Since % is finer than fi'(¥) , then for every
ved | £ (v)e £7' (F) and therefore £5' (V) e U .

THEOREM 1.7 Every quasi-uniformly continuous function is continuous .

PROOF. let f: (X,% )= (Y, )be aquasi-uniformly continuous
function . For each V€% , V(f(x)] is a neighborhood of f(x) . Then
there exists a U€ 2 such that fz(U)eV . Hence f(UxI) = ( fz(U) )(f(x)]

c V(f(x)] . Therefore f is a continuous function .

Let R denote the set of real numbers . For each r>0 , set
Dr = { (x,y)eRxR:[x ~yl<r} . Then ® ={ De:r>0} forms a
quasi-uniform base for R . Let % be the quasi-uniform structure on R
which is generated by 8 . Iff: (R, % )— (R, %« ) is a
quasi-uniformly continuous function , then , equivalently , for each U in
U there exists U'€ 2 such that f,(U')cU . 1In other words , for each
U€ U there exists a Dg with § > 0 such that fz(Dg)c U . That is , for
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each base element D¢ of & there exists another base element Dg such that
fa(D§)eDe . Or equivalently , for each € >0 there exists a

§ = §(€)>0 such that (x,y)e Dg implies that ( f(x) , f(y) )é De .
Hence , for every € >0 , there exists a §$ = §(€)>0 such that

ix - yl<$ implies that | f(x) - f(y)|< € . Thus f is a uniformly

continuous function on the reals R .



CHAPTER 11

PERVIN QUASI-UNIFORM STRUCTURE

DEFINITION 2.1 Let 3 be a non-empty collection of subsets of XxX .
£ is called a subbase for a quasi-uniform structure on X if and only if

(1). 8¢S for each S in B ,

(2). For each S in & , there exists a T in &4 such that TeT<S .

DEFINITION 2.2 Llet ( X , t ) be a topological space . Set

£ ={0x0v(Xx-0)xX:0et } . Let @ denoted the family of subsets
of Xx X which are supersets of finite intersections of members of &

P is called the Pervin quasi-uniform structure for the topological space

(X, t). The following theorem justifies the above terminology .

THEOREM 2.1 Let ( X , t ) be a topological space , P as defined in
definition 2.2 , then

(a). @ is a quasi-uniform structure ,

(b). :tp =t .

PROOF . (a). LetS=0x0u( X-0)xXesd . Clearly acs .

Suppose (x,y)€S and (y,z)€S . If xeO then yeO and ze0 . This
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implies that (x,z)€0x0¢cS . If x€X - 0 then (x,z)€( X - 0 )xXcsS .

Hence SeScS . Therefore the collection § forms a quasi-uniform subbase

which generates the quasi-uniform structure # .

(b). Let xeOet . Then S =0x0u( X - 0 )xX belongs to @ and
x€S(x3c0 . Therefore t £ Xp . Clearly , /tpi t and hence t = £p
EXAMPLE 2.1 Let t be the usual topology for the set of real numbers R .
Then the Pervin quasi-uniform structure @ for R is generated by the
subbase # = { (a,b) x (a,b) u( (-00,aJ U(b,00) )x X:(a,b)et} .

Let 0 = (a,b) , then figure 2.1 illustrates the subbasic element
S=0x0uU(X-0)xX.

51~
”~
P P // ’/ //
-
P // P ,/ e =
PR - J,/ PR P /r’
-~ Pl -~ g - -7 -
7
-~ P I - -
- o P -~ -~
e - -~ - e -
P // - -~ P ” -~
-~ b -~ .- -~ -
g - L. - P - -
P - P - -~ -~ -
- -~ 4 P P -~
- - -~ -~ -~ -~ -
~ /’ - -~ rd P -~
P 1 ” d P
// // Phd ,/ - P . e
- - atr” PR LR . - PR
// P -~ ,4 P P - ~ .
P P - ‘/ - // //
-7 -~ -7 - - -
- P P -~ ) é ,/ re
- /’ - - - I
” - ”~ L
P P ~ P L.~ P
- -~
- — - = < =z > X
- ,/Ol'ljln/' //, a b’ ,/' L4
4
- ,/ PR ’/ // -
P // // P // ’/
-~ - -~ p -~
- - 1 - r - -7
- P - P 4 P -
-~ Ve - -~
- - L~ - ~
- - -~ -
- - — -
- -

FIGURE 2.1
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EXAMPLE 2.2 Let X = { 1,2,3} , t = { & ,X,{1},{1,2},{1,3} } . Then
( X, t) is a topological space . The Pervin quasi-uniform structure
@ for ( X , t) is generated by the subbase £ = {{1}x{1}u
{2,3}x{1,2,3} , {1.2}x{1,2}u{3}x{1,2,3} , {1,3§x{1,3} U

{2}%x{1,2,3}} . These subbasic elements are illustrated in figure 2.2 .

[
3
K
: .. s, =f1yxf1jufz,3fx{r2.3}ed
/ 2 3 el
f
3
2l ..
| . . . S,={/,J}x{/,z'jufa}xi/,z,a}e2?
7Tz 3 >
{
2 .
, . Sazf/,3]xf/,3]uszxf/,z.BSé;3
/ 2 3 e

FIGURE 2.2



CHAPTER III

SEPARATION AXIOMS

DEFINITION 3.1 A topological space ( X , t ) is a R,-space if and only

if for every open set 0 in t , containing x in X , it follows that XcO .

THEOREM 3.1 Every subspace of a Ro-space is a R,-space .

PROOF . Let (Y, vs ) be a subspace of ( X , t ) , and let 0' be an
open set in Y containing y with 0' = YN0 , where O is openin ( X , t ) .
Then y € 0 and C]x{y}c 0 , since X is a R,-space . Now C]ny} =

YNCl, {yye¥n0 =0' and Y is a R,-space .

THEOREM 3.2 Let ( X , t ) be a topological space . Then the following
three statements are equivalent .
(1). (X, t) is a Ry,-space .
(2). For any closed subset A , and a point x not in A there exists
a neighborhood of A not containing x .

