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Chapter I 

LINEAR PROGRAMMING AND SIMPLEX METHOD 

1. Introduction 

,~ As early as 1826, the French mathematician Fourier 

formulated linear programming problems for use in mechanics 

and probability theory and suggested a method of solution. 

In 1939 the Russian mathematician Kantorovich formulated 

production prob1ems'as linear programming problems, emphasized 

their importance and suggested a method of solution in his 

book, Mathematical Methods of Organizing and Planning of 

Production. K 

The basic method to solve linear programming problems 

was developed by G.B. Uantzig in 1947 and is called the 

simplex method. It is a mathematical technique, though a 

straight forward econom~c interpretation can be given to it. 

~In 1949 T.C. Koopmans collected the papers, which 

were presented by economists, mathematicians, and statisti ­

cians who' joined the Cowles Commission conference on linear 

programming at the University of Chicago, in the book, 

Activity Analysis of Production and Allocation. From that 

time, linear programming has had wide application in business, 

industry, and government.Y 

The general linear programming problem can be described 

as follows. Given a set of m inequalities or equations in 
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r variables, find non-negative values of these variables 

which satisfy the constraints and maximize or minimize 

some linear function of ~hese variables. 

2. Graphical Examples. 

Linear programming problems which involve only two 

variables can be solved graphically. The procedure will 

be illustrated by several examples. 

EXAMPLE 1-1 

3x l + x
2 
~ 6 

xl + 4x2~8 (1-1 ) 

xl,x2~O 

max z = 2x l + 4x 2 

The object is to find the set of points (xl' x ) which2 

satisfy the first three inequalities. This set of points 

is called the feasible solution. 

A point in the feasible solution for which z is 

maximized is an optimal solution to the problem. 

The feasible solution of (1-1) is shown in the shaded 

region of Figure 1-1. Consider 

az ~) = (~(2Xl + 4x 2 ), aPx l + 4x 2 )
Grad (z) =(a ' &Xx l 2 )

a xl a x 2 

= (2, 4) 

which is a vector that indicates the direction to move in 

order to increase z most rapidly. Consider a set of 
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lines, say S = 1z l' z2' z3' .. . J . each of which is 

perpendicular to the Grad (z). There is a z2€ S which
 

has a maximum value in the area of the feasible solutions.
 

Then the intersection point (Xl' X ) of the and the
z22 

area of the feasible solutions is an optimal solution. 

From figure 1-1 it is clear that x ) satisfies 
2
(x 1 ' 

3xl + x2 = 6 and xl + 4x = 8. Therefore, 
... 
xl = 16
 ­2 11'
 

x 18 and max z = 2- + 4-x = 2 - 11 ' xl 2 
92-
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FIGURE 1-1
 

Xl o
 



In this example the Grad (z) = (8, 2) is perpendicular to 

line 4x
1 

+ x 2 = 9. Therefore, any point on the edge ab 

in figure 1-2 is an optimal solution. So the optimal 

(1- 2) 

Xl 

(z) 

coincides with the 

= 9 

z2 

+ x 2 

Zl z2 z3 

x 
2 

The line 

4 

FIGURE 1-2 

-x + 3x ~ 6 
1 2 

4x 
1 

+ Xz ::. 9 

Xl' x2~O 

max z = 8x
1 

+ 2x
2 

4~1 + x 2 = 9. 

solution of (1-2) is not unique. 

the line 

EXAMPLE 1-2 



2x + 5x 2 ~ 101 

-3x + 2x .c: 6
1 2­

5 

EXAMPLE 1-3 

x 
2 

.c: 5 (1- 3) 

xl' x 2 Z 0 

max z = 5x
1 

+ 4x 
2 

The geometric interpretation of (1- 3) is given in figure 

(1-3). 

The four constraints of this example form an 

unbounded area representing the feasible solution. 

The value of z increases in the direction of the 

Grad (z) = (5, 4). A maximum value of z in the area of 

the feasible solutions cannot be found. Therefore the 

solution is unbounded. 

FIGURE 1-3 

10 

x2 = 5 

/ * !ired 

x
2 

-3x1 + 2x2 = 
(z) 

xl 
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EXAMPLE 1-4. 

x + x c:. 1 
1 2 ­

2x + 3x ~ 5 
1 2 

xl' x 2 ~ 0 

max Z = xl + 2x 
2 

(1-4) 

This example is expressed graphically in figure 1-4. The 

area representing the solution of the first inequality does 

not meet the area representing the solution of the second 

inequality. Therefore, there is no feasible solution. 

FIGURE 1-4 

Xl 
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3.	 Numerical Examples. 

Consider the inequality 

n 
:E 01. .x.:f b. (1-5) 
. 1 J.	 J.
J.= 

A variable x'~ 0 can be added to the inequality such that 

n 
~ do. X. + x' = b. (1- 6)

J. J.i=l 

x' is called a slack variable. Consider the inequality 

m 
2: tA.x.~b .	 (1-7)

) ) ­
j=l 

A variable x' ',a: 0 can be supplied to the inequality such 

that 

m 
2: tJ.. .x. - x" = b. (1-8-a)
j = 1 )) 

x', is called a surplus variable. In this case an arti ­

ficial variable x "',a: 0 must also be added and then 

m 
.::E ~ .x. - x" + x '" = b (1-8-b) 
j =1 J) 

In general, a linear programming problem can be 

written as follows. 

n 
:E a .. x. (~) b.. i = 1, ... , m (1-9)

J.) ) ~ J.j=l
 

xl' . , x .2: O.
'x 2	 n 

max Z = clx + c + • • + c x	 (1-10)2xl 2	 n n 

For each constraint in (1-9) there exists one and 

only one of the signs ~ , =,2:. Function (1-10) is called 

the objective function. 
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Provide (1-9) with the slack variables and the 

surplus variables. The following system of linear equa­

tions is obtained. 

n 
~a .. x.(+) x . = b . , i = 1, . • , m (1-11) 
j=l 1.) J - n+1. 1. 

For each equation in (1-11) there exists one and 

only one of the signs + or - depending on whether a slack 

variable ora surplus variable was added to the inequality. 

In each case where a surplus variable was added it is 

necessary to also add an artificial variable. Consider 

example 1-1. 

3x + x <. 6 
1 2 ­

xl + 4x 2 ~ 8
 

x l ,x2 .2: 0
 

max z = 2x l + 4x
 2 

It can be changed to 

3x + x + x = 6
123 

xl + 4x + x = 8 (1-12)2 4 

xl' x 2 ~ 0 

max z = 2x l + 4x + O'x 3 + O·x42 

where and x are slack variables.x 3 4 

Suppose a system of the equations (1-13), (1-14) 

is obtained by providing the slack variables variables for 

a linear programming problem. The modification necessary 

to handle surplus variables will be discussed subsequently. 
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a11 x 1 + + aln xn + a1n+1 xn+1 + + a1n+m xn+m = b 1 

a x + + a x + a x + + a x = b
21 1 2n n 2n+1 n+1 2n+m n+m 2 

a x + . .. + a x + a x + . . . + a x = b
ml 1 mn n mn+1 n+1 mn+m n+m n 

(1-13) 

i=j
where a. = 

In+j { ~ i~j 

max z = c 1x 1 + . . . + cnxn + c n +1xn +1 + .. . + cn+mx 

(1-14) 

where C = .. . = C = 0n+1 n+m 

Then set up the first tableau. 

TABLEAU 1-1 

C Cc 1 · . . · .. 
~r ~n+m.lc ~ 1 · . . · . .VB ¢B B r n+m 

n+1 = b ac n +1 x B1 1 all · . . aIr · . . 1n+m 

n+k x = b k a aC n+k Bk a k1 kr kn+m 

n+m C x = bm a a an+m Bm m1 mr mn+m 

z' z - C z -cZl- C 1 r r n+m n+m 
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where Z ' = ¢ . ~B + c . b + . .. + c . b (1-15)B n+l l	 n+m m 

z. = ¢ B .	 it· = c . + . . . + c a .,
J J n+l a lj n+m mJ 

j = 1 , . . . , n+m (1-16) 

NOTE 1:	 In tableau 1-1 all components of the third column 

must be non-negative. If some components of the 

third column are negative, then some artificial 

variables must be supplied. 

If all z. - c. 2. 0 in tableau 1-1, then the problem
J J 

is completed. Consider the first negative value zr - c r 

in the last row of tableau 1-1 or consider the minimum nega­

tive value zr - c in the last row of tableau 1-1. Thatr 

negative value determines the variable x r and the corres­

ponding c r that will enter the new tableau. The kth row 

which satisfies 

X Bk = min IxBi } (1-17)a > 0a kr kr air ' 

will leave tableau I-I. is called a pivot element.a kr 

Tableau 1-2 is constructed in the following manner. 

a k · a = ~ 
kj a

kr 

a

a .. = a .. - a. kj for i , k


1J 1J 1r a
 
kr
x Br x =--

Br a (1-18)
kr 

x Bk-x = x - a -- for i , k
Bi Bi ir a 

kr 
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j = 1. • n+m. 

and Z" = C . x + ••• + C x + ... + C x
n+l Bl r Bk n+m Bm 

z" = ca.. + ••• + c a . + ••• + ca. (1-19)
j n+l 1J r k J n+m mJ
 

j=l, ...• n+m
 

TABLEAU 1-2 

VB 

n+l 

¢B 

c n +l 

..tB 

xBl 

c 
1 

I ;\1 

I all . . . 

c 
r 

;\r 

aIr . . . 

c 
n+m 

;\ n+m 

~ 
In+m 

r C r 
-x Bk a kl a 

kr 
a

kn+m 

n+m c n+m 

z" 

X
Bm 

Z"1 

amI 

- c 1 Zi' -

a 
m2 

c r Z" -
n+m 

a mn+m 

c 
r 

If all Zj - c j are non-negative. then the problem is 

completed. If not. continue the process until all z.-c. 
J J 

are non-negative. This method is called the simplex 

method. 

The simplex method is used to solve example I-I. 

3x + x 2 < 6
l 

xl + 4x 2 S 8 

xl' x 2 Z 0 

max Z = 2x l + 4x 2 
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Two slack variables X and are added to the constraints3 x 4 

and to the objective function. Thus, 

3x +	 x + x + O·x = 6l 2 3 4
 

xl + 4x 2 + o·x + x 4 = 8
3
 

xl' x 2 ' x 3 ' x 4 ~ 0
 

max Z = 2x l + 4x 2 + O·x + O·x
3 4
 

Next, set up the first tableau.
 

TABLEAU 1-3 

2 4 0 0
 
VB ¢B JJ. B I ;(1 ;(2 ;(3 ;(4
 

3 0 6 3 1 1 0 

4 0 8 1 4 0 1 

0 -2 -4 0 0 

where	 z' = 0·6 + 0·8 = 0 

zl - c l = 0·3 + 0·1 - 2 = -2 

z2 - c2 = 0·1 + 0·4 - 4 = -4 

z3 - = 0·1 + 0·0 - 0 = 0c 3
 

z4 - c 4 = 0·0 + 0·1 - 0 = 0
 

In the last row of tableau 1-3, -2 is the first negative 

number. Since the corresponding column of -2 contains the 

numbers 3 and 1 such that 

x _ xBl	 B2§.~~	 - ._­
3 1 aall 2l 

3 is the pivot element. Therefore, the first row leaves 

tableau 1-3 and the variable xl and the corresponding 
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coefficient c l = 2 enter the tableau. Then the formulae 

(1-18) and (1-19) are applied to form the next tableau. 

