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CHAPTER I 

INTRODUCTION 

As early as 1908, Riesz [5] sketched the concepts of proximity 

spaces in his "theory of enchainment". However, his idea received 

no further development at that time. 

In the early 1950's, Efremovic [1,2], a Russian mathematician, 

rediscovered the subject and gave the definition of a proximity space, 

which he called infinitesmma1 spaces in a series of his papers. 

Efremovic later found another way to generate proximity spaces by 

using the concept of proximity neighborhoods. 

Smirnov [7] brought the concepts of filters and clusters into 

proximity theory in order to obtain the Smirnov compactification of 

a proximity space. 

There are many research papers on proximity spaces published by 

modern mathematicians in the last ten years. The development of 

proximity spaces is growing rapidly. 

This thesis presents the basic material about proximity spaces. 

The relationship between topological spaces and proximity spaces is 

investigated. A construction of the Smirnov compactification is 

presented. 

Since clusters are used to construct the Smirnov compactification, 

and since the relationship between filters and clusters is very close, 
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the author discussed filters in chapter III and discussed clusters 

in chapter IV. 

There is an excellent list of publications on proximity spaces 

in the book Proximity spaces [4], where the reader can find advanced 

material about proximity spaces. 



CHAPTER II 

ELEMENTARY PROPERTIES 

1. THE DEFINITION AND SOME EXA}1PLES 

DEFINITION 1.1 A binary relation S defined on the power set 

of X is called a proximity on X iff it satisfies the following 

axioms: 

(AI) A 0 B implies B S A 

(A )
2 

(A U B) S C iff A S C or B S C 

(A )
3 

A 0 B implies A ~ ¢ and B +¢ 
(A4) A n B f ¢ implies A b B 

(AS) A $ B implies there exists a subset E of X such that AtE 

and (X - E) t B 

The pair (X, S ) is called a proximity space. 

DEFINITION 1.2 A proximity $ on X is separated if it satisfies 

(A) x b y implies x = y, and (X, &) is called a separated proximity
6 

space.
 

Note that x b y means tXl $ f YI .
 

EXAMPLE 1. Let X = ~a,b,c1 and define A S B iff An B ~ ¢ 
for any subsets A and B of X. & is a separated proximity. The 

proximity defined in this way is called a discrete proximit~ 

3 
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EXAMPLE 2. Let X be any non-empty set and define A 8 B 

iff Af¢ and B f~. & is a proximity on X. If X contains 

two or more points, then b is not a separated proximity. b 

defined in this way is called the trivial proximity. 

EXAMPLE 3. Let (X, d) be a pseudo-metric space. Define A S B 

iff d(AJB) = 0, where d(AJB) = inf t d(x,y) ~ x€ A and ye B1. 

If A $ B, then d(A,B) =Y:> 0. Choosing E = t x:d(x/ B)~ r I ' 

then dCA, E) ~ f and d (X-E, B)? ~. It follows that A f E and (X-E) ¢ B. 

Hence S satisfies axiom AS' The rest of the axioms are clearly 

satisfied. 

°If (X)d) is a metric space, then x S y implies d(x y) =

and hence x = y. Therefore (X,S) is a separated proximity space. 

A proximity is called a (pseudo-) metric proximity if it is 

derived from a (pseudo-) metric. 

EXAMPLE 4. Consider a normal space (X,t). Define A S B iff 

An B+¢. & is a separated proximity on X. 

The verification of all axioms except AS is straightforward. 

To prove A , let A ~ B. Then An B=~, so that, since (X,t) is T ,
S 1 4 

there exist disjoint open sets C and D such that AC C and 

Be D. Hence X-C is closed and An (X-C) = ¢. This implies A; (X-C). 

Since C n D = ¢, C C (X-D). It follows that CC (X-D) since (X-D) 

is closed. Therefore C n B = ~ and hence C * B. Let E = X-C. 

Then A ¢B implies that there exists a subset E such that AtE 

and (X-E) * B. 
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2.	 TOPOLOGY INDUCED BY A PROXIMITY. 

A proximity on X always induces a topology on X. 

DEFINITION 2.1 Let (X, ~ ) be a proximity space. A subset F 

of X is called closed iff x &F implies x €- F. 

LEMMA 2.2 (a) If A ~ B, A C C and BCD, then C rD. 

(b)	 If there is an x such that A S x and x S B, 

then A SB. 

PROOF. (a) If A ~ B, then A S (B U D) by axioms Al and A2· 

Since B c. 0, A &D. This implies (A U C) & D. Thus C S 0 since A C C. 

(b) Suppose A$B. By axiom AS' there exists a subset 

E such that A$E and (X - E) $ B. x is either in E or in X-E. 

If x Eo E, then A$x. For if A bX, then AbE by part (a). If x 

Eo X - E, then x ¢ B. Therefore, if A 5x and xSB, then A 0 B. 

THEOREM 2.3 The collection of the complements of all closed sets 

of (X, ~) forms a topology on X. This topology is denoted by t ( g) . 

PROOF. Since X and ¢ are closed in (X, b), their complements 

¢ and X are in t ( b). Let f Fi : i Ell be a collection of closed sets. 

If x & () f Fi: if I 1' then x &Fi for every i Eo I by lemma 2.2. Since 

Fi is closed, xe-F for every iE-I. Hence xE n [Fi : iE I J and n [ i 

Fi : i €- 1I 1 is closed. Therefore, if (X - F.) E t ( S ) for every 

i €- I, then U[X-F.: if-I] the complement of n 
. 1 f Fi: 

i f- IJbelongs to t( b ). Finally if Fl and F2 are closed and 

x & FlU F2' then x & F1 or x S F2· x €- F1 or x e- F2' since 

F and F are closed. This implies x Eo FlU F2. Thusl 2 
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FI U F 
2 

is closed. Therefore, if X - F ~ 
I 

t (S ) and X ­ F f 
2 

t (6 ), 

then (X - F ) n (X
I 

- F ) 
2 

= X ­ (F U 
I 

F ) 
2 

~ t ($ ). Hence t (6 ) is 

a topology on X. 

THEOREM 2.4 In a proximity space (X) ~ ), the set f x: x ~ AJ 
is the closure of A with respect to the topology t( ~ ). 

PROOF. Let A( S ) = ~ x: x S A1. If x f A( S ), then x S A. 

By lemma 2.2, x S Asince A C A. Thus x Eo A. This shows that 

A( b ) C A. If x, A( S ), then x $ A. By axiom AS' there exists 

a subset E such that Since there is no point 
x *E and (X - E) *A. 

of X - E which is near A, A( & ) C E. By lemma 2.2 and x ; E it 

follows that x f A( S). Hence A( &) is closed. Therefore, 

AC A( E ), since A is the intersection of all closed sets containing 

A. Now A( b ) C A and A c: A( S ) shows that A = A( b ). 

EXAMPLE 5. Let X be a non empty set. Define the proximity & 
by A S B iff An B :I ¢. This is the discrete proximity. Then 

A = fx: x SAl = f x: fxl()A~Ji}=fx: x E A] = A. Hence the 

topology t( S) for X is the discrete topology. 

EXAMPLE 6. Let (X) S ) be a proximity space and & is defined 

by A S B iff A f ¢ and B ; ¢. Then the topology induced by this 

proximity is the trivial topology, since A= [x: x &A} = ~ if 

A = ¢ and A = X if A ~ ¢. 

THEOREM 2.5 Let (X, S ) be a proximity space and let 0 C X. 

Then 0 f t( S) iff x ¢ (X - 0) for every x € O. 
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PROOF. If 0 Eo t( S ), then X - 0 is closed. Hence x i X -0 

implies x, X - 0, which shows that if x~ 0, then x; X - O. 

If for every xEo 0, x$ X - 0, then xS (X - 0) implies x1 O. 

This means that x &(X -0) implies x E (X -0). Hence X - 0 is closed. 

Thus 0 f t ( S ). 

THEOREM 2.6 Let (X) S ) be a proximity space and let A and B 

be subsets of X such that A; B. Then (i) Be X - A (ii) Be Int(X-A), 

where the closure and interior are taken with respect to t( ~ ). 

PROOF. (i) If there exists some x such that x f: B and x Eo A, 

then x S B and x S A. By lemma 2.2, A b B. Hence if xES, then x 1 A 

since A; B. This means that BC X-A. 

(ii) If x € B, then x S B. This implies x *A, for 

if x S A then A S B by lemma 2.2. Hence x f A. Therefore x ~ X-A. 

Since Int (X - A) = X - A, x ~ Int (X - A). 

THEOREM 2.7 . If A, B are subsets of (X, S ), then A & B iff 

ASS, where the closure is taken with respect to t( ~ ). 

PROOF. If A S B, then by lemma 2.2 A& S since A C A. and Be B. 

If A *B, then there exists a subset E of X such that A *E and 

(X -E) $ B. Hence B c. E. This implies A f B for if ASS, then by 

lemma 2.2 A S E since Be E. By applying lemma 2.2 again it follows that 

A. *B. 
Since a Kuratowski closure operator on X always introduces a 

topology for X. Hence if the operator A---~ A = f x: x S A} 

defined on the power set of a proximity space (X, b ) is a Kuratowski 
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closure operator, then the same topology as in theorem 2.4 can be 

introduced. The following theorem 2.9 will show that A---~ A is 

a closure operator. 

DEFINITION 2.8 Let X be a set and P (X) be the power set of 

X. The the operator C: P (X)---~ P (X) is a Kuratowski closure 

operator provided: 

(i) C (~) = ¢ 

(ii) A £ C (A) for every A e P (X) 

(iii) C (A U B) = C (A) U C (B) for any A,B belonging to P (X) 

(iv) C (C(A)) = C (A) for every Ae P (X) 

THEOREM 2.9 Let (X, S ) be a proximity space and A C X. 

Define A = f x f x: x sAl. Then the operator A---~ A is a 

Kuratowski closure operator on X. 

PROOF. (i) Since there is no set which is near ~,~ = 

fx E X: x0 ¢} = ¢. 