(3). Ifx#y , then either X =y or xny = ¢

PROOF. (1)=>(2). Let A be closed and xe€X - A . Since ( X , t ) is
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a R,-space , it follows that XeX - A . Thus X - X is a neighborhood of
A which does not contain the point x .

(2)=>(1). Let 0 be an open set containing xe X . Let ye x ,
then every neighborhood of y contains x . Suppose y40 , then yeX - 0
and , by (2) , there exists a neighborhood containing X - 0 , but not
containing x . This is impossible . Therefore ye 0 and hence x< 0 .

(1)=> (3). Suppose that x # y and X # y , then it may be assumed
that there exists an ae X and aéy . Now x &y for otherwise xe¢ X<y and
aexcy contradicts the fact that a&y . Since x&y then xeX -y . By
the R, hypothesis , it follows that XeX -y . Therefore Xny = ¢

(3)=>(1). Let O be an open set and x€0 . Let yeX andy # x ,

H

then by (3) , either X =y , or xny = ¢ . But the second case is

impossible , since yeXny . Thus X =y and xey and therefore every

open set 0 containing x must contain y . Hence xc0 .

THEOREM 3.3 Let ( X , t ) be a topological space . Then the following
statements are equivalent .
(1). (x, t) is a R,~space .
(2). (X, t) has a compatible quasi-uniform structure 2 such
that for each x in X and for each U in % there exists a
symmetric V€ % with VIxJcU(x] .
(3). (X, t) has a compatible quasi-uniform structure %{ such

that the collection { V(x):V symmetric and V¢ Z[} forms a



local base at the point xeX .

(4). (X, t) has a compatible quasi-uniform structure €/ such
that for each x in X and for each U in %/ there exists a V
in 9 such that V-'[x]C uixl .

(6). (X, t) has a compatible quasi-uniform structure ¢¢ such

that t = £, < ja-l .

PROOF. (1) => (2). Let (P be the Pervin quasi-uniform structure for
the set X . For each x in X , and each U€ @( , there exists an open set
Oet with xe 0cU[x] .

Define Sp=0x0u( X -0 )xX,

- - C -
Sze =X xX UuxxX,

V=0x0uUX%x°.
Set A=0x0,
B=(X¥0)xx,
C=xXxx",
D=xxX.

Then SoNSze = (AnC )U( AnD )y(BNC)U(BAD),
(0-x)x(0-x)e0x0cV ,

where AnC

ArD = Xx0c0x0eV ,
BAC=(X-0)xXecxxxeV,
BAD = ¢

Hence SynSzecV and V€ 2L . Furthermore , V is symmetric and

0= Vixge Ufx) .

16
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(2)e=»(3). For each xe X , the collection { V(x]:V symmetric
and V euj is a local base at x if and only if for each xe X and each
Ueg, there exists a symmetric V €% with V(xjc U[x] .

(3) => (4). For each xeX and each U € % there exists a symmetric
Ve U with VixJe U[x] . Since V is symmetric it follows that
VX)) = Vixleux] .

(4) =>(5). Let % be a compatible quasi-uniform structure for
the set X which satisfies condition (4) , then t = {4 . For each open
set 0 € fy , there exists a U in % with x€UrxJcO , and by (4) there
exists a V in & with Vni[x]cU[x] . Therefore x € V-'[x]cU[x]c 0.

This implies that O belongs to Ag~! . Hence t = fo © fo-1 .

(5)=>(4). For every x in X and each U in 2 , xeU(x] .

However , U{x) is a neighborhood of the point x , and there exists an
open set 0 in qu such that xe0cUfx] . But 0 € £,-r , since

1y < tu" . Therefore there exists a vle 2! such that x e V-'[x]C
OcU(xy .

(4) =>(1). The point y belongs to X if and only if Ulyl n{x} # ¢
for each U €% , or equivalently , xeUly] for every U in % . That is ,
yeU™l[x] for each U in 2. Hence X = N { U—'[x]:U e U } Cn[fo]:

U€ U by condition (4) . This implies that X is contained in every
neighborhood of x . Thus for each open set 0¢t = #4 containing the
point xe X there exists U e with xeU(x]J]e 0 . Since XeU(x} for each U

in © it follows that xcU(xye 0 . Hence ( X , t ) is a R,-space .
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THEOREM 3.4 A quasi-uniform space ( X , 2 ) is R, if and only if

n[ U:Ueu} is symmetric .

PROOF . ( X5 2 ) is a R,-space , if and only if for each x& X ,

X = n{ Ul ex3:U eﬂ}CﬂiU[x]:Ue 2{} by theorem 3.3 . Now

n { U 'iuewn }C ﬂiU:U €U} and this is equivalent to the statement
that n [ U:U € ﬂ} is symmetric .

COROLLARY (X, U ) is aR,-space if and only if X = n{U[x]:UGZ(j .

The proof follows immediately from theorem 3.4 .

THEOREM 3.5 A quasi-uniform space ( X , 2£ ) is T, if and only if
n { u:u e‘ui is anti-symmetric .

PROOF . Suppose ( X , 2 ) is T,-space . If x , y are two distinct
points in X , then there exists an open set 0 € fo which contains one of
them but not the other . Suppose that xe 0 , y€0 , then there exists a
U in 2 such that xeU{x]1<€ 0 and y¢Ulx] . Hence x # y implies that
there exists a U in %{ such that either y4 U{x] or x€U[y]l . In other
words , for each U in 2 , ye Ulx] and x€ ULyl implies that x = y .
Therefore n [ u:u eu} is anti-symmetric .

If collection N { U:u eu} is anti-symmetric , then for any two
distinct points x and y in X , there exists a U in 2 with either (x,y)¢U
or (y.x)¢U . Hence either y¢U{(x] or xé¢ Uly] . Therefore X must be a

T,-space .
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THEOREM 3.6 A quasi-uniform space ( X , & ) is T, if and only if

a=n{uvueul.

PROOF. Suppose ( X , 2{ ) is a T,-space . Clearly , 4 Cn[ U:UéZL} .
Suppose x # y , then there exists a U in % with y4U(x] . Therefore

(x,y)ébnfU:U € U § . Hence n{U:U €2 }c4 and therefore 4 = n E
U € U i . The other part of the proof is natural and omitted .

