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CHAPTER 1
INTRODUCTION

As early as 1908, Riesz [5] sketched the concepts of proximity
spaces in his ''theory of enchainment'". However, his idea received
no further development at that time.

In the early 1950's, Efremovi& [1,2], a Russian mathematician,
rediscovered the subject and gave the definition of a proximity space,
which he called infinitesmmal spaces in a series of his papers.
Efremovi& later found another way to generate proximity spaces by
using the concept of proximity neighborhoods.

Smirnov [7] brought the concepts of filters and clusters into
proximity theory in order to obtain the Smirnov compactification of
a proximity space.

There are many research papers on proximity spaces published by
modern mathematicians in the last ten years. The development of
proximity spaces is growing rapidly.

This thesis presents the basic material about proximity spaces.
The relationship between topological spaces and proximity spaces is
investigated. A construction of the Smirnov compactification is
presented.

Since clusters are used to construct the Smirnov compactification,

and since the relationship between filters and clusters is very close,



the author discussed filters in chapter III and discussed clusters

in chapter 1V.

There is an excellent list of publications on proximity spaces

in the book Proximity Spaces [4], where the reader can find advanced

material about proximity spaces.



CHAPTER II
ELEMENTARY PROPERTIES

1. THE DEFINITION AND SOME EXAMPLES
DEFINITION 1.1 A binary relation § defined on the power set
of X 1is called a proximity on X iff it satisfies the following
aiioms:
(A]) A s Bimplies B § A
(A2) (AUB)§ Ciff A § Cor B § C
(A,) A § B implies A+ g and B # ¢
(A) AN B# ¢ implies A § B
(AS) A $ B implies there exists a subset E of X such that A $ E
and (X - E) § B

The pair (X, § )} is called a proximity space.

DEFINITION 1.2 A proximity § on X is separated if it satisfies
(A) x§y implies x =y, and (X,§ ) is called a separated proximity
space.

Note that x § y means {x] § ] y}

EXAMPLE 1. Let X = {a,b,c} and define A § B iff An B # ¢
for any subsets A and B of X. § 1is a separated proximity. The

proximity defined in this way is called a discrete proximity.



EXAMPLE 2. Let X be any non-empty set and define A § B
iff A#f and B # @. § is a proximity on X. If X contains
two or more points, then § is not a separated proximity. 3

defined in this way is called the trivial proximity.

EXAMPLE 3. Let (X, d) be a pseudo-metric space. Define A § B
iff d(A,B) = 0, where d(A,B) = inf §{d(x,y) : xe A and yeB}.

If A § B, then d(A,B) =¥ > 0. Choosing E = { x:d(x,B)s Tf} ,
then d(A,E)» £ and d(X-E,B)zL. It follows that A § E and (X-E) § B.

Hence § satisfies axiom A The rest of the axioms are clearly

5
satisfied.

If (X,d) is a metric space, then x § y implies d(x y) =0
and hence x = y. Therefore (X,§) is a separated proximity space.

A proximity is called a (pseudo-) metric proximity if it is

derived from a (pseudo-) metric.

EXAMPLE 4. Consider a normal space (X,t). Define A § B iff
ANB#+@. § is a separated proximity on X.

The verification of all axioms except A5 is straightforward.
To prove AS, let A $ B. Then AO B = d, so that, since (X,t) is T4,
there exist disjoint open sets C and D such that A< C and
B< D. Hence X-C is closed and A N (X-C) = . This implies A ;‘ (X-C).
Since CN D = ¢, Cc (X-D). It follows that Cc (X-D) since (X-D)
is closed. Therefore CN B = ﬂ and hence C $ B. Let E = X-C.
Then A $ B implies that there exists a subset E such that A $ E

and (X-E) $ B.



2. TOPOLOGY INDUCED BY A PROXIMITY.

A proximity on X always induces a topology on X.
DEFINITION 2.1 Let (X, §) be a proximity space. A subset F

of X is called closed iff x§F implies x € F.

LEMMA 2.2 (a) IfA §B, AcC and B< D, then C §D.
(b) If there is an x such that A § x and x § B,
then A § B.

PROOF. (a) If A § B, then A § (B U D) by axioms A, and A,.

Since BC D, A § D. This implies (AUC) § D. Thus C § D since A € C.

(b) Suppose A$B. By axiom A_, there exists a subset

5’
E such that A$E and (X - E)$B. X 1is either in E or in X - E.

If x€E, then A$x. For if A §x, then ASE by part (a). If x

€ X - E, then x$B. Therefore, if A §x and x §B, then A § B.

THEOREM 2.3 The collection of the complements of all closed sets
of (X, §) forms a topology on X. This topology is denoted by t(§).
PROOF. Since X and @ are closed in (X, § ), their complements
ﬂ and X are in t(§). Let { Fit i€l ] be a collection of closed sets.
If x§ O{Fi: i€ I} , then xSFi for every i€I by lemma 2.2. Since
F; is closed, xE-Fi for every i€1. Hence x¢€ ﬂfFi: iel } and N {

Fi: ie I} is closed. Therefore, if (X - Fi) € t(§) for every

i € I, then U_{ X-F: ie I} the complement of N {Fi:

i€ I]belongs to t( § ). Finally if F, and F, are closed and

1

xSFlu F,, then xSF1 or xSFz.xeF or x ¢ F_, since

1 2

F1 and F2 are closed. This implies x € F, J F2. Thus
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FllJ F2 is closed. Therefore, if X - Flé t(§ ) and X - FZG t(§ ),

then (X - Fl) n X - Fz) =X - (FlL) Fz) € t(§ ). Hence t(§ ) is

a topology on X.

THEOREM 2.4 In a proximity space (X, § ), the set fx: X § A}
is the closure of A with respect to the topology t( § ).

PROOF. Let A(§ ) =fx: x §A}. If x€ A(§ ), then x § A.
By lemma 2.2, x § A since A€ A. Thus x € A. This shows that
A(§ )c A. If x ¢ ACS ), then x $ A. By axiom AS’ there exists
a subset E such that x ¢ E and X - BE) $ A. Since there is no point
of X - E which is near A, A(§ ) c E. By lemma 2.2 and x#E it
follows that x $ A(C§ ). Hence A( § ) is closed. Therefore,
AcC A( § ), since A is the intersection of all closed sets containing

A. NowA(§)c Aand A€ A( S ) shows that A = A( § ).

EXAMPLE 5. Let X be a non empty set. Define the proximity §
by A§ Biff AO B # . This is the discrete proximity. Then

{x: fx}(\A#ﬂf}={x: xGA}=A. Hence the

A= {x: x § A}

topology t( § ) for X is the discrete topology.

EXAMPLE 6. Let (X, § ) be a proximity space and § is defined
by A § B iff A # ¢ and B # ﬂ. Then the topology induced by this
proximity is the trivial topology, since A= { Xx: x§ A } = Q’if

A=¢gand A=Xif A ¢ §.

THEOREM 2.5 Let (X, § ) be a proximity space and let O € X.

Then O € t( § ) iff x ¢ (X - 0) for every x € O.
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PROOF. If 0€ t( § ), then X - O is closed. Hence x4 X -0
implies x$ X - 0, which shows that if x € 0, then xit X - 0.

If for every x € O, x¢ X - 0, then x § (X - 0) implies xf 0.
This means that x § (X -0) implies x € (X -0). Hence X - O is closed.
Thus 0 € t( § ).

THEOREM 2.6 Let (X, § ) be a proximity space and let A and B
be subsets of X such that A# B. Then (i) BE€ X - A (ii) B € Int(X-A),
where the closure and interior are taken with respect to t( § ).

PROOEF. (1) If there exists some x such that x ¢ B and x € A,
then x § Band x § A. By lemma 2.2, A § B. Hence if x € B, then x# A
since A¢ B. This means that B < X - A,

(ii) If x € B, then x § B. This implies x$ A, for

if x § A then A § B by lemma 2.2. Hence x* A. Therefore x € X - A.

Since Int (X - A) =X - A, x & Int (X - A).

THEOREM 2.7 -If A,B are subsets of (X, § ), then A § B iff
AS —B-, where the closure is taken with respect to t( § ).

PROOF, If A § B, then by lemma 2.2 A § B since A< A and B ¢ B.
If A$ B, then there exists a subset E of X such that A $ E and
(X -E) ¢ B. Hence Bc E. This implies A # B for if A § B, then by
lemma 2.2 A § E since BC E. By applying lemma 2.2 again it follows that
K$TE.

Since a Kuratowski closure operator on X always introduces a
topology for X. Hence if the operator A---» A = { X: x § A}

defined on the power set of a proximity space (X, § ) is a Kuratowski



closure operator, then the same topology as in theorem 2.4 can be
introduced. The following theorem 2.9 will show that A---3» A is

a closure operator.

DEFINITION 2.8 Let X be a set and P (X) be the power set of
X. The the operator C: P (X)---» P (X) is a Kuratowski closure
operator provided:
@ c@=¢
(ii) A & C (A) for every A€ P (X)
(iii) C (AU B) =C (A)U C (B) for any A,B belonging to P (X)

iv) C (CAA)) =C (A) for every A€ P (X)

THEOREM 2.9 Let (X, § ) be a proximity space and A € X.
Define A = { XxX€ X: x$§A }. Then the operator A—--7'X is a

Kuratowski closure operator on X.