TABLEAU 1-4 

2 4 0 0 

VB ¢B o1c ;(1 ;(2 ;( 3 ;(4B 

1 2 2 1 1/3 1/3 0 

1 

I 
4 0 6 I 0 3~	 1

3 3 
4 I 0 2 0- 3.!­

3 3" 

Using the same method, the following tableau is obtained. 

TABLEAU 1-5 

2 4 0 0 

V ~ ;( 1 ;( 2 ;( 3 ;( 4¢BB B
 

16 20 1
1 2	 1 0IT	 33 -IT 

2 4 18 0 1 1 3
-ITIT IT 

5 0 0 28 109IT 33 IT 

All elements of the last row in tableau 1-5 are non-negative. 

Hence the optimal solution obtained is: 

16 x -	 IT1 

x2 =	 18 
IT 

5max z = 9IT 
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xl 

xl = 5 

(1-20) 

o 

-3xl + 4x2 = 

x2 

FIGURE 1-5 

4x 
l 

+ 6x 
2 

.2: 2 

- 3x + 4x < 12
1 2­

x <. 5 
1 -

Consider another example. 

shaded part of figure 1-5. 

xl' x 2 ~ 

max z = 5x + x .. 1 2 

The feasible solutions of example 1-5 are shown in the 

EXAMPLE 1-5 
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By providing a surplus variable x 3 and two slack variables 

x ' (1-20) can be converted into a system of equations.x 54 

Thus, 

4x + 6x 2 X = 2
l 3
 

-3x + 4x 2 + x4 = 12

l 

xl + Xs = 5 (1-21) 

xl' x2~0 

max z = 5x l + x + 0'x 3 + 0'x + 0'x2 4 5 

Set up the first tableau letting = x = O. Thus, thexl 2 

components of the third column are x 3 = -1., x = 12,
4 

x5 = 5 . This is impossible since each variable must be 

non-negative. Therefore, an artificial variable must be 

supplied. Convert (1-21) into (1-22). 

4x l + 6x x + x6 = 22 3 

-3x l + 4x + x = 12 (1-22)2 4 

+ x = 5xl 5 

Xl' x 2 ' x 3 ' x 4 ' x~, x 6 ~ 0 

max z = 5xl + x + 0'x + 0'x + 0'x - MX2 3 4 5 6 

where M is considered to be an arbitrary large positive 

number. 

Then set up the first tableau. This is shown in 

tableau 1-6. 

The same method l,as been used to construct the 

remaining tableaux, which are presented in tableau 1-7 

through tableau 1-9. 
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TABLEAU 1-6 

5 1 0 0 0 -M 

VB ¢B Ac B -I -2 -3 -4 -5 -6 

6 -M 2 4 6 -1 0 0 1 

4 0 12 -3 4 0 1 0 0 

5 0 5 1 0 0 0 1 0 

M 0 0 0 

TABLEAU 1-7 

5 1 0 0 0 -M 

VB ¢B X B I -I -2 -3 -4 -5 ;(6 

IS.!. 1 ~ _!.
224 

0 0 .!.
4 

4 0 
3

12'2 0 
1

8'2 
3 

- '4 1 0 
3
'4 

5 0 
1

4­
2 

0 -
3 
-
2 

1 
-
4 

0 1 -
1 
-
4 

~ 0 6.!. - ~ 
224 

0 0 + 

TABLEAU 1-8 

5 1 0 0 0 -M 
VB ¢B x~ -I -2 ;(3 -4 -5 -6 

1 5 1 0 0 0 1 0 

4 0 27 0 4 0 1 
3

-4 
9 

16 

3 0 18 0 -6 1 0 4 -1 

25 I 0 -1 0 0 5 + 
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TABLEAU 1-9 

5 1 0 0	 0 -M 

VB ¢B ,xB ;(1 ;(2 ;(3 ;(4	 ;(5 ;(6 

1 5 5 1 0 0 0 1 0 

27 1 9 92 1	 0 1 0
4	 4" -IT 64 

3 5 - 53 0 581­ 0 0 1 2" 8" TI 

1 7 

2 

3l~ 0 0 0	 +
4	 4" 416 

All elements of the last row in tableau 1-9 are non-negative. 

The optimal solution is: 

x = 5 
1 

= 27/4x 2 

max z = 3l~
4 

Consider example 1-2, 

-xl + 3x2 ~ 6 

4x + <. 9
l x 2 -

Xl' x 2 ~ 0
 

max z = 8x + 2x
l 2 

Supply two slack variables	 x and x Then,
4

.
3 

-X + 3x + x = 6
1 2 3 

4xl + x + x = 9
2 4 

2. 0xl' x 2 ' x 3 ' x 4 

max z = 8x l + 2x 2 + O'x 3 + O'x 4 
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The following tableaux are set up by the simplex method. 

TABLEAU 1-10 

I 
8 2 0 0 

VB ¢B ,xB I ;(1 ;(2 ;(3 ;(4 

3 0 6 -1 3 1 0 

4 0 9 

0 I 
4 

-8 

1 

-2 

0 

0 

1 

0 

TABLEAU 1-11 

I 

8 2 0 0 

VB ¢B h B ;(1 ;4.2 ;(3 ;(4 

13 0 8.!. 0 3.!. 1 
4 4 4" 

9 1 11 01 8 
4" 4" 4" 

0 0 0 218 

All elements of the last row in tableau 1-11 are 

non-negative. The problem is solved. An optimal solution 

is: 

Xl = 9/4 

x = 0 
2 

max z = 18 

Note that there are three O's in the last row of the 

two-row tableau, tableau 1-11. In the previous examples, 

there has always been m O's in the last row of the 

last m-row tableau. In tableau 1-11 let the variable x
2 
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enter the tableau and remove the first row from the 

tableau. By doing so, tableau 1-12 is obtained. 

TABLEAU 1-12 

I 

VB 

2 

1 

¢B 

2 

8 

~B 

33 
IT 

21 
IT 

18 

All elements of the last 

8 2 0 0 

;(1 ;(2 ;(3 ;(4 

0 1 4 
IT 

1 
IT 

1 0 1
-13 

3 
IT 

0 0 0 2
 

row in tableau 1-12 are also
 

non-negative. Then another optimal solution is: 

xl = 
21
IT 

X2 = 33 
13 

max z = 18 . 

Consider example 1-3. 

example the optimal solution is not unique. 

2X l + SX2~lO 

-3x + 2x :!E. 6
1 2 

x 2 ~ 5 

xl' x 2 .2 0 

max z = SX l + 4x 2 

Provide two slack variables x 4 and x s ' one surplus 

The maximum value of z is unchanged. Therefore, 

variable 

in this 
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and one artificial variable to obtain the followingx 3 ' x 6 ' 

system of equations. 

2x 1 + 5x 
2 - x

3 
+ x 6 = 10 

-3x 1 
+ 2x 2 + x

4 = 6 

x
2 

+ x 5 = 5 

xl' x 2 ' x 3 ' x4 ' x 5 ' x 6 2:. 0 

max z = 5x
1 

+ 4x 
2 

+ O'x
3 

+ O·x
4 

+ O'x 5 - MX 6 

Use the simplex method to form the following tableau. 

TABLEAU 1-13 

5 4 0 0 0 -M 

VB ¢a JX B ;(1 ;(2 ;(3 ;(4 ;(5 ;(6 

6 -M 10 2 5 -1 0 0 1 

4 0 6 -3 2 0 1 0 0 

5 0 5 0 1 0 0 1 0 

-10M - - M 0 0 0 

TABLEAU 1-14 

5 4 0 0 0 -M 

VB cB JX B I ;(1 ;(2 ;(3 ;(4 ;(5 ;(6 

1 5 5 I 1 5 
2 

1 
2 

0 0 1 
2 

4 0 21 I 0 19 
T 

3
-2 1 0 3 

1­

5 0 5 I 0 1 0 0 1 0 

25 I 0 17 
T 

5
-2 0 0 + 



21
 

5In tableau 1-14, is the only negative number of the 
2 

last row. There is no positive number in the corresponding 

column ;(3' In this case, the solution is unbounded. 

Consider example 1-4. 

Xl + x 2 :S 1 

2xl + 3x2~5 

xl' x2~a 

max z = X + 2x
1 2 

Provide the slack variable x ' the surplus variable x 4 ' and3 

the artificial variable x ' to obtain the following system5 

of equations. 

+ x + x = 1Xl 2 3
 

2x l + 3 x 2 - x + x 5 = 5

4 

xl' x 2 ~ a 

max z + 2x + a·x + a·x - MX= xl 2 3 4 5 

Use the simplex method to form the following tableaux. 

TABLEAU 1-15 

1 2 a a -M 

VB ¢B ~B ;(1 ;i2 ;i3 ;i4 ;is 

3 a 1 1 1 1 a a 

5 -M 5 

-5M 

2 3 a 

a M 

-1 1 

a 
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TABLEAU 1-16 

1 2 0 0 -M 

VB 

1 

¢B 

1 

~B 

1 I 
'£1 

1 

'£2 

1 

'£3 

1 

'£4 

0 

'£S 

0 

S -M 

-~ 
0 

0 

1 

-
-2 

+ 

-1 

M 

1 

0 

TABLEAU 1-17 

VB ¢B ~B 

1 

I ''£1 

2 

'£2 

0 

'£3 

0 

'£4 
-

-M 

'£S 

2 2 1 1 1 1 0 0 

5 -M 2 -1 0 -3 -1 1 

+ 0 + M 0 

All elements of the last row in tableau 1-17 are non­

negative. But the value of the artificial variable is 

not zero in the final solution. Thus, in this case, the 

problem has no feasible solution. 

The following observations have been made in the 

previous ~xamples. 

CASE A.	 All elements of the last row in the final tableau 

are non-negative. 

(1)	 No feasible solution: One or more of the 

artificial variables remains in the final 

solution at a nonzero level. 

(2)	 Unique optimal solution: Same number of zero's 

in the last row as the number of variables. 
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(3)	 Not unique optimal solution: More zero's 

in the last row than the number of variables. 

CASE	 B. An element of the last row in the final tableau 

is negative. 

(4)	 Unbounded solution: There is no positive 

element in the corresponding column. 

4.	 Justification of the Simplex Method 

After adding the slack variables, the surplus 

variables, and the artificial variables, a system of 

inequalities in a linear programming problem can be con­

verted into a system of equations. 

allx l + + ••• + alnx = b la 12 x 2	 n 

+ + + = ba 2l x l a 22 x 2 a 2n xn z 

amlx l + + + a x = b	 (1-23)a m2 xn	 mn n m 

where xl' x 2 ' , x ~ n 0 

and max z = clxl + c2 x 2 + ••• + cnx n . 

let 

a	 aall 12 In 

a a a2l 22	 2n 
A = 

amI a
m2	 

a
mn 
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Xl b l 

X 2 b 2 

Ix. = )S = 

X n b n 

max z = ¢ Ix . 