THEOREM 3.7 A quasi-uniform space ( X , & ) is T, if and only if it

is T, and R, .

PROOF . Let the quasi-uniform space ( X , % ) be T, , then for every

open set 0 in %z containing x in X , it follows that X = {x}co .

Hence ( X , 2( ) is a R,-space . Clearly , every T,-space is a T,-space .
Suppose that ( X , 2 ) is a T, and R,-space , then , by theorems

3.4 and 3.5 , it follows that S = 71 { U:U e‘Z(} is both symmetric and |

anti-symmetric . Thus S = S~ and sns™' =4 . Hence s=5ns” = 4

and ( X , %{ ) is a T,-space by theorem 3.6 .

‘THEOREM 3.8 Let %/ and %~ be two quasi-uniform structures for a set X .
If MeXxX , then M = N f U-Mov-':UGZl s, Ve "V'}

PROOF. The ordered pair (X,.Y)Gﬁ if and only if for each U in % and
for each V in“F”, U(x)x V(yJanM # ¢ . Equivalently , for each U in %
and for each V in “F”, there exists a point (a,b)e M such that aeU[x] ,
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be V{y] . This is true , if and only if (x,y)EU«MoV-| for each U in %
and for each V in ¥ .

THEOREM 3.9 A quasi-uniform space ( X , & ) is T, if and only if
a=nfuutuenf.

PROOF. A topological space is T, if and only if 4 is closed in X X ,
that is , 4 = 4. By theorem 3.8 , 4 = ﬂ{ UvoU-':UGﬂf , but
UedeU™ = UsU™! for each U€2(. Thus ( X , 2 ) is T, if and only if

a=a =0fuu ez},

DEFINITION 3.2 A topological space ( X s t ) is a R,-space if and only

if x # y implies that x and y have disjoint neighborhoods .

THEOREM 3.10 Every subspace of a R;-space is a R;-space .

PROOF. Suppose ( Y , s ) is a subspace of ( X , t ) , let Y, sy, be
If C]Y{y" # C1Y{y1} » then C1 {y,4 # C1 {y.f . Since (X, t ) is a

" Ry-space , then there exist two disjoint neighborhoods N, , N,,

points in Y , then C]Y{y,i = YnC1Xfy‘f and C1

containing Cl{y,§ , Cl, {y.{ respectively . That is,there exist open
sets 0, and 0, such that C1,{y{< 0,2N,, »and C1_{y.}e Och,‘
This implies that C1 {y.{ = YNnCl,{y.te¥NnO,c¥YnN, and C1y{y.} =
YNCl, {y,f<YNo,cYNN

(NynNy )= ¢.

y, » Now, (YaN, )n(YaN, )=YN
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Hence ClY{y,l , C]Y{y.g have disjoint neighborhoods YN Ny, and Yn Ny, -

Therefore the subspace (Y , s ) is a R,-space .

THEOREM 3.11 A R;-space ( X , t ) is a R,-space .

PROOF . Let O be any open set in t which contains xe X , and let
yeX -0, then ycX - 0 and x¢y . Hence x#y . Since ( X , t ) is a
Rj-space , there exist disjoint neighborhoods N , i3 such that xeNg ,

Sl'cN-y- . Therefore y¢x and Xx€0 . Hence ( X , t ) is a R,-space .

THEOREM 3.12 The following three statements are equivalent .
(1). (X, t) is a R,-space .
(2). For any points x , y in X , X # y implies that x and y have
disjoint neighborhoods .

(3). y={ly)x=5}=242.

PROOF . (1) => (2). For any points x , y in X , if x # y , then there

exist disjoint neighborhoods N3 and N—y- of X and y , respectively . Since

xex and yey , there exist disjoint neighborhoods of x and y .
(2) = (3). For any open set O, containing x , and for any point

zeX -0 , then zeX - 0 . Hence x¢Z and x , z have disjoint

neighborhoods Ny and N, respectively . This implies that ze X and

Xxe0

Let (x,y) €y , then X =y . Let O, , 0/ be arbitary open sets of
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x and y , respectively . Then (x,x)e Xxyc0,x Oy and 0,¥ 0, N4 # ¢
This implies that (x,y) ¢ Z and V€4 . On the other hand , let
(xsy) €4 > then Oxx 0y n4¢# ¢ for any open sets Ox and Oy of x and y ,
respectively . That is to say , Oxf)oy # ¢ for any open sets Ox and Oy
of x and y , respectively . Therefore , by (2) , X =y and hence
(x,y) €V .

(3)==>(1). For any point x , y in X , ifx#y , then (x,y)¢ V .
That is (x,y) in X - V = X - A which is open in the product topology of
X% X . Hence there exist open sets Oy , Oy of x and y respectively with
(X,y) €0x*0ycX -V =X -4 . Therefore 0,00y, N4 = é and

0,n0y=¢ . Hence (X, t ) is a R -space .

THEOREM 3.13 A quasi-uniform space ( X , 2/ ) is R, if and only if
-1
v =01 ueu :Ué?lf.

PROOF. By theorem 3.12 , ( X , 2L ) is R, if and only if ¥V =4 .
A= nfueasuuea) = n{uuue s} by theorem 3.7 . Thus
(X, 2 ) is R, if and only if ¥ = Af veU™: UeU}.

THEOREM 3.14 A quasi-uniform ( X , 2{ ) is T, if and only if it is T,
and R, .

PROOF. It is well-known fact that every T,-space is also a T,-space .

Let ( X , % ) be a T,-space , then x # y implies that x # y since x = x ,
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andy =y . Since ( X, 2( ) is T, , then there exist disjoint
neighborhoods Ny and N, of x , y respectively . Hence x , y have
disjoint neighborhoods N, and Ny . Therefore (X, 2 ) is a Ry-space .

Let ( X , 2( ) be a T, and Ri-space . Clearly , 4 V . Let
(x,y) €V , then x =y and , since X is T, , x =y . Therefore , 4 =V
and V=4 , since X is R, by theorem 3.12 . Thus 4 = ﬂ{ vy :Uéﬂ}
and by theorem 3.9 ( X , % ) is a T,-space .