(ii) If x E A, then x S A. Hence x Eo A This shows 

that A So A 

(iii) Since x ~ (A U B) iff x S (A V B) iff x &A or 

x ~ B iff x Eo A or x € B iff x €- A U B (A ~) = A U B 

-(iv) Ifx€,A , then x S A and hence x Eo (A ) 

Therefore A C. (A ) If x f A , then x $ A. This implies that 

there exists a subset E such that x *E and (X : E)f A. Now if A is 

not contained in E, then there exists an element t in A but t is not 

in E and hence t b A and t e (X - E), contradicting (X - E) t A. Hence 
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ACE. By lemma 2.2, x ~ A since x f E. This means that x f (A ) 

and hence (A ) C A 

DEFINITION 2.10 Let (X,t) be a topological space and g a 

proximity on X such that t = t( b). Then b is said to be compatible 

with the topology t. 

DEFINITION 2.11 A TO - space is a topological space in which, 

given any two distinct points x,y, there exists either a neighborhood 

N not containing y or a neighborhood N not containing x. x y
 

A T - space is a topological space in which, given any two
 
l 

distinct points, each has a neighborhood which does not contain the other. 

DEFINITION 2.12 A completely regular space is a topological 

space such that for each point x and neighborhood N of x, there is a 

continuous function with values in the interval [0,1] for which 

f(x) = 1 and fey) = 0 if y~tV 

DEFINITION 2.13 A Tychonoff space is a topological space which 

is a completely regular space and a T - space.
1 

DEFINITION 2.14 Given a completely regular space (X,t), the 

subsets A,B of X are functionally distinguishable iff there exists a 

continuous function f with values in the interval [0,1] such that 

f(A) = 0 and feB) = 1. 

THEOREM 2.15 If (X,t) is a completely regular space, then 

the proximity 8 defined by A , B iff A and B are functionally 
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distinguishable, is compatible with t. If (X,t) is Tychonoff space, 

then S is separated. 

PROOF. It is first shown that S is a proximity on X. 

(i). Suppose BfA. Then B and A are functionally 

distinguishable. Hence there exists a continuous function f: X---~ [0,1] 

such that feB) = 0 and f(A) = 1. Let g = l-f, then g is continuous 

since f is continuous and g(A) = 1 - f(A) = 0, g(B) = 1 - feB) = 1. 

This shows that A and B are functionally distinguishable. Hence 

A * B. Therefore A S B implies B $ A. 

(ii) .If (A U B) $ C, then (A U B) and C are functionally 

distinguishable and hence there exists a continuous function f: 

X---~ [0,1] such that f (A U B) = 0 and f(C) = 1. It follows that 

f (A) = 0, feB) = 0, f(C) = 1. This implies and B $ C.
A *C 

If A $ C and B $ C, then A, C are functionally distinguishable 

and B, C are functionally distinguishable. This implies that there exist 

continuous functions f and f such that f (A) = 0, f (C) = 1 
1 2 1 1 

and f (B) = 0, f (C) = 1. Let f (x) = g.1. b f f (x), f LX)} . Then 
2 2 1 2 

f(A U B) = 0, f(C) = 1. f is continuous since f and f arel 2 

continuous. Hence (A U B) $ C. Therefore (A LJ B) $ C iff A S C or 

B S C. 

(iii). If A =~ or B = ¢, then A and Bare 

functionally distinguishable and hence A * B which shows A ~ B 

implies A f ¢ and B ~ ¢. 

(iv). Suppose A $ B. Then there exists a continuous 

function f: X---~ [0,1] such that f(A) = 0 and feB) = 1. It follows 

that A n B = ¢' for if A n B * ¢, then there exists a point a ~ A n B 
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and f(a) = 0, f(a) = 1 which is impossible. Hence if A n B ~ ¢, 

then A $ B. 

(v). Let A $ B. Then there exists a continuous 

function f from X to [0,1] with f(A) = 0 and feB) = 1. Let 

E = l x Eo X: .!. ~ f (x) ~ 1 } . (1) . A $ E since there exists a 
2 

continuous function g defined by g (y) = 2y for 0 ~ y ~!. and g (y) =1 
2 

1
for - ~ y ~ 1. The composite function gf is a continuous function such 

2 
that g(f(A)) = 0 and g(f(E)) = 1. (2). (X - E) t B since there exists 

1 a continuous function h such that h(z) = 0 for h (z) =o~ z ~ 2' 
2z - 1 for .!. ~ z ~ 1. The composite function hf is a continuous func­

2 

tion from X to [0,1] and h(f(X -E)) = 0 h(f(B)) = 1 where X - E = 

l x Eo X; 0 ~ f(x) ~ t}. 
It is now shown that S is separated if (X,t) is Tychonoff. 

Since (X,t) is T - space, if x f y, then there exists a neighborhood
o 

N of y such that x ~ N' • Since (X, t) is completely regular f x} 

and AI are functionally distinguishable. Hence x$N By lemma 

2.2, x *y. Therefore, if x S y, then x = y. This shows that 

is separated. 

Finally, show that t=t(S)· Let G E- t and x Eo G. 

Then x ~ X - G, so that there exists a continuous function from X to 

[0,1] such that f(x) = 0 and f(X - G) = 1. Hence x $ X-G. This 

shows that G E t( S ), by theorem 2.5. Conversely, if G e t( ~ ) 

and x E G, then x , X - G by theorem 2.5. Hence there exists a continuous 

function f from X to [0,1] such that f(x) = 0 and f(X - G) = 1. 

Then f-l([O,!.)) is an t open neighborhood of x in G, since f 
2. 

is continuous and [O'~) is open in [0,1]. Therefore G Eo t. 
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DEFINITION 2.16 A T - space is a topological space in which 
4 

each pair of disjoint closed sets have disjoint neighborhoods. A normal 

space is a topological space that is T and T . 
4 1 

The following is Urysohn's lemma which is stated without proof. 

LEMMA 2.17 (Urysohn's lemma) Let X be a normal space, and 

let A and B be disjoint closed subsets of X. Then there exists 

a continuous real function f defined on X, all of whose values lie 

in the closed unit interval [0,1], such that f(A) = °and feB) = 1. 

By the Urysohn's lemma, every normal space is completely regular 

and hence is a Tychonoff space. 

THEOREM 2.18 Let (X,t) be a normal space. Then An B= ¢ 
iff A and B are functionally distinguishable. 

PROOF. By lemma 2.17 if Ans = ¢, then A and Bare 

functionally distinguishable. If An B f ¢, then there exists a point 

x such that x ~ An B. Since there exists no function f such that 

f(x) has different values at one point x it follows that A and B 

are not funcitonally distinguishable. 

THEOREM 2.19 Let(X,t) be a normal space. Then A 8 B iff 

A0 B; ¢ defines a compatible proximity. 

PROOF. By theorem 2.18, An B= ~ iff A and Bare func­

tionally distinguishable. By the properties of a continuous function, 

A and B are functionally distinguishable iff A and B are func­

tionally distinguishable. Hence, A $ B iff AnB= %iff A and B 
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are functionally distinguishable iff A and B are functionally 

distinguishable. Since every normal space is completely regular, by 

theorem 2.15, $ defines a compatible proximity. 

THEOREM 2.20 If a completely regular space (X,t) has a com­

patib1e proximity b defined by A 0 B iff A. () B 4= fb' then(X,t) is T . 
4 

PROOF. Let P and Q be a pair of disjoint closed sets. 

Therefore P $ Q, and there exists a subset E such that P $ E and 

(X - E) f Q. By theorem 2.6, pc Int(X - E) and Q C Int E. Since 

Int(E) n Int(X -E) = ¢, (X,t) is T .
4

DEFINITION 2.21 If $ and are two proximities on a set~ 21 
X. Define S1 > 8 2 iff A ~ 1B implies A 8 B. 8 1 is said to 

2 
be finer than S ,or f is said to be coarser than 8 .

2 2 1 

The following theorem shows that a finer proximity induces a 

finer topology. 

THEOREM 2.22 If Sand S are two proximities defined on 
1 2 

a set X, then g < S2 implies t ( S ) C t ( ~ ).
112
 

PROOF. If 0 G t ( g ), then by theorem 2.5, x 0 (X - 0)

1 11 

for every x € O. Since ~ 1 .(. S 2' x ; 2lX - 0) for every x E O. 

Again by theorem 2.5, 0 Eo t ( S ). Hence t ( S ) C t ( G ).
212 

THEOREM 2.23 Let t and t be two completely regular
1 2 

topologies on X and S , (l be the proximities on X defined1 () 2 

by AS. B(i = 1, Z) iff A and B are functionally distinguishable
]. 

with respect to t and t respectively. Then t C t implies $ <. 3 .
1 z 1 Z 1 Z 
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PROOF. If A J B, then there exists a continuous function f 
1 

from (X, t ) to [0,1] such that f(A) = 0 and feB) = 1. Since t C t 
1 1 2 

f is also a continuous function from(X, t ) to [0,1] such that f(A) = 0 
2 

and feB) = 1. This means that A t B. By definition 2.21, S '> S . 
221 

3. PROXIMITY NEIGHBORHOOD 

DEFINITION 3.1 A subset B of a proximity space (X, S ) is 

a 8 - neighborhood of A if A f X-B. This is denoted by A« B. 

THEOREM 3.2 Let (X, b ) be a proximity space, A and Int(A) 

denote, respectively, the closure and interior of A in t( 8). Then 

(i) . A <..< B implies A « B, and 

(ii) . A « B implies A« Int (B) . 

PROOF (i) . If A« B, then A ~ X-B. By theorem 2.7 and 

lemma 2.2, A ~ (X - B), which shows that A« B. 

(ii) . A « B implies A t X-B. Since X - B = 

X - Int (B) , A , X - Int (B) . Hence A.« Int(B). 

LEMMA 3.3 Let (X, b ) be a proximity space. Then A $ B implies 

A C X-B. 

PROOF. Suppose Adr X-B. Then there exists at least one point 

a in A such that a ~ X-B. This means that a E B. Hence A n B ~ ~. 

It follows that A S B, which is impossible. Therefore Ac X-B. 

THEOREM 3.4 Axiom A is equivalent to the statement: If 
5 

A ~ BJ then there exists subsets C and D such that A t (X - C)J 

(X - D) f Band C $ D. 
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PROOF. If A holds, then A $ B implies there is a subset o 
5 

such that Af 0 and (X - 0) $ B. Since A $ 0, there exists a subset 

C such that A f (X - C) and C $ o. To prove the converse, let E = X-C. 

