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Chapter I
LINEAR PROGRAMMING AND SIMPLEX METHOD

1. Introduction
X As early as 1826, the French mathematician Fourier
formulated linear programming problems for use in mechanics
and probability theory and suggested a method of solution.
In 1939 the Russian mathematician Kantorovich formulated
production problems ' as linear programming problems, emphasized
their importance and suggested a method of solution in his

book, Mathematical Methods of Organizing and Planning of

Production. «

The basic method to solve linear programming problems
was developed by G.B. Dantzig in 1947 and is called the
simplex method. It is a mathematical technique, though a
straight forward economic interpretation can be given to it.

XIp 1949 T.C. Koopmans collected the papers, which
were presented by economists, mathematicians, and statisti-
cians who joined the Cowles Commission conference on linear
programming at the University of Chicago, in the book,

Activity Analysis of Production and Allocation. From that

time, linear programming has had wide application in business,
industry, and government.x
The general linear programming problem can be described

as follows. Given a set of m inequalities or equations in
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r variables, find non-negative values of these variables
which satisfy the constraints and maximize or minimize

some linear function of these variables.

2. Graphical Examples.
Linear programming problems which involve only two
variables can be solved graphically. The procedure will

be illustrated by several examples.

EXAMPLE 1-1

P4 -
X, + 4x2_,8 (1-1)
X, x2_>_0
max z = 2x1 + 4x2

The object is to find the set of points (xl, x2) which
satisfy the first three inequalities. This set of points
is called the feasible solution.

A point in the feasible solution for which 1z is
maximized is an optimal solution to the problem.

The feasible solution of (1-1) is shown in the shaded

region of Figure 1-1. Consider

Grad (z) = (2% 9z )

a(2xy + 4x2) a(2x1 + 4x2)
axl s 8X2 ( s

9 X3 o X,
= (2, 4)

which is a vector that indicates the direction to move in

order to increase =z most rapidly. Consider a set of
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lines, say S = {zl, 22’ 23, . . .} , each of which is
perpendicular to the Grad (z). There is a zze S which
has a maximum value in the area of the feasible solutions.
Then the intersection point (?1, ;2) of the 2, and the

area of the feasible solutions is an optimal solution.

From figure 1-1 it is clear that (il, ?2) satisfies

Sil + iz = 6 and il + 4§2 = 8, Therefore, il = %%3
- 18 - - 5
X, = — and max = 2 + 4x_ = 9= .
2 T ax z x1 5 T
FIGURE 1-1
X
2/\
Xy + Xy = 6
Grad (z)
ZZS\\
; 2 N\
1‘\\\
Xp + 4x2 = 8
X
0 >N




EXAMPLE 1-2

(1-2)

In this example the Grad (z) = (8, 2) is perpendicular to

the line 4x1 + 2 = 9., The line 22 coincides with the
line 4x1 + x, = 9. Therefore, any point on the edge ab
in figure 1-2 is an optimal solution. So the optimal

solution of (1-2) is not unique.

FIGURE 1-2

-Xl + ZXZ = 6

‘,,,/,,,,,,,/”’/ Grad (z)




EXAMPLE 1-3

2x1 + 5x2 > 10
- <
3x1 + 2x2 < 6
x, < 5 (1-3)
X) x2 2 0
max z = 5x1 + 4x2

The geometric interpretation of (1-3) is given in figure
(1-3).

The four constraints of this example form an
unbounded area representing the feasible solution.
The value of =z increases in the direction of the
Grad (z) = (5, 4). A maximum value of z in the area of
the feasible solutions cannot be found. Therefore the

solution is unbounded.

FIGURE 1-3




EXAMPLE 1-4.

1 2
2x )+ 3x2..<..5 (1-4)
X1s X, Zz 0
max z = Xx; + 2x
This example is expressed graphically in figure 1-4. The

area representing the solution of the first inequality does

not meet the area representing the solution of the second

inequality. Therefore, there is no feasible solution.