CHAPTER IV

COMPLETENESS AND COMPACTNESS

DEFINITION 4.1 Let X be a non-empty set , then a non-empty family F
of subsets of X is a filter on X if and only if

1). £¢F,

(2). F, , F26F D FnFeF,

(3). FeF and FecF=» FeF .

DEFINITION 4.2 A collection @ of subsets of the set X is said to be a
base for a filter F on X if and only if F ={ E:BcE for some B €@ } .

DEFINITION 4.3 A collection & of subsets of the set X is said to be a
subbase for a filter F on X if and only if the collection of all finite

 intersection members of ¥ is a base for the filter F .
EXAMPLE 4.1 Let { X , t ) be a topological space and let x be a fixed
point of X , then the set Sy = { Nx:x€ Oxc Ny , for some Ox&t ] is a

filter on X . This is called the neighborhood filter of the point x .

EXAMPLE 4.2 Let X be a non-empty set , and let x be a fixed point of
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X , then the collection S, = { N:xeNcX} s a filter on X .

EXAMPLE 4.3 Let X be a non-empty set and let A be a non-empty subset
of X . Then the collection Sq= { N:AcNecX ]} is a filter on X .

EXAMPLE 4.4 Let ( X , t ) be a topological space . The collection F
of all neighborhoods of an arbitary non-empty subset A of X is a filter ,

called the neighborhood filter of A .

EXAMPLE 4.5 Let X be an infinite set , then the set F = { F:X - F is

finite in X] is a filter on X .
EXAMPLE 4.6  If X # ¢ , then F ={X]} is a filter on X .

THEQOREM 4.1 Let & be a collection of subsets of X , then there exists
a filter F on X which contains & if and only if & has the finite

intersection property .

_PROOF. The proof of this theorem is immediately from definitions 4.1
and 4.3 .

THEOREM 4.2 Let f be a function from X onto Y , and F be a filter on
Y, then F HF)={ F ' (F):Fe F} is a filter on X .

PROOF. $ ¢ f"(’;’) , since ¢ F and f is an onto function . Let



£1F) L F () ef ' (F) . Then £ (F )N '(Fa) = £ (Fi A F2) which
is in £ (F) , since FnFz€F. 1f I (F)ef(F) and 7' (F)CA then
Fcf(A) € F . Therefore Aéf"(?) and £71(F) is a filter on X .

THEQOREM 4.3 Let f be a function from X onto Y , and let F be a filter
on X , then f(F) = { f(F):Fe€ F} is a filteron Y .

PROOF. ¢ ¢ f(F) , otherwise ¢ = f(F) for some FE€F which is
impossible . Let f(Fy) , f(Fz)ef(F) . Then f(FinFz)C f(F,)Nf(Fz) .
This implies that Fin Fzc f7'( f(F,nFa) Yef™'( f(F)nf(Fz) J€F .
Since f is onto , f(Fi)nf(Fz) = f( £~ (f(F,)Nf(Fz)) ) . Hence ,
f(F)nf(F)€f(F) . If f(F)ef(F) and f(F)c A , then Fcf () e &F ,
and £/(A)€ F . Since f is onto , A= f( f'(A) ) and hence AEF(F) .

COROLLARY. Let f be a function from X onto Y , and let B be a filter
base on X , then f(B) = { f(B):B€B § is a filter base on VY .

DEFINITION 4.4 An ultrafilter & on a set X is a filter on X which is
~maximal in the collection of all filters partially ordered by inclusion ;
that is to say , a filter which is not properly contained in any other

filter .

EXAMPLE 4.7 Let X be a non-empty set and let a be fixed point of X ,

then the collection F = { F:a€FcX ] is an ultrafilter . This follows
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since if 4 is a filter with Fecd and F # 5 , then there exists a
sed,S ¢&F. This implies that aéS . However{a} e Fc . Thus

{a}nS =+ €4 which is a contradiction .

ZORN'S LEMMA, Let X be a non-empty partially ordered set such that

every linearly ordered subset has an upper bound , then X contains a

maximal element .

THEOREM 4.4 If F is any filter on a set X , then there exists an
ultrafilter finer than F .

PROOF. Let F be a filter on a set X , and let & be the collection of
all filters containing &F . Then & s non-empty set , since Fek ,
and is partially ordered by inclusion . Let L be a Tinearly ordered
subset of & , then for any pair &, , F.€ L, it follows that either
F,cFz or FocF . Let Hbe a set defined by H={ E:EeFelL } ,
then H is a filter containing every filter in L . This is true because
it satisfies the following three properties .

(1). P¢H, since no filter F in L contains ¢ .

(2). Let E; , EzéH , then there exist filters & , Fz in L
such that E\ € & , E,€ F2 . Since L is a linearly ordered
set , then either F ¢ Fz or Fac F1 and hence either
E.€Fz , E\nE2€TF2 or Ex€F, , EinEz€eF . In both

cases Eyn E; €H for every pair E; , Ej€H .

27



28

(3). Let EycE , and E;€ H , then there exists a filter F € L

with E,€ZF, . Since E,¢E , hence E€ ¥, € L and hence
EeH .

Thus H is a filter which is finer than any other filters in L .
Therefore & is a non-empty partially ordered set such that every linearly
ordered subset L has an upper bound H , then & contains a maximal
element by Zorn's Lemma . This maximal element is by definition an

ultrafilter finer than F .

THEOREM 4.5 Let X be a non-empty set and F be a filter on X . The
following three statements are equivalent .

(1). F dis an ultrafilter on X .

(2). If AUB&F then either A€ F or Be F .

(3). IfEcX , then either E€eF or X - Ee%F .

PROOF. (1) = (2). Let F be an ultrafilter on X . Suppose condition
(2) is not true , then there exist subsets A , B in X , such that A€ F
and B¢ F and AuB€ F . Let & be defined as follows ,

M ={Ecx:AvEeF} .
Then & is a filter on X . This is true because it satisfies the
following three properties .

(a). P¢ 4 since Be ¥ .

(b). IfE; and Ez belong to & , then AUE,€ F and AuE2€ F .