Then A ~ E. By lemma 3.3, C C X - 0 since C f O. Hence (X - E) = C 

and C *B, for if C ~ B, then (X - 0) S B by lemma 2.2, a contradiction. 

Therefore A holds. 
5 

COROLLARY. In a proximity space (X, ~), A f B implies that 

there exists subsets C and Osuch that A« C, B << 0 and C I o. 

If S is separated, then the topology t( S) is Hansdorff, since 

x + y implies x f y and there exist disjoint subsets C and 0 such 

that f x} << C and [ y1 << 0 • 

LEMMA 3.5 Let S be a compatible proximity on a completely 

regular space (X,t). If A is compact and B is closed and A () B = jf, 

then A f B. 

PROOF. Since B is closed, x E B iff x S B. For each a Eo A, 

a • B since A n B = jf. Hence a ~ B for each a in A. By the 

corollary of theorem 3.4, there exists an open neighborhood N 
a 

of a 

such that N 
a 

, B. But ) N:
l a 

a Eo A] is an open cover of A, hence 

there is a finite subcover \ N .: 
~ a1 i = 1,2, ... , n 1. Since N .

a1 
$ B 

for each i, U [N
a1
.: i = 1,2, ... , n J f B. By lemma 2.2, A $ B 

since A C U[ N . i = 1,2, • . ., n ] .
a1 

THEOREM 3.6 Every compact topological space X which is 

completely regular (Tychonoff) has a unique compatible (separated) 

proximity,given by A S B iff A (') B-j: ~. 



16 

PROOF. Let b be any proximity and An B f ¢. Then A b B. 

Since Ab B iff A b B by theorem 2.7, AS B. Conversely, let S 

be any proximity and A ~ B. Since A is a closed subset of a compact 

space X, A is compact. By lemma 3.5, An B*~ since B is closed. 

Now, if X is Tychonoff, then [xl is closed. Hence if x S y, 

then f x} n f y 1f fI and x = y. 

THEOREM 3.7 In a proximity space (X, ~ ), the relation 

has the following properties. 

(i) . X « X. 

(ii) . ¢« A for any subset A of X. 

(iii) . A« B implies A C B. 

(iv). ACB implies A ~< B iff ~ is discrete. 

(v) . A C B, B <.<. C and ceo imply A <.< D• 

(vi) . A« Bi for i = 1, 2, . . , n iff A« n [B i : i= 1,2, ... n] 

(vii) . A« B implies (X - B)« (X - A). 

(viii) . A « B implies there is a C such that A « C « B. 

(IX) • If ~ is separated, then x « (X - Y) iff x f y. 

(X) . If A.« B. for i = l,2, ... ,n, then 
l. l. 

n [A. : i=1,2, ... ,n]« n [B.: i = 1,2, ... ,n] and 
l. l. 

U [A.: i = 1,2, ... , n] « U [Bi : i = 1,2, ... ,n]
l. 

PROOF (i) . Since X $ ¢ = X - X, X« X. 

(ii). By axiom A ~ is not near to any subset of X.3, 

This means ¢ ¢ (X - A) for any subset A of X. Hence ¢« A. 

(iii). If A« B, then A j (X - B). It follows that 

A n (X - B) = ¢, and hence A C B. 
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(iv). If S is a discrete proximity, then A b B iff 

A n B t~. Hence if A C B, then A n (X - B) =~. It follows that 

A $ X - B and hence A ~< B. Suppose A b B and A n B = ¢. Then 

A C X - B and A ~< X-B. By definition 3.1, A« X - B implies 

A $ B, which is a contradiction. Therefore A b B implies A n B f ¢. 

By axiom A
4

, A n B ; ¢ implies A ~ B. Hense S is the discrete 

proximity. 

(v). By definition 3.1, A ~ 0 implies A r X-D. 

Since C C D, A SX - C by lemma 2.2. It follows B g X - C since 

A C B. Hence B ~ C, a contradiction. 

(vi). A« B. for i = 1,2, ... ,n iff A ~ X-B. iff 
1 r 1 

A ~ U [(X - B.): i = 1,2, ... ,n] by axiom A2 iff A j X - "[B.:
1 1 

i = 1,2, ... , n] iff A<.< n [B.: i = 1,2, ... ,n]
1 

(vii) . If A« B, then A ~ X - B and hence (X - B) t A. 

Since A = X - (X - A), (X - B) $ X - (X - A). Therefore (X - B) « 

(X - A)" 

(viii) . If A « B, then A t X-B. There exists a 

subset C such that A , (X - C) and C f (X - B) which shows 

A « C « B. 

(IX). If x + y, then x f y and hence x« (X - y). 

If x..« X - y, then x $ y. Hence [xl n fy} =¢, which shows that x f y. 

(X) • Since n [A.: i = 1,2, ... ,n] CA., hence if A. $ 
111 

X-B., then n [A.: i = 1,2, ... ,n] ~ X-B.. Therefore n [A. :
1 1 1 1 

i = 1,2, ... ,n]« B.. By property (vi), n [A.: i = 1,2, ... ,n]«
1 1 

n [B.: i = 1,2, ... ,n].
1 

Since X-B. :::> X U[B.: i = 1,2, ... ,n], hence 
1 1 
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if A.' X - B., thenA.' X - U[B.: i = 1,2, ... ,n]. It follows that 
111 1 

U [A.: i = 1,2, ... ,n] ~ X - U [B.: i = 1,2, ... ,n] and therefore 
1 1 

U [Ai: i = 1,2, ... ,n]« U [B : i = 1,2, ... ,n] .i 

THEOREM 3.8 Let A be a subset of a proximity space (X, f ). 

Then A = () [B: A« B]. 

PROOF. By theorem 3.2, A «B implies A« B and hence 

AC B by lemma 3.3. This shows A c n [B: A« B]. If x ~ A, 

then x f A for if x b A, then x E' A. = A. By the corollary of 

theorem 3.4, A has a b -neighborhood Bx and x +Bx. Hence x f n 

[B: A« B] since Bx is also a S -neighborhood of A. 

4. PROXIMITY MAPPING. 

Corresponding to the concept of continuous functions between 

topological spaces, there are proximity mappings between proximity spaces. 

DEFINITION 4.1 Let (X, $ 1) and (Y, S2) be two proximity spaces. 

A function f from X into Y is said to be a proximity mapping or a 

proximally continuous mapping iff A b B implies f(A) S feB).
1 2 

EXAMPLE 7. Let (X, b ) be a proximity space and Y be a non-

empty set. Define ~ by A S B iff A 'f !if, B '" It, the trivial proximity.
t t 

Define b by A S B iff A n B 1 ¢, the discrete proximity.
d d 

(i) . Any mapping f from (X, ~ ) to (Y, S ) is a proximity
t 

mapping. 

Let A and B be subsets of X. f (A) $ f (B) iff f (A) = yf 
t 

or feB) = yf. This implies A =)1 or B = fland hence A f B, which shows 
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that A b B implies f(A) S f(B). 
t 

(ii). Any mapping g from (Y, $ ) to (X, ~) is a proximity
d 

mapping. 

Let A and B be subsets of Y. A S B iff A n B F ¢. 
d 

Therefore g(A) n g(B) 1 ¢ and hence g(A) &g(B). Thus g is a proximity 

mapping. 

(iii). The identity mapping I from (X, b ) to (X, S) is not 
t d 

a proximity mapping, where X contains at least two points. 

Let a,b be two distinct points of X. Then a S b but 
t 

a fdb. 

THEOREM 4.2 Let (Y, b ) be a proximity space. Let f be a 

function from X to (Y, S). Define a relation f by A F B iff 

f(A) b feB). Then I' is a proximity on X. 

PROOF (i). A f B implies f(A) 6 feB) and hence feB) d f(A). 

Therefore BfA. 

(ii). (A U B) f C iff f(A U B) 8 fCC) iff (f(A) U 

f(B)) b fCC) iff f(A) S fCC) or feB) S fCC) iff ArC or B~ C. 

(iii). A f B iff f(A) S feB). It follows f(A) ¥ ~ 

and feB) 1: rj since & is a proximity and hence A .,. ~ and B F 11. 

(iv). If A n B F ¢, then f(A n B) ~ ~ and hence 

f(A) n feB) f~. It follows f(A) S feB) and therefore Ar B. 

(v). If At B, then f(A) f feB) and hence there exists 

a subset E of Y such that f(A) ~ E and (Y - E) , feB). Since 

ff-l (E) C E, f(A) ~ ff- l (E) and hence A If f- l (E). Since f- l (Y -E) = 

X - f-l(E), f(X -f-l(E)) = ff-l(y - E) C Y - E. It follows that 
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f(X - f-l(E)) $ feB) and therefore (X - f-l(E)) HB. 

THEOREM 4.3 Let f be a one to one function from a proximity 

space (X, 8 ) onto a set Y. Define a relation f' on Y such that A? B 

iff f- l (A) & f- l (B). Then r is a proximity on Y. 

PROOF (i). ArB iff f-l (A) b f- l (B) which implies f- l (B) S 

C l (A) and hence BfA. 

(ii). Since f-l(A U B) = f-l(A) U f-llB). Hence (A U B) 

f C iff f-l(A U B) b f-l(C) iff (f-l(A) U f-l(B)) b f-l(C) iff 

c l (A) S f- l (C) or f- I (B) S f- l (C) iff Af' C or Bf C. 

(iii) . A f B iff f- l (A) $ f'"l (B) implies f- l (A) t- %and 

C l (B) f. rd. It follows that A f= Ii and B "/: ;6. 

(iv). f-l(A) f f-l(B) implies f-l(A) n f-l(B) = ¢. 

Therefore if A f B, then A n B = ¢. 

(v). If f-l(A) ~ f-l(B), then there exists a subset E of 

X such that f-l(A) , E and (X -E) f f-l(B). By lemma 3.3, f-l(A) ex - E 

and f-l(B) C E. It follows that A C f(X - E) and Be feE). Now, if 

A f feE), then f-l(A) &f-lf(E) or f-l(A) S E since f is 1 - 1, con­

tradicting f-l(A) f E. Hence AH feE). Since Y - feE) = f(X - E), 

f-l(y -feE)) = X - E and hence f- l (Y -feE))) $ f-l(B) which shows that 

(Y - f(E))jf B. 