PROOF. (i) Since there is no set which is near f#, a- =
fxeX: x§ ¢} =4¢.
(ii) If x€ A, then x § A. Hence x € A . This shows
that AS A

(iii) Since x € (AU B) iff x § (AU B) iff x § A or
x§ Biff x¢é A orx€ B iffxeA U B , AUB =A U B

(iv) If x € A , then x $ A and hence x € af-)
Therefore A € (A ) . If x ¢ A , then x $ A. This implies that
there exists a subset E such that x * E and (X - E)¢'A. Now if A is
not contained in E, then there exists an element t in A but t is not

in E and hence t § A and t € (X - E), contradicting (X - E) #’A. Hence



A € E. By lemma 2.2, x$ A since x$ E. This means that x* A )

and hence (T) c A

DEFINITION 2.10 Let (X,t) be a topological space and § a

proximity on X such that t = t( § ). Then § is said to be compatible

with the topology t.

DEFINITION 2.11 A TO - space is a topological space in which,
given any two distinct points x,y, there exists either a neighborhood
Nx not containing y or a neighborhood Ny not containing x.

A T1 - space is a topological space in which, given any two

distinct points, each has a neighborhood which does not contain the other.

DEFINITION 2.12 A completely regular space is a topological
space such that for each point x and neighborhood M of x, there is a
continuous function with values in the interval [0,1] for which

£(x) = 1 and £(y) = 0 if y ¢ N

DEFINITION 2.13 A Tychonoff space is a topological space which

is a completely regular space and a T1 - space.

DEFINITION 2.14 Given a completely regular space (X,t), the
subsets A,B of X are functionally distinguishable iff there exists a
continuous function f with values in the interval [0,1] such that

£(A) = 0 and £(B) = 1.

THEOREM 2.15 If (X,t) is a completely regular space, then

the proximity § defined by A $ B iff A and B are functionally
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distinguishable, is compatible with t. If (X,t) is Tychonoff space,
then § 1is separated.

PROOF. It is first shown that § is a proximity on X.

(i). Suppose B ¢ A. Then B and A are functionally
distinguishable. Hence there ekists a continuous function f: X---» [0,1]
such that f(B) = 0 and f(A) = 1. Let g = 1-f, then g is continuous
since f 1is continuous and g(A) =1 - f(A) =0, g(B) =1 - £(B) = 1.

This shows that A and B are functionally distinguishable. Hence
A § B. Therefore A § B implies B § A.

(ii). If (AU B) 4 C, then (AU B) and C are functionally
distinguishable and hence there exists a continuous function f:

X---> [0,1] such that f (AU B) = 0 and f(C) = 1. It follows that
£(A) = 0, £(B) =0, £(C) = 1. This implies A§ C and B $ C.

If A $ C and B $ C, then A, C are functionally distinguishable
and B, C are functionally distinguishable. This implies that there exist
continuous functions fl and fz such that fl(A) =0, fl(C) =1
and fz(B) =0, fZ(C) = 1. Let f(x) = g.1.b] £(x), szx)} . Then
fAUB) =0, £f(C) = 1. f 1is continuous since f, and f2 are

1
continuous. Hence (A U B) $ C. Therefore (A UB)§ C iff A§ C or

B& C.

(iii). If A =g or B=¢, then A and B are
functionally distinguishable and hence A $ B which shows A § B
implies A # @ and B # .

(iv). Suppose A $ B. Then there exists a continuous
function f: X--->» [0,1] such that f(A) = 0 and f(B) = 1. It follows

that AN B =¢, for if AN B # @, then there exists a point a € AN B
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and f(a) = 0, f(a) = 1 which is impossible. Hence if AN B # §,
then A § B.
(v). Let A $ B. Then there exists a continuous
function f from X to [0,1] with f(A) = 0 and £(B) = 1. Let
E = i x € X: %-é f(x) £ ].} . (). A $ E since there exists a
continuous function g defined by g(y) = 2y for 0L y & %— and g(y) =1
for l-s y £ 1. The composite function gf is a continuous function such
that ;(f(A)) = 0 and g(E(E)) = 1. (2). (X - E) $ B since there exists
a continuous function h such that h(z) =0 for 0<£ z £ %3 h(z) =
2z - 1 for %-S z & 1. The composite function hf is a continuous func-
tion from X to [0,1] and h(f(X -E)) = 0 h(f(B)) = 1 where X - E =
{xex; 0 ¢ fx)€ -;-}
It is now shown that § is separated if (X,t) is Tychonoff.
Since (X,t) is To - space, if x # y, then there exists a neighborhood
N of y such that x é # . Since (X,t) is completely regular {x}
and A/ are functionally distinguishable. Hence x #A/ . By lemma
2.2, x $ y. Therefore, if x § y, then x = y. This shows that
is separated.
Finally, show that t = t( § ). Let G € t and x € G.

Then x # X - G, so that there exists a continuous function from X to
[0,1] such that f(x) = 0 and f(X - G) = 1. Hence x $ X - G. This
shows that G € t( § ), by theorem 2.5. Conversely, if G € t( § )
and x € G, then x $ X - G by theorem 2.5. Hence there exists a continuous
function f from X to [0,1] such that £(x) = 0 and £f(X - G) = 1.
Then f'l([O,é.)) is an t open neighborhood of x in G, since f

2.
is continuous and [0,% ) is open in [0,1]. Therefore G € t.
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DEFINITION 2.16 A T4 - space is a topological space in which

each pair of disjoint closed sets have disjoint neighborhoods. A normal

space is a topological space that is T4 and T .
The following is Urysohn's lemma which is stated without proof.

LEMMA 2.17 (Urysohn's lemma) Let X be a normal space, and
let A and B be disjoint closed subsets of X. Then there exists
a continuous real function f defined on X, all of whose values lie
in the closed unit interval [0,1], such that f(A) =0 and £(B) = 1.

By the Urysohn's lemma, every normal space is completely regular

and hence is a Tychonoff space.

THEOREM 2.18 Let (X,t) be a normal space. Then ANE

1
=

iff A and B are functionally distinguishable.

PROOF. By lemma 2.17 if AN B =g, then A and B are
functionally distinguishable. If ANB¢ @, then there exists a point
x such that x € A OB, Since there exists no function f such that
f(x) has different values at one point x it follows that A and B

are not funcitonally distinguishable.

THEOREM 2.19 Let(X,t) be a normal space. Then A § B iff
AOB ¢ @ defines a compatible proximity.

PROOF. By theorem 2.18, A 1 B = g iff A and B are func-
tionally distinguishable. By the properties of a continuous function,
A and B are functionally distinguishable iff A and B are func-

tionally distinguishable. Hence, A $ B iff ANTB = g iff A and B
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are functionally distinguishable iff A and B are functionally
distinguishable. Since every normal space is completely regular, by

theorem 2.15, § defines a compatible proximity.

THEOREM 2.20 If a completely regular space (X,t) has a com-
patible proximity § defined by A § B iff A N B # @, then(X,t) is T4.

PROOF. Let P and Q be a pair of disjoint closed sets.
Therefore P$ Q, and there exists a subset E such that P $ E and
X - E)$ Q. By theorem 2.6, P < Int(X - E) and Q& Int E. Since

Int(E) 0 Int(X -E) = ff, (X,t) is T,.

DEFINITION 2.21 If § and §  are two proximities on a set
1 2
X. Define § 6 > 5, iff A SlB implies A 3‘23. s ! is said to

be finer than § 50 OF 8'2 is said to be coarser than §

The following theorem shows that a finer proximity induces a

finer topology.

THEOREM 2.22 If Sl and § , are two proximities defined on
a set X, then 81 & 82 implies t( 81) C t( c?z).

PROOF. If 0 € t( Sl), then by theorem 2.5, x #1 X -0
for every x € 0. Since Sl < 82, X ﬂ(z(x - 0) for every x € 0.

Again by theorem 2.5, 0 € t( 32). Hence t( § 1) Ctl gz).

THEOREM 2.23 Let 'c1 and t2 be two completely regular
topologies on X and § L by 5 be the proximities on X defined
by A SiB(i = 1,2) iff A and B are functionally distinguishable

with respect to t1 and t, respectively. Then tlc t2 implies 31 < 5‘2.
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PROOF. If A ¢1B, then there exists a continuous function f
from (X, tl) to [0,1] such that f(A) = 0 and f(B) = 1. Since t C t2,
1
f 1is also a continuous function from(X, tz) to [0,1] such that f(A) = 0

and £(B) = 1. This means that A ¢2B. By definition 2.21, 82 > Sl.

3. PROXIMITY NEIGHBORHOOD
DEFINITION 3.1 A subset B of a proximity space (X, § ) is

a § - neighborhood of A if A $ X - B, This is denoted by A <« B.

THEOREM 3.2 Let (X, § ) be a proximity space, A and Int(A)
denote, respectively, the closure and interior of A in t( § ). Then

(1). A & B implies A K B, and

(ii). A << B implies A <& Int(B).

PROOF  (i). If A& B, then A § X - B. By theorem 2.7 and

lemma 2.2, A $ (X - B), which shows that A << B.

(ii). A< B implies A§ X - B. Since X - B =

X - Int(B), A #X - Int(B). Hence A < Int(B).

LEMMA 3.3 Let (X, § ) be a proximity space. Then A $ B implies
ACX - B.

PROOF. Suppose AC\‘— X - B. Then there exists at least one point
a in A such that a¢ X - B. This means that a € B. Hence ANB # #.

It follows that A § B, which is impossible. Therefore A <& X - B.