FIGURE 1-4




3. Numerical Examples.

Consider the inequality
n
Z 4 .X.£bh, (1-5)
: ivi
i=1
A variable x'20 can be added to the inequality such that

n
= d.x; + x' = b. (1-6)
=1

He

x' is called a slack variable. Consider the inequality
m
= A.x.=Zb. (1-7)
j=1 J ]

A variable x''20 can be supplied to the inequality such

that
m
Z 4A.X. - x'' = b, (1-8-a)
j=1 J ]

x'' is called a surplus variable. In this case an arti-

ficial variable x'"'> 0 must also be added and then

M=

djxj - x" + x'" =) (1-8-b)
1

.
n

In general, a linear programming problem can be

written as follows.

I Z
= a..x.(=) b,, i=1, ..., m (1-9)
;= 1) I\« 1
J_l —
xl, xz, , xn.?. 0
max z = clx1 + czx2 + . . .+ ¢ X, (1-10)

For each constraint in (1-9) there exists one and
only one of the signs € , =,2. Function (1-10) is called

the objective function.



Provide (1-9) with the slack variables and the
surplus variables. The following system of linear equa-

tions is obtained.

n
Za x (+)x _.=b.,i=1, .. . ,m (1-11)
j=1 13 1~ n+i i

For each equation in (1-11) there exists one and
only one of the signs + or - depending on whether a slack
variable or-a surplus variable was added to the inequality.
In each case where a surplus variable was added it is
necessary to also add an artificial variable. Consider

example 1-1.

3 + < 6
X X

+4 <
Xl X2_.8

3x1 *ox, ¢+ XS = 6
X, ¢+ 4x2 + X, = 8 (1-12)
xl, x2 >0
max z = 2x1 + 4x2 + 0'x3 + 0-xy
where Xz and x, are slack variables.

Suppose a system of the equations (1-13), (1-14)
is obtained by providing the slack variables variables for
a linear programming problem. The modification necessary

to handle surplus variables will be discussed subsequently.



ap1Xy * oee. * 210Xp * 31041 Xpe1 oo * AnupXpem T Pl
+ ... + + ce. *+ = b
a21x1 a2nxn a2n+1xn+1 * a2n+mxn+m 2
a X, + ... +a x + a X + ... + a X = b
ml 1 mn n mn+l n+l mn+m n+m n
(1-13)
1 i=j
where a, . = { .y
in+j 0 i#j
max z = CyX; + ... *CaXy v o Xne1 Y et ChunX
(1-14)
where ¢ = ,,.. = ¢ = 0
n+l n+m

Then set up the first tableau.

TABLEAU 1-1

cq .o c. oo cn+m
r's SN “ e

Vs ‘B B 41 Ay A em

n+l ey Xpp TPy | 3 a1r ...  2inem

n+k cn+k ka = bk a1 .. akr c e akn+m
n+m c X = bm a ... a .. a

n+m Bm ml mr mn+m

[ - - -

z Z1 C1 Zr cr Zn+m cn+m
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' = . . . -
where =z ¢B kg + Covl b1 Yoo teo o bm (1-15)
zj = ¢B . dj = Chel aIJ + ...+ cn+mamj’
j =1, ... , n+m (1-16)

NOTE 1: In tableau 1-1 all components of the third column
must be non-negative. If some components of the
third column are negative, then some artificial

variables must be supplied.

If all zj - cj 2 0 in tableau 1-1, then the problem

is completed. Consider the first negative value 1z, - ¢,

in the last row of tableau 1-1 or consider the minimum nega-

tive value Z, - C, in the last row of tableau 1-1. That

negative value determines the variable x, and the corres-

ponding c,. that will enter the new tableau. The kth row

which satisfies

Bk = nin xBi
a a, >0 ’ (1-17)
T kr a .
will leave tableau 1-1. a,,. is called a pivot element.

Tableau 1-2 is constructed in the following manner.

ak.
a2 . = )
kj a
kr
—— a.
a.. =a., -a, _Ki for i # k
ij ij ir
kr
< _ UBr
Br
a 1-18
kr ( )
X
X . =x_. - a. _Bk for i # k
Bi Bi ir ,

kr
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j=1, . y n+m,
" - .
and z cn+1 xBl + ...+ cprk + ... + cn+mme
"o = -
zj cn+1aij + ... + crakj + ...+ cn+mamj (1-19)
j=1, , n+m

TABLEAU 1-2

c c c
1 T n+m
Vs £ Ap A A A em
n+l Ch+l Xp1 a)q A a, . “es aln+m
T c X a ... 2 R 1
T Bk k1l kr akn+m
n+m Chem Xem a1 .o a_ ce a em
" " - " " _
z z' cq z{ c.. e c.
If all zj‘- c; are non-negative, then the problem is
completed. If not, continue the process until all zj-cj

are non-negative. This method is called the simplex
method.
The simplex method is used to solve example 1-1.