DEFINITION 4.4 Let X and Y be topological spaces and f 

be a mapping from X into Y. f is called a continuous mapping 

if f-l(G) is open in X whenever G is open in Y. 

LEMMA 4.5 Let f be a mapping from one topological space X into 
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another topological space Y. Then f is continuous iff f-l(F) is 

closed in X whenever F is closed in Y iff f(A) C f(A) for any sub­

set A of X. 

PROOF (a). If f is continuous and F is closed in Y, 

then Y - F is open and f-l(y - F) = X -f-l(F) is open and hence f-l(F) 

is closed. Conversely, if G is open in Y, then Y - G is closed. Hence 

f-l(y - G) = X - f-l(G) is closed. This implies f-l(G) is open. By 

definition 4.4, f is continuous. 

(b). If f(A) C f(A) for every subset A of X and F 

is closed, then f(f-l(F)) C f(f-l(F)) C F = F. This means f-l(F) c:. 

f-l(F) which shows that f-l(F) is closed. On the other hand, if f-l(F) 

is closed whenever F is closed. then f is continuous by part (a). 

Let y ~ f(A). Then there exists an x ~ A such that y = f(x) and 

Nx n A f; rt for every neighborhood Nx of x and hence f(Nx n A) = 

f (Nx) n f (A) f; 1 for any neighborhood Nx of x. Let Ny be a neigh­

borhood of y. Then f-l(Ny) is a neighborhood of x since f is continuous. 

Hence f (f- l (Ny)) n f (A) '# {t. Since ff- l (Ny) C Ny, Ny n f (A) i Ji 

which shows that y Eo f (A). Therefore f (A) c. 'f'(A). 

THEOREM 4.6 A proximity mapping f from (X, S1) to (Y, g2) 

is continuous with respect to t( g1) and t( S2)' 

PROOF. Let Aex. Since f is a proximity mapping, x S1A 

implies f(x) S f(A).
2 

Therefore, if x E- A, then f(x) €: 'f("A). Hence 

f(A) C f(A). By lemma 4.5, f is continuous with respect to t( S 1) 

and t ( g ).
2 
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DEFINITION 4.7 Two proximity space (X, 6 1) and (Y, b2) are 

called proximally isomorphic (or g -homeomorphic) iff there exists a 

one - to - one mapping f from X onto Y such that both f and f- l 

are proximity mappings. f is called a proximity isomorphism or f-

homeomorphism. 

LEMMA 4.8 Let (X, C) be a proximity space and let Y be a 

subset of X. For any subsets A, B of Y, define A C B iff ArB. 
Y 

Then S is a proximity on Y. 
Y 

PROOF. The first four axioms of a proximity are easily verified. 

To prove the last axiom, let A $yB. Then A f B and hence there exists 

a subset El of X such that A f El and (X - El ) $ B. If the inter­

section of Yand El is empty, then Y is a subset of X - El . Since 

(X - El ) f B, Y ~ B contradicts B is a subset of Y. Hence the 

intersection of Y and El is not empty. Set E = Y n El . Then A $ E 

since E is a subset of El and A , El. (Y - E) f B since Y - E 

is a subset of X - El and X - El , B. Therefore if A $yB, then there 

exists a subset E of Y such that A f E and Y - E f B which 

shows that BA *E and (Y - E) fy .Y 

DEFINITION 4.9 The proximity S defined in the previous lemma 
Y 

is called the induced (or subspace) proximity on Y and t( 8 ) is the 
Y 

subspace topology induced on Y by t( g ). 



CHAPTER III 

FILTERS 

DEFINITION 1. Let X be a non-empty set. A filter F on X 

is a non~empty collection of subsets of X such that 

(ly. 4> ~ F 

(2) • A E f, B E F imply A (\ B E F. 

(3) . A E F and A C B imply B E F. 

EXAMPLE 1. Let X be a non-empty set. Then f X I is a filter 

on X. 

EXAMpLE 2. Let (X, t) be a topological space and x Eo X. The 

collection N(x) = [B: B is a neighborhood of x 1 is a filter on 

X called the neighborhood filter of x. 

EXAMPLE 3. Let f x ] be a sequence in a topo lcilgical space (X, t) .n 

Define Fk = f x : n ~ k 1 for k a natural number. Then the col­n

lection of subsets of X defined by F = f F c. X: F::> Fk for some k 1 
is a filter, called the filter generated by the sequence. 

DEFINITION 2. Let Fl , F be filters on a given set X. Define
2 

F1 ~ F2 iff F1 Co F2. 

DEFINITION 3. A filter U on X is a ultrafilter if U ~ Ul , 
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a filter on X, then U = Ul . 

ZORN'S LEMMA. If P is a non-empty partially ordered set in 

which every chain has an upper bound, then P possesses a maximal 

element. 

THEOREM 4. For any filter V on X, there exists an ultra­

filter U on X such that V ~ U. 

PROOF. Let O((V) be the set of all filters on X which contains 

V. Define a partial order on ol(V) by definition 2. Every chain e 

in O((V) has an upper bound in ~(V). This upper bound is the union 

of all elements of the chain e. To show that V = U [V.: V E el 
l. i 

is a filter, it is enough to note that (i). p$ ~ V since o ~ V
l. 
.. 

(ii) . If A E V and A C B, then A is in V. for some V. in e. 
l. l. 

Since V. is a filter, B E Vi' Hence B E V. (iii) . If A E: V,
l. 

B E V, then A €- V., B Eo Vi for some V., V. in e. If V. ~ V. ,
l. 1 J l. J 

then A E Vj and A n B E V. since V. is a filter. If V. ~ V.,
J l.J J 

then A (\ B E V.. It follows that A () B is in V. By Zorn's lemma,
l. 

~(V) has a maximal element. This maximal element is an ultrafilter 

which containsV. 

THEOREM 5. A filter U is an ultrafilter on X iff A U B E U 

implies A E U or B E U. 

PROOF. Suppose A U B Eo U and A ¢ U, B ~ U. Let V be 

the set of all subsets Y of X such that Y U A f: U. Then V is a 

filter by the following argument.
 

(1). ¢ ~ V since %U A = A~ U and V +~ since BE V.
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(2) . If Y Yare in V, then Y U A f U and Y U A Eo U.
l

, 
2 1 2 

(Y U A) n (Y U A) = C\ n Y2) U A € U since U is a filter.
l 2 

Hence Yl n Y2 Eo V. 

(3) . If Y1 f V and Y1 c. Y2' then Y1 U A C Y2 U A and Y2 LJ 

A Eo U. Hence Y2 Eo V. U ~ V for if Y €- U, then Y C Y U A E U 

and hence Y Eo V. U ~ V since B € V but B f U. Hence U is not 

an ultrafilter. 

Suppose A U B f U implies A € U or B € U and U is not an 

ultrafilter. By theorem 4, there exists an ultrafilter V such that 

U C V. Choose an A such that A ~ U but A E V. (X - AJ E- U since 

(X - A) U A = X E U. It follows that X - A Eo V since Ul C V. 

(X - A) n A E V since X - A and A are in V. Hence )! Eo V, but 

this is impossible. 

COROLLARY. If U is an ultrafilter on X, then for any subset 

A of X either A is in U O~ its complement is in U. 

COROLLARY. If U[Ai: i = 1,2, ... ,n] is in an ultrafilter U, 

then at least one A. is in U. 
1 

EXAMPLE 4. Let a be a fixed point of X. The collection U 

of all subsets of X which contains a is an ultrafilter, called a 

fixed ultrafilter. 

(1).	 U is not empty and % is not in U since a ~ %. 
(2) .	 If A E- U, B E U, then a E A n B. It follows that 

A	 (\ B E U. 

(3). A E U, A C. B imply B E U. 
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(4). If A U B G U, then a Eo A U B. It follows that a E: A 

or a E B. Hence A Eo U or B E- U. 

EXAMPLE 5. Let N denote the set of natural numbers. Set F = 
k 

f n: n ~ k J . Define F = f F C. N: F ~ Fk for some k in N1 
Then 

00 
(1) . F is a filter generated by the sequence ~ n J, 
(2). By theorem 4, there exists an ultrafilter containing F. 

It is clear that such an ultrafilter is not a fixed ultrafilter. 

DEF INITION 6. A non-empty collection t5 of subsets of X is 

called a filter base iff 

(1). ¢, fJ 

(2). If B ,:B t(3 , then there exists B € j3 such that
l 2 

B C Bl n B
2

. 

THEOREM 7. If ~ is a filter base on X, then the collection 

F( ;S ) consisting of all sets A such that A::> B for some B in 

j3 is a fil ter. 

PROOF. (1) . ¢ f F(j3 ) since ¢ ~ (3 (2) . F( j3 ) F J3 

since fJ is not empty. (3). If A E F( j3 ) and A C C, then there 

exists B € jJ with B C A. Hence B C C and C € F( f3). (4). 

If and A are in F( j3 ), then there exists B and B in jJAl 2 l 2 

such that Al ::;, B and A :;:;J B
2 

. Hence Al n A2 ::> Bl n B2 .l 2 

Since fJ is a filter base, there exists B in j3 such that 

Bl n B2 ::> B. Therefore Al n A :::> B n B :::> B and hence Al n2 l 2 

A2 E F( j3 ) . 
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F( f3 ) is called the filter generated by /3 and j3 is called 

a base of the filter F(f3 ). f3 is called an ultrafilter base if 

F( j.3 ) is an ultrafilter. 

EXAMPLE 6. Let R be the set of all real numbers. Let A be 

the close interval [0,1] and j3 = fA] . Then 

(1) • (J is a fil ter base since j3 t- fi1, j25 , J3 and A C 

(A n A). 