THEOREM 3.4  Axiom A5 is equivalent to the statement: If
A $ B, then there exists subsets C and D such that A ¢ xX -0,

(X-D) § B and C$D.
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PROOF. If A holds, then A$ B implies there is a subset D
)
such that A$ D and (X - D) $ B. Since A$ D, there exists a subset

C such that A $ (X - C) and C$ D. To prove the converse, let E = X - C.

Then A § E. By lemma 3.3, CC X - D since C § D. Hence (X - E) = C

tl

and C$ B, for if C § B, then (X - D) § B by lemma 2.2, a contradiction.

Therefore A5 holds.

COROLLARY. In a proximity space (X, § ), A $ B implies that
there exists subsets C and D such that A<« C, B D and C f D.
If § is separated, then the topology t( § ) is Hansdorff, since
x # y implies x $ y and there exist disjoint subsets C and D such

that {x} <« C and {y} << D.

LEMMA 3.5 Let § be a compatible proximity on a completely
regular space (X,t). If A 1is compact and B is closed and AN B = g,
then Ag B.

PROOF. Since B 1is closed, x € B iff x § B. For each a ¢ A,
a ¢ Bsince AONB =g, Hence a$ B for each a in A. By the
corollary of theorem 3.4, there exists an open neighborhood Na of a

such that Na $ B. But iN 1 ae€ A} is an open cover of A, hence
a

there is a finite subcover iN | 1,2, ..., n } . Since N | $ B
ai ai
for each i, U[Nai: i=1,2, ..., n] $ B. By lemma 2.2, A $ B

since A C.U[ Nai: i=1,2,...,n ] .

THEOREM 3.6  Every compact topological space X which is
completely regular (Tychonoff) has a unique compatible (separated)

proximity, given by A § B iff AN B ¢ g.
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PROOF. Let § be any proximity and AN B # #. Then A § B.
Since A§ B iff A § B by theorem 2.7, A § B. Conversely, let §
be any proximity and A § B. Since A is a closed subset of a compact
space X, A is compact. By lemma 3.5, ANTB+# # since B is closed.

Now, if X is Tychonoff, then {x} is closed. Hence if x §y,

then {x} O fy} ¢ #and x = y.

THEOREM 3.7 In a proximity space (X, § ), the relation
has the following properties.
(i). X KX ‘
(ii). @ K A for any subset A of X.
(iii). AL B implies A < B.
(iv). A € B implies A< B iff § is discrete.
(v). ACB, B< C and CC D imply A << D.
(vi). ALK B, fori=1,2,...,niff AK N [B;: i=1,2,...n]
(vii). A< B implies (X - B) <K (X - A).
(viii). A < B implies there is a C such that A < C << B.

(IX). If § is separated, then x ¢ (X - Y) iff x # y.

X). If Ai K B.1 for i = 1,2,...,n, then

ﬂ[Ai: i=1,2,...,n1<« N [Bi: i
U[Ai: i
PROOF  (i). Since X § ¢

1,2,...,n] and

n
"

1,2,...,nl« U[Bi: i=1,2,...,n]

X - X, XK X.

(ii). By axiom A @ is not near to any subset of X.

3’
This means & ¢ (X - A) for any subset A of X. Hence @< A.
(iii). If A & B, then A $ (X - B). It follows that

AO (X - B) =@, and hence A < B.
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(iv). If § is a discrete proximity, then A § B iff
AOB#¢+ . Hence if AS B, then A 0 (X - B) =@&. It follows that
A$ X -Band hence A< B, Suppose A S B and ANB =@ Then
ACX -Band A < X - B. By definition 3.1, A< X - B implies
A $ B, which is a contradiction. Therefore A § B implies A N B # .
By axiom A4, AQOB¢# @ implies A § B. Hense § is the discrete
proximity.

(v). By definition 3.1, A 2‘( D implies A § X -0D.
Since C<D, A §X-Cby lemma 2.2. It follows B § X - C since
A € B. Hence B 4 C, a contradiction.

(vi). A< B, for i =1,2,...,n iff A $x - B, iff

A UK - B): i=1,2,...,n] by axiom A, iff A g X - ns,:

2
i=1,2,...,n] iff ALK N [Bi: i=1,2,...,n]
(vii). If A « B, then A$ X - B and hence (X - B) 5" A.
Since A =X - (X -A), (X -B) § X - (X - A). Therefore (X - B) <<
(X - A).
(viii). If A <« B, then A $ X - B. There exists a
subset C such that A ? (X - C) and C$ (X - B) which shows
A K C << B.
(IX). If x + y, then x $ y and hence x << (X - y).
If x<K X -y, then x $ y. Hence {x} N {y} =@, which shows that x # y.
(X). since N [A;: i=1,2,...,n]C A,, hence if Ai$
X - Bi’ then N [Ai: i=1,2,...,n] $ X - Bi' Therefore n[Ai:
i=1,2,...,n]<« Bi. By property (vi), n[Ai: i=1,2,...,n]<<
{'\[Bi: i=1,2,...,n].

Since X - BiD X - U[Bi: i=1,2,...,n], hence
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if A, $ X- B, thenA § X - U[B: i-=1,2,...,n]. It follows that
1 1 1 1
U [Ai: i=1,2,...,n] $ X - U [Bi: i=1,2,...,n] and therefore

U[Ai: i=1,2,...,n] K U[Bi: i=1,2,...,n].

THEOREM 3.8 Let A be a subset of a proximity space (X, § ).
Then A = (V[B: A << B].

PROOF. By theorem 3.2, A << B implies A << B and hence
A< B by lemma 3.3. This shows A < N [B: A < B]. If x 4§ &,
then x$ A for if x § A, then x€ A= A. By the corollary of
theorem 3.4, A has a § -neighborhood Bx and x ¢ Bx. Hence x ¢ N

[B: A << B] since Bx is also a § -neighborhood of A.
4, PROXIMITY MAPPING,

Corresponding to the concept of continuous functions between

topological spaces, there are proximity mappings between proximity spaces.

DEFINITION 4.1 Let (X, Sl) and (Y, 82) be two proximity spaces.
A function f from X into Y 1is said to be a proximity mapping or a

proximally continuous mapping iff A SlB implies f(A) § £(B).
2

EXAMPLE 7. Let (X, § ) be a proximity space and Y be a non-
empty set. Define St by A StB iff A # g, B # &, the trivial proximity.
Define Sd by A SdB iff A B # ¢, the discrete proximity.
(i). Any mapping f from (X, § ) to (Y, St) is a proximity
mapping.
Let A and B be subsets of X. f£(A) $tf(B) iff £(A) = &

or £(B) = #. This implies A = g or B = @ and hence A ¢ B, which shows
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that A § B implies f(A) Stf(B).

(ii). Any mapping g from (Y, Sd) to (X, §) is a proximity
mapping.

Let A and B be subsets of Y. A SdB iff ANB ¢ ¢.

Therefore g(A) N g(B) # @ and hence g(A) § g(B). Thus g is a proximity
mapping.

(iii). The identity mapping I from(X, St) to (X, Sd) is not
a proximity mapping, where X contains at least two points.

Let a,b be two distinct points of X. Then a § b but
t
b.
2 #d

THEOREM 4.2 Let (Y, § ) be a proximity space. Let f be a
function from X to (Y, § ). Define a relation £ by A PB iff
f(A) § £(B). Then /" is a proximity on X.

PROOF  (i). A P B implies f(A) § f(B) and hence f£(B) § £(A).
Therefore B £ A.

(ii). (AU B) P C iff f(AU B) § £(C) iff (f(A U
£f(B)) § £(C) iff f(A) § £(C) or £(B) § £(C) iff AP Cor BFPC.

(iii). A P B iff f(A) § £(B). It follows f(A) # &
and f(B) # 9( since § is a proximity and hence A # @ and B # &.

(iv). If A QOB # @, then £(A 0 B) # & and hence
f(A) O £(B) # #. It follows f(A) § £(B) and therefore A £ B.

(v). If A /f’ B, then f(A) f f(B) and hence there exists

a subset E of Y such that f(A) $ E and (Y - E) $ f(B). Since
f££-1(E) € E, £(A) $ ££71(E) and hence A £ £71(E). Since £1(Y -E) =

X - £1@E), fx -£71(E)) = ££71(Y - E)c Y - E. It follows that
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£(X - £1(E)) § £(B) and therefore (X - £-1(E)) # B.

THEOREM 4.3 Let f be a one to one function from a proximity
space (X, § ) onto a set Y. Define a relation / on Y such that A 2 B
iff £-1(A) § £71(B). Then P is a proximity on Y.
PROOF (i). AP B iff £f-1(A) § £ 1(B) which implies £~1(B) &
£71(A) and hence B A.
(ii). Since f1(AUB) = £-1(A) U £ 1(B). Hence (A UB)
pciff £lauB) § £ iff (£l U £l®) § £1) iff
£71a) § £1(C) or £73(8) § £71(C) iff AL Cor BPC.
(1ii). A P B iff £-1a) § £<1(B) implies £71(A) # & and
£71(B) # 4. It follows that A # @ and B ¢+ 4.
(v). £1A) § £1(B) implies £71¢aA) N £71(B) = ¢.
Therefore if A # B, then AN B = {.
(v). If £-1(a) $ f‘l(B), then there exists a subset E of
X such that £1(A) $ Eand X -E) § £1(B). By lemma 3.3, £-1(A) ©X - E
and £°1(B) ¢ E. It follows that AC £(X - E) and B < £(E). Now, if
A P £(E), then £1(A) § £ 1£(E) or £-1(A) § E since £ is 1 - 1, con-
tradicting £ 1 (A) $ E. Hence A# £(E). Since Y - £(E) = £(X - E),
f'l(Y -f(E)) = X - E and hence £l (Y -f(E))) $ f"l(B) which shows that
(Y - £(E)) # B.
DEFINITION 4.4 Let X and Y be topological spaces and f
be a mapping from X into Y. f 1is called a continuous mapping

if f'l(G) is open in X whenever G is open in Y.