Consider a basis B = ill' '2' ... , 

and construct the following tableau. 

and ¢ = [c l , c 2 ' ... , cn] 

as: 

AIx. =:= )S 

,x ~ 0 

Then (1-23) can be written 

.lm} in this system, 

(1-24) 

TABLEAU 1-18* 

VB ¢B Ix B 

cl 

;(1 

c. 
J 

a·J 

c n 

an 

c 
Bm 

c Bl 

c Bi 

X 
Bm 

z o 

X 
Bi 

X Bl 

Yml 

Yll 

Yil 

z. - c. 
J J 

Ymj 

Y1 j 

Yi2 

Y mn 

Yin 

YIn 
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*Tableau 1-1 is the special case of tableau 1-18. The 

basis of tableau 1-1 is 1e l , e 2 , ... , em} where e·
1 

is 

a unit vector containing m components. 

In tableau 1-18 Yij' xBi' and cBi are scalars and 

m r y . .r. = (1-25)
i=l 1J 1 j 

m 
I: x .r. = b (1-26)

B1 1i=l 

m 
= (1-27)Zo ~ cBixBi 

i=l 

m 
Z. = ~ c B· y .. , j = 1 , . .. , n (1-28)1 1 J J i=l 

The .x B provides the basic solution. The Zo is the value 

of the obj ective function at tX B and sometimes is expressed 

by z 0 ( -X B) . 

In the simplex method one vector is changed at a time 

in the basis and the change is required to be such that: 

(1) The new basic solution is feasible. 

(2) The objective function does not decrease as the 

vector is changed. 

The first objective is accomplished by the choice of the 

vector to leave the basis, while the second is accomplished 

by the choice of the vector to enter the basis. 

Suppose -k is to enter the basis. From 

m
 

;'k = .~ Yik'i'

1=1 
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In order to maintain a basis, choose an r such that 

t- O. ThenYrk 

:i: Yik/ = ----.L ~k • J. -rr--:- ,( • (1-29)
r Yrk 1rr Jrk 1 

From (1-26), 

;6 =1: x B.~. = x B I + ~ xBi/i1 1 r r 'J.1rr 

Yik t.) + ~ xB·L.~k= XB+~k ~r Yrk 1 nr 1 1 

x 
Br Yik

~k x r + x L= L ~Br i Bi iYrk . Y k 1t-r r it-r 

Hence, 

x 
)l = _Br + Yik) t .. (1-30)- - 1--k 2 (X Bi XBx

Yrk Yk 
it-r 

This provides that a new basic solution is feasible if 

(1 ) X Br 0-> 
Yrk 

and 

Y'k 
(2) X - x • _1_ > 0, for all it-r.

Bi Br -
Yrk 

Since xBi~O for all i = 1, ... , m, the condition (1) can 

be considered by Yrk>O unless = O. Since Yrk'>O,x Br 

condition (2) is satisfied for those i's such that 
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Yik~O. Hence, the object is to choose the r so that 

Yik - ;::.. 0
Bi xBx r Yrk 

or 
Yik 

X " :>x •
BI. - Br 

Yrk 

for all i~r such that Yik>O, 

or 

x x 
Bi Br (1-31)-- > --

Yik - Yrk 

This r is chosen by satisfying 

x 
Br x B· 

(1-32)= min I-I. }
Yik>OYrk Yik 

This proves that if t is chosen to enter the basis, then
k 

the vector r is chosen to leave the basis, where r 

satisfies the formula (1-32). 

In (1-31) if a new basic solution ~ B = (X'B1' ... , xBm ) 

is obtained, then 

X 

X Br 
Br = 

Yrk 

Yik-x - x -- i~r . (1-33)
Bi x Bi B= r Yrk 

The vector t k replaces the vector 'r in the basis. There­

fore, a new value of z, say z( ~B), is 
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XBr Yik

Z(~B) = + L (x . - x --) c ' C k B1 Br B1

Yrk Yrk


i;r 

= 
X

Br C + 
x

Br 
-- k :2: XBi CBi -2: YikC Bi
Yrk " Yrki,r 1 r 

m m 
XBr XBr - -- C + - X C ­k ~ XBiC Bi Br Br ~- YikC Bi

YYrk i=l i=l rk 

X 
+ -!!:.. YrkC~r
 

Yrk
 

X 
= Z(<<B) + Br (c - Z ) (1-34)

- k k
Yrk 

If Zj - cj.20 for all j=l, ... , n, then the solution is 

optimal. This will be later proven in theorem 1-1. Since 

X Br ­> 0, take the first negative zk - ck and insert that 
Yrk 

vector into the basis. This assures that the new value of 

z does not decrease. 

From (1-25) and (1-29), then 

1
 
~ Y. . t, + , - ~ L Yik .t ) = ~,

i;r 1J 1 YrJ ( Yrk k i Ji,r Yrk 

Yrj ikor ;tk + L (ij ­ Yrj -Y ) L·1 = ;t. 

Yrk Yrk 
J

i'~ 
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It is known that the vector ;(k replaces the vector L r 
in the basis. Hence, the new y .. ' s, say y .. ' s , which 

1J 1J 

are needed in the new tableau are: 

Y
rj 

= Yrj 

Yrk 

(1-35) 

y .. 
1J 

= y ..
1J - Yrj 

Yik--
Yrk 

i#r 

where Y is the pivot element. A new tableau is formed
rk 

by (1-33) and (1-35). The procedure for the transformation 

of tableaus is: 

(1)	 Divide the r-th row (x Br and all Yrj) by Yrk 

to get a new r-th row. 

(2)	 For i#r, sUutract Y times the new r-th row
ik 

from the i-th row to get the new i-th row. 

Continue this process until all zi - are non-negative.c i 

THEOREM 1-1 If for some feasible basic solution ~B all 

Z. -	 c.~ 0, then &B is an optimal solution. 
J	 J 

PROOF. Suppose ~, is any feasible solution, 

n 
then 1: ;(.x~ = )L 

j = 1 J J 

m 
Since ;(.J = Z Y.. ~ ,

i=l 1J 1 

L	 X y . .r. x! = )S,n C 
. 

)j=l	 i=l 1J 1 J 
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i (ior y. OX!);t. = )5.
i=l j=l 1.J J 1. 

m 
But L x 

B
.,. 

i=l 1. 1. 
=)5 is known, and this representation of )5 

in terms of L. 
1 

is unique. Therefore, 

n 
x

Bi 
= I 

o 1J= 
Yo ox!

1.J J 

Since m 
Z (.t )

B 
= ~ 

i=l 
Co1. xBo1. 

Z (.t )
B 

= 

= 

i c." (i y. 0 x ! ) 
0 1 1. 0 1 1J J1.= J= 

i (i. C Oyoo ) 
o 1 0 1 1 1.JJ= 1.= 

x!J 

= 
n 
~ 
j=l 

Z.x! 
J J 

(1-36) 

However, since Z 0> c 0 and x!2.o for all j, then 
J J J 

n
 
Z(J.(B)~;r.cox! = z(~').
 

j = 1 J J
 

This imp1~es that z(~B) is maximum. Therefore, ~B is 

an optimal solution. 

THEOREM 1-2 Suppose for some basis B, there exists that 

Zk - c k<. 0 and y ik ~ 0 J for i= 1, ... , m. Then the 

objective function is unbounded above by the constraints. 

PROOF . Let T b e any nu mb e r s u c h t hat T > Z(~B)' wher e 

~B is any basic solution. It is known that 
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m 
I: x .,t. = ~ .

B1. 1.i=l 

Suppose tJ > 0, thus 

m 
~ xB·L. - 8;\k + 6;\k = ~ . (1-37) 
i=l 1. 1. 

From (1-25), 

m 
;\k = ~ y. kL . . 

i=l 1. 1. 

Hence, 

m m
 
L xB·L. - e I: Yikli + 8;\k = ~
 
. 1 1. 1.1.= i=l 

or m 
~ (x B , -BY· k ).(· +e;\k = ~. (1-38)
i=l 1. 1. 1. 

Since Yik<:: 0, i=l, ... , m, and 8 ~ 0, 

X B· -SY'k > O.1. 1. ­

Hence, a new feasible solution ;t(e) is g1.ven by the 

equation"(1-38). Then 

m 

Z ('* ( e )) = ~1 (x Bi - B Yi k ) c Bi + 8 c k 

m 

=,;E xBic Bi a (i YikC Bi - C k\ 
i=l \i=l ) 

= z(<<B) - e (zk - c k ) 

T - z CB)
 
Let e = -(zk-ck) , where T - z(~B»O and -(Zk-ck)~O,
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then z (&: (e)) = T. Therefore, the obj ective function is 

unbounded above. 

In the simplex method, the most important concept 

is to change the basis to obtain a new feasible solution 

such that the value of z is not decreased. 

The following remarks deal with a technique used in 

the simplex method. 

Consider the system of linear equations. 

(1 ) 3x - 4x 2 + 2x 3 + 3x4 - X + 2x = 7
l s 6 

(2) - + 6x + SX - 2x = 1xl 3~2 3 4 S 

(3) -2x l + x 2 - 4x 3 -3xS + 4x 6 = 6 

One solution to this system is 

xl = 0, x 2 = 0, x 3 = 0, x4 = 1 , Xs = 2 , x 6 = 3 

Suppose, however, a solution involving x3' xs' and x 6 is 

needed. Divide equation (1) by 2, then 

7(1) ~ - 2X 2 + x 3 + ~ - !.x + x6 = 
'22 1 2 4 2 5 

(2) xl - 3x 2 + 6x 3 + SX4 - 2x S = 1 

(3) -2x + x 2 - 4x -3x S + 4x 6 = 6
l 3 

Add -6 times equation (1) to equation (2) and add 4 times 

equation (1) to equation (3). 

3(1) 2x + x +3 x - Ix + x ='2x l - 2 3 '2 4 '2 5 6 2" 
7 

(2) -8x + 9x -4x + Xs - 6x 6 = -20l 2 4 

(3) 4x l - 7x 2 + 6x4 - Sx + 8X = 20S 6 
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Now, a solution is 

7 20 60 
x = 0, x = 0, x 3 = --- , x4 = 0, x 5 = - , x 6 = 'i91 2 38 19 

Then suppose a solution involving x 2 ' x 3 ' and x is6 

needed. Divide equation (2) by 9. 

1 7(1 ) ~ - 2x + x + ~ - -x + x =­2 1 2 3 2 4 2 5 6 2 

8 4 1 6 20(2)- -x + x - -x + -x - -x = - -­
9 1 2 949596 9 

(3) 4x - 7x + 6x 4 - 5x + 8x = 201 2 5 6 

Add 2 times equation (2) to equation (1) and add 7 times 

equation (2) to equation (3) . 