Now (AVE)N(AUE.) e F , therefore AU(E,NEz)€F and
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EinEz€ &.
(c). IfE,e# and E,cE , then AUE{€ AUE . Hence AUEEF and
Eedd .
Since B€ 4 and B¢ F , it follows that & is a filter strictly
finer than & . This contradicts the fact that F is an ultrafilter .
Hence for every pairs of subsets A , B in X , with AUB in an ultrafilter
F it follows that either A€ F or Be F .
(2) = (3). IfEcX, thenEu( X-E)=%xeF . By condition
(2) , it follows that either E€F or X - E€TF .
(3) = (1). By theorem 4.4 , F 1is contained in an ultrafilter
F' . For each subset E in F' , X - E4F' . Hence X - E 4 F and by
condition (3) it follows that E€ F . This implies that ¥'c F . Since

F' is an ultrafilter , then F' = F . Therefore ¥ is an ultrafilter .

DEFINITION 4.5 let ( X , t ) be a topological space , and let F be a
filter on X . A point x€ X is called a limit point of F , denoted by
xe1lim F , if and only if every neighborhood Nx of x belongs to F .

"DEFINITION 4.6 let ( X , t ) be a topological space , and let F be a
filter on X . A point x€ X is an adherence point of the filter F ,
denoted by x€adh F , if and only if for every F€ &F and for every
neighborhood Nx of x , NxNF # ¢

THEOREM 4.6 Let F be a filter on ( X , t ) , then x is an adherence



point if and only if xen{F:FeF} .

PROOF. Let x be an adherence point of F , then for every FEF and
for every neighborhood Nx of x , it follows that NknF # ¢ . That is to
say , for every FEF , x€F . Hence xe n{F:FeF} .

On the other hand , if xe&n { F:Fe ’,7’} , then xeF for every
Fe€F. That is for every FEZF , and for every neighborhood Nx of x ,

NxnF # & . Hence x is an adherence point of F .

DEFINITION 4.7  Let { xa)] be a given sequence , and set Fx= f{ x;:
izk } . Then the collection { Fx:k = 1, 2---} is a filter base . The
generated filter F will be called the natural filter generated by the

given sequence .

Let { xn}:o be a sequence of real numbers and let &F be the
natural filter generated by the sequence . The point x is a 1imit point
of § if and only if every neighborhood Nx of x belongs to F and this is
true provided every open set of the form ( x - ¢ , x + € ) cbntaim‘ng X
. belongs to &F . Or equivalently , for every € >0 there exists F in F
containing x such that Fc( x - € , x + € ) , that is for every € >0
there exists an integer k>0 such that Fkc F€( x - € , x + € ) where
Fr={ xx» XKets**® } . Hence for every € >0 there exists an integer
k>0 such that for n>k , xne( x - € , x +€ ). Thus xelimZF if and

only if 1im xn = x .
N80
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The point x is an adherence point of a filter & on X , if and
only if for every neighborhood Nx of x and for every F€ &F ,
Nx"F # ¢ , or equivalently if every open set of the form
(x-€,x+ €) intersets every member F in F . That is , for every
€ >0 and for any integer k>0 , then ( x - € , x + € )NFk# ¢ . And
this is equivalent to the statement that for every € >0 , and for every
integer k>0 there exists a n>k such that xn€( x -€ , x + € ) .

Hence x € adh F , if and only if x is a cluster point of the sequence .

In examples 4.8 through 4.15 , sequences are considered in the set

of real numbers with the usual topology .

EXAMPLE 4.8  The sequence {n}T generates a filter F with 1imF = ¢
and adh F = ¢ .,

EXAMPLE 4.9 The sequence { 1/n ]",ﬂ generates a filter F with
limF ={0} and adh F ={0} .

[
EXAMPLE 4.10 The sequence { (—1)"}, generates a filter F , with
"1imF = and adh F =1{-1,1}.

EXAMPLE 4.11 Let { 2+n/n+5 }P,o be a given sequence which generates a
filter F , then 1im F ={1} and adh F ={1}.

EXAMPLE 4.12 Let { (—1)"(n+1/n)}°,° be a sequence which generates a

31



32
filter F , then 1imF = ¢ and adh F ={-1,1}.

EXAMPLE 4.13 Let { (-1)"(1/n)}°,° be a sequence which generates a filter
F, then 1im F ={0}, and adh F ={0}.

EXAMPLE 4.14 Let an]p,v be defined by
n+l when n is even ,
Xn = {
1/n when n is odd .

Let F denote the natural filter generated by this sequence . Then
limF =4 and adh F ={0}.

EXAMPLE 4.15 The sequence { 1,12 ,1, 1/3+-+} generates a filter
F with 1imF = ¢ and adh F ={1,0}.

THEOREM 4.7  Let ( X , t ) be a topological space , and let F be a

filter on X , then every limit point of F is an adherence point of F .

PROOF. Let x elim &F , then every neighborhood Nx of x belongs to F
.Therefore NxN F # ¢ for every neighborhood Nx of x and for every F in

F . Hence x€ adh F

THEOREM 4.8 Let ( X , t ) be a topological space , and let F be a
filter on X , then x€é adh F if and only if x€1im F' for some F' finer
than F .
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PROOF. Let xeadh F , then , by definition , for every neighborhood
Nx of x and for every F€EF , NxnF# ¢ . Let B = { NxnF:Ny is a
neighborhood of x , FEF ] . Then 8 is a base for a filter F' and
x€élim F' .
On the other hand , let &F' be a filter finer than F and let

x€lim &F' . Then , by theorem 4.7 , x€éadh F' . Hence xeadh F

THEOREM 4.9 Let ( X , t ) be a topological space . If AeX is closed

then adh F € A for every filter containing A .

PROOF. Let F be a filter containing the set A . Then adn ¥ =n { F:
FeFlch=~A.

THEOREM 4. 10 Let ( X , t ) be a topological space . Then ( X , t ) is

T2 if and only if every filter has at most one limit point .

PROOF . Let F be any filter on a Tp-space ( X , t ) , and let x , y are
distinct 1imit points of F . Then there are two disjoint open sets 0,
and 0, containing x and y respectively . Since x , y are 1limit points of
- F , then 0y , 0z are members of & . This implies ¢ = 01N 02€F which
is impossible . Hence the filter F has at most one limit point .