LEMMA 4.5 Let f be a mapping from one topological space X into
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another topological space Y., Then f is continuous iff f'l(F) is
closed in X whenever F is closed in Y iff f(K)CZ EEKS for any sub-
set A of X.

PROOF (a). If f 1is continuous and F is closed in Y,
then Y - F is open and f"l(Y -F) =X -f‘l(F) is open and hence f'l(F)
is closed. Conversely, if G is open in Y, then Y - G is closed. Hence
f"l(Y -G) =X - f'l(G) is closed. This implies f'l(G) is open. By
definition 4.4, f 1is continuous.

(b). If £(A) C £(A) for every subset A of X and F

is closed, then £(£f 1(F)) < f(f 1(F))C F = F. This means £ ! (F) <

f‘l(F) which shows that f'l(F) is closed. On the other hand, if f£-1(F)

is closed whenever F 1is closed. then f 1is continuous by part (a).

Let y € f(A). Then there exists an x € A such that y = f(x) and

Nx N A # ¢ for every neighborhood Nx of x and hence £(Nx O A) =

f(Nx) N £(A) # }f for any neighborhood Nx of x. Let Ny be a neigh-

borhood of y. Then f"l(Ny) is a neighborhood of x since £ 1is continuous.
Hence f(f—l(Ny)) N £(A) # §. Since ff’l(Ny)C Ny, Ny N £(A) # &

which shows that y € £(A). Therefore f(K) C f(A).

THEOREM 4.6 A proximity mapping £ from (X, §) to (Y, J‘z)
is continuous with respect to t( 81) and t( 82).

PROOF. Let AC X. Since f is a proximity mapping, x J'IA
implies f(x) Xzf(A). Therefox;e, if x € K, then f(x) € -f_(PT) Hence
£(A) € f(A). By lemma 4.5, £ is continuous with respect to t( § 1)

and t( 82).



22

DEFINITION 4.7 Two proximity space (X, § 1) and (Y, 82) are

called proximally isomorphic (or § -homeomorphic) iff there exists a

one - to - one mapping f from X onto Y such that both £ and g1
are proximity mappings. f is called a proximity isomorphism or § -
homeomorphism.

LEMMA 4.8 Let (X, § ) be a proximity space and let Y be a
subset of X. For any subsets A, B of Y, define A SyB iff A § B.
Then- SY_is a proximity on Y.

PROOF, The first four axioms of a proximity are easily verified,

To prove the last axiom, let A $ YB. Then A $ B and hence there exists
a subset gl of X such that A $ El and X - El) $ B. If the inter-
section of Y and E! is empty, then Y is a subset of X - El. Since

X - El) $ B, Y $ B contradicts B 1is a subset of Y. Hence the
intersection of Y and El is not empty. Set E =Y El. Then A $ E
since E is a subset of E! and A $ ELl. (Y - E) $ B since Y - E

is a subset of X - E! and X - E! $ B. Therefore if A $Yﬁ, then there
exists a subset E of Y such that A $ Eand Y - E # B which

shows that A $YE and (Y - E) $YB'

DEFINITION 4.9  The proximity g\'defined in the previous lemma
is called the induced (or subspace) proximity on Y and t( gy) is the

subspace topology induced on Y by t( $).



CHAPTER III
FILTERS

DEFINITION 1. Let X be a non-empty set. A filter F on X
is a non=empty collection of subsets of X such that

(1y. ¢ & F

(2). A € F,B€e F imply AN B e F.

(3). A € F and ACc B imply B € F.

EXAMPLE 1. Let X be a non-empty set. Then i X f is a filter

on X.

EXAMPLE 2. Let (X, t) be a topological space and x € X. The
collection N(x) = { B: B is a neighborhood of «x } is a filter on

X <called the neighborhood filter of x.

EXAMPLE 3. Let { xn} be a sequence in a topolagical space (X,t).
Define Fy = { xpt n z k } for k a natural number. Then the col-
lection of subsets of X defined by F = g F& X: Fo Fk for some k}

is a filter, called the filter generated by the sequence.

DEFINITION 2. Let Fl ’ F2 be filters on a given set X. Define
: c
Flé F, iff F; F2'

DEFINITION 3. A filter U on X is a ultrafilter if U < Ul,

23
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a filter on X, then U = Ul.

ZORN'S LEMMA. If P 1is a non-empty partially ordered set in

which every chain has an upper bound, then P possesses a maximal

element.

THEOREM 4. For any filter VU on X, there exists an ultra-
filter U on X such that V< U.

PROOF . Let oA (V) be the set of all filters on X which contains
V. Define a partial order on ol (V) by definition 2. Every chain C
in (V) has an upper bound in A (V). This upper bound is the union
of all elements of the chain C. To show that V = U [Vi: Vi € C}
is a filter, it is enough to note that (i). # & U since O # Vi.
(ii). If A€V and AC B, then A is in Vi for some V.1 in C.
Since V; is a filter, BE€ Vi‘ Hence B € V. (iii). If A € V,

BE V, then A€ V., B € Vi for some V., V. in C. 1If Vié V.,

: S
then A € Vj and AN B € Vj since Vj is a filter. If Vj < V.,
then ANB € Vi' It follows that AN B is in V. By Zorn's lemma,

A (V) has a maximal element. This maximal element is an ultrafilter

which contains V.

THEOREM 5. A filter U 1is an ultrafilter on X iff A UBe€ U
implies A€ U or B € U,

PROOF. Suppose AU B€ U and A ¢ U, B & U. Let V be
the set of all subsets Y of X such that YU A € U. Then V 1is a
filter by the following argument.

(1). ¢¢Vsince ﬂUA=A¥UandV#¢since BEV,
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1’
(YIU A) N (YZU A) = (Yl n vy, U A € U since U is a filter.

(2). If Y Yzarein v, thenYIU A € U and qu A e U

Hence Ylﬂ Y, € V.
C
H(3). If Y1 €  and Yy Y2,
A & U. Hence Y, € V. UL V for ifY € U, then YS Y U A € U

thenYIU ACYZUAandYZU
and hence Y € V. U # V since B € V but B ¢ U, Hence U 1is not
an ultrafilter.

Suppose A U B € U implies A€ Uor B € Uand U is not an
ultrafilter. By theorem 4, there exists an ultrafilter V such that
U € V. Choose an A such that A * U but A € V. (X - A) & U since
(X-A) UA=X€ U. It follows that X - A € U since 0 < V.,
X-A)Nn A€ V since X -Aand A are in V. Hence Z € V, but

this is impossible.

COROLLARY. If U 1is an ultrafilter on X, then for any subset

A of X either A is in U ot its compiement is in U.

COROLLARY, If U [A;: 1=1,2,...,n] is in an ultrafilter U,

then at least one Ai is in U.

EXAMPLE 4. Let a be a fixed point of X. The collection U
of all subsets of X which contains a is an ultrafilter, called a
fixed ultrafilter.

(1). U is not empty and @ is not in U since a¢ a.

(2). If A€ U, B € U, then a € A (0 B. It follows that
AN B E U

(3). A€ U, Ac B imply B & U.



26

(4. If AU BE€ U, then a € A U B. It follows that a €

or a € B, Hence A € U or B & U.

EXAMPLE 5. Let N denote the set of natural numbers. Set Fk
in: nz k} . Define F = {FC N: F z F, for some k in N}
Then
00
(1). F is a filter generated by the sequence in },

(2). By theorem 4, there exists an ultrafilter containing F.

It is clear that such an ultrafilter is not a fixed ultrafilter.

DEFINITION 6. A non-empty collection B of subsets of X is
called a filter base iff

. # ¢ p

(2. 1f B1,= B2 € g , then there exists B € @  such that

BCBlﬂBz.

THEOREM 7. If B is a filter base on X, then the collection

F( B ) consisting of all sets A such that A D B for some B in

A is a filter.

PROOF. (1). # ¢ F( B8 )sincef ¢ 8 . (2. F( A)# A

since A4 is not empty. (3). If A € F( A4 ) and A c C, then there

exists B € 8 with BC A, Hence B &€ C and C € F( 24 ). 4).

If A and A, are in F( B ), then there exists B, and B, in #4
such that A} > B, and A, > B,. Hence A; N A, D B} N B,.
Since A4 is a filter base, there exists B in A such that

B1 N B2 oD B. Therefore A1 N A2 o B1 N B

A, € FOB .

- B and hence A1 n

A
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F( B ) is called the filter generated by /4 and A4 is called
a base of the filter F( B ). B is called an ultrafilter base if

F( B8 ) is an ultrafilter.

EXAMPLE 6. Let R be the set of all real numbers. Let A be
the close interval [0,1] and B = Z A} . Then

(1). A is a filter base since B + g, 8 ¢ }3 and A C
(AN A,

(2). The collection F( A )= { Fc R: F 2 [0,1]} is
the filter generated by @ . By theorem 5, F( /2 ) is not an ultra-
filter since [O, —;—] U [%., 1] € F( B ) but [0, %] 4’: F( 3 ) and

[%, 1] ¢ F( B ). Hence 4 is not anultrafilter base.