(2). The collection F( (3 ) = f FeR: F ::> [0,1] 1 is 

the filter generated by (J By theorem 5, F( ;3 ) is not an ultra­

filter since [0, }] U [i, 1] € f (j3 ) but [0, ~] ~ F ( (3 ) and 

[.!., 1] ~ Y; ((3 ). Hence j.1 is not anultrafilter base. 
2 

EXAMPLE 7. Let R denote the set of real numbers. Set ;3 = 

t (a, b): 1 E (a,b), a, b E R} , the set of all open intervals 

containing 1. Then 

(1) . ,13 is a filter base since j3 :#: ~, ¢ f (3 and the inter­

section of two open sets containing 1 is an open interval containg 1. 

(2). (3 is not a filter since (0,2) E j3 and (0,2) C. [0,2] 

but [0,2] 4 J3 

(3) . The collection F (/3 ) = f FeR F ::> (a, b) and 

1 Eo (a, b) } is the filter generated by j3 

(4) • F(;3 ) is not an ul trafil ter since (0,1] U [1,2) = (0,2) € 

F ( (J ) but (0,1] ~ F( (J ) and [1,2) ~ F( P ) . 

EXAMPLE 8. Let R be the set of real numbers. Set j3 = [f 11] 
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Then 

(1). (3 is a filter base but (3 is not a filter. 

(2). The collection F(~) = f FC R: F:::> fl}} is the 

fil ter generated by f3 

(3). F( (3 ) is a fixed ultrafilter. 

EXAMPLE 9. Let N denote the set of natural numbers. Set 

Sn =	 ~ n, n+l, n+2, ..• ]. Let (3 = f Sn: n = 1,2, ... }. Then 

(1). j3 is a filter base. 

(2). The collection F( j3 ) = f FeN: F:::> Sn for some Sn in j3 } 

is a filter. 

(3). By theorem 5, F( P ) is not an ultrafilter since the union 

of the set E, of all even numbers, and the set 0, of all odd numbers, 

in in F(f3) but neither E nor 0 is an element of F(f3). 

THEOREM 8. A filter F is an ultrafilter on X iff A n F ~ ¢ 
for all F in F implies that A belongs to F. 

PROOF. Let F be an ultrafilter and A C X such that A n F # ~ 

for all F in F. Then the collection consisting of all finite inter­

sections of elements of F U ! A J is a filter base and hence determines 

a filter F' such that F' ::> F. Since F is an ultrafilter, A E F' = F. 

If F is not an ultrafilter, then there exists a filter F' such 

that F' :::> F and F' 1 F. Hence there exists a set A such that A Eo F' 

and A 4 F and A n F # %for all F in F'. It follows that A n F ~ 

~ for all F in F since F'::> F. Therefore if F is not an ul tra­

filter, then there exists an A such that A' F and A n F i ~ for 

all F in F. 
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THE'OREM 9. Let F be a filter on X and f a function from 

X to Y. Then the set of all f (A), A c F is a filter base on Y. 

PROOF. ¢, f(A) since A :f: li. For any A, B in F, f(A) n 
f(B)::J f(A n B). Hence f f(A): A € F } is a filter base on Y. 

The set ~ f(A): A E F} is denoted by f(F). Since f(F) is a 

filter base on Y, by theorem 7, the collection E = fEe Y: E ~ f(A) 

for some f(A) in f(F) 1is a filter on Y generated by the filter 

base f(F) on Y. 

EXAMPLE 10. Consider example 9. Let f: N---~ N defined by 

fen) ::n+2. Set F = F(f3). Then f(F) = f F'c N: l~ FI,2f F' 

and F' ~ Sn+2 for some n in N 1. By theorem 9, f(F) is a filter 

base on N. f(F) is not a filter since for any F' in f(F), F' is 

contained in Sl but Sl f f(F). 

DEFINITION 10. Let (X,t) be a topological space and let F be 

a filter on X. 

(a) . The limit set of F is lim F = f x: N E F for eachx 

neighborhood N of x J . The element x is said to be a limit pointx 

of F or F is said to converge to x. This is denoted by F~x. 

(b). The adherent set of F is adh F = f x: Nx n F * % for 

each F in F and for every neighborhood Nx of x}. The element 

x is said to be an adherent point of F. 

EXAMPLE 11. Let (R, I /) be a metric space with the usual topology. 

Define F = f FeR: 1 E F 1. Then F is a filter on R and lim F = 

f I} , adh F = f 1 1 



30
 

THEOREM 11. Let (X,t) be a topological space and let F be a 

filter on X. Then adh F = n iF: F €: F ] . 
PROOF. If x Eo (1 fF: F €: F } , then x E F for every F in 

F. Since x is a closure point of F. N n F t % for every neigh-x 

borhood N of x and for every F in F. Hence x Eo adh F. x 

If x $ n f F: F f F } , then there exists a F in F such 

that x ~ F. Hence there exist at least one neighborhood N of x 
x 

such that N n F =~. This implies x f adh F.x 

THEOREM 12. If F is a filter on a topological space (X,t) 

and x Eo 1im F, then x €- adh F. This means that lim F C adh F. 

PROOF. If x is a limit of F, then every neighborhood N x 

of x is contained in F. Since F is a filter, N n F :J 51 for 
x 

every F in F. Hence x is a closure point of F foll' every F 

in F. By theorem 11, x is an adherent of F. 

THEOREM 13. If U is an ultrafilter on a topological space 

(X,t) and if y is an adherent point of U, then y is a limit point 

of U. This means that adh U = lim U, for U an ultrafilter on X. 

PROOF. If Y ~ adh U, then for every neighborhood Ny of y, 

Nyn F + J1 for any F in U. By theorem 8, Ny Eo U. Since U is an 

ultrafilter. Hence y is a limit point of U. 

THEOREM 14. If (X, t) is T2 - space, then a filter F has 

at most one limit point. 

PROOF. Suppose x and y belong to lim F and x t y. By the 

definitmDn of a limit point, N Eo F, N €" F for any neighborhoods
x y 
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N of x and Ny of y. Since F is a filter, N n N ~ ¢. Hence 
x x y 

there are no disjoint neighborhoods for x and y. But this is 

impossible since X is T2. 

THEOREM 15. Let (X,d) and (Y, f ) be metrice spaces and let 

f be a function from (X, d) to (Y, f), Then f is continuous 

iff x ~ x implies f(x )~f(x). n n 

PROOF. If f is continuous, then f is continuous at each 

point x of X. Let 1X J~ be a sequence in X such that x --t x.n n

Then for each open sphere S Eo (f (x)), there exists an open sphere S r (x) 

such that f(S G (x)) C S Eo (f(x)). Since xn~ x, there exists a 

natural number N such that xn Eo S S (x) for each n ~ N. Hence 

f(xn) E S Eo (f(x)) for each n '7 N since f(S S (x)) C Sf. (f(x)). This 

means that f(x)~ f(x).
n 

Suppose f is not continuous at some points x of X. Then 

there exists an open sphere S Eo (f (x)) such that f (S 0 (x)) ~ S ~ (f (x)) 

for each S> O. Thus there exists x Eo S*(x) but f(x ) f SE (f(x))n n

for each natural number n. Hence there exists a sequence r x ]n 

such that x --7 x but f (xn ) -\-> f (x) . n

THEOREM 16. Let (X,t) and (Y, s) be topological spaces and let 

f be a function from (X,t) to (Y,s). If f is continuous, then 

x -) x implies f(x)--..., f(x).
n n 

PROOF. Let f x ]00 be a sequence in X such that x --7 x. 
n I n 

If f is continuous, then for each neighborhood Ny of f(x), there 

exists a neighborhood Nx of x such that f(N) eN. Sincex y 

x ---~x, there exists a natural number N such that x EN forn n x 
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each n"7 N. Hence f (x ) Eo Ny for each n:7 N since f(NX)C Ny'n

This means that f(x)~ f(x).n 

The converse of this theorem does not hold as the following 

counterexample shows. 

EXAMPLE 12. Let R denote the set of real numbers with the 

cocountable topology t for R. That is, t = ~ 0 C R: R - 0 is 

countable} U R. Let d be the discrete topology for R. Let 

f(x) = x be the identity mapping from (R,t) to (R,d). Let [anJ 

be a sequence in (R,t) such that an~ a. Then 

(i) an~ a iff there exists a natural number no such 

that an = a for every n ~ no' To show this statement, it suffices 

to show that if there exists NO such no' then let F = ran: 

an * a } and hence R - F is a neighborhood of a and an' R - F. 

Hence an+> a. 

(ii) . For every n ~ no' f(an) = an = a. Hence f(an)~ a 

in (R ,d) if an~ a in (R, t). 

(iii) . Let a E R. Then f a 1 is open in (R,d) but f a 1 = 

f- l ( (aJ ) is not open in (R, t). Therefore, f is not continuous. 

THEOREM 17. Let (X, t) and (Y, s) be topological spaces. Let 

Fbe any filter on X. Then f is continuous iff F~ x implies 

that F*, the filter generated by f(F) converges to f(x). 

PROOF. Suppose f is continuous and let x E X. Let Nf(x) 

be a neighborhood of f(x). Then f-l(Nf(X)) is a neighborhood of 

x. If F~x, then f-l(Nf(x)) Eo f. Hence f(Cl(Nf(x)) E f* and 

since Nf(x)::::> f(f- l (Nf(x)) it follows that Nf(x) E f*. Hence 
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F*~ f(x). 

If f is not continuous at x, then there exists a neighborhood 

of f(x) such that each neighborhood N of x is not con­Nf(x) x 

tained in f- 1 (Nf(x))' Hence does not belong to the filterNf(x) 

F* generated by the filter base f f(Nx): N 
x 

is a neighborhood of 

xl. Therefore F*~ f(x). 

The following theorem is well - known and is state here without 

proof. 

THEOREM 18. A topological space is compact iff every collection 

of closed sets with the finite intersection property has a non-empty 

intersection. 

THEOREM 19. Let (X, t) be a topological space. X is compact 

iff every filter on X has a non-empty adherence. 

PROOF. Let F be a filter on X. By the definition of a 

filter, the collection of closed set f F: F € F } has the finite 

intersection property. By theorem 11, adh F = n t F: F € F} f %. 

Therefore (X, t) is compact iff every filter on X has a non-empty 

adherence by applying theurem 18. 

THEOREM 20. A topological space (X, t) is compact iff every 

ultrafilter converges. 