3x, + x, €6

1 2 —
<
X, + 4x2 < 8
X1, X, 20
max z = 2x, + 4x



Two slack variables x and x, are added to the constraints

3 4

and to the objective function. Thus,
3x1 + x2 *oxg ot 0-x4 = 6
X, * 4x2 + 0 Xg + X, = 8

Next, set up the first tableau.

TABLEAU 1-3

2 4 0 0
Vg ¢B £ g A1 Ao iz da
3 0 6 3 1 1 0
4 0 8 1 4 0 1
0 -2 -4 0 0
where z' = 0:6 + 08 = 0
2y - ¢y = 03 + 01 - 2 = -2
Zy - Cop = 01 + 0°4 - 4 = -4
Zg - c3 = 01 + 0°0 - 0 =0

In the last row of tableau 1-3, -2 is the first negative

12

number. Since the corresponding column of -2 contains the

numbers 3 and 1 such that

X X
B1 _ 6 < 8 - B2 ,
2 3 b ey
3 is the pivot element. Therefore,

the first row leaves

tableau 1-3 and the variable x, and the corresponding

1
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coefficient cy = 2 enter the tableau. Then the formulae

(1-18) and (1-19) are applied to form the next tableau.

TABLEAU 1-4

2 4 0 0
Vs 2 *B A 42 A3 Ay
1 2 2 1 1/3  1/3 0
4 0 6 0 32 _1 1
3 3
s | 0 1 2 o
3

Using the same method, the following tableau is obtained.

TABLEAU 1-5

2 4 0 0
A

B ¢B &B i‘1 4 2 dS ¢4
16 20 1
1 2 T 1 0 3 - 1T
2 4 18 0 1 _ L 3
11 11 11
0.5 0 0 28 10
11 33 11

All elements of the last row in tableau 1-5 are non-negative.

Hence the optimal solution obtained is:
_ 16
1711
Xy = 18
11
max z = 9£L

11
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Consider another example.

EXAMPLE 1-5

1 2
-3x1 + 4x2__ 12
x1 < 5 (1-20)
X1 x2 > 0
.max z = le + x2

The feasible solutions of example 1-5 are shown in the

shaded part of figure 1-5.

FIGURE 1-5
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By providing a surplus variable X g and two slack variables

X4s Xg (1-20) can be converted into a system of equations.

Thus,
4x1 + 6xy - Xz = 2
-3x1 + 4x, + x4 = 12
X] * Xg = 5 (1-21)
X1, X, 20
max i = 5x1 Xyt O'x3 + 0-x4 + O-x5
Set up the first tableau letting X = x, = 0. Thus, the
components of the third column are Xg = -2, X, = 12,
Xxg = 5. This is impossible since each variable must be

non-negative. Therefore, an artificial variable must be

supplied. Convert (1-21) into (1-22).

4x1 + 6x2 - x3 + Xg = 2
-3x1 + 4x2 + Xy = 12 (1-22)
x1 + x5 = 5

X1 X Xz, Xy, Xg, Xg >0
max z = 5x;p + X, * 0'x3 + 0-x4 + 0-x5 - Mx6
where M 1is considered to be an arbitrary large positive

number.
Then set up the first tableau. This is shown in
tableau 1-6.

The same method j.as been used to construct the
remaining tableaux, which are presented in tableau 1-7

through tableau 1-9.