EXAMPLE 7. Let R denote the set of real numbers. Set 3 =
i (a,b): 1 € (a,b), a, b € R } , the set of all open intervals
containing 1. Then
(1). B is a filter base since B + @, # ¢ 4  and the inter-
section of two open sets containing 1 is an open interval containg 1.
(2. B is not a filter since (0,2) e 4 and (0,2) C [0,2]
but [0,2] 4 }8
(3). The collection F( 3 ) = [ FC R: F o (a, b) and
1 € (a, b) } is the filter generated by /3
(4). F( B ) is not an ultrafilter since (0,1] U [1,2) = (0,2) €

F(B ) but (0,114 F( 8 )and [1,2) ¢ F( B ).

EXAMPLE 8. Let R be the set of real numbers. Set A3 = {{1}}



28

Then

(1). 3 is a filter base but /3 1is not a filter,

(2). The collection F( B ) = S FCR: F D {1}} is the
filter generated by /3

(3). F(B ) is a fixed ultrafilter.

EXAMPLE 9. Let N denote the set of natural numbers. Set
Sn = i n, n+l, n+2, .., } Let (3 = fSn: n=1,2,... } Then
(1. 3 1is a filter base,
(2). The collection F(8) = {FC N: F s for some S_ in /3}
is a filter.
(3). By theorem 5, F( B ) is not an ultrafilter since the union

of the set E, of all even numbers, and the set 0, of all odd numbers,

in in F(/ ) but neither E nor O 1is an element of F( /).

THEOREM 8. A filter F 1is an ultrafilter on X iff ANF # ¢
for all F in F implies that A belongs to F.

PROOF. Let F be an ultrafilter and A C X such that ANF # &
for all F in F. Then the collection consisting of all finite inter-
sections of elements of F U {A} is a filter base and hence determines
a filter F' such that F'> F. Since F is an ultrafilter, A e F' = F.

If F is not an ultrafilter, then there exists a filter F' such
that F'D F and F' # F. Hence there exists a set A such that A € F'
and A¢F and ANF ¢+ @ for all F in F'. It follows that ANF #

& for all F in F since F'D F. Therefore if F is not an ultra-
filter, then there exists an A such that A ¢ F and ANF ¢ g for

all F in F.
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THEOREM 9. Let F be a filter on X and f a function from
X to Y. Then the set of all f(A), A€ F is a filter base on Y.

PROOF. @ ¢ f(A) since A # . For any A, B in F, f(A)N
f(B) D £f(A N B). Hence { f(A): A€ F } is a filter base on Y.

The set 5 f(A): A€F } is denoted by f(F). Since f(F) is a
filter base on Y, by theorem 7, the collection E = i ECY: EDf(A)
for some f(A) in f(F) } is a filter on Y generated by the filter

base f(F) on Y.

EXAMPLE 10. Consider example 9. Let f: N---> N defined by
f(n) = n+2. Set F=F(A ). Then £(F) = [F'e N: 14 F',2¢ F'
and F'> Sh+2 for some n in N } . By theorem 9, f(F) is a filter
base on N. f(F) is not a filter since for any F' in f£(F), F' is

contained in S, but §; ¢ £(F).

DEFINITION 10. Let (X,t) be a topological space and let F be
a filter on X.

(a). The limit set of F is lim F = { x: Ny €& F for each
neighborhood N, of x } . The element x 1is said to be a limit point
of F or F 1is said to converge to x. This is denoted by F—> x.

(b). The adherent set of F is adh F = { x: N,NF# Z for
each F in F and for every neighborhood N, of x } . The element

x 1is said to be an adherent point of F.

EXAMPLE 11. Let (R,| |) be a metric space with the usual topology.
Define F = i13C.R: leF }. Then F is a filter on R and 1lim F =
{1} , adh F = { 1}
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THEOREM 11, Let (X,t) be a topological space and let F be a
filter on X. Then adh F = N i_l?: F € F}

PROOE., If x € M {T’_z F € F} , then x€F for every F in
F. Since x 1is a closure point of F. Nxtﬁ F #+ & for every neigh-
borhood N of x and for every F in F. Hence x € adh F.

If x¢ N i F: FEF } , then there exists a F in F such
that x ¢ F. Hence there exist at least one neighborhood Nx of x

such that N, A F = . This implies x ¢ adh F.

THEOREM 12. If F 1is a filter on a topological space (X,t)
and x € lim F, then x & adh F. This means that 1im F < adh F.

PROOF. If x 1is a limit of F, then every neighborhood N,
of x is contained in F. Since F is a filter, Nx NF ¢ @ for
every F in F. Hence x 1is a closure point of F for every F

in F. By theorem 11, x is an adherent of F.

THEOREM 13. If U 1is an ultrafilter on a topological space
(X,t) and if y 1is an adherent point of U, then y is a limit point
of U. This means that adh U = 1im U, for U an ultrafilter on X.

PROOF. If y € adh U, then for every neighborhood Ny

Ny(1 F + @ for any F in U. By theorenm 8, Ny € U. Since U 1is an

ultrafilter. Hence y is a limit point of U.

of vy,

THEOREM 14. If (X, t) is T, - space, then a filter F has
at most one limit point.

PROOF. Suppose x and y belong to lim F and x # y. By the

definitdon of a limit point, b&:é F, Ny,e F for any neighborhoods
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N, of x and Ny of y. Since F is a filter, NN Ny + #. Hence
there are no disjoint neighborhoods for x and y. But this is

impossible since X is Tz.

THEOREM 15. Let (X,d) and (Y, £ ) be metrice spaces and let
f be a function from (X, d) to (Y, £ ), Then f 1is continuous
iff X,—>x implies f(xn)——?f(x).

PROOF. If f 1is continuous, then f is continuous at each
point x of X. Let ixn}T be a sequence in X such that xn——? b 8
Then for each open sphere S, (£(x)), there exists an open sphere S 5 (x)
such that f(S‘s (x)) € S¢ (f(x)). Since X —r X, there exists a
natural number N such that x, € S; (x) for each n > N. Hence
f(xn) € Se (f(x)) for each n - N since f(Ss (x))< S (f(x)). This
means that f(xn)———}» f(x).

Suppose f 1is not continuous at some points x of X. Then
there exists an open sphere S ¢ (f(x)) such that £(S § (x)) ¢\: S e (£(x))
for each § > 0. Thus there exists X, é S{_ (x) but f(xn)4-' Se (£(x))
for each natural number n. Hence there exists a sequence § xn}

such that X, —>x but f(x,)—=>f(x).

THEOREM 16. Let (X,t) and (Y, s) be topological spaces and let
f be a function from (X,t) to (Y,s). If f is continuous, then
xn-———>x implies f(xn)———% f(x).

PROOF . Let f X }:” be a sequence in X such that xn—-)- X.
If f 1is continuous, then for each neighborhood Ny of f(x), there

exists a neighborhood Ny of x such that f(Nx)C Ny‘ Since

xn———> X, there exists a natural number N such that x, € Nx for
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each n > N. Hence f(x,) € Ny for each n > N since f(Nx)c: Ny'
This means that f(xn)———7 f(x).
The converse of this theorem does not hold as the following

counterexample shows.

EXAMPLE 12, Let R denote the set of real numbers with the
cocountable topology t for R. That is, t = i OCR: R -0is
countable} U R. Let d be the discrete topology for R. Let
f(x) = x be the identity mapping from (R,t) to (R,d). Let [an;
be a sequence in (R,t) such that an———> a. Then

(1) ap——> a iff there exists a natural number n_ such

0

that a, =a for every n>=2n To show this statement, it suffices

0*

to show that if there exists NO such N, then let F = { an:
a, # a} and hence R - F is a neighborhood of a and an¢ R - F.

Hence a,—\~>a.

(ii). For every n zn, f(an) = a, = a. Hence f(an)-—e a

in R,d) if a —~>a in (R, t).
(iii). Let a € R. Then {a} is open in (R,d) but fa} =

f'l( {a} ) is not open in (R,t). Therefore, f 1is not continuous.

THEOREM 17. Let (X, t) and (Y, s) be topological spaces. Let
Fbe any filter on X. Then f is continuous iff F-—> x implies
that F*, the filter generated by f(F) converges to £f(x).

PROOF. Suppose f 1is continuous and let x € X. Let Nf(x)

be a neighborhood of f(x). Then f_l(N )) is a neighborhood of

f(x
> x, then f_l(Nf(x)) € F. Hence f(f‘l(Nf(x)) € F* and

x. If F

: -1 . *
o .
since Nf(x) f(f (Nf(x)) it follows that Nf(x) € F Hence
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F*—s f(x).
If f 1is not continuous at x, then there exists a neighborhood
Nf(x) of f(x) such that each neighborhood Nx of x 1is not con-

tained in f‘l(Nf(x)). Hence N does not belong to the filter

f(x)
F* generated by the filter base i f(NX): Nx is a neighborhood of
X } . Therefore F*——> f(x).

The following theorem is well - known and is state here without

proof.

THEOREM 18. A topological space is compact iff every collection
of closed sets with the finite intersection property has a non-empty

intersection.

THEOREM 19, Let (X, t) be a topological space. X 1is compact
iff every filter on X has a non-empty adherence.

PROOF. Let F be a filter on X. By the definition of a
filter, the collection of closed set f F: FEF } has the finite
intersection property. By theorem 11, adh F = N { F: F€F } t 4.
Therefore (X, t) is compact iff every filter on X has a non-empty

adherence by applying theorem 18.