PROOF. If (X, t) is compact, then every ultrafilter U has a 

non-empty adherence by theorem 19. By theorem 13, adh U C lim U. 

Hence lim U * ¢. Therefore U converges. 

To prove the converse, let F be a filter on X. By theorem 4, 
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there exists an ultrafilter U on X with Feu. By hypothesis, 

¢ f lim U = adh U. Since Fe U, it follows that adh F ~ adh U* ¢. 

By theorem 19. X is compact. 



CHAPTER IV 

CLUSTERS 

It is easy to see that a collection U of subsets of a non-empty 

set X is an ultrafilter iff the following conditions are satisfied: 

(i). If A and B belong to U, then An B f ~. 

(ii). If An U f %for every U E U, then A E U. 

(iii) . If (A U B) E U, then A E U or B Eo U. 

The definition of a cluster in a proximity space can be motivated 

from these three conditions by replacing non-empty intersection with 

nearness. Clusters are extremely useful in the study of proximity 

spaces. 

DEFINITION 1. Let (X, 6 ) be a proximity space. A cluster 

is a collection of subsets of X such that 

(i) . If A and B belong to cr, then A 0 B. 

(ii) . If A 8 C for every C in (), then A is in (). 

(iii) . If (A U B) Eo rr , then A € (J or B €:-(). 

EXAMPLE 1. Let (X, 8 ) be a proximity space. Let a be a 

point of X. Then the collection ~=(ACX: A 8 a 1is a cluster. 

(i) . If A and B are in (), then A S a and B 8 a. It follows 

A S B. (ii). If A 6 C for every C in 0, then A Sa since r a } 

is in tr . Hence A E (J • (iii) . If (A U B) r:- () , then: (A U B) J a. 

3S
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By the definition of proximity, A b a or B S a. Hence A ~ a-

or B Err. 0-:: is called a point cluster. 
a 

EXAMPLE 2. Define a proximity 5 on X by A g B iff A *~ 

and B f st. Then the collection a- = f A c. X: A j: Ii] is a 

cluster. (i). If AI' A belong to 0- , then Al F st and A ; st.
2 2 

By the definition of S ,AI 6 A • (ii) . If A S C for every C 
2 

in () , then A t= y! and hence A Eo a-. (iii) . If (A U B) f () 

then A U B +'I. It follows A:f: ft or B:# ft. Thus A Eo (J or 

B f rr . 

The cluster in example 1 is a filter on X. However, the cluster 

in example 2 is not a filter if X contains more than one point. 

LEMMA 2. Let (X, g ) be a proximity space and let C'be a cluster 

in (X, S). Then 

(a) . For any subset E of X, either E Eo a- or (X - E) E () • 

(b) . I f A E () and A C B, then B €' tr . 

(c). A €- rr iff A Etr 

(d) . If f x J Eo rr for some x Eo X, then 0-= lJ a point 

I 

x 

cluster. 

PROOF (a). Since A S X for any subset A of X, X E a-

Therefore, E ED or (X - E) € 0 since E U (X - E) = X€-(} .

I (b) . If A € 0- and A C B, then Age for every C 

U in () and B g C for every C in ~ by lemma 2.2 in chapter II. 

\ Henc e B €- () • 

(c). If A €- rr , then A ED since A C A by part (b). 
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If A f D , then A $ C for some C in (). By theorem Z. 7 in 

chapter I I, A $ C. Therefore A $ C and hence A f ~ 

(d) . If A Eo 0 , then A S x since f x J Co 0 

Hence	 A Eo 0-;. If A 4- ~ , thim A $ C for some C in cr. Since 

f x J and C are in 0, x ~ C. Suppose A S x. Then A g C a 

contradiction. Therefore, A $ x and hence A f o. Since 0 c ~ x 

and ~ C () , 0= o. 
x 

LEMMA 3. If 0-1 , o-z are two clusters in (X, g ) and U-l 

c 0Z' then °1 = OZ' 

PROOF. Let A cf 0-1 , Then A $ C for some C in trl . Since 

O-i c. 02, A $C for some C in o-z which shows that A 4 ()
Z· 

Hence (rZ C 0- ,
1

LEMMA 4. Let P be a collection of subsets of X such that 

¢ ~ P and (A U B) E P iff A ~ P or B E P. If P ~ P, then there 

exists an ultrafilter F such that P E- F and F C P. 

PR:OOF. By Zorn's lemma, there exists a maximal collection F 

of subsets of X such that F contains P and if t Ai: i = l,Z, ... nJ 

C F, then n f Ai: i = l,Z, ... ,n]€P.
 

One must show that F is a filter.
 

(i). ¢ 4F since ¢ 4 P.
 

(ii). If A and B belong to F, then An B ~ P. Since F 

is maximal, A n B e F. 

(iii). If A E F and A C C, then C E P and hence C € F 

since F is maximal. 

Now suppose F is not an ultrafilter. Then there exists a 
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subset E of X such that neither E nor X - E belongs to F.
 

Hence there exist AI' A2 in F such that Al "" E ~ P and A2 n
 
(X - E) ~ P. Let A = Al ('\ A2· Then A Eo P and A () E ~ P and
 

A II (X - E) ~ P. This is impossible since A = (A n E) U (A n (X - E)).
 

Therefore F is an ultrafilter.
 

THEOREM 5. Let a-be a collection of subsets of a proximity 

space (X, S ). Then r is a cluster iff there exists an ul trafil ter 

F on X subh that r= [ACX: A S B for every B in F } 

PROOF. Let F be an ultrafilter and ()"= [ AC.X: A d B 

for every B in F 1. Then (i). If Al and A2 belong to 0, 

then Al ~ B and A b B for every B in F. Since for any subset
2 

C in X, either C or X - C is in F. Hence Al and A2 are 

near to C or X - C for every subset C. Suppose Al t A2· Then 

there exists a subset E of X such that Al f E and (X - E) $ A2, 

a contradiction. Therefore Al S A2. (ii). If A SC for every 

C in r , then A ~ B for every B in F since F C tr. Hence 

A E: 0". (iii) . Suppose A f tr and C t tr. Then there exist 

Bl and B2 in F such that A I Bl and C $ B2. By lemma 2.2 of 

chapter II, A $ (Bl n B2) and C $ (Bl n B2). Thus (A U C) I 
(Bl ('\ B ). Since B () B f F, it follows that (A U C) 4 tr. Hence

2 l 2 

if (A U C) E: 0 ,then A E- r or B f: 0" . Therefore rr is a cluster. 

Conversely let r be a cluster and let P be an element of 

rr. Let P = 0- , then by lemma 4 there exists an ultrafilter F c tr 

such that P €- F. If 0' = [ A C X: A S B for every B ~ F 1' 
then rrc rr '. Applying lemma 3, rr= ~' . 
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A cluster 0- is said to be determined by an ultrafilter f 

iff 0-= t AC X: A $ B for each B in f 1 

LEMMA 6. Let ~ be a cluster in (X, ~ ) determined by an 

ultl'afil ter f. Then, rr is a point cluster Ox iff f converges 

to x. 

PROOF. If U'"= U'" , then [ x 1 Eo () • Since rr is deter-
x 

mined by F, x S A for every A in F. Hence x €' A for every A 

in F. Therefore x E- n LA: A € F} = adh F = lim F since F 

is an ultrafilter. This means that F converges to x. 

If F converges to x, then x €- lim F = adh F = () [A: 
A Eo F J. Hence x $ A for every A in F. Thus f x J Eo () since 

0- is determined by F. By lemma 2, 0-= q-. 
x 

THEOREM 7. A proximity space (X, S) is compact iff every 

cluster in (X, S ) is a point cluster. 

PROOF. By theorem 20 of chapter III, (X, K) is compact iff 

every ultrafilter F converges. By lemma 6, F converges iff the 

cluster it determines is a point cluster. 

THEOREM 8. Let (X, S) be a proximity space. If A ~ B, then 

there exists a cluster 0- containing A and B. 

PROOF. Set p= fccx: c E B J . Then P -; ~ since B €- P. 

r{; if P since ¢ $ B. Since A S B, A f P. If (E U F) e P, then 

(E U F) 0 B, and hence EbB or F S B. It follows that E Eo P or 

F ~ P. By lemma 4, there exists an ultrafilter F such that A ~ F c P. 

Hence the cluster rr = f sex: S S F for every F in F 1 is deter­

mined by F. A f ~ since A € F. B r: tr since Fe P. 
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THEOREM 9. Let F be an ultrafilter in Y and XC Y. Then 

F = r F n X: F ~ F J ' the trace of F on X, is an ultrafilter inX 

X iff X Eo F. 

PROOF. If FX is an ultrafilter in X, then F (1 X *" It for 

every F in F. Since F is an ultrafilter, X G F by theorem 8 of 

chapter I II. 

If X Eo F, then X () X = X E- FX. Hence FX F ~ and ¢ f FX. If 

Fl n X Eo F and F2 () X e FX' then (F l (\ X) () (F2 n X) = (F l () F2) nx 
X f F since F n F e F. If F () X e- F and F n XC F' C X,

X l 2 1 X l 

then F' E- F since F1 and X are in F. Hence F' = F' n X Eo Fx. 

Therefore F is a fil ter in X.X 

Since (F l n X) u (F () X) = (F U F ) () X Eo F iff Fl U F2 € F.
2 l 2 X 

It follows Fl Eo F of F f F since F is an ultrafilter. Hence2 

Fl () X Eo Fx or F2 () X E FX' By theorem 5 of chapter III, F is
X 

an ultrafilter in X. 

THEOREM 10. Let (Y, S ) be a proximity space and 0- a cluster 

in Y. Let XCV and X E ~ . Then the cluster ~'=fACX: 

A EO-} is the only cluster in (X, $" ) contained in 0-. 

PROOF. Since ~ is a cluster in a proximity space (Y, f ) 
and X Eo 0- , QI is determined by an ultrafilter F containing X, 

as in theorem 5. Then F
X

= f F () X: F e F J ' the trace of F on 

X is an ultrafilter in X by theorem 9. Hence F generates a
X 

cluster 0-' in X. If A e 0-:' then A S (F (\ X) for every F in 

F. It follows that A S F for every F in F. Hence A E- 0­

Thus ()' Co rr and hence ~'= f A eX: A f 0- } Suppose there is 
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another cluster lri in (X 1 SX) contained in tr , then ~ i CIT"'. 