5 11 5 3 17
(1) - rrx1 + x 3 + rrx 4 - rrx 5 - -x = - -­9 6 1~ 

8 4 1 6 20(2) - -x + x - gX 4 + gX 5 - -x = - -­9 1 2 9 6 9 

20 26 38 30 40
(3) -gX 1 + gX4 - gX5 + gX 6 = 9 

Hence, the solution involving x 2 ' x 3 and x 6 is xl = 0, 

x = -!, x 3 = -l, x = 0, x = 0, x = !. Now suppose a2 4 5 6323 

solution involving xl' x 2 ' and x3 is needed. Divide 

equation (3) by -~ 
9 

5 11 5 3 17
(1) - rrx1 + x 3 + rrx4 - rrx 5 - gX 6 = - 18 

8 4 1 6 20
(2) - gX 1 

+ x - g-x4 + -x - -x = - -­2 9 5 9 6 9 

13 19 3(3) - --x + -x - -x = - 2xl 10 4 10 5 2 6 
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Add	 ~ times equation (3) to equation (1) and add ~ 
18 9 

times equation (3) to equation (2) . 

133(1 )	 x + .!.x + -x - -x = - ­3	 4 4 4 5 462 

8 9x - SX 4 + SX S - 2x 6 = -42 

13 19 3 
xl - rox 4 + roxs - ZX 6 = -2 

Therefore,the solution involving xl' x 2 ' and x is:3 

xl = -2, x2 = -4, x 3 = - ~ , x 4 = 0, X = 0, x 6 = 0 s
2 

If a linear programming problem is required to 

minimize the value of z, the objective function, then 

either one of two following methods can be used to solve 

the problem. 

(1)	 Find the value of max (-z) by the simplex method. 

Then times -1 to max(-z) so that -max(-z) = min z. 

(2)	 Choose the first positive zk - ck in the tableau and 

insert that vector into the basis. Let the vector 

r leave the basis, where r satisfies the formula 

(1-33). Then make a new tableau. Iterate the same 

way until all Zj - Cj~O. 

Method (2) is easy to verify using formula (1-36) 

in the proof of theorem 1-1. Since all z. ­ Cj~O, z(~B)~ 
J 

z(~'), where ~B is an optimal solution and '* ' is any 

feasible solution. 

Consider an example. 

EXAMPLE 1-7 

xl +	 3x223 
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Xl + x2~2 

xl' x2~0 

min z = 1.5x 1 + 2.5x 2 

METHOD 1. 

Consider max (-z) = -1.5x 1 - 2.5x 2 . Then form a 

system of equations such that 

- +Xl + 3x 2 x3 x = 35
 

xl +- x 2 - x + x = 2
4 6 

xl' x2' x 3 ' x 4 ' x s ' x6 ~ O. 

max (-z) = -~.5x1 - 2.5x 2 + 0-x 3 + 0·x4 - M·x 5 - M.x 6 

where M is an arbitrary large positive number. 

The following tableaux are formed by the use of the simplex 

method. 

TABLEAU 1-19 

-1. 5 - 2.5 0 0 -M -M 

VB t AB ;(2 ;(3 ;(4 ;(5 ;(6B -I 
5 -M 3 1 3 -1 0 1 0 

6 -M 2 1 1 0 -1 0 1 

+ 0 0 0 

TABLEAU 1-20 

-1.5 - 2.5 0 0 -M -M 

VB t B ~B ;(1 -2 ;(3 ;(4 ;(5 ;(6 

5 -M 1 0 2 -1 1 1 -1 

1 -1.5 2 1 1 0 -1 0 1 

0 - - 0+ + 
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VB ¢B AB 

2 - 2.5 0.5 

1 -1.5 1.5 

-3.5 

TABLEAU 1-21 

-1.5 -2.5 0 0 -M -M 

-I ;(2 -3 "'4 -5 -6 

0 1 - 0 .5 0.5 0.5 -0.5 

1 0 0.5 -1.5 -0.5 1.5 

0 0 0.5 1 + + 

Therefore, an optimal solution is 

xl = 1.5, x 2 = 0.5 

min z ~ -(max(-z)) = -(-3.5) = 3.5 

METHOD 2. 

Form a system of equations such that, 

+ 3x - x + x = 3Xl 2 3 5 

+ x x + x = 2xl 2 - 4 6
 

where x6 ~O
xl' x 2 ' x 3 ' x 4 ' x 5 ' 

and min z = 1.5x + 2.5x + 0,x + 0,x + MX + MX 6l 2 3 4 5 

where M is an arbitrary large positive number. 

Then the following tableaux are obtained by the second 

method. 

VB 

5 

6 

¢B 

M 

M 

~B 

3 

2 

+ 

TABLEAU 1-22 

1.5 2.5 0 0 M M 

"'1 

1 

1 

+ 

-2 

3 

1 

+ 

"'3 

-1 

0 

-

-4 
0 

-1 

-

-5 

1 

0 

0 

-6 

0 

1 

0 
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VB ¢B i 
B 

5 M 1 

1 1.5 2 

+ 

VB ¢B ~B 

2 2.5 0.5 

1 1.5 1.5 

3.5 

All elements of the 

TABLEAU 1-23 

1.5 2.5 0 0 M M 

-1 -2 . -3 -4 -5 -6 
0 2 -1 1 1 -1 

1 1 0 -1 0 1 

0 + - + 0 

TABLEAU 1- 24 

1.5 2.5 0 0 M M 

-1 -2 -3 -4 -5 -6 
0 1 -0.5 0.5 0.5 -0.5 

1 0 0.5 -1.5 -0.5 1.5 

0 0 -0.5 -1 

last row in tableau 1-24 are non-

positive. Therefore, an optimal solution is: 

xl = 1.5, x 2 = 0.5 

and min z = 3.5 . 



Chapter II 

SOME APPLICATIONS OF LINEAR PROGRAMMING 

Linear programming can be applied to almost any 

industrial operation. Oil refinery operations is a large 

field of application. Companies in this field spend 

large amounts of money to formulate accurate models as 

well as solve and implement them. Other well known 

applications are in"cattle-feed mixing, the steel industry, 

the paper industry and the dairy industry. Since linear 

programming is concerned with the basic problem of alloca­

tion of resources to various uses, it is applicable to 

almost any economic activity. The cases in which it is 

not of much use are those In which the problem is so 

trivial that the solution is obvious or cases in which the 

model is complicated by constraints which do not fit into 

the linear programming model. Other methods have been 

and are being developed to cope with these problems. 

Consider some simple practical linear programming 

problems which are solved by the use of the simplex method. 

1. Problem 1 

At the refinery of a petroleum company two grades 

of gasoline are produced: high test and regular. To 

produce each grade of gasoline, a fixed proportion of 

38 
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straight gasoline, octane, and additives is needed. A 

gallon of high test requires 30 percent straight gasoline, 

50 percent octane, and 20 percent additives; a gallon of 

regular requires 60·percent straight gasoline, 30 percent 

octane, and 10 percent additives. It is known that the 

petroleum company receives a profit of 6 and 5 cents for 

each gallon on the high test and regular gasoline respec­

tively. If the supplies of straight gasoline, octane, 

and additives are restricted to 6,000,000, 4,000,000, and 

2,000,000 gallons respectively, how much of each grade 

should be produced in a given time period, to maximize 

profits and make the best use of resources? 

Suppose xl gallons of high test and x2 gallons of 

regular should be produced. Then the following constraints 

are formed: 

O. 3x 1 + O. 6x 2 ~ 6,000,000
 

O.Sx l + 0.3x2~4,000,000
 

0.2x + 0.lx :S2,000,000
l 2 

max z = 6xl + SX 2 

After adding slack variables to the above inequalities, the 

following system of linear equations is obtained. 

0.3x + 0.6x + x = 6,000,000l 2 3 

O.Sx l + 0.3x 2 + x = 4,000,000
4 

0.2x + 0.lx + X = 2,000,000l 2 s 
max z = 6x l + SX 2 + 0'x 3 + 0'x4 + O·x S 

Use the simplex method to form the following tableaux. 
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VB 

3 

4 

5 

¢B 

0 

0 

0 

A B 

6,000,000 

4,000,000 

2,000,000 

0 

6 

-1 

0.3 

0.5 

0.2 

-6 

5 

-2 
0.6 

0.3 

o. 1 

-5 

0 

-3 

1 

0 

0 

0 

0 

-4 

0 

1 

0 

0 

0 

-5 

0 

0 

1 

0 

TABLEAU 2-2 

VB 

3 

1 

5 

t B 

0 

6 

0 

~B 

3,600,000 

8,000,000 

4,000,000 

48,000,000 

I 

6 

-1 

0 

1 

0 

0 

5 

-2 
0.42 

0.6 

-0.02 

-1.4 

0 

-3 

1 

0 

0 

0 

0 

-4 

-0.6 

2 

- 0 .4 

12 

0 

-5 

0 

0 

1 

0 

TABLEAU 2-3 

6 5 0 0 0 

VB ¢B lB 

60,000,000 
7 

20,000,000 
7 

40,000,000 
7 

-1 -2 -3 -4 

0 

1 

0 

0 

1 

0 

0 

0 

50 
IT 

10
-T 

1 
IT 

10 

10
-T 

20 
T 

3
-7 

1060,000,000 

-5 

2 5 0 

1 6 0 

5 0 1 

0 
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All elements of the last row in tableau 2-3 are non­

negative. The problem is completed. The optimal 

solution is: 

x = 20,000,000 = 2,857,142 ~
 
1 7 7
 

60,000,000 = x = 8,571,428 ~ 
2 7 7 

max z =60,000,000 

Therefore, 2,857,142 ~ gallons of high test and 8,571,428 ! 
7 7 

gallons of regular are produced to obtain the maximal profits 

of 600,000 dollars. 

2. Problem 2 

A car plant can produce both automobiles and trucks. 

It has four departments: metal stamping, engine assembly, 

automobile assembly, and truck assembly. The net revenue for 

an automobile is $300 and for a truck is $250. The following 

data is known: 

Departinent 

Metal stamping 

Engine Assembly 

Automobile Assembly 

Truck Assembly 

Capacity Automobile Truck 
h/year requirements requirements 

h/unit h/unit 

110,000 4 2§.. 
7 

70,400 2 3 

66,000 3 ­

41,250 - 2.!. 
2 



(a)	 Find the optimal production program for this 

plant using the simplex method. 

(b) Interpret every element in the final tableau. 