TABLEAU 1-6

16

5 1 0 0 0 -M
Ve 23 Ap 4 4, Ay 4, Ay Ae
6 M 2 4 6 -1 0 0 1
4 0 12 -3 4 0 1 0 0
5 0 5 1 0 0 0 1 0
- - - M 0 0 0
TABLEAU 1-7
5 1 0 0 0 -M
v ¢ X 4 A
B B B 1 2 Ay A, A5 e
1 3 1 1
1 2 -1 0 1
1 5 : 1 > : 0 L
5 1 3 3
4 0 125 0 H -3 1 0 3
1 3 1 1
5 0 45 0 -3 Z 0 1 -1
5 1 5
TABLEAU 1-8
5 1 0 0 0 M
Vg 3 Xp 4 Ay Az Ay Ao A
1 5 5 1 0 0 0 1 0
3 9
4 0 27 0 4 0 1 -7 %
3 0 18 0 -6 1 0 4 -1
25 0 -1 0 0 5
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TABLEAU 1-9

5 1 0 0 0 -M

Ve £B Ap 4 47 3 44 s ¢

1 5 5 1 0 0 0 1 0
2 1 %7_ 0 1 0 %7 - ng _GSLZ
3 0 581 0 0 1 % g - 357
31% 0 0 0 % 4_176" +

All elements of the last row in tableau 1-9 are non-negative.

The optimal solution is:

x =5
1
X, = 27/4
- 3
max z = 314 .
Consider example 1-2,
=Xy * 3xo =6

Xp0 X, 2
max z = 8x1 + 2x2
Supply two slack variables X, and X, Then,
—xl + 3x2 + X4 = 6
4xq + X, * X, s 9
xl, xz, xs, x42_0
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The following tableaux are set up by the simplex method.

TABLEAU 1-10

8 2 0 0
Vg ¢B AB 4 ) i3 44
3 0 6 -1 3 1 0
4 0 9 4 1 0 1
0 -8 -2 0 0

TABLEAU 1-11

8 2 0 0
Vg fp Ay 4 4y A3 44
3 0 gl 0 31 1 1
3 7

1 8 S 1 1 0 1
3 ) 3

18 0 0 0 2

All elements of the last row in tableau 1-11 are

non-negative. The problem is solved. An optimal solution
is:
X; = 9/4
=0
*2
max z = 18

Note that there are three 0's in the last row of the
two-row tableau, tableau 1-11. In the previous examples,
there has always been m O0's in the last row of the

last m-row tableau. In tableau 1-11 let the variable x2
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enter the tableau and remove the first row from the

tableau. By doing so, tableau 1-12 is obtained.

TABLEAU 1-12

8 2 0 0

Vg ¢B Xp ) ) i3 Ay
2 2 33 0 1 A 1
13 13 13
1 8 21 1 0 1 3
13 13 13

18 0 0 0 2

All elements of the last row in tableau 1-12 are also

non-negative. Then another optimal solution is:
X, = %%
X2 © %%
max z = 18
The maximum value of 2z 1is unchanged. Therefore, in this

example the optimal solution is not unique.
Consider example 1-3.
2x1 + 5x,210
-3x, + 2x_= 6

<5

max z = le + 4x2

Provide two slack variables Xy and Xg, one surplus variable
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Xas and one artificial variable Xgs to obtain the following

system of equations.

2xy + 5x2 - x3 X = 10
-3x1 + 2x2 + x4 = 6
x2 * Xg = 5
X1s Xgs X3, X,, Xg, x6_>_0
max z = le + 4x2 + 0-x3 + 0-x4 + 0-x5 - Mx6

Use the simplex method to form the following tableau.

TABLEAU 1-13

5 4 0 0 0 -M
Vg 2 Xy Ay iy Ay A, As e
6 -M 10 2 5 -1 0 0 1
4 0 6 -3 2 0 1 0 0
5 0 5 0 1 0 0 1 0
-10M - - M 0 0 0
TABLEAU 1-14
5 4 0 0 0 -M
Vg Cp %3 iy As Az A4 As Ao
1 5 5 1 S _1 0 0 1
2 2 2
4 0 21 0 P 3 1 0 3
2 2 2
5 0 5 0 1 0 0 1 0
25 0 17 -2 0 0 +
2 2
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In tableau 1-14, — % is the only negative number of the
last row. There is no positive number in the corresponding
column 45. In this case, the solution is unbounded.

Consider example 1-4.

X *+ X, < 1
2xq *+ 3x22:5
xl, x2_>_:0
max 2z = xl + 2x2
Provide the slack variable Xqs the surplus variable X,, and
the artificial variable Xgs to obtain the following system
of equations,
xl + x2 + Xg =1
2x1 + 3 x, - Xyt X = 5
xl, ngz 0
max z = x; * 2x2 + 0-x3 + O-x4 - st

Use the simplex method to form the following tableaux.