Suppose the condition holds and ( X , t ) is not T, . Then there
exist two points x , y in X such that any open sets Ox , Oy in t

containing x and y respectively , have a non-empty intersection .
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Therefore , the collection B = { Oxn0,:xeO0xét , yeOy et} has the
finite intersection property and hence generate a filter ¥ on X .
However , the filter ¥ has two distinct limit points x and y which

contradicts the hypothesis . Therefore ( X , t ) must be a Tp-space .

THEOREM 4.11 let ({ X , t ) be a topological space , then the following
statements are equivalent .
(1). (X, t) is compact .
(2). Every non-empty collection of closed sets with the finite
intersection property has a non-empty intersection .
(3). Every filter has a non-empty adherence .

(4). Every ultrafilter has a non-empty limit .

PROOF. (1) @ (2). (X, t ) is compact if and only if every open
cover has a finite subcover . That is , every collection of closed sets
with an empty intersection has a finite subcollection with an empty
intersection . Or equivalently , every non-empty collection of closed
sets with the finite intersection property has a non-empty intersection .

(2) = (3). Suppose condition (2) is true , then ¢ # n { F:Fe F}
= adh F , where F s arbitary filter on X .

(3) = (4). Suppose condition (3) is true . Then every
ultrafilter & on X has a non-empty adherence . Therefore by theorem 4.8
every ultrafilter has a non-empty limit .

(4) = (2). Let & be a non-empty collection of closed subsets of
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X with the finite intersection property . Then & generates a filter F

on X which is contained in an ultrafilter F' . By condition (4) , it
follows that adh F # ¢ . Now adh ¥ = N{ F:reFicn{are &}.
Hence nfA:Ae C} # ¢ .

DEFINITION 4.8 let ( X , 2 ) be a quasi-uniform space , ( X , & ) is
totally bounded if and only if for each U in & there exist finite number
of subsets A} , Az, -, Ansuch that

(1). v{A;:1<i<sn} =X,

(2). Aiyx» AicU , for each 1<i<€n .

DEFINITION 4.9 let ( X , & ) be a quasi-uniform space , ( X , & ) is
pre-compact if and only if for each U in 2 there exists a finite set

A={X, ,%X2,X3,"°", Xn} C X such that U(A] = X .

THEOREM 4.12 If a quasi-uniform space ( X , & ) is totally bounded

then it is pre-compact .

PROOF. Let ( X , 2 ) be a totally bounded quasi-uniform space . Let
| Ue 2 . Then there exist a finite number of subsets Ay , Az, -, An
such that U{ Aij:1£i<n} = X and Ajx AicU for each 1£i<n . Let
x;€A , 1£i€n , then U(x;} = Ai for each i and u{Ulx;T:1€i<n}>

uiAi:12isn}2 X . Therefore ( X , & ) is pre-compact .
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THEOREM 4.13 In a uniform space , totally boundedness and

pre-compactness are equivalent .

PROOF. Let ( X , & ) be a pre-compact uniform space . For each U in
AU there exists a symmetric V in & such that VeVveU . Since ( X , % )
is pre-compact , there exists a finite set A= § x, » Xa» *-" 5 xn}
such that u{ VixiJ:1<i<n} =X . Let Aj =V(xi1 , 1=<i<n . For each
ordered pair (y,z) in Aix Ai , 1<€i<n , (xi,y)€V and (xj,z)€V . Then
(y,z)€ V'V = VeVeU . Hence Aix AicU for each U in % and 1<€i<n .
Since U{VixjT:1sisn} =X, it follows that ufA;:1<i<n} =X .
Hence every pre-compact uniform space is a totally bounded uniform space .

The proof is now completed by theorem 4.12 .

THEOREM 4.14 Every topological space has a compatible totally bounded

quasi-uniform structure .

PROOF. Let ( X , t ) be a topological space and let P be the
compatible Pervin quasi-uniform structure . The Pervin quasi-uniform

structure has a totally bounded subbase and hence it is totally bounded .
THEOREM 4.15 The inverse image of a totally bounded quasi-uniform
structure is totally bounded .

The proof of this theorem is natural and omitted .

THEOREM 4.16 A quasi-uniform space ( X , ¢ ) is totally bounded if
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and only if ( X , 2l ) s totally bounded .

PROOF. (X ,2 ) is totally bounded if and only if for each U in %
there exist Ay , Az, - - -, Ansuch that A;j* Ajc U for each 1<i<n and
ui{A:1<i< n} = X . Or equivalently , for each vle 207! there exists
Ay, Az, - -, Ansuch that A;x Aj = (A} Ai)-'c U" for 1= i< n and
UfA;:lsisn} = X . Hence ( X ,% ) is totally bounded if and only if
(x, ") is totally bounded .

DEFINITION 4.10 Let ( X , Z ) be a quasi-uniform space . A filter F
on ( X, 2 ) is said to be a Cauchy filter if and only if for each U in

2 there exists a point x in X such that U(x] e ¥ .

DEFINITION 4.11 A filter base B is said to be a Cauchy filter base if
and only if the generated filter F is Cauchy .

THEOREM 4.17 Let ( X , & ) be a quasi-uniform space . Then ( X , & )
is pre-compact if and only if every ultrafilter F on X is a Cauchy

filter .

PROOF. Suppose ( X , % ) is pre-compact , then there exists a finite
set A= f x; , Xz, , xn} such that UAT = u { UtxiJ :1€isn} = X .
Let F be an ultrafilter on X , then there exists a xxe A with Ulxkle F .

Hence & is a Cauchy filter .
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Let every ultrafilter F on X be Cauchy . Suppose that X is not
pre-compact , then there exists a U in % , such that for any finite
subset A of X , X - ULAJ # ¢ . Hence the collection 8 = { X - U{A]:
A is a finite subset of X | has the finite intersection property . Now ,J
is contained in an ultrafilter F . Since every ultrafilter &F is
Cauchy , for each U€ Z there exists a point z €X such that U(z3 € F .
But X - UfzJe F . This implies that ¢ = ULzIn( X - U(z] ) €TF which

is impossible . Hence ( X , Z ) must be pre-compact .

THEOREM 4.18 Let 8 be a filter base for ( X , 2 ) . B is a Cauchy
filter base if and only if for each U in 2( there exists a point x in X

such that BC U{x] for some Be @ .