Suppose there are Xl automobiles and x 2 trucks to 

be	 produced. Then 

4x l + 2~ x 2 ~ 110,000 

2x	 + 3x -..: 70,400l 2 

3x	 ..c: 66,000
l 

2.!.. -< 41,250-2 

and an objective function is 

max z = 300x + 250x
l 2 

Add the slack variables x 3 ' x4' x 5 ' and x 6 to the 

above inequalities. The following system of equations is 

formed: 

64x l	 + 2.::..x + x 3 = 110,00027 

2x + 3x +	 = 70,400x4l 2 

3x	 + x = 66,000
l	 5 

2!.x	 + x = 41,250
2 2	 6 

max z = 300x + 250x 2 + 0'x + 0.x 4 + O'x S + 0'x 6 .
l	 3 

Then form the following tableaux using the simplex method. 
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TABLEAU 2-4 

VB ¢B «B I 
300 

;(1 

250 

;(2 

0 

;(3 

0 

;(4 

0 

;(5 

0 

;(6 

3 

4 

0 

0 

110,000 

70,400 

4 

2 

2~ 
7 

3 

1 

0 

0 

1 

0 

0 

0 

0 

5 0 66,000 3 0 0 0 1 0 

6 0 41,250 

0 

I 

f 

0 

-300 

2!. 
2 

-250 

0 

0 

0 

0 

0 

0 

1 

0 

TABLEAU 2-5 

VB ¢B ~B 

300 

I ;(1 

250 

;(2 

0 

;(3 

0 

;(4 

0 

;(5 

0 

;(6 

3 

4 

1 

6 

0 

0 

300 

0 

22,000 

26,400 

22,000 

41,250 

6,600,000 

I 

I 

I 

0 

0 

1 

0 

0 

2~ 
7 

3 

0 

2.!. 
2 

-250 

1 

0 

0 

0 

0 

0 

1 

0 

0 

0 

4 
3 

2- -
3 

1-3 

0 

100 

0 

0 

0 

1 

0 
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TABLEAU 2-6 

I 
300 250	 0 0 0 0 

~1 ~2 ~3 ~4 ~5 ~6VB ¢B ~B 

7 - ­0 1 - 0 7 02 250 7,700 
20	 15 

21	 114 0 3,300 0 0 -- 1	 0I	 ­
20	 15 

11 300 22,000 I 1 0 0 0 - 0 
3 

7	 76 0 22,000 I 0 0 - - 0 - 1 
8	 6 

-
175 -	 508,525,000 I 0 0 -- 0 - 0 

2	 3 

TABLEAU 2-7 

I 
300 250	 0 0 0 0 

VB ¢B ~B ~1 ;(2 ~3 ~4 ~5 ~6 

I	 -7 72 250 9,80U 0 1 0 0 
22 11 

63 155 0 4,500 0 0	 1 0I	 ­
44 11 

21 51 300 20,500 I 1 0	 - -- 0 0 
44 11 

70 356 0 16,750 I 0 0	 - -- 0 1 
88 22 

700 2508,600,000 I 0 0 - - 0 0 
11 11 
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In tableau 2-7 all elements of the last row are non­

negative. The problem is done. The optimal solution is: 

xl = 20,500, = 9,800x 2 

and 

max z = 8,600,000 

Therefore~ the optimal production program is to 

produce 20,500 automobiles and 9,800 trucks to make the maximum 

profits of $8,600,000 per year. There are x = 4,500 and5 

x = 16,750 in the final tableau. This means that there are
6 

4,500 hours in the automobile assembly and 16,750 hours in 

the truck assembly which have not been used each year. Hence, 

it is enough to spend 66,000 - 4,500 = 61,500 hours in the 

automobile assembly and 41,250 - 16,750 = 24,500 hours in the 

truck assembly each year. 

3. Problem 3 

A company has three warehouses, denoted by wI' w2 ' 

and w3 ' containing 8,000, 5,000, and 3,000 units of its 

products, respectively. In the next month, 2,000; 1,000; 

3,000; 4,500 units must be shipped to four retail outlets 

denoted by 0 1 , O2 , 0 3 , and 0 4 , The unit cost of shipment 

from any warehouse to any retail outlet is contained in the 

following matrix. Find the minimum cost shipping schedule. 

0 O2 01 03 4 

wI 

w2 

w 
3 

10 8 16 3 

19 25 18 7 

20 17 20 5 
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Let a .. be the amount sent from the warehouse w. 
1) 1 

to the retail outlet OJ' where i = 1, 2, 3, and j = 1, 2, 

3, 4. Set up the restraints for each warehouse and for 

each outlet. 

In warehouse 1: 

all + + + ~ 8,000.a 12 a 13 a 14 

In warehouse 2:
 

+ + + a ~ 5,000.
a 21 a 22 a 23 24 

In warehouse 3 :
 

a + + a + a ~ 3,000.
a:S 23l 33 34 

In outlet 1 : 

+ a + a = 2,000.all 2l 3l 

In outlet 2 :
 

a + a + a = 1,000.

12 22 32 

In outlet 3 :
 

a + a + a = 3,000.
13 23 33 

In outlet 4 :
 

a + a + a = 4,500.

14 24 34 

The objective function is to minimize the cost of shipment 

min z = 10·a + 8.a + l6.a + 3.a + 19.a
ll 12 13 14 2l 

+ 25·a + l8·a + 7·a 24 + 20·a + l7.a22 23 3l 32 

+ 20.a 33 + 5·a 34 . 
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Provide the slack variables	 and thea lO ' a 20 , a 30 

artificial variables to the abovea Ol ' a 02 ' a 03 ' a 04 

restraints. Then 

+ a + a	 + a + a = 8,000all 12 13 14 lO 

a + a +	 a + a + a = 5,000
2l 22	 23 24 20 

a + a +	 a + a + a = 3,000
3l 32	 33 34 30 

+ a + a + a = 2,000all 2l 3l	 Ol 

a + a +	 + a = 1,000
12 22	 ~32 02 

a + a +	 a + a = 3,000
13 23 33	 03 

a + a +	 a + a = 4,500
14 24 34	 04 

Since min z	 = -max(-z), consider max (-z) as follows: 

max (-z) =	 -lOa ll - 8a 12 - l6a 13 - 3a 14 - 19a 2l 

-25a 22 - l8a 23 - 7a 24 - 20a 3l -17a 32 

-20a	 -5a + O.a + 0·a + 0.a33 34 lO 20 30 

Ma Ol Ma U2 Ma 03 Ma 04 ' 

where M is an arbitrary large positive number. 

This problem is too complicated to compute by hand, 

using the simplex method. A FORTRAN program for the simplex 

method	 is listed in appendix I. Using this program, the 

result	 is: 

x (4) = 0.45000000 E 04 

x (14) = 0.25000000 E 04 

x (15) = 0.30000000 E 04 
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x(l) = 0.20000000 E 04
 

x(2) = 0.10000000 E 04
 

x(3) = 0.50000000 E 03
 

x(7) = 0.25000000 E 04
 

max (-z) = -0.94500000 E 05, where
 

x(l) = all' x(2) x(3) x(4)
= a 12 , = a 13 , = a 14 

x(7) = a , x(14) x(15)
23 

= a 20 , = a 30 

Therefore, the optimal solution is: 

a = 2,000, a = 1,000, a = 500, a = 4,500,
11 . 12 13 14
 

a = 2,500

23 

and min z = -max (-z) = 94,500. 

This means that 2,000, 1,000, 500, and 4,500 units are shipped 

from warehouse 1 to outlets 0 1 , O2 , 03 , and 04 respectively, 

and 2,500 units are shipped from warehouse 2 to outlet 3 

having a minimum cost of 94,500. 



Chapter I II 

CLASSIC TRANSPORTATION PROBLEMS 

1.	 Transportation Problem Tableau and Initial 
Feasible Solutions 

A product is available in known quantities atgi 

each i of m origins. It is required that given 

quantities d. of the product be shipped to each j of
J 

n destinations. The cost of shipping a unit of the product 

from origin i to destination j is c ... Determining
1J 

the shipping schedule which minimizes the total cost of 

shipment is a transportation problem. 

Assume that 

m n 

I: g. = 2: d.
 
i=l 1 j=l J
 

'" 
a ij be the quantity of the 

i to destination j. Set up 

Let product sent from origin 

n 
1: 

j =1 
a·· 

1J 
= gi g. '> 01 i = 1 , . . . , m (3-1) 

m 
1: 

i= 1 
a .. 

1J 
= d. 

J 
d.">O 

J 
j = 1, ... , n (3 - 2) 

and minimize 

z = }: 
i, j 

c .. a .. .
1J 1J 

(3-3) 
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Consider the transportation problem tableaus. 

TABLEAU 3-1 

C 
ll 

c 
12 ·. . c 

lj · .. c 
ln 

c 
2l 

c 
22 ·.. c 

2j ·. . c 
2n 

· 
· 

· 
· 

·. . · 
· 

·. . · 
· 

c 
il c i2 · .. c ..

IJ 
· .. c.

In 

· 
· 
· 

· 
· 
· 

· . . · 
· 
· 

·. . · 
· 
· 

c
ml 

C
m2 ·.. c

mj · .. c 
mn 

TABLEAU 3-2 

D D D gil °2 n 

Gl 

G2 

G. 
1 

Gm 

d. 
J 

all a 12 · . . alj · .. a ln gl 

a 2l a 22 · .. a 2j · .. a 2n g2 

· · · · · 
· · · . . · · .. · · 
· · · · · 
ail a i2 · . . a ij ·.. a.In g.

1 

· · · · · 
· · ·.. · · . . · · 
· · · · · 
amI a m2 ·. . amj · . . amn gm 

d l d 2 · . . d.
J · . . d n Igi = :I: d j 

Tableau 3-1 is a cost tableau, and tableau 3-2 is an 

activity tableau. 
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EXAMPLE 3-1: A transportation problem has 

g =	 30 d = 20
1 1
 

g2 = 50 d 2 = 40
 

g =	75 d
3 

= 303 

g4 = 20 d = 10 (3-4)4 

d = 505 

d = 25
6 

and	 a cost tableau shown in tableau 3-3. 

TABLEAU 3-3 

1 2 1 4 5 2 

3 3 2 1 4 3 

4 2 5 9 6 2 

3 1 7 3 4 6 

The first step of solving the transportation problem 

is to find an initial feasible solution. There are five 

methods used to find an initial feasible solution. 

(1)	 NORTHWEST CORNER RULE. 

In tableau 3-2, let all = min(gl' d I ) . 

. (a) If all = gl' then set = min(g2' dl-g l ),a 21 

and if = g2' then seta 2l 

a = min(g3' d l - gl - g2) and continue in
31 

this manner. When + . . . +all a kl = d 1 

then set a = min(gk-akl' d 2 ) . k2 

(b)	 If all = d l , set a l2 = min(gl-d l , d 2) . If 

a = d2 , set = min(gl - d l - d 2 , d 3) .12	 a 13 



52 

Continue in this way, until a + ... +
11 

= g, then set = min(g2' d h - a lh ).a lh a 2h 

Repeat the process for the resulting tableau. Then there 

is an initial feasible solution which contains m + n - 1 

basic variables. All values of the other variables are 

zero 

This method is used to find an initial f~asible 

solution of Example 3-1. It is shown in tableau 3-4. 

If the i-th row constraint and the j-th column 

constraint are satisfied simultaneously, then set 

ai+l,j+l = min(gi+l' d j +l ) and put ai,j+l or ai+l,j = 0 

in the tableau. 

TABLEAU 3-4 

l2) COLUMN MINIMA. 