TABLEAU 1-15

1 2 0 0 -M
VB ¢B 4B i1 a2 i3 da is
3 0 1 1 1 1 0 0
5 -M 5 2 3 0 -1 1
-5M - - 0 M 0
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TABLEAU 1-16

1 2 0 0 Y
Vg ¢ 4B | 41 ¥ A3 A4 45
11 1 1 1 1 0 0
5 -M 3 0 1 -2 “1 1
3M | o - . M 0

TABLEAU 1-17

1 2 0 0 M
Vg fp % 4 4 A3 Ay #s
2 2 1 1 1 1 0 0
5  -M 2 -1 o -3 -1 1
i + 0 s M 0

All elements

of the last row in tableau 1-17 are non-

negative. But the value of the artificial variable is

not zero in the final solution. Thus, in this case, the

problem has no feasible solution.

The following observations have been made in the

previous examples.

CASE A. All
are

(1)

(2)

elements of. the last row in the final tableau
non-negative.

No feasible solution: One or more of the
artificial variables remains in the final
solution at a nonzero level.

Unique optimal solution: Same number of zero's

in the last row as the number of variables.
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(3) Not unique optimal solution: More zero's
in the last row than the number of variables.
CASE B. An element of the last row in the final tableau
is negative.
(4) Unbounded solution: There is no positive

element in the corresponding column.

4. Justification of the Simplex Method

Aftef adding the slack variables, the surplus
variables, and the artificial variables, a system of
inequalities in a linear programming problem can be con-

verted into a system of equations.

a19X] * 315Xy * ...+ 3y X, = by
3p1X1 * 8p9%p * e *ApXy = by
a Xy *toap,X., f ... +oa x = bm (1-23)
whe:e X15 Xp5 00 5, X 20
and max z = C1X] *+ CpXp + ... + C X,
let
- a11 a12 .. aln <
221 222 e %2n
A =
S %m 3n2 e an A




X, b,
/x = b =
\ X 7/ \ bn
and g = [cl, Cos vvn s Cn]

Then (1-23) can be written as:

Ak = B
kA 20
max z = ¢ k.
Consider a basis B = {fl, £2’ cee s fmj

and construct the following tableau.

TABLEAU 1-18*

24

(1-24)

in this systenm,

Cl ... Cj Cn
VB ¢B 'S(B #1 T d-j dn
°B1 *m1 [ Y11 "t Vi Y1n
°Bi  TBi | Yi1 vt Yi2 vt Yin
Bm “Bm | Ym1 """ ymj Y mn
Zo Zj - Cj
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*Tableau 1-1 is the special case of tableau 1-18. The

basis of tableau 1-1 is {el, €rs ces s em} where ey is

a unit vector containing m components.

In tableau 1-18 Yi Xpi» and cpj are scalars and

j,

m
Y ST 1-25
i§1 le 1 ] ( )
c
= b 1-26
El *pi%i ( )
m
29 = 2 CBiXpj (1-27)
i=1
m
Z5 = 521 cpi¥ijr J = 1, ... , n (1-28)

The A g provides the basic solution. The zg is the value
of the objective function at Ap and sometimes is expressed
by zg(%3g).

In the simplex method one vector is changed at a time
in the basis and the change is required to be such that:

(1) The new basic solution is feasible.

(2) The objective function does not decrease as the

vector is changed.

The first objective is accomplished by the choice of the
vector to leave the basis, while the second is accomplished
by the choice of the vector to enter the basis.

Suppose dk is to enter the basis. From

m
Ay = Z vid;-
i=1
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In order to maintain a basis, choose an r such that

Yk # 0. Then

Z = 1 4, - Yik g 1-29
T Yrk k E;f Trk t ( )