THEOREM 20. A topological space (X, t) is compact iff every
ultrafilter converges.

PROOE. If (X, t) is compact, then every ultrafilter U has a
non-empty adherence by theorem 19. By theorem 13, adh U € lim U.

Hence lim U # @. Therefore U converges.

To prove the converse, let F be a filter on X. By theorem 4,
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there exists an ultrafilter U on X with F € U, By hypothesis,

@ # lim U = adh U.

By theorem 19. X

Since F< U, it follows that adh F o adh U # #.

is compact.



CHAPTER 1V
CLUSTERS

It is easy to see that a collection U of subsets of a non-empty
set X 1is an ultrafilter iff the following conditions are satisfied:
(i1). If A and B belong to U, then ANB ¢ .
(ii). If ANU + @& for every U € U, then A € U.
(iii). If AU B)‘G U, then Ae U or Be U,
The definition of a cluster in a proximity space can be motivated
from these three conditions by replacing non-empty intersection with

nearness. Clusters are extremely useful in the study of proximity

spaces.

DEFINITION 1. Let (X, § ) be a proximity space. A cluster
is a collection of subsets of X such that

(i). If A and B belong to 0, then A § B.

(ii). If A §C for every C in ¢-, then A is in ¢ .

(iii). If (AUB) € 00, then A € 0 or B €0 .

EXAMPLE 1. Let (X, § ) be a proximity space. Let a be a
point of X. Then the collection 0; = [ AcX: Afa ] is a cluster.
(i). If A and B are in 0, then A § a and B § a. It follows
A§B. (ii). If A§C for every C in 0”, then A §a since | a}

is in 0. Hence A € 0 . (iii). If (AUB)e€¢g , then/(AU B) § a.
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By the definition of proximity, A §a or B § a. Hence A € 0

or B € 0O . o"a is called a point cluster.

EXAMPLE 2. Define a proximity § on X by A § B iff A &
and B # @. Then the collection 0 = | ASX: A# g } is a
cluster. (i). 1If Al’ A2 belong to 0~ , then A1 # 7 and A2 + g
By the definition of § , A S A2, (ii). If A § C for every C
in 0°, then A # @ and hence A € 0 . (iii). If (AUB) € 0 ,
then AUB ¥ @ It follows A+ & or B#g. Thus A € 0~ or
B €0 .

The cluster in example 1 is a filter on X. However, the cluster

in example 2 is not a filter if X contains more than one point.

LEMMA 2. Let (X, § ) be a proximity space and let 0 be a cluster
in (X, § ). Then

(a). For any subset E of X, either E € 0 or (X - E) € 6~ .

(b). If A €0 and AC B, then B € 0,

(c). A €0 iff A €0,

(d). I1f {x}] € 0o for some x € X, then 0 = 0, @ point
cluster.

PROOF (a). Since A § X for any subset A of X, X € 0,
Therefore, E €6 or (X - E)€0 since EU (X - E) =X €0 .

(). If A €¢ and Ac B, then A § C for every C

in ¢~ and B § C for every C in ¢~ by lemma 2.2 in chapter II.

Hence B € 0 .

(c). If A€ 0, then A €0 since ACA by part (b).
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If A tf 6~ , then A$ C for some C in0 . By theorem 2.7 in
chapter II, A $ C. Therefore A $ C and hence A 40~
(d). If A €06 , then A§ x since {x} € 0
Hence A € 0. If A 4 0, then A $ C for some C in 0 . Since
{x}) and C are in6 , x § C. Suppose A§ x. Then A§ C a
contradiction. Therefore, A $x and hence A 4’ 0—;( Since 0 ¢ 0';

and 0,C 0 > 0 = O"X.

LEMMA 3. If 0”'1, 0, are two clusters in (X, § ) and 0y
c 0 ,, then f1=5_2.

PROOF. Let A ¢ 0 ;. Then A $ C for some C in 0). Since
0"1 c a"é, A $ C for some C in 6‘2 which shows that A é 0—2.

C .
Hence 0—2 rl

LEMMA 4. Let P be a collection of subsets of X such that
$4¢P and (AUB)E P iff A€P or BEP. If P € P, then there
exists an ultrafilter F such that P € F and F < P,

PROOF. By Zorn's lemma, there exists a maximal collection F
of subsets of X such that F contains P and if {Ai: i=1,2,..

C F then N | A:i=1,2,....n]eP

One must show that F is a filter.

(1). ¢ ¢ F since ¢ ¢ P.

(ii). If A and B belong to F, then AN BE P, Since F
is maximal, AN B € F,

(iii). If A€ F and AcC, then C € P and hence C € F
since F 1is maximal.

Now suppose F is not an ultrafilter. Then there exists a

n]
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subset E of X such that neither E nor X - E belongs to F.

Hence there exist Al’ A2

(X-E)§ P. Let A=A NA. Thn A€P and ANE§ P and

in F such that AN E¢P and A, N

An X -E) ¢ P. This is impossible since A = (AN E)YUA N (X - E)).

Therefore F is an ultrafilter,

THEOREM 5. Let ¢ be a collection of subsets of a proximity
space (X, § ). Then ¢ is a cluster iff there exists an ultrafilter
F on X suth that ¢ = {ACX: A § B for every B in F}.
PROOF. Let F be an ultrafilter and 0 = {ACX: A { B
for every B in F} . Then (i). If A; and A, belong to o,
then A1 § B and A2 § B for every B in F. Since for any subset
C in X, either C or X - C is in F. Hence A; and A, are
near to C or X - C for every subset C. Suppose Ay f Ay Then
there exists a subset E of X such that A1 # E and (X - E) g Ay,
a contradiction. Therefore A1 $ A2' (ii). If A §C for every
C in ¢ , then A §B for every B in F since F € 4 . Hence
A € ¢ . (iii). Suppose A #o‘” and C ¢0" . Then there exist
B, and B, in F  such that A,{ B, and C $ B2. By lemma 2.2 of
chapter II, A § (B,N B and C § (B;NBy). Thus (A UC) Fy
(B1 N Bz). Since B1 N B2é F, it follows that (A U C) 4 o~ . Hence
if AWUC)e g , then A €4 or B € g . Therefore ¢ is a cluster.
Conversely let ¢~ be a cluster and let P be an element of
0O . Let P = (¢ , then by lemma 4 there exists an ultrafilter F ¢ g
such that P€ F, If g ' = {ACX: A § B for every BéF},

then 0 c¢ ¢—'. Applying lemma 3, ¢ = o'.



39

A cluster 0 is said to be determined by an ultrafilter F

iff 0=fACX: ASB foreach B in F | .

LEMMA 6. Let 0 be a cluster in (X, § ) determined by an
ultrafilter F. Then, 0  is a point cluster 0—; iff F converges
to x.

PROOF. If U0 = 0 then fx} €0, Since 0 is deter-
mined by F, x § A for every A in F. Hence x € A for every A
in F. Therefore x € 0N {K: A€ F} = adh F = 1lim F since F

is an ultrafilter. This means that F converges to x.

If F converges to x, then x € lim F = adh F

n{x:
A€eF } . Hence x § A for every A in F. Thus {x} € 0 since
0" is determined by F. By lemma 2, 0O = 0';.
THEOREM 7. A proximity space (X, §) is compact iff every
cluster in (X, § ) is a point cluster.
PROOF. By theorem 20 of chapter III, (X, §) is compact iff

every ultrafilter F converges. By lemma 6, F converges iff the

cluster it determines is a point cluster.

THEOREM 8. Let (X, § ) be a proximity space. If A § B, then
there exists a cluster ¢ containing A and B.

PROOF. Set P=JCcX: C§B|. Then P# ¢ since BE P
¢ ¢ P since ¢ $ B. Since A § B, A€ P. If (EUF) € P, then
(EUF) § B, and hence E § B or F § B. It follows that E € P or
F € P. By lemma 4, there exists an ultrafilter F such that A € F < P,
Hence the cluster 0 = {-S CX: S §F for every F in F } is deter-

mined by F. A € 0 since A€ F., B &4 since FC P,
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THEOREM 9. Let F be an ultrafilter in Y and X< Y. Then
FX = { FNX: F€F ] , the trace of F on X, is an ultrafilter in
X iff X € F.

PROOF. If FX is an ultrafilter in X, then F NX # & for
every F in F. Since F is an ultrafilter, X € F by theorem 8 of
chapter III.

If X € F, then x(\X=X€-Fx. Hence Fx#;land gé¢ FX' If
F{NXEF, and F,0 X€Fy, then (F; N X) O (E,NX) = (F N E)N
XEFX since Fln F2€- F. 1f Fl(\ XéFx and Fl('\XCF'CX,
then F'€ F since F_ and X are in F. Hence F' =F'NX € Fx.

1
Therefore FX is a filter in X.

Since (Fl(W X) U (Fz(ﬁ X) = (Fl U F2) NXEeE FX iff F1 U F2 € F,
It follows F € F or F2 € F since F is an ultrafilter. Hence
FfOXE Fx or F, NXE€ FX‘ By theorem 5 of chapter III, F_ is

X
an ultrafilter in X.

THEOREM 10. Let (Y, § ) be a proximity space and 0 a cluster
in Y. Let XCY and X € 0 . Then the cluster g ' = { A CX:
A€ 0"} is the only cluster in (X, 8,‘ ) contained in 0 .