Choose the minimum cost in column 1. If it is 

not unique, select anyone of the minima. Suppose it is in 

row k. Then let a = min(gk' d l ). If a = d l then
kl kl 

remove column 1 from the tableau and consider column 2. 

g.
1.°6Us°4°3°2°1... - ~ ~T -

20 10 30 

30 20 SO 

10 10 50 5 75 

20 20 

20 40 30 10 50 25 175 

G
l 

G2 

G3 

G4 

d. 
. J 

If = gk then remove row k from the tableau, anda kl 
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consider the next lowest cost in column 1, say in row h. 

Set a = min(gh' bl-g k ) and continue in this way untilhl 

the requirement of destination 1 is satisfied. Then 

remove column 1 from the tableau and repeat the same 

procedure for column 2. Continue until the requirement 

of column n is satisfied. 

If the i-th row constraint and the j-th column 

constraint are satisfied simultaneously, remove only the 

i-th row and consider the next lowest cost of the j-th 

column. Assume it vccurs in row P. Then set a. = 0 
PJ 

in the tableau, remove column j and consider column j+l. 

The column minima method is used to find an initial 

feasible solution of the same example. 

tableau 3-5. 

Gl 
G 

2 

.G 3 

G
4 

d. 
J 

°1 
20 

20 

TABLEAU
 

°2 

20 

20 

40 

°3
 
10 

20 

30 

(3) ROW MINIMA.
 

The procedure of 

3-5 

°4 

10 

10 

this 

°5 

20 

30 

50 

It is shown in 

°6­

25 

25 

method is 

gi
-

30 

50 

75 

20 

175 

the same as 

the procedure of column minima method except that where 

the column minima method moves horizontally from column 1 
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to column n, the row minima method moves vertically from 

row 1 to row m. 

The row minima method is applied to find an initial 

feasible solution of the same problem. It is shown in 

tableau 3-6. 

TABLEAU 3-6 

O~ '0 gi°1 3- °4 °5- °6- ­

l4) MATRIX MINIMA. 

Choose the smallest cost in the whole tableau. 

Say it occurs in (i, j). Then set aij = min(gi' d j ). 

Remove row i from the tableau if = gi and subtracta ij 

g. from d .. Remove column j from the tableau if a·· = d. 
l. J l.J J 

and subtract d. from g.. Repeat the process for the
J l. 

resulting ~ab1eau. If a row and a column constraint are 

satisfied simultaneously, remove either the column or the 

row but not both. If the minimum is not unique choose the 

i+j that is the smallest. 

20 10 3U 

20 20 10 50 

20 30 25 75 

20 20 

20 40 30 10 50 25 175 

G1 

G 
2 

G 
3 

G4 

d. 
J 

This method yields the initial feasible solution for 

the same example. It is shown in the following tableau. 
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TABLEAU 3-7 

D D D D D D g.l 2 3 4 5 6 1.-

Gl
 

G2
 

G3
 

G4
 

d. 
J 

20 10 30 

20 10 20 50 

20 30 25 75 

20 20 

20 40 30 10 50 25 175 

(5) VOGEL'S METHOD. 

For each row and each column, find the difference 

of the lowest cost and the next lowest cost. There are m + n 

numbers. Choose the largest of the m + n numbers. Suppose 

it is in row i. Select the lowest cost Cij in row i. Then 

set = min(gi' d j ). Remove row i or column j dependinga ij 

on which constraint is satisfied. Repeat the process to get 

an initial feasible solution. If the largest difference 

of m + n numbers is not unique, select anyone maximum. If 

a row constraint and a column constraint are satisfied 

simultaneously, remove either the row or the column, but 

not both. 

The Vogel method is used to find an initial feasible 

solution for Example 3-1. This initial feasible solution 

is shown in tableau 3-8. 

s.'--f"-' 
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TABLEAU 3-8
 

°1 D
2 

D 
3-

D
4 

D
5-

D
6-

g.1.-
Gl 20 10 30 1 

G2 10 10 30 50 1 

G3 40 10 25 75 2 

G4 20 20 2 

d·
J 

20 40 30 10 50 25 175 

2. Stepping Stone Method. 

Select the northwest corner rule to find an initial 

feasible solution of example 3-1. Denote the cell of the 

basic variable with an asterisk (*). This is shown in the 

following tableau. 

TABLEAU 3-9 

D D D D D D gi2 3 4 5 61­

12 1 21 1 

Gl
 

G;l
 

G3
 

G4 

d. 
J 

20* 10* 30 

30* 20* 50 

10* 10* 50* 5* 75 

20* 20 

20 4U 30 10 50 25 175 

Fill the blank cell (i, j) with the value of Zij ­ c ij . 

Let Zij - = - c k + c - c + c . - c .. (3 - 5)c ij c ik m rs rJ 1.J 

where cik' c k' C m' ••• , Crj are costs of the basicc rs ' 

f''.­
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variables a· k , ' ... ,a ,a .. The technique
1 

a hk , a hm rs r) 

used to choose these basic variables is illustrated as 

follows. In tableau 3-3 there are ~ basic costs. 

cll = 1 = 10 = 3c 12 c 22 

= 2 c = 5 = 9c 23 33 c 34 

c 35 = 6 c = 2 = 636 c 46 

By (3-5), 

- - + - = 3 - 2 + 1 - 3 = -1 ,Z2l c 2l = c 22 c 12 c ll c;n 

- c = - c + c - c + c - cz3l c;'33l 23 22 12 ll 3l 

= 5 - 2 + 3 - 2 + 1 - 4 = 1 . 
Similarly, the other values can be found and tableau 3-9 

completed. The new tableau is shown in tableau 3-10. 

TABLEAU 3-10 

°1 O~ °3 °4 °5 °6 gi 

Gl 

li 2 

G;,
 

G5
 

d. 
) 

20* 10* 0 1 -3 -4 30 

-1 30* 20* 5 -1 -4 50 

1 4 10* 10* 50* 5* 75 

6 9 2 10 6 20* ~O 

20 40 30 10 50 25 175 

If all Z •• - ~ 0, then an optimal solution is obtained.
1) 

c ij 

Not all Zij - 0 in tableau 3-10. Considerc ij < 

the largest one, in this case z44 - = 10 wherec 44 

Z44 - - + - . (3-5)c 44 = c 46 c 36 c 34 c 44 

The coefficients of and c are positive in (3-5). Byc 46 34 
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the simplex method the variable min(a a ) = a is46 , 34 34 

determined to leave the simplex method tableau. Hence, 

replace a34 by Now is a basic variable in thea 44 . a 44 

new transportation problem tableau. 

The new feasible solution is obtained in the follow­

ing way. 

a44 = a34= 10
 

-a ::: a - a = 20 - 10
46 46 34 

a36 = a36 + a34 = 5 + 10 = 15 . 
a and a are obtained by the formula (3-6) .40 36 

a .. - a if	 the coefficient of c ..
1.J 34 , 

1.J 

in (3-5) is +1 

a .. = 
1.J	 aij + a34' if the coefficient of Cij 

in (3-5) is -1. 

All other basic variables will not change their values if 

their costs did not occur in (3-5). 

A new feasible solution is shown in the following 

tableau. 

TABLEAU 3-11 

°1 0;l- °3- °4 °5 °6 gi-

Gl 

G2 

G3 

G
4 

d. 
J 

20* 10'" 30 

30* 20* 50 

10* 50* 15* 75 

10* 10* 20 

20 40 30 10 50 25 175 
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By referring to tableau 3-3, compare the value of 

z from tableau 3-9 with the value of z from tableau 3-11. 

In tableau 3-9 

z = 1·20 + 2·10 + 3·30 + 2·20 + 5·10 + 9·10 + 6·50 

+ 2·5 + 6·20 = 740 

In tableau 3-11 

z = 1·20 + 2·10 + 3·30 + 2·20 + 5·10 + 3·10 + 6·50 

+ 2·15 + 6·10 = 640 

The value of z for the new feasible solution is smaller than 

the value of z for the initial feasible solution. 

Use the same method to complete tableau 3-11. This 

yields tableau 3-12. 

TABLEAU 3-12 

°1 °2- °3 U4 °5 °6 gi-
Gl 

G2 

G3 

G4 

d. 
. J 

20* 10* 0 -9 -3 -4 30 

-1 30* 20* -5 -1 -4 50 

1 4 10* -10 50* 15* 75 

6 9 2 10* 6 10* 20 

20 40 30 10 50 25 175 

Not all Zij - Cij ~ 0 in tableau 3-12. Continue using the 

same method for each subsequent tableau until the optimal 

solution is reached. These tableaus are shown in tableau 

3-13 through tableau 3-18. 
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°1­

G1 

G2 

li 3 

G4 

d. 
J 

°1 

G1 

~2 

G3 

G4 

d·
J 

TABLEAU 

°2- U3 

TABLEAU 

U2 °3 

3-13 

gi°4 °5 °6 

20* 10* 0 0 -3 -4 30 

-1 20* 30* 4 -1 -4 50 

1 4 0* -1 5u* 25* 75 

-3 10* -7 10· -3 -9 20 

~O 40 30 10 50 25 175 

3-14 

gi°4 °5 °6~ 

20* 10* 0 0 1 0 30 

-1 20* 30* 4 3 0 50 

-3 0* -4 -5 50* 25* 75 

-3 10* -7 10* 1 -5 20 

20 40 30 10 50 25 175 
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TABLEAU 3-15 

U g.°1 °2 °3 4 °5 °6 1 

G1 

GZ 

G3 

G4 

d. 
J 

20* 10* 0 -4 1 0 30 

-1 10* 30* 10* 3 0 50 

-3 0* -4 -9 50* 25* 75 

-3 ·20* -7 -4 1 -5 20 

20 40 30 10 50 25 175 

TABLEAU 3-16 

°1 °2 °3 °4 °5 °6 gi 

G1 

G2 

G3 

G4 

d. 
J 

20* 10* 3 -1 1 0 30 

-4 -3 30* 10* 10* -3 5U 

-3 10* -1 -6 40* 25* '/5 

-3 20* -4 1 1 -5 20 

20 40 30 10 50 25 175 
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°1­

G
1 

G;l 

li 
3 

G4 

d. 
J 

°1-
G1 

G2 

G
3 

G4 

d. 
J 

TABLEAU 3-17 

gi°2 °3 °4 °5 °6-

20* -3 10* -4 -2 -3 30 

-1 -3 20* 10* 20* -3 50 

0 20* -1 -6 30* 25* 75 

0 20* -4 -1 1 -5 20 

20 40 30 10 50 :L5 175 

TABLEAU 3-18 

OJ gi°2 °5 °6- °4-
20'" -3 10* -4 -2 -3 30 

-1 -3 20* 10* 20* -3 50 

0 40* -1 -6 10'" 25* 75 

-1 -1 -5 -2 20'" -6 20 

20 40 30 10 50 25 175 
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In tableau 3-18 all z .. - c -< o. Therefore, an optimal
1J ij ­

solution is 

= 20 = 10 = 20all	 a l3 a23 

a = 10 a = 20 = 4024 25 a 32
 

= 10 = 25 = 20
a 35 a 36 a 45 

All other a .. - o. Then
1J 

min z = 1'20 + l·lU + 2·20 + 1'10 + 4'20 + 2'40 + 6' 10 

+ 2'25	 + 4·20 = 430. 