PROOF. Llet B be a Cauchy filter base , then B generates a Cauchy
filter & . That is to say , for each U in % there exists a point x in
X such that U(xJ€F . Since B is a filter base for F , it follows
that B< U(x3 for some BE (3 .

If for each U in % there exists a point x in X such that Be U(x]
for some Be B , then for the filter F generated by B , U(xT€F since
Be F . Hence the filter base B 1is a Cauchy filter base .

THEOREM 4.19 Let &F be a filter on a quasi-uniform space ( X , % ) .
If for each U€ % , there exists F€F such that FxFecU , then F 1is a

Cauchy filter .



PROOF. Suppose the given condition is true . Then for each U in % ,
there exists F€F with FxFelU . Let xeF , then F = (FxF)(xJ<€ U(x]
and hence U(xJ€ F . Therefore F is a Cauchy filter .

THEOREM 4.20 Every convergent filter is Cauchy .

PROOF. Let F be a filter on a quasi-uniform space ( X , & ) , and

let xe1im F . Then for each U in 2¢ , U(xJ€ F . Hence F is Cauchy .

EXAMPLE 4.16 Let R denote the set of real numbers with the usual
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order . Let W= { (x,y)€éRxR:x<y} then{W} forms a quasi-uniform base .

Let { 1/n}7 be a sequence and F the natural filter generated by this
sequence . Then &F 1is convergent and hence &F is a Cauchy filter .
However , there does not exist a Fx with k>0 such that Fyx Fxc W .

Therefore the converse of theorem 4.19 is not always true .

THEOREM 4,21 Let F be a filter on a uniform space ( X , & ) . F is
Cauchy if and only if for each U in 2 , there exists an element F of &

such that Fx FCcU .

PROOF. Let F be a Cauchy filter on a uniform space . For each U in
U there exists a symmetric V in & such that VeVc U . Since F is
Cauchy , there exists a point x in X such that V(x]J]€JF . Set F = V(xJ .
Let (y,z)eF*xF = V(xJ*x V{xJ . Then (x,y)€V and (x,z)eV . And thus
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(y,z)e V'%ev = veveu . Hence FXxFc VeVe U for each U in % . The

result now follows by theorem 4,19 .

THEOREM 4.22 A filter finer than a Cauchy filter is a Cauchy filter .

PROOF. Let F be a Cauchy filter on ( X , 2 ) and F< F' . For each
U in 2 there exists a point x€& X such that U(x] since & is Cauchy .
Since &F' is finer than F , it follows that U(xI€ F' . Hence F' is a

Cauchy filter .

THEOREM 4.23 If & is a Cauchy filter on ( X , 2 ) and %' is coarser
than 2¢ then & 1is a Cauchy filter on ( X , %' ) .

PROOF. Let %' be a quasi-uniform structure coarser than the
quasi-uniform stfucture 2 on X , and let F be a Cauchy filter on

(X ,2% ). letUin &' then U in & and there exists a point x in X ,
such that U(x1€ F . Hence &F is Cauchy on ( X , &' ) .

THEOREM 4.24 Let f be a function of X onto Y , and let & be a Cauchy
filteron (Y , 2 ) . Then the filter £ (F) = { f'(F):FeF} is a
Cauchy filter on ( X , 3 () ) .

PROOF. f1(#) is a filter on ( X , f;'(a) ) by theorem 4.2 . Llet V
belongs to f3 (2¢) then V = f3'(U) for some U in % . Since F is Cauchy

on (Y , 2 ) , there exists a point y in Y such that UtyJeF . Now
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FHOUE(x)I Ve £71(F) where y = f(x) and VIxJ = (f3 (U))(x] =
£ UtE(x)) )ef"(g) . Therefore f~/(F) is a Cauchy filter on

(x, fzl(z)) .

The next example shows that the image of a Cauchy filter need not
be a Cauchy filter .
EXAMPLE 4.17  Let Dy = { (x,y)€R**x R*:|x - yl<r} and let 2 be a
quasi-uniform structure on r? » the set of positive real numbers ,
generated by the quasi-uniform base { Dr:r>0} . Let f be a function of
R* into R* defined by f(x) = 1/x for every x € RY . Let f§ l/n}‘:‘ be a
given sequence in the domain of f , then the filter F generated by the

sequence { 1/n j",° is Cauchy . But the filter f(& ) generated by the

sequence { n}% is not a Cauchy filter .

THEOREM 4.25 Let f be a quasi-uniformly continuous function of
(X, Yonto (Y ,Z ) and let F be a Cauchy filter on X , then f(&F)
is a Cauchy filter .

PROOF . f(F) is a filteron ( Y , 4 ) by theorem 4.3 . For each V in
V" there exists an entourage U in 2 such that fz(U)CcV , since f is
quasi-uniformly continuous function . Since F is Cauchy on X , there
exists a point x€ X such that UxJ€ F . Hence f(Utx1)é F(F) . Now
f(U(x]) ¢ F2(U)(F(x)1€ F(F) , since f(F) is a filter on Y . Hence for
each V in ¥ there exists f(x)€ Y such that V(f(x)}e f(&F) , and f(&F) is
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a Cauchy filter .

DEFINITION 4.12 A quasi-uniform space ( X , & ) is complete if and

only if every Cauchy filter has non-empty adherence .

DEFINITION 4.13 A quasi-uniform space ( X , 2£ ) is strongly complete

if and only if every Cauchy filter has non-empty limit .

THEOREM 4.26 A strongly complete quasi-uniform space (X ,2 ) is

complete .

PROOF. This follows since every 1imit point of a filter F is an

adherence point by theorem 4.7 .

THEOREM 4.27 In a uniform space , completeness and strong completeness

are equivalent .

PROOF. A strongly complete uniform space is always complete by theorem
4.26 . Let JF be a Cauchy filter in the uniform space ( X , 2£ ) and let
x¢adh F . For each U in 2¢ there exists a symmetric V in 2¢ such that
VeVcU . Since F 1is a Cauchy filter on a uniform space ( X , 2, ) there
exists a FeF such that FxFcV . Since x€adh F , there exists a point
yeVixInF # ¢ . That is (x,y)eV and yeF . Let z be any point in F ,
then (y,z)€ FxFeV . This implies that (x,z)€ VeVc U and ze U(x] .