PROOF . Since (§ is a cluster in a proximity space (Y, S )
and X € 0 , 0 is determined by an ultrafilter F containing X,
as in theorem 5. Then FX = { FNX: FEF ] , the trace of F on
X 1is an ultrafilter in X by theorem 9. Hence FX generates a
cluster g' in X. If A € 4!, then A § (F NX) for every F in
F. It follows that A § F for every F in F. ' Hence A € 0 .

Thus g 'c 0O and hence 4 ' = { AcCX: AE€ U‘} . Suppose there is
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another cluster ¢~ in contained 1in s, then < .
her cl 1oin (X, 6,0 ined in 0, then g7 < 07

By lemma 3, a-i = o',

THEOREM 11. Let f be a proximity mapping from (X, 51) to

(y, 82). Then for each eluster 0"'1 in X, there corresponds a

2
B in rl}.

cluster ¢ _ in Y such that 0"2 = [AC Y: A Szf(B) for every

PROOF. Let 6"1 be a cluster in X. Then 0"1 is determined by
an ultrafilter F in X. £(F) is a.fflter base by theorem 9 of
chapter III. £(F) generates a filter and hence there exists an
ultrafilter F* containing f£(F) and F* generates a cluster 0’2
in Y. If A ng(B) for every B in 0"1, then A Szf(F) for every
F in F since F < 0_1. Hence A € 0"2. Since f(B) € 0"2 for
each B in 0"1, f( 6‘1) c 0"2. B & 6"1 implies B SlF for
every F in F. £(B) Szf(F) since f 1is a proximity mapping. Hence
f(B) € 0"2. Therefore if A € 0" ,, then A Szf(B) for every B in

01

EXAMPLE 3. Let N denote the set of natural numbers. Define
a proximity § by A § B iff AN B+ @. Let a € N. Then

(a). The collection F = i FC N: ae€¢F } is an ultrafilter
in N.

(b). The collection O"'a = {ACN: A§ a } is a cluster.

(c). The cluster 6 = [BCN: B§F for every F in F}
is determined by F. 0 < U'a since B € ¢~ implies B § F for

every F in F and hence B § a. By lemma 3, 0 = o”a.
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(d). (N, § ) is separated since if x § y, then {x} . N | y}
+ ¢ and hence x = y. If J;_= D’B, then a § B. This implies a = b.
Therefore each cluster in (N, § ) can contain at most one singleton set.
(e). Since —A_={x: xSA}=fx:{x]ﬂA#!Zf}=
f X! X €A z = A, the topology induced by § is the discrete

topology. Hence (N, § ) is not compact. By theorem 7, there exists

a cluster which is not a point cluster.

EXAMPLE 4. Let N denote the set of natural numbers. Define
the proximity § by A § B iff A # @and B # #. Then

(a). The collection ( = { ACN: At g } is a cluster.
is the only one cluster in (N, § ) since if there exists another cluster

0~/ then ' < 0 and hence g' = 0O .

(b). Every point cluster J’a is equal to the cluster 0 .

(). (N, §) is not separated since {2} § { 32 but 2 # 3.

(d). Every cluster in (N, § ), there is only one, is a point

cluster. Thus by theorem 7, (N, §) is compact.



CHAPTER V
SMIRNOV COMPACTIFICATION

This chapter is an attempt to investigate a way to construct the
Smirnov compactification of a separated proximity space. All the
proximity spaces considered in this chapter are separated.

The following notation is used throughout this chapter. Let
(X, § ) be a separated proximity space.

X: the set of all clusters in X.

A: the set of clusters in X which contain a subset A of X.

f: A mapping from X to X defined by f(x) = oy the point

cluster determined by the point x.
8*: A proximity on X, as defined in lemma 2 of this chapter.

Using clusters, the following results will be proved later.

(i) f£(X) is dense in X.

(ii) X 1is proximally isomorphic to £(X).

(iii) (X, §") is compact. Therefore (X, § )} is embeded in a
compact proximity space (X, 8*). X is a compactification

of X called the Smirnov compactification of X.

DEFINITION 1. Let P be a subset of X. Then a subset A of

X absorbs P iff for every ¢ in P, 6 contains A. That is Pc A,

LEMMA 2. Let S* be the binary relation on X defined by

43
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P S* Q iff A absorbs P and B absorbs Q implies A § B.
Then § is a separated proximity on X and hence (X, 8*) is a
separated proximity space.
PROOF  (i). The symmetry of § ' follows directly from the

definition of § * and the symmetry of § .

Gi). (PU Q §*R iff P § R or Q §'R. Suppose
Q S*R, D absorbs (PU Q), C absorbs R. Then P U Q C D, where
D= { ge X: DGO'} . This implies QC D and hence D absorbs
Q. Since Q S*R? D§ C. Hence (PUQ S*R. Conversely, suppose
PuUQ S*R and P $*R.;Let B absorbs Q and C absorbs R. Then
there exist sets A, D absorbing P and R respectively such that
A$ D and hence there exists a subset E of X such that A $ E and
X - E) $ D. Since D absorbs R and (X - E)$ D, X - E belongs to
no cluster in R, for if not, (X - E) § D by the definition of a cluster.
Since C - EC X - E, C - E belongs to no cluster in R, for if not,
X - E will belong to one cluster in R. But (C - E) U (CNE) =C
absorbs R and C - E belongs to no cluster in R. Hence CN E
absorbs R. Now A U B absorbs P U Q and C N E absorbs R, which shows
that (AU B) § (CN E). Since A$ E and C N E is contained in E,
A $§ (CN E) by lemma 2.2 in chapter II. It follows that B § (C N E)
and hence B § C since C N E is contained in C. Therefore, if (P U Q)

8"R and P $*R, then Q S*R.

(iii). If P $7Q, then A §B. It follows that A # 4
and B # @ and hence P+ ¢ and Q # {.

(iv). If PNQ ¢+ @, then A absorbs PN Q and B absorbs
PNQ. Thus A § Band P § Q.
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). If P # *Q, then A$ B which implies that there
exists a subset E such that A $ E and (X - E) $ B. Since B absorbs
Q adn X - E $ B, X - E belongs to no cluster in Q. It follows that
E absorbs 9. Let R=E = iréx: Eé""} . Then P$*R
since A absorbs P, E absorbs E and A$ E. Since E belongs to
no cluster in X - R, X - E absorbs X - R. Therefore, (X - E) $ B
implies (X - R) $*Q.

(vi). Since every set in 0"1 absorbs { o’l} and
every set in 0 , absorbs {0"2 } , hence 6’1 S* 0"2 implies that
every set in D"l is near to every set in o"2 and hence 0"1 = 0

Therefore 8* is separated.

LEMMA 3. Let (X, §) bea proximity space and f: (X, S)-—-->
X, X*) defined by f(x) = rx. ( 0";( is the point cluster con-
taining x; thus J'X = {ACX: XS‘A} .) Then
(i1). f 1is a one - to - one mapping, and
(ii). f(A)c A for each A C X.
PROOF (i). Since § 1is separated, d’x = O"Y implies that
x = y. Therefore f(x) = f(y) implies that x = y and f is one-to-one.
(ii). Let O’a € f(A). Since {a}cC A, A€ o’a. Hence

6, € A, and hence f(A) c A.

LEMMA 4. A absorbs f£(B) iff B<E A, where A is the t( § )
closure of A.

PROOF.  Suppose A absorbs f(B). Let b & B. Then O"b €
A and A € G'b. Therefore b § A and hence b€ A. Conversely, if

BcC K, then for every b in B, b € A and hence b § A. It follows
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that A € O’b which shows that A € a“b for any a"b in £(B).

Therefore A absorbs £(B).

LEMMA 5. Let @ be any subset of X. Then Q S*f(A) iff C
absorbs 9 implies C § A.

PROOF. Let Q S$¥f(A) and C absorbs Q. Since A belongs
to every cluster in f(A), A absorbs f(A). By the definition of S'*,
C §A. If C absorbs Q implies C § A and D absorbs f(A), then
ACTD by lemma 4. Thus C 8§D and C § D. Therefore, C § D by

theorem 2.7 in chapter II.

LEMMA 6. f(X) is dense in X with respect to the topology t( § *).
PROOF. In lemma 5, let Q be the singleton fa'} . Then

3oy f(A) iff C €0 implies C § A iff A € 0= . Hence A is the

t( § *) closure of f(A). Since X belongs to each cluster in X, X

is the t( § *) closure of f(X). Therefore f(X) is dense in X.

LEMMA 7. (X, §) is proximally isomorphic to f(X) with the sub-
space proximity 5 ;(X)‘

PROOE Let C absorbs f(A) and D absorbs £f(B). If
f(A) $ *f(Bj, then C § D. Since A absorbs f(A) and B absorbs f(B),
it follows that A § B. Conversely, suppose that A § B. Let C absorbs
f(A) and D absorbs £(B). Then Ac C and BcD by lemma 4 and
TED by lemma 2.2 in chapter II. Therefore C § D by theorem 2.7
in chapter 1II. By the definition of 1y *, f(A) § *f(B). Therefore,

(X, § ) is proximally isomorphic to (f(X), S ;(X))'
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LEMMA 8. (X, §") is compact.

PROQOF. By theorem 7 in chapter IV, (X, S*) is compact iff
every cluster in X is a point cluster. Hence it suffices to show
that any cluster in X is a point cluster. Let O be an arbitrary
cluster in X. Since foi =X €0, ?(Y) § B for every B in O
and hence £(X) § B. But this implies f£(X) § B for every B in 0 .