From (1-26),

B =Zxpfy = xp £+ 2 xpif;
i#r

- . 1 Yik + £
= X — 4 - 7. 2; XB
Br<;rk k E;r Yok 1) Sy iTi

- XB ylk
22 A - X x £ + 3 x_ £

y y K Br i Bi i

Tk igr T i#r

Hence,
¥ = Br Yik \
A+ S Xegi ~ Xpr ; - (1-30)
Yrk Yk
i#¢r

This provides that a new basic solution is feasible if

X

(1) IBr 5

Yrk

and

(2) «x - X_ Yik > 0, for all i#r

Bi Br = '
Yrk

Since xBiZ.O for all i =1, ... , m, the condition (1) can

be considered by Yrxk >0 unless Xpp = 0. Since yrk>-0,

condition (2) is satisfied for those 1i's such that
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y.,<0. Hence, the object is to choose the r so that
ik
Y.
Xp: = X 1k > 0
Bi Br —_
Yrk
or
Y.
ik
Xpi Z Xpr -
Yrk
for all i#r such that Yik>0»
or
X . X
Bi > Br (1-31)
Yik 3"

This r 1is chosen by satisfying

X X, .

BT - jnin { Bi } . (1-32)
Yrk Yik >0 ' Yy

This proves that if dk is chosen to enter the basis, then

the vector T 1is chosen to leave the basis, where r

satisfies the formula (1-32).

In (1-31) if a new basic solution % B = (xBl’ cee me)
is obtained, then
< - xBr
Br
Yrk
y.
—— _ - lk . _
Xpgi = Xp3 Xpo i#r . (1-33)
Yrk
The vector {4 K replaces the vector i; in the basis. There-

fore, a new value of 2z, say z(.«B), is
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X y.
—_ _ "Br _ ik
z(kg) = S ¥ X (Xpy 7 Xpy ) g3
yrk Yrk
i#r
Xpr XB
_ _ T
— g Y X *pi®pj 2 -~ YikCBi
yrk yrk
i#r i#r
m m
X X
Br Br
= — + - - —
K 2 *p;i%pi *Br By 2 ik Bi
yrk yrk
. 1i=1 i=1
X
Br
* yrkcBr
yrk
*B
= z(&k,) + T (c. - z.) (1-34)
B v k k
rk
If zj - chO for all j=1, ... , n, then the solution is
optimal. This will be later proven in theorem 1-1. Since
XBr . .
—— 20, take the first negative 2 ~ Sk and insert that
Yrk
vector into the basis. This assures that the new value of

z does not decrease.

From (1-25) and (1-29), then

1 Y-
—_ ik =

T oy f oy (Y M - T — £ - 3
igr 131 rJ ifr Ypx

Yoyps y.

or 1) Ay * 2y - y_. “ik ,fi = 4.
y 1] r) J
rk Yrk

i#r
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It is known that the vector dk

in the basis. Hence, the new yij's, say -;ij's’ which

replaces the vector 2;

are needed in the new tableau are:

7rj=_y_£i
yrk
(1-35)
7. = VSt
yij yij Yrj
Yrk
where yrk is the pivot element. A new tableau is formed

by (1-33) and (1-35). The procedure for the transformation

of tableaus is:
(1) Divide the r-th row (xBr and all yrj) by Yrk
to get a new r-th row,.
(2) For i#r, su.tract Yik times the new r-th row

from the i-th row to get the new i-th row.

Continue this process until all z; - C; are non-negative.

i

THEOREM 1-1 If for some feasible basic solution kB all

Z0

2z, - ¢.,20, then &B is an optimal solution.

J j
PROOF. Suppose &' 1is any feasible solution,

’ n
then > 4d.x!' = B.
j=1 J ]
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m [/n
or ;E 2y sx! JE = P.

m

But Z:xBifi = $ is known, and this representation of }
i=1

in terms of ti is unique. Therefore,

n
X, . = :E y..x!
Bi j=1 1) ]

Since ' m
z(4& ) = 2 c.X,. o,
B i=1 i Bi
m n
z(4,) = 2Z c. 2 y..x!
B s=1 & =1 ij™]
n m
j=1 \i=1
n
= z,x! (1-36)
j=1 J ) .
However, since zj>-cj and ijtO for all j, then
n
> ' = '
ZCAB)_g.cjxj z(4').
j=1
This implies that z(&B) is maximum. Therefore, 43 is

an optimal solution.