That is FC U(x] and hence UixJe F . Therefore , in a uniform space ,
every Cauchy filter converges to its adherence point . Hence every

complete uniform space is strongly complete .

THEOREM 4.28 Completeness and strong completeness are invariant under

quasi-uniformly continuous function .

PROOF. Let f be a quasi-uniformly continuous function from a
quasi-uniform space ( X , 2 ) onto a quasi-uniform space ( Y , ) .
let ( X , 2, ) be a complete space . Suppose ( Y , % ) is not
complete . Then there is a Cauchy filter F on ( Y , 4" ) such that
adh F =<9 . For every xe€X , theny = f(x)é¢adh F . That is to say ,
there exists a Vo in 2" and a F, in F such that Vo(yInFs = ¢ . Now
that 3! (Vo) (xIn £71(Fo) = £ (Vo Ly £7(Fo) = £7(VotyInF,) = ¢,
where f;'(»Vo) is in % and f'(F,) is in the Cauchy filter £/ (F) .
This implies that x ¢ adh £7(F) for every xe X , or equivalently
adh /() =4 which is impossible . Hence ( Y , 4" ) must be a
complete quasi-uniform space .

Let ( X , 2 ) be strongly complete . Suppose ( Y ,~ ) is not
strongly complete . Then there is a Cauchy filter &F on (Y , 4 ) such
that 1im F = ¢ . For every x€X , theny = f(x)¢1imF , or
equivalently , there is a Vo in & such that VolyJ& F or ' (Vo(yl) ¢
£1(F) . Now that £3(V,)0x3 = £7(V,tyl) . Hence £3'(V.)(xI¢ 7 (F)
for every x€X and then the Cauchy filter f~'(&F) has empty Timit which

43
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is impossible . Therefore ( Y ,#* ) is strongly complete .

THEOREM 4.29 Every closed subset A of a complete quasi-uniform space

is complete .

PROOF. Let A be a closed subspace of a complete quasi-uniform space .
Let F be a Cauchy filter on A , then F 1is a collection of subsets of X
which has the finite intersection property . Let F' be the Cauchy filter
on X generated by F . Since ( X , 2 ) is complete , it follows that
there exists a xeadh F' = n{ Cly F:Fe F'] . Now , x€A . Since A
is closed , then xe A . However , Cl4 F = AnClyF . Hence ,

xe n{ClaF:FE€F ] . Therefore A is complete .

THEOREM 4. 30 Every closed subset A of a strongly complete quasi=-uniform
space ( X ,2 ) is strongly complete .

PROOF. Let F be a Cauchy filter on a closed subspace A , then F is a
collection of subsets of X with the finite intersection property and
hence generates a Cauchy filter F' on X . Since ( X , 2¢ ) is strongly
complete , then there exists a point x€X such that U(xlI € F' for each
Ue & . Hence each neighborhood of x is contained in &' and therefore

meets A . Thus x€ A = A . Therefore A is strongly complete .

THEOREM 4.31 Let ( X , 2L ) be a To , uniform space and let A be

complete subspace of ( X , Z ) , then A is closed .
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PROOF. Let x belongs to A . Then for each U in 2L , it follows that
UxIOA# ¢ . Llet 8 = {U(xJNA:Ue 2} . Then d has the finite
intersection property and hence generates a filter F on A . Since
( X ,2 ) is a uniform space , then for each U in 2{ there is a symmetric
V in & such that VeVeU . This implies that (VIxIn A)x (V(x1nA)c U
n (AxA) and hence &F 1is a Cauchy filter on A . Then there exists a point
x'€1imF and x'€ A . However F is a Cauchy filter base in X and
generates a Cauchy filter F' on X . Furthermore x'€ lim F' and x' = x

by theorem 4.10 . Therefore R<cA and A is closed .

THEOREM 4.32 Every compact quasi-uniform space ( X , 2 ) is strongly

complete .

PROOF. Let ( X , 2¢ ) be a compact quasi-uniform space . Suppose

( X, % ) is not strongly complete . That is to say , there exists a
Cauchy filter F on ( X , 2 ) such that for every point x in ( X , Z¢ )
there exists a Ux in 2% with Ux(xJ € F . Let Vx be in % such that
VgeVx € Ux . Since X is compact , then there exists a finite set

A={ X, 5 Xz2s°*"", Xn} such that X = u{ Vyx, (%1 :Vx; e 26 and

Vg oV € Ux; , 159€nj] . SetV=n{Vx:1€i€nje 2 , then there
exists a point aeX such that V(al = N{ Vy; (al:1€i2n}e F , since F
is Cauchy . For each point y in V(al , then (a,y)eV = nf in:léién}
However a&Vx;[(x;3 for some i , hence (a,y)€ Vx; for this i . That is

(x;,y)€ Vx;oVx; € Ux; . Hence V(ale Uy;(xiJ€¢F . This contradicts our
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assumption , hence ( X , 2 ) must be strongly complete .

THEOREM 4,33 A quasi-uniform space ( X , 2¢ ) is compact if and only if

it is complete and pre-compact .

PROOF. Llet ( X , & ) be a compact quasi-uniform space . Then by
theorem 4.11 every ultrafilter is Cauchy . Hence by theorem 4.17
( X, 2 ) is pre-compact .
Since ( X , & ) is compact , then by theorem 4.11 every Cauchy
filter has a non-empty adherence . Hence ( X , & ) is complete .
Suppose ( X , 2 ) is a complete and pre-compact quasi-uniform
space . Then every ultrafilter & on ( X , 2¢ ) is Cauchy by theorem
4.17 . Since ( X , % ) is complete , then adh F # ¢ . However F is
an ultrafilter , then adh F = 1im&F # ¢ . Therefore every ultrafilter

& converges . Hence ( X , 2¢ ) is compact by theorem 4.11 .

COROLLARY. A quasi-uniform space ( X , 2 ) is compact if and only if
it is strongly compliete and pre-compact .

The proof follows immediately from theorem 4.32 and theorem 4.33 .
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