It follows that f(X) € 6 . Applying theorem 10 in chapter IV, there
exists a unique cluster in (f(X}, S ;(X)) contained in ¢ , namely
o’ - i AC f(X): A €0 } . By lemma 7, (X, § ) is proximally
isomorphic to (f(X), S ;(X))' Hence there exists a cluster o0~
in X such that o' = {f(A): A€o’ } . From the proof of lemma
6, { 0_”} S*f(A) iff A € o=” . Hence {0"”} $ *c for every
C €0~/ . It follows § 0‘”} € 0o’ € 6- . Therefore there
exists 0" € X and {6‘"} € 0~  which shows that ¢~ is a point

cluster.

LEMMA 9. If g is a §-homeomorphism of (X, § ) onto a dense
subset of a compact proximity space (Y, Sl), then g can be extended
toa § - homeomorphism § of (X, S*) onto (Y, 81).

PROOF. Consider the following diagram.

(X, s%)
\\\ F
£ S .
T
(X, $) 5T, &)
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From the hypothesis and theorem 11 in chapter IV, for every
cluster ¢ in X, there corresponds a cluster 0"’ in Y such that
o' = {A’C Y: A Slg(A) for every A in 0"] . Since Y is
compact, ' is a point cluster. By theorem 10 of chapter IV, every
point in Y determines a unique cluster in X. Hence the clusters in
X are in a one-to-one correspondence with the points of Y. Thus
an extension g of g exists and g is a bijection from X to Y.
In order to show that g is a § - homeomorphism one must show
that P §"Q iff F(P) 81 g(Q). Let P and Q be subsets of X
and P S*Q. Since (X, 8*) is a compact Hansdorff space, (X, S*)
is normal. Hence if P s*Q, then P E # 4. 1t follows that there

exists a 0 € X such that 0 € P and 0~ € Q. Hence O

$ " and o $°0. Let y = g(6°). By axiom A, and the

5
definition of a cluster it follows that { y} Sl g(P) and { y}

§ | EQ. Hence E(P) §; ED.

Conversely, if g(P) § 1 g(Q), then there exists a y € é:(_P_)— N
E-(E)— since Y ic compact. Let § = g'l(y). Since X 1is proximally
homeomorphism to a dense subset of Y, X can be considered as a sub-
space of Y. Therefore, if A € 6 and B absorbs P, then A § g(P)
and Z(P) < B. It follows that A § B and hence { o } § *P.
Similarly, if A € & and C absorbs Q, then A £ C and hence
{0} § *Q. Therefore P §Q.

The main theorem of this chapter follows as a result of the above

lemmas.

THEOREM 10. Every separated proximity space (X, § ) is a dense
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subspace of a unique (up to a § - homeomorphism) compact Hausdorff
space X. Since X has a unique compatible separated proximity,
subsets A and B of X are near iff their closures in X have

a non-empty intersection. X 1is called the Smirnov compactification

of X.

THEOREM 11, Let g be a proximity mapping of (X, Sl) onto
(Y, 82). Then g can be extended uniquely to a proximity mapping
g which maps the compactification of X onto the compactification
of Y.
PROOF. 1In chapter IV, theorem 11 shows that if 0"1 is a
cluster in X, then there corresponds a cluster 0"2 in Y such that
6’2 = {PCY: P Szg(c) for every ¢ in o~ } . Define g( ) =
6,- Then g is a mapping from X te VY and g maps the point
cluster 0 x to the point cluster rg(x)' Hence g 1is an extension
of g.
The following proof is to show that g is a proximity mapping.
Let P 8,*Q. Suppose A absorbs g(P) and B absorbs g(Q). If
A SZB, then there exist subsets C and D of Y such that
A, -0, (- D) $213 and C $2D by theorem 3.4 in chapter II.
Since A absorbs E(f), (Y - C) belongs to no cluster in g(P). It
follows that g'l (Y-C) =X - g'1 (c) belongs to no cluster in P.
Since g'l(c) U X - g’1 (c)) = X belongs to every cluster in P,
g'l (c) belongs to every cluster in P. This means that g'l(c) absorbs

P. Similarly g'l(D) absorbs Q. Hence g'l(c) Sl g1 (D) since

*
P le. Since g 1is a proximity mapping, it follows that C SZD, but
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this is a contradiciton. Therefore A 82B3
Since f(Y) is dense in ¥ and f(Y) Cg(X) <&V and gX) is
compact in Y, it follows bhat g(X) = Y. Thus g maps X onto VY.
The uniqueness of g 1is proved as follows. Suppose there exists
another extemsion g’ of g mapping X onto Y and E/ # g. Then
there isa 0 € X such that g( 5 ) #'E/ (0°). Since Y is
Handdorff, g and §J are continuous, there exists a neighborhood E
of 0~ such that g(E) N g’ (E) = @. Now £(X) is dense in X by
lemma 6. Hense EN f(X) # @. Let o"xé EN£X). then g( O"X) #
2 O'X). Hence § and g are different on X and that contradicts
the fact that § and g are extensions of g. Therefore § = §
The following diagram shows the relations among the four proximity

spaces.

(X, §) 7 5(Y, §,0

Since every compact Hansdorff space is normal, X 1is a compact
Hansdorff space and thus X 1is a normal space. The following theorem

is an analogue of Urysohn's lemma for normal spaces.

THEOREM 12. Let (X, § ) be a separated proximity space. If
A ¢ B, then there exists a proximity mapping g: X---> [0,1] such that

g(A) = 0 and g(B) = 1.
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PROOF. If A $B, then ANB =g in X. Since X is a compact
Hansdorff space, X is normal. By Urysohn's lemma, there exists a
continuous mapping g: X---» [0,1] such that gA) =0 and E(B) = 1.
Since X is compact and g is continuous, g is a proximity mapping.

Let g be the restriction of g, then g is the required mapping.

DEFINITION 13. A proximal (or § -) extension of a proximity
! —
space (X, § ) is a separated proximity space (Y, § ) such that X = Y
/
and § = SX' A proximity space is maximal (or absolutely closed) iff

it has no proper § - extension.

THEOREM 14. A separated proximity space (X, § ) is maximal iff
every cluster in X 1is a point cluster.

PROOF. If X is not maximal, then there exists a proper S -
extension Y and hence Y - X # 4. Let a € Y - X. Then there exists
a unique cluster 0 in X such that 0 = {AC X: A € o"a}
where o, is a point cluster determined by a point a of Y - X.
Since Y 1is separated, 0 is not a point cluster in X.

If there exists a cluster in X which is not a point cluster, then
the proximal extension of X given in lemma 6 is proper and hence X
is not maximal.

A proximity space (X, § ) is compact iff every cluster in the space

is a point cluster. Hence the following corollary is obvious.

COROLLARY. A separated proximity space is maximal iff it is

compact.
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DEFINITION 15. A separated proximity space (X, § ) is equi-

normal iff ANB =¢ implies A $ B.

LEMMA 16. Every equinormal proximity space is normal.

PROOF. Let (%, § ) be a equinormal proximity space. Then for
any disjoint closed subsets A and B in X implies that A $ B
and hence A $ B. By theorem 12, there exists a proximity mppping
g: X---» [0,1] such that g(A) = 0 and g(B) = 1. Let O =
[O,%J, O2 = (%31]. Then 01, O2 are open in [0,1]. Since g is
continuous with respect to t( § ) by theorem 4.6 in chapter II.
g'l(Ol) and g'1(02) are open in X and g—l(Ol) flg-l(oz) =d,
A C.g’l(Ol) arid B Clg-l(Oz) shows that X is normal.

The converse of lemma 16 is not true. For example, let X
be the real line with the usual topology. § 1is defined by A § B
iff D(A,B) =inf | |a-bl: a€A, be B} =0. Set A=[nineN]

1 —_— -
and B = { n - g: n € N.] . Then ANB=g but A § B.

THEOREM 17. A normal separated proximity space (X, § ) is
equinormal itf every real-valued continuous function on X is a
proximity mapping.

PROOF. Let R denote the set of real numbers and let S,
be any proximity on R compatible with the usual topology. If(X, § )
is equinormal, then AN B = & implies A ¢ B. Let f be a real-
valued continuous function defined on X. A § B implies ANB#oO.
Hence f(K) N f(g) $ g’ which shows that £(A) ) 1f(g). Since f is
continuous, f(K) (o ?ij and f£(B) & ETES. It follows that §2K3 Sl

f(B) and hence f(A) Slf(B). Therefore, £ is a proximity mapping.
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Conversely, suppose any real-valued continuous function f defined
on the normal proximity space X is a proximity mapping. If A 0B = g,
then by Urysohn's lemma, there exists a continuous function f: X--->
[0,1] such that f£(A) = 0 and £(B) = 1. Hence £(A) $1 £(B).
Since f is a proximity mapping, A $ B and hence A $ B. Therefore

KOB=¢ implies A $ B which shows that (X, § ) is equinormal.



CHAPTER VI
SUMMARY AND SUGGESTIONS FOR FURTHER STUDY

This paper coveted the fundamentals of proximity spaces, basic
definitions and basic theorems. There are many additional topics that
could be considered. For eXample: (i). The development of the concept
of proximity structures in a uniform space. (ii). In theorem 2.15
in chapter II, it was shown that every completely regular space (X,t)
has a compatible proximity. It can be shown that if (X, § ) is a
proximity space, then t( § ) is completely regular. Hence a compatible
proximity can be introduced on a topological space if and only if
it is a completely regular topological space. One can study generalized
ptroximity structures that cah be introduced in any topological space.

The books and paper written by Naimpally [4], Thron [8] and

Tukey [9] are useful in the further study of proximity spaces.
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