3.	 Justification of the Stepping Stone Method. 

Consider the transportation problem 

a +	 ••• + a = 11 l n	 gl 

a 21 + ••• + a 2n	 = 
~2 . . 

a +	 . . . + a = gmml	 mn 

+ a + . . . + a	 = dall 2l	 ml l 

+	 a + . . . + a = da ln 2n	 mn n 

(3 - 6) 

or in matrix form 

P;( = )5 (3 -7) 

where P is a matrix with m + n rows and mn columns. 

Venote the origin rows of P by i = 1 , . . . , m, and~i' 

the destination rows by y. , j = 1 , . . . , n. Then 
J 
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m n 

i=l 
~. 

1. 
- '/I.

j=l J 
= ~ (3-8) 

Hence, the rank of P is less than m + n. 

Consider a matrix C which is formed from P by 

first deleting the last row and then taking columns n, 2n, 

, mn, 1 , 2 , ... , n-l. Hence 

m n-l 

C = 

r­

1 

0 

0 

. 

U 

1 

0 

.... 
. . . 
0 . 
1 0 

· 
· 
· 

- ..... 
0 1 1 

. U 0 . 

. . . . 

· 
· 
· 

· 
· 
· 

., 
1 

0 

0 

. 
I ) m+n-l 

o 

o 010 

010 

o 

o 

o 0 o 

o 

1 

Since C is a square matrix of order m+n-l, rep) = m+n-l. 

Hence, there exist a set of m+n-l constraints in (3-6) 

which are linearly independent. Therefore, an optimal 

solution of a transportation problem never need have more than 

m+n-l of the a .. with a nonzero value. 
1.J 

From (3-8) the remaining row vector is a linear com­

bination o~ the set of linearly independent row vectors. 
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Thus, choose any m+n-l row vectors which are linearly 

independent. 

THEOREM 3-1 Any determinant of KxK submatrix obtained from 

P by crossing out m+n-K rows and mn-K columns have the 

value	 :.1 or 0, where 1 ~ K~m+n-1. 

PROOF. Suppose that P is such a matrix.
K 

If P contains one or more columns of zeros, then 
K 

IPKl = o. 

If each column of P contains two of the number 1,
K 

then one must be in'an origin row and the other one must be 

in a destination row. Then the sum of the origin rows minus 

the sum of the destination rows equals O. Hence IpKI = o. 

If every column of P contains one or two l's,
K 

and at least one column contains a single 1 then 

fPKI= ~ lpK-d 

where P - is a (K-l) x (K-l) submatrix. Either IpK-I!=oK l 

IPK_l' = .!. However, every Ip ( = 0 or 1, soor	 IP K­ 2 \ l
 

IpKI = 0 or +1.
 

THEOREM 3-2 Let P_ = b represent the transportation problem. 

From the simplex method 

~ yij	 f (3-9)= 
cd cd cd Pij 

i j =where	 Lcd is a basis vector. Then every +1 or O.Ycd 

PROOF. In l3-9) Rt .. = p.. , where R is a matrix
1J 1J
 

formed from m+n-l linearly independent columns of P. From
 

the above discussion, anyone row of R can be crossed out 
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and the new matrix S will be nonsingular. Suppose the i-th 

row is crossed out, then all components of iL. are zeros
1.J 

except the j+m-lth component, where ~ij is a column vector 

formed from p.. by deleting the i-th component. Hence,
1.J 

st .. = ~ . , where ~ . 1 is a unit vector containing
1.J m+J-l m+J­

m+n-l components. Then 

t .. = S-l~ . 1
1.J m+J­

S-l¢ . 1 is the (j+m-l)th column of S-l and each component
m+J­

of this column is a cofactor of an element in S divided by 

lsI. A cofactor of an element in Sand Jsl are determinants 

of the submatrix obtained from P by deleting certain rows 

and columns. Therefore, from theorem 3-1, they are either 

ij = +lor 0 bu t lsi" O. Thus, every Ycd o or +1. 

Equation (1-33) gives the method for moving from one 

simplex method tableau to the next simplex tableau. Therefore, 

B _ a
rs (3-l0a) 

a kh = kh 
Yrs 

and 

kh 
_B B B Yija .. = a .. - a where ij rs .

1.J 1.J rs kh 
Yrs " 

Now, kh 
Y must equal 1 , thus 
rs 

a kh = a B 
rs 

and (3-l0b) 

-Ba 
ij 

= 
B 

a ..
1.J 

+ a B 
- rs 

for all ij " rs 
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In (3-6), every column vector p.. in P has the following
l.J 

form: 

(3-11)Pij = ~i + ~m+j , 

where the ~k are the unit vectors containing m+n components. 

The basis [LcdJ contains m+n-1 vectors. Each Lcd is 

a column vector of the matrix P. Using (3-9), omit the 

terms for which Yij = O. Then, 

P.. = 1:. (+)L d (3-12)
l.J - C 

since p.. and I· have the form (3-11). Hence,
l.J cd 

P =~ -L +L - L + L . (3-13)
ij ip qp qr vu vJ 

where P.. is the column ij of P and ~st is the column st 
l.J 

ijof P. Therefore, the value of y depends on (3-13).
cd 

From (1-28), 

~ ij B _ c .. z·· - c·· = L. Ycd ccd l.J (3-14)l.J l.J cd 

Bwhere is the cost of the basic variable acd. rorccd 

p.. in (3-13), (3-14) can be written as
l.J 

B B B Bz .. c .. = c~ c + c c + c . c~ .
l.J l.J l.p qp qr vu vJ l.J 

(3-15) 

This Justifies equation (j-5). By the same reason and from 

(3-10b), the new basic variables are 

- B = a (3-16)a kh rs 
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and 

-8 B a =	 a (3-17)
ef	 ef 

if c: f does not occur ~n the equation (3-15) representing 

- The new basic variablezkh	 c kh · 

aB	 a B B=	 _ a (3-18)ef ef rs 

BIf the coefficient of in	 is 1 , andcef zkh - ckh 

aB = a B + aB	 (3-19)
ef ef rs 

Bif the coefficient of in	 is -l.cef zkh - ckh 

These	 equations determine the new tableau. 

4.	 Inequalities in the Constraints of a Transportation 
Problem 

If, in the transportation problem, more units are 

available at the orIgins than are required at the desti ­

nations, then it has the following form: 

n 
X. a ~ i=l, ... , mj=l ij- gi 

(3-20) 
m 
~ a .. = d. j =1, ... , n

IJ	 Ji=l
 

a .. ~O, for all i, j.

IJ 

min z	 = ~ c .. a .. 
. . IJ 1 J 1,J 

The inequalities can be converted to equalities by the addition 

of m slack variables. 
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Thus, 

n 
1:. a .. + = gi i = 1, ... , m 

J
. =1 1. J 

a in +l 

m 
I:. a .. = d j = 1, ... , n l3-2l)

i=l 1.J j 

m _ m n 
I. ­ L gi L d. = d + la in + l n. 1 Ji=l i=l J= 

where a . , 1.. = 1 are the slaCK variables and1.n+l ' ... , m
 

min z = 1:. cija ij

i,j 

There are m+n+l constraints and mn+m variables in (3-21). 

Hence, there is an optimal solution which never need have 

more than m+n of the different from zero.a ij 

Consider problem 3 in the last chapter. The cost 

tableau is presented in tableau 3-19. 

TABLEAU 3-19 

10 8 16 3 0 

19 25 l~ 7 0 

20 17 20 5 0 

The northwest corner rule yields an initial feasible solution 

for this problem. Then the stepping stone method is used to 

set up the following tableaux. 
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TABLEAU 3-20 

s°1 °2 Os °4 gi 

G1 

(j 
2 

G3 

d. 
J 

2000* 1000* 3000* 2000* -4 

-5 -13 2 2500* 2500* 5000 

-6 -5 0 2 3000* 3000 

2000 1000 3000 4500 5500 16000 

The column S is the column of the slack variables. 

TABLEAU 3-21 

Gl 

G2 

G3 

d j 

2000* 1000* 500* 4500* -2 8000 

-7 -15 2500* -2 2500* 5000 

-8 -7 -2 0 3000* 3000 

2000 1000 3000 4500 5500 16000 

All z .. - c .. ~ 0 in tableau 3-21. Therefore an optimal
1.J 1.J 

solution is: 

= 2000all 

= 1000a 12 

= 500a 13 

= 4500a 14 

= 2500a 23 

= 2500a 25 

= 3000a 35 
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Chapter	 IV 

CURVE FITTING BY LINEAR PROGRAMMING 

Linear programming can be applied to curve fitting 

problems. 

Given Xi' Yi' i = 1, ... , n, (4 -1) 

fit this data to the equa~ion: 

Y = c101(x) + c202(x) + ••• + ck~k(x), (4 - 2) 

where the 0ilx) are 'known functions without constants to be 

determined. The object is to find values of Cj' j = 1, ... , k 

so that the data in (4-1) "best" fits the curve in (4-2). 

Consider two methods Whereby the problem can be solved by the 

use of linear programming. 

1. Method 1. 

The first method is an attempt to minimize the sum of 

the absolute values of the deviations. Thus, a system of 

equations are formed as follows: 

k' 
1: c . ~ .	 (x.) + S. - T. = y. , i = 1, ... , n (4 - 3)

J J 1. 1. 1. 1.j=l 

where Si and are the positive slack variables, theT·1. 

positive surplus variables or the artificial variables. In 

the linear programming problem the objective function is: 

n 

1. 1.
min z =	 ~ S· + T. (4 - 4) 

i=l 
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, Consider an example. 

EXAMPLE 4-1 

Given the set of points which are shown in (4-5), 

try to fit the curve y = ax + b to the set of points, under 

the assumption that a and b are posit~ve. 

x I Y 
-

-1 1.1 

Q 4.1 
(4-5) 

1 I 6. S 

2 I 9. 9
 

5et up and solve the linear programming problem that
 

determines a and b so that the sum of the absolute
 

values of the deviations is a minimum. By (4-3), there
 

is a set of constraints such that
 

a' (-1) + b + 51 - Tl = 1.1
 

a·Q + b + 52 - 1 2 = 4.1
 

a·l + b + 53 - T3 = 6.S
 

a·2 + b + 54 - T4 = 9.9
 

1he objective function is:
 

min z = 5 + 5 + 5 + 5 + T + T + T + T

1 234 1 234 

Let xl' x 2 ' x 3 ' x 4 ' x 5 ' x 6 ' x 7 ' xS' x 9 ' and x lO be
 

a, b, 51' 52' 53' 54' Tl , T2 , T3 , and T4 respectively.
 

Use the simplex method to form the following tableaux.
 