By lemma 3, u-' = (j'.
1 

THEOREM 11. Let f be a proximity mapping from (X, J 1) to 

(Y, S2)' Then for each sluster (;-1 in X, there corresponds a 

cluster ()2 in y such that ()2= [ACY: A f 2f (B) for every 

B in 0- 1 J 
PROOF. Let If"1 be a cluster in X. Then a­

1 
is determined by 

an ultrafilter F in X. f (F) is a;.ffl ter base by theorem 9 of 

chapter III. f(F) generates a filter and hence there exists an 

ultrafilter F* containing f(F) and F* generates a cluster 0­
2 

in Y. If A ~ 2f (B) for every B in 0- then A d2f(F) for every1 , 

F in F since F C ~ l' Hence A Eo tr"2' Since f (B) €- tr"2 for 

each B in D l' f ( () 1) c ~ 2 . B E- 0""'"1 implies B ~ F for 
1 

every F in F. f (B) S2f (F) since f is a proximity mapping. Hence 

f (B) f rr 2' Therefore if A ~ tr2' then A d 2f (B) for every B in 

°1' 

EXAMPLE 3. Let N denote the set of natural numbers. Define 

a proximity S by A g B iff A n B *¢. Let a ~ N. Then 

(a). The collection F = f F C N: a f F 1is an ultrafilter 

in N. 

(b) . The collection 0- = f A C N: A S a 1is a cluster. 
a 

(c) . The cluster 0= f BeN: B S F for every F in F J 

is determined by F. DC 0- since B €orr implies B ~ F for a 

every F in F and hence B Sa. By lemma 3, 0= U. a 
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(d). (N, S) is separated since if x S y, then lx1··(1 fYJ 

* ¢ and hence x = y. If va = 0b' then a S B. This implies a = b. 

Therefore each cluster in (N, S ) can contain at most one singleton set. 

(e) . Since A = [x: x r A] = f x: [x1 n A :#:;f 1 = 

f x: x f A 1 = A, the topology induced by S is the discrete 

topology. Hence (N, b ) is not compact. By theorem 7, there exists 

a cluster which is not a point cluster. 

EXAMPLE 4. Let N denote the set of natural numbers. Define 

the plToximity S by A f B iff A -j: ¢ and B 10 %. Then 

(a) . The collection o = [ A C N: A f >d 1 is a cluster. 

is	 the only one cluster in (N, r ) since if there exists another cluster 

() I then ()' C () and hence r;-' = (]. 

(b). Every point cluster 0 is equal to the cluster cr . 
a 

(c) . (N, ~ ) is not separated since f 21 S [3 ~ but 2 f 3. 

(d). Every cluster in (N, b ), there is only one, is a point 

cluster. Thus by theorem 7, (N, ~) is compact. 



CHAPTER V 

SMIRNOV COMPACTIFICATION 

This chapter is an attempt to investigate a way to construct the 

Smirnov compactification of a separated proximity space. All the 

proximity spaces considered in this chapter are separated. 

The following notation is used throughout this chapter. Let 

(X, 0 ) be a separated proximity space. 

X:	 the set of all clusters in X. 

A:	 the set of clusters in X which contain a subset A of X. 

f:	 A mapping from X to X defined by f(x) = o-x the point 

cluster determined by the point x. 

* ~:	 A proximity on X, as defined in lemma 2 of this chapter. 

Using	 clusters, the following results will be proved later. 

(i) f(X) is dense in X. 

,0 (ii) X is proximally isomorphic to f(X). 

(iii)	 (X, ~~) is compact. Therefore or, b ) is embeded in a 

compact proximity space (X, S*). X is a compactification 

of X called the Smirnov compactification of X. 

DEFINITION 1. Let P be a subset of X. Then a subset A of 

X absorbs P iff for every rr in P, () contains A. That is Pc. A. 

*LEMMA	 2. Let a be the binary relation on X defined by 

43 
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i P ~. Q iff A absorbs P and B absorbs Q implies A S B.
 

*1 Then S* is a separated proximity on X and hence (X, g) is a 

separated proximity space. 

PROOF (i). The symmetry of ~ * follows directly from the 

defini tion of S* and the symmetry of ~ . 

*	 * *(ii). (P U Q) ~ Riff P J R or Q ~ R. Suppose 

Q b*R, D absorbs (P U Q), C absorbs R. Then P U QC V, where 

V = f a-e X: D Eo (j } • This implies QC V and hence 0 absorbs 

Q.	 Since Q b*R, D ~ C. Hence (P U Q) g*R. Conversely, suppose 

* .J. * (P U Q) S Rand P cpR. Let B absorbs Q and C absorbs R. Then 

there exist sets A, 0 absorbing P and R respectively such that 

A*0 and hence there exists a subset E of X such that A $ E and 

(X - E) ~ O. Since 0 absorbs R and (X - E) f 0, X - E belongs to 

no cluster in R, for if not, (X - E) S 0 by the definition of a cluster. 

Since C - E C X - E, C - E belongs to no cluster in R, for if not, 

X - E will belong to one cluster in R. But (C - E) U (C n E) = C 

absorbs Rand C - E belongs to no cluster in R. Hence C n E 

absorbs R. Now A U B absorbs P U Q and C n E absorbs R, which shows 

that (A U B) ~ (C n E). Since A' E and C n E is contained in E, 

A $ (C n E) by lemma 2.2 in chapter II. It follows that B S (C n E) 

and hence B S C since C n E is contained in C. Therefore, if (P U Q) 

8*R and P '*R, then Q b*R. 

(iii). If P ~*Q, then A dB. It follows that A i: flf 

and B:I: ¢ and hence P 4= rt and Q i: ¢. 

(iv). If P n Q ~ ¢, then A absorbs P n Q and B absorbs 

*P n Q. Thus A g Band P b Q. 
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(v). If P f *Qj then A' B which implies that there 

exists a subset E such that A $ E and (X - E) 'B. Since B absorbs 

Qadn X - E , B, X - E belongs to no cluster in Q. It follows that 

* E absorbs Q. Let R = E = f (}f; x.: EGO- } Then P f R 

since A absorbs P, E absorbs E and A f E. Since E belongs to 

no cluster in X - R, X - E absorbs X - R. Therefore, (X - E) f B 

implies (X - R) ~ *Q. 

(vi) . Since every set in 0- 1 absorbs r 0- 1 and 
1 

every set in tJ 2 absorbs f 0- 1' hence $ * a-2 implies that
2 °1 

every set in a- 1 is near to every set in and hence a- = ()
~2 1 2 

Therefore ~* is separated. 

LEMMA 3. Let (X, ~ ) be a proximity space and f: (X, ~) ---'?> 

(X, ~ *) defined by f(x) = o. (0 is the point cluster con-
x x 

taining x; thus 0 = fA ex: x b A } .) Then 
x 

(i) . f is a one - to - one mapping, and 

(ii) . f (A) C A for each A C X. 

PROOF (i). Since S is separated, (f'" x = () y implies that 

x = y. Therefore f(x) = fey) implies that x = y and f is one-to-one. 

(ii). Let 0a Eo f(A). Since fa1c A, A e- era' Hence 

~a €" A, and hence f (A) c A. 

LEMMA 4. A absorbs feB) iff Be A, where A is the t( ~ ) 

closure of A. 

PROOF. Suppose A absorbs feB). Let b €' B. Then Db G 

A and A ~ °b' Therefore b ~ A and hence bE A. Conversely, if 

B C -A, then for every b in B, b €- A and hence b g A. It follows 
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that A Eo ()b which shows that A €- cr for any 0­ in feB).
b b 

Therefore A absorbs feB). 
CJ 

j 

,~ 

1
! LEMMA 5. Let Qbe any subset of X. Then Q b *f(A) iff C 

I 
~ absorbs Q. implies C $ A. 

PROOF. Let Q S*f (A) and C absorbs Q. Since A belongs 

* to every cluster in f(A), A absorbs f(A). By the definition of G , 

C ~ A. If C absorbs Q implies C f A and D absorbs f(A), then 

A C D by lemma 4. Thus C ~ D and C ~ O. Therefore, C g D by 

theorem 2.7 in chapter II. 

LEMMA 6. f(X) is dense in X with respect to the topology t( S *). 

PROOF. In lemma 5, let Q be the singleton fer} . Then 

{0-) *f (A) iff C f () implies C S A iff A f' ~ . Hence A is the 

t( ~ *) closure of f(A). Since X belongs to each cluster in X, X 

is the t( b *) closure of f(X). Therefore f(X) is dense in X. 

LEMMA 7. (X, g ) is proximally isomorphic to f(X) with the sub­

space proximity ~ ;(X). 

PROOF. Let C absorbs f(A) and D absorbs feB). If 

f(A) g *f(B), then C S D. Since A absorbs f(A) and B absorbs f(B), 

it follows that A ~ B. Conversely, suppose that A b B. Let C absorbs 

f(A) and D absorbs feB). Then A C C and BcD by lemma 4 and 

C'D by lemma 2.2 in chapter II. Therefore C $ D by theorem 2.7 

in chapter I I. By the definition of g * , f(A) g *f(B). Therefore, 

(X, ~ ) is proximally isomorphic to (f(X), ~ ; (X)) • 
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LEMMA 8. (X, g*) is compact. 

PROOF. By theorem 7 in chapter IV, (X, g*) is compact iff 

every cluster in X is a point cluster. Hence it suffices to show 

that any cluster in X is a point cluster. Let cr be an arbitrary 

cluster in X. Since ftX) = X t-"- , f(X) S B for every B in (J 

1 and hence f(X) ~ B. But this implies f(X) S B for every B in 0- .1 

i
..~ 

I 
It follows that f(X) G- () Applying theorem 10 in chapter IV, there 

exists a unique cluster in (f(X), b ;(X)) contained in 0- , namely 

(J! = lAC f(X): A ~ tr } By lemma 7, (X, r) is proximally 

I isomorphic to (f(X), ~ ; (X)) • Hence there exists a cluster 0-" 

in X such that 0-' = f f (A) : A f rr" } . From the proof of lemma 

•6, f er"] &*f (A) iff A f r:r /I Hence f O-"} $ *c for every 

C e: (1'""1 . It follows 1 tr 1/ J Eo (1""' C Therefore there~ 

exists 0-" €: X and f cr") E () which shows that () is a point 

cluster. 