~ 
l"­

VB 

3 

4 
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VB 

3 

4 

5 
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¢B 

1 

1 

1 

1 

¢B 

1 

1 

1 

0 

I 

0 

i ;\1B 

1.1 -1 

4.1 0 

6.8 1 

9.9 2 

221.9 

0 

-t ;\1B 

6.05 0 

4.1 0 

1. 85 0 

4.95 1 

12.0 0 

0 

;\2 

1 

1 

1 

1 

4 

0 

;\2 

1.5 

1 

0.5 

0.5 

3 

1 

;\3 

1 

0 

0 

0 

0 

1 

;\3 

1 

0 

0 

0 

0 

TABLEAU 4-1 

1 

;\4 

0 

1 

0 

0 

0 

1 

;\5 

0 

U 

1 

0 

0 

TABLEAU 4-2 

1 

;(4 

0 

1 

0 

0 

0 

1 

;\5 

0 

0 

1 

0 

0 

1 

;\6 

0 

0 

0 

1 

0 

1 

;\6 

0.5 

0 

-0.5 

0.5 

-1 

1 

;\7 

-1 

0 

0 

0 

-2 

1 

;\7 

-1 

0 

0 

0 

-~ 

1 

;\8 

0 

-1 

0 

0 

-2 

1 

;\8 

U 

-1 

0 

U 

-2 

1 1 

;\9 ;\10 

0 0 

0 0 

-1 0 

0 -1 

-2 -2 

1 1 

;\9 ;\10 

0 -0.5 

0 0 

-1 0.5 

0 -0.5 

-2 -1 
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VB 

3 

4 

2 

1 

VB 

6 

4 

2 

1 

¢B 

1 

1 

0 

0 

¢B 

1 

1 

U 

0 

t. B 

0.5 

0.4 

3.7 

3.1 

0.9 

~B 

0.25 

0.15 

3.95 

2.85 

0.4 

TABLEAU 4-3 

0 

~l 

a 

0 

0 

1 

0 

0 

;(2 

0 

0 

1 

a 

0 

1 

~3 

1 

0 

0 

a 

0 

1 

~4 

0 

1 

0 

0 

U 

1 

~5 

-3 

-2 

2 

-1 

-6 

1 

~6 

2 

1 

-1 

1 

2 

1 

~7 

-1 

0 

0 

0 

-2 

1 

~8 

0 

-1 

0 

0 

-2 

1 

~9 

3 

2 

-2 

1 

4 

1 

~10 

-2 

-1 

1 

-1 

-4 

TABLEAU 4-4 

a 

~1 

0 

0 

a 

1 

a 

0 

~2 

a 

0 

1 

0 

0 

1 

~3 

0.5 

-0.5 

0.5 

-0.5 

-1 

1 

~4 

0 

1 

a 

0 

a 

1 

~5 

-1.5 

-0.5 

0.5 

0.5 

-3 

1 

~6 

1 

0 

a 

0 

0 

1 

~7 

-0.5 

0.5 

-0.5 

0.5 

-1 

1 

~8 

a 

-1 

a 

0 

-2 

1 

~9 

1.5 

0.5 

-0.5 

-0.5 

1 

1 

~10 

-1 

0 

0 

0 

-2 
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TABLEAU 4-5 

0 0 1 1 1 1 1 1 1 1 

VB 

9 

4 

2 

1 

¢B 

1 

1 

0 

0 

t 
B 

1 
6" 

1 
IT 

1 
435" 

2!i
15 

7 
30 

;(1 

0 

0 

0 

1 

0 

;(2 

0 

0 

1 

0 

0 

;(3 

1 
3 

2
-3 

2 
3 

1
-3 

1
-13 

;(4 

0 

1 

u 

0 

0 

;(5 

-1 

0 

0 

0 

-2 

;(6 

'2 
3 

1
-"3 

1 
'3 

1 
'3 

2
-'3 

;'7 

1
-3 

2 
3 

2
-'3 

1 
3 

2
-3 

;(8 

0 

-1 

0 

0 

-2 

;(9 

1 

0 

0 

0 

0 

;(10 

2 
-3" 

1 
3 

1
-3 

1
-3 

11 
- 3 



All z. - c . in tableau 4-5 are non-positive. An optimal
J J 

solution is: a = 2 14 b = 4...!....- ,
15 30 

77 

1 T - 152 = - , 3 - - , 
15 6 

and min z = 7-
30 

. 

Therefore, the curve is y = 2.!-!x + 
15 

4...!.... 
30 

This result is 

expressed graphically in figure 4-1. 

FIGURE 4-1 

y 
10 

(2,9.9)
9 

y	 = 2.!.! x + 4..!.­
15 30 

. (1,6.8) 

(0,4.1) 
•	 4 

3 

2 

1 

x 

8 

-

(_ 1.,0)1 0
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2. Method 2. 

The second method is to minimize the maximum absolute 

value of the deviation. Consider 

r = max' y. - ~ c. ~ . (x.) I (4 -0) 
. 1. 
1. . 1 J J 1.J = 

Then the following equations must be satisfied: 

k 
Yi - 1: c . ~ . (x· ) < r (4 -7)

J J 1.­
j=l 

and 
k 

-Y i + c. OI :(x.)<r (4 - 8)1: J"'J 1.­
j=l 

i = 1, ... , n. 

Therefore, the linear programming problem is to minimize r 

and have the following constraints: 

k 
- I:c.~.(x.) -r<-y. (4 - 9)

j=l J J 1. - 1. 

k 
~ Cj~j(xi) - r ~ Yi (4-10) 
J=l 

i=l, ... , n, 

where c j ' j=l, ... , k, and r are variables. 

This method is used to solve example 4-1. First, set up 

the following constraints: 

(-a)· (-1) - b - r ~ -1.1 

a·(-l) + b - r~1.1 

- b - r~-4.l 

b - r~4.l 
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(-a)·l - b - r ~ -6.S
 

a·l + b - r ~ 6.S
 

(-a)·2 - b - r ~-9.9 

a·2 + b - r So 9.9 

and an objective function 

min z = r . 

Then add the slack variables, the surplus variables, and 

the artificial variables to the above inequalities. Thus, 

a· (-1) + b + r - x4 + xl2 = 1.1
 

a· (-1) + b -. r + Xs = 1.1
 

b + r - + = 4.1
x6 x 13 

b - r + = 4.1x 7
 

a 1 + b + r X + 6.S
· - s x14 =
 

a · 1 + b - r + = 6.S
x9 

a :l + b + r - x lO + xIS = 9.9· 
a 2 + b r + 9.9· - xII = 

and min z = O·a + O·b + r + O·x4 + O·xS + O·x + O·x 76 

+ O·xS + O·x 9 + O·x lO + O·x ll + MX 12 + MX 13 

+ MX + Mx
14 lS 

where M . is an arbitrary large positive number. 

It is too complicated to compute this problem by 

hand. The FORTRAN program which is listed in appendix I, 

with necessary format changes, is used to solve this 

linear programming problem by the computer. The following 

result is obtained. 
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Thus, max (-z) = -0.99999840 E -01 

x (4) = 0.99999480 E -01 

x (3) = 0.99999840 E -01 

x(6) = 0.19999980 E 00 

x (5) = 0.10000060 E 00 

l
 x (9) = 0.19999970 E 00 

x(2) = 0.40000000 E 01 

x(10) = 0.19999970 E 00 

x (1) = 0.28999980 E 01 

Hence, 

r = min(z) = -max(-z) = 0.09999984 z 0.1 

and 

a = x(l) ~ 2.9 

b=x(2)z4 

Therefore, the curve is YZ2.9x + 4.
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SUMMARY 

In this paper the basic linear programming problems 

have been discussed graphically and numerically. The 

simplex method has been presented and justified, and some 

practical applications of linear programming discussed. 

A special method, the transportation method, of linear 

programming has been discussed and justified. It was 

shown that linear programming is also applicable to curve 

fitting problems. 
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APPENDIX I 

The following is FORTRAN IV program to solve a 

linear programming problem using the Simplex method. 

C USING THE SIMPLEX METH0D T0 S0LVE THE 

LINEAR PR0GRAMMING PR0BLEM 

DIMENSI0N A(25, 25), C(20), R(20) 

READ (5, 1) N, M 
,~ 
;0 
.:} 

" 1 F0RMAT (215).,
·i 
;1 M3 = M + 3 

N1 = N + 1 

C READ TABLEAU 

READ (5,2) ((A(I,]), J = 1, M3), 1= 1, N) 

2 F0RMAT (F6.0, 2F8.0, 8F5.0/11F5.0) 

READ (5,3) (C(I), 1= 1, M) 

3 F0RMAT (10F7.0/9F7.0) 

C C0MPUTE THE LAST R0W 

30 D0 6 J = 3, M3
 

A (Nl, J) = O.
 

D0 4 I = 1, N
 

4 A(N1, J) = A(N1, J) + A(I, 2) * A(I, J) 

IF (J-3) 100, 6, 5 

5 K = J-3 

A(N1, J) = A(N1, J) - C(K) 

6 C0NTINUE 

C DETERMINE THE C0LUMN THAT ENTERS 

J=4 
83 
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18 IF (A(N1, J)) 7, 8, 8
 

7 L = J
 

G0 T0 11
 

8 J = J + 1
 

IF (J-M3) 9, 9, 10
 

9 G0 T0 18
 

10 G0 T0 90
 

C DETERMINE THE R0W THAT LEAVES
 

11 D0 14 I = 1, N
 

IF (A(I, L)) J2, 12, 13
 

12 R(I) = -l.
 

G0 T0 14
 

13 R(I) = A(I, 3)/A(I, L)
 

14 C0NTINUE
 

K = -1 

Z = I.E + 20
 

D0 17 I = 1, N
 

IF (R(I)) 17, 15, 15
 

15 IF (R(I) - Z) 16, 16, 17
 

16 X = R(I) 

K = I
 

17 C0NTINUE
 

IF (K.EQ. -1) G0 T0 80
 

KK = L - 3 

C NEW TABLEAU
 

D = L - 3
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A(K, 1) = D
 

A(K, 2) = C(KK)
 

S = A(K, L)
 

DII) 21 J = 3, M3
 

21	 A(K, J) = A(K, J)/S 

DII) 23 I = 1, N 

IF (I.EQ. K) Gil) Til) 23 

T = A(I, L) 

DII) 22 J = 3, M3 

22 A(I, J) = A(I, J) - T * A(K, J) 

'1c, 
23 CII)NTINUE~ 

j 
.~	 Gil) TO 30 
~ 
1 

C	 UNBII)UNDED SII)LUTIII)N 

80 WRITE (6, 85) 

85 FII)RMAT (19H UNBII)UNDED SII)LUTIII)N) 

Gil) Til) 100 

C	 WRITE SII)LUTIII)N 

90 WRITE (6, 91) A(N1, 3) 

91 FII)RMAT (18H II)PTIMAL VALUE IS , E20.8) 

DII) 92 I = 1, N 

II = A(I, 1) 

92 WRITE (6, 93) II, A(I, 3) 

93 FII)RMAT (lOX, 3H Xc, 13, SH ) = , E20.8) 

100 STII)P 

END 
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