LEMMA 9. If g is a S- homeomorphism of (X, g ) onto a dense 

subset of a compact proximity space (Y, S1)' then g can be extended 

to a ~ - homeomorphism g of (X, S*) onto (Y, 81), 

PROOF. Consider the following diagram. 

( X) ~~)

f ............
 
......r'" ~ 

...... ~ 

( X ) ~) )(1, ~,) go 
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From the hypothesis and theorem 11 in chapter IV, for every 

cluster 0- in X, there corresponds a cluster 0-' in Y such that 

(J' = rA' c Y: A' $ 19(A) for every A in tr 1 Since Y is 

compact, (J' is a point cluster. By theorem 10 of chapter IV, every 

point in Y determines a unique cluster in X. Hence the clusters in 

i X are in a one-to-one correspondence with the points of Y. Thus~ 
,;2 

J 
j an extension g of g exists and g is a bijection from X to Y. 
n 

I 
~ 

In order to show that g is a S - homeomorphism one must show 

that P g*o. iff i(P) g(Q). Let P and 0. be subsets of XSl 

and P S*0.. Since (X, S*) is a compact Hansdorff space, (X, S*) 

is normal. Hence if P ~ *0., then Pn 0. ~~. It follows that there 

exists a or E X such that reo -P and cr Eo 2,. Hence (J 

g *P and ~ $' *0.. Let y=g(tr). By axiom AS and the 

defini tion of a cluster it follows that f y J b 1 i(P) and f y J 
$ 1 g(Q.). Hence g(P) $1 g(Q.). 

Conversely, if g(P) &1 &(Q.), then there exists ayE i(P) n 

g(Q.) since Y ic compact. Let ~ = g-l(y). Since X is proximally 

homeomorphism to a dense subset of Y, X can be considered as a sub­

space of Y. Therefore, if A f tr and B absorbs P, then A S g(P) 

and g(P) C S. It follows that A S B and hence [tr 1 s *P. 

Similarly, if A Eo ~ and C absorbs 0., then AbC and hence 

f 6"1 S *0.. Therefore P S*o.. 

The main theorem of this chapter follows as a result of the above 

lemmas. 

THEOREM 10. Every separated proximity space (X, g) is a dense 
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subspace of a unique (up to a ~ - homeomorphism) compact Hausdorff 

space X. Since X has a unique compatible separated proximity, 

subsets A and B of X are near iff their closures in X have 

a non-empty intersection. X is called the Smirnov compactification 

of X. 

TIlEOREM 11. Let g be a proximity mapping of (X, b1) onto 

(Y, $2)' Then g can be extended uniquely to a proximity mapping 

g which maps the compactification of X onto the compactification 

of Y. 

PROOF. In chapter IV, theorem 11 shows that if 0- is a! 1 
t
.~ 

~ 
cluster in X, then there corresponds a cluster IT 2 in Y such that 

1 
~ = fpc Y: P b2g (c) for every c in tr 1 J . Define g( ~l) = 2 

Then g is a mapping from X t'O' Y and g maps the point6""2' 

cluster ~ to the point cluster Hence -g is an extension x ()g(x)' 

of g. 

The following proof is to show that g is a proximity mapping. 

Let P &,* Q.. Suppose A absorbs i(P) and B absorbs g(Q.) . If 

A S2B, then there exist subsets C and D of Y such that 

A j 2 (Y - C), (Y - D) $ Band C ¥D by theorem 3.4 in chapter II. 
2 2 

Since A absorbs g(P) , (Y - C) belongs to no cluster in g(P) . It 

follows that g-l (Y _ C) = X - g-l(c) belongs to no cluster in P. 

Since g-l(c) U (X - g-l(c)) = X belongs to every cluster in P, 

g-l (c) belongs to every cluster in P. This means that g-l(c) absorbs 

P. Similarly g-l(D) absorbs Q.. Hence g-l(c) $1 g-l(D) since 

* P ~ 1Q.. Since g is a proximity mapping, it follows that C S D, but 
2 
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this is a contradiciton. Therefore A ~2B. 

Since f (Y) is dense in Y and f (Y) C. g(X) C Y and g(X) is 

compact in Y, it follows bhat g(X) = Y. Thus g maps X onto Y. 

The uniqueness of g is proved as follows. Suppose there exists 

another extension gl of g mapping X onto Y and -g/ j: g. Then 

thereisa Q€- X such that g(~) f:.i/er). Since Y is 

Hansdorff, g and g' are continuous, there exists a neighborhood E 

of r such that geE) (l g/ (E) = !d. Now f(X) is dense in X by 

lemma 6. Hense E n f(X) :I: t1. Let o € E n f(X). then g( a-) "l­
x X 

gl e () ). _I

Hence g and g are different on X and that contradicts 
x 

_I 

~
 

I
the fact that g and g are extensions of g. Therefore g =-I g .
 

1 

The following diagram shows the relations among the four proximity 

spaces . 
•!1i.. 

I
 .. 1 Y
( X) &, ) - - - - - --1 ( , ~:) 

fl if 
(x) &/) ~ '7 ( Y s~ )J 

Since every compact Hansdorff space is normal, X is a compact 

Hansdorff space and thus X is a normal space. The following theorem 

is an analogue of Urysohn's lemma for normal spaces. 

THEOREM 12. Let (X, a ) be a separated proximity space. If 

A I B, then there exists a proximity mapping g: X---~ [0,1] such that 

g(A) = 0 and g(B) = 1. 
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PROOF. If A ~ B, then An B=~ in X. Since X is a compact 

Hansdorff space, X is normal. By Urysohn's lemma, there exists a 

continuous mapping g: X---~ [0,1] such that g(A) = 0 and g(B) = 1. 

Since X is compact and g is continuous, g is a proximity mapping. 

Let g be the restriction of g, then g is the required mapping. 

DEFINITION 13. A proximal (or ~ -) extension of a proximity 
I 

space (X, ~ ) is a separated proximity space (Y, S ) such that X = Y 

and S = ~~. A proximity space is maximal (or absolutely closed) iff 

it has no proper b - extension. 

THEOREM 14. A separated proximity space (X, ~) is maximal iff 

every cluster in X is a point cluster. 

PROOF. If X is not maximal, then there exists a proper &­

-~ , 

! 
I 

extension Y and hence Y - X F jd. Let a Eo Y - X. 

a unique cluster If" in X such that (}= f A C X: 

where ~ is a point cluster determined by a pointa 

Since Y is separated, a- is not a point cluster in 

Then there exists 

A e era} 

a of Y - X. 

X. 

If there exists a cluster in X which is not a point cluster, then 

the proximal extension of X given in lemma 6 is proper and hence X 

is not maximal. 

A proximity space (X, b) is compact iff every cluster in the space 

is a point cluster. Hence the following corollary is obvious. 

COROLLARY. A separated proximity space is maximal iff it is 

compact. 
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DEFINITION 15. A separated proximity space (X, b ) is equi­

normal iff An B= ¢ implies A ~ B. 

LEMMA 16. Every equinormal proximity space is normal. 

PROOF. Let (X, S ) be a equinormal proximity space. Then for 

any dis~oint closed subsets A and iB in X implies that A*B 

and hence A$ B. By theorem 12, there exists a proximity m~pping 

g: X---~ [0,1] such that g(A) = 0 and g(B) = 1. Let 01 = 

[0,;), 02 = (i,l]. Then 01' 02 are open in [0,1]. Since g is 

continuous with respect to t( S ) by theorem 4.6 in chapter II. 

-1 n -1 dg-l(Ol) and g-l(O) are open in X and 
2 g (°1) g (°2) =p, 

Ac. g-l (01) arid Bcg- l (02) shows that X is normal. 

The converse of lemma 16 is not true. For example, let X 

be the real line with the usual topology. b is defined by A S B 

iff D(A,B) = inf f I a - b I : a Eo A, b €- B 1= o. Set A = [ n:n EN] 

and B = f n - -:
1 

n f N J Then AnB=~ but A S B. 
1\ 

;. 
.:1 

THEOREM 17. A normal separated proximity space (X, ~ ) isJ 
~ equinormal itf every real-valued continuous function on X is aJ 

proximity mapping. 

PROOF. Let R denote the set of real numbers and let &, 
be any proximity on R compatible with the usual topology. If(X, ~ ) 

is equinormal, then An B=~ implies A; B. Let f be a real­

valued continuous function defined on X. A S B implies An B I 0. 

Hence f(A) (\ feB) f 1 which shows that f(A) S 1f(B). Since f is 

continuous, f(A) C. f(A) and f(8) c feB). It follows that fCA) 61 

feB) and hence f(A) SIf(B). Therefore, f is a proximity mapping. 
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Conversely, suppose any real-valued continuous function f defined 

on the normal proximity space X is a proximity mapping. If A nB= ¢, 

then by Urysohn's lemma, there exists a continuous function f: X---~ 

[0,1] such that f(A) = 0 and feB) = l. Hence f(A) f 1 f (B) . 

Since f is a proximity mapping, Af B and hence A ~ B. Therefore 

XnB=,¢ implies A f B which shows that (X, 6 ) is equinormal. 



CHAPTER VI 

SUMMARy AND SUGGESTIONS FOR FURTHER STUDY 

This paper cove~ed the fundamentals of proximity spaces, basic 

definitions and basic theorems. There are many additional topics that 

could be considered. For example: (i). The development of the concept 

of proximity structures in a uniform space. (ii). In theorem 2.15 

in chapter II, it was shown that every completely regular space (X,t) 

has a compatible proximity. It can be shown that if (X, S ) is a 

proximity space, then t( ~ ) is completely regular. Hence a compatible 

proximity can be introduced on a topological space if and only if 

it is a completely regular topological space.- One can study general ized 

p±oximity structures that can be introduced in any topological space. 

The books and paper written by Naimpally [4], Thron [8] and 

Tukey [9] are useful in the further study of proximity spaces. 
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