THEOREM 1-2 Suppose for some basis B, there exists that
Zi - ck<0 and yikf_O, for i=1], ... , m. Then the
objective function is unbounded above by the constraints.
PROOF. Let T be any number such that T‘>zG&B), where

&B is any basic solution. It is known that
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Suppose & >0, thus

m

Z oxp A -0k, ved =¥ (1-37)

i=1
From (1-25),

m
i, = Zvy. £
k i=1 ik'i

Hence,

m m

2 oxpify -0 X ygfy +6d =¥

i=1 i=1
or m

El(xBi -Gyik)(i +e¢k = 15- (1‘38)
Since yik< 0, i=1, ... , m, and 8 20,

Xg; ~OY; 2 0.

Hence, a new feasible solution 4A(@®) 1is given by the

equation (1-38). Then

m
2(4(0)) = i§1 (xBi -Byik) Bi + 0 Cy
m m
=2 i 9 (1>=:1 Yik%i T %k
= z(kB) -0 (zk - ck)
T - z("B

Let © = = Z-Ck , where T - z(ﬁB]>0 and —(zk-ck)70,
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then z(4« (@)) = T. Therefore, the objective function is
unbounded above.

In the simplex method, the most important concept
is to change the basis to obtain a new feasible solution
such that the value of 2z 1is not decreased.

The following remarks deal with a technique used in
the simplex method.

Consider the system of linear equations.

(1) 3x1 - 4x2 + 2xg + 3xy - Xg + 2x6 = 7
(2) Xy - 3;2 + 6x3 + 5x4 - 2x5 = 1
(3) -2xy + x5 - 4x4 -3xg  + 4xg = 6

One solution to this system is

Xy = 0, X, = 0, Xz = 0, x4 =1, xg = 2, Xg = 3

Suppose, however, a solution involving xjz, Xg, and Xe is
needed. Divide equation (1) by 2, then

3. . 3. .1 _ 7
(1) 3X3 - 2xp * Xz *+ 5X4 - Xg + Xg = 5

(2) xl - 3x2 + 6x3 + 5x4 - 2x5 =1

(3) -2x1 * X, - 4x3 -3x5 + 4xg = 6

Add -6 times equation (1) to equation (2) and add 4 times

equation (1) to equation (3).

1 2x, - 2Xx, + 3 -1 + = 7
(1) 5% 2 X3 *5% T 5% *6 T 3
(2) -8x1 + 9x2 -4x4 + Xg - 6x6 = -20
(3) 4x1 - 7x2 + 6x4 - 5x5 + 8x6 = 20
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Now, a solution is

x, =0, x,=0, x, = -— , x, =0, x.. = - — , x, = — .
5 3 5 19 6 19

Then suppose a solution involving x5, Xz and x, is

needed. Divide equation (2) by 9.

3. 3¢ - L = 7
(1) ?xl 2x2 + x3 + Ex4 2x5 + x6 >

-8 -4 1, -6 - _ 20
(2)—gx; *+ X, %4 ¥ 9% T 9% 9
(3) 4x1 - 7x2 + 6x4 - 5x5 + 8x6 = 20

Add 2 times equation (2) to equation (1) and add 7 times

equation (2) to equation (3).

5 11 5 3 - 17
(1) —13%; YoXe v 1%y T 18%s T 3% T T 1F
8 4 1 6 _ 20
(2) —g3% * X, T %4t 9% T ¥ T T D
20 26 38 30 _ 40
(3) =3 M Sl - S
Hence, the solution involving Xps Xgq and Xe is X, = 0,
X, = -i,Axs = -l, x4 = 0, x5 = 0, x6 =4 . Now suppose a
3 2 3
solution involving X1, Xg, and x3 is needed. Divide
equation (3) by 20 .
9
5 11 5 3 _ 17
(1) = 15%1 Xzt TE% T T8%s T 356 - T 18
4 1 6 _ 20
(2) = g% * X, - %4t %5 T 3% T T 9
13 19 3 -
(3) X T To%4 t To%s T T¥e - T2
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Add f% times equation (3) to equation (1) and add 8
9

times equation (3) to equation (2).

) T R R

x, - %x4 + %xs - 2x6 = -4

X - %%x4 + %%xs - %«6 = -2
Therefore, the solution involving X1 X5, and X g is
X, = -2, x, = -4, Xz = — % » X4 = 0, Xg = 0, Xg = 0

If a linear programming problem is required to
minimize the value of z, the objective function, then
either one of two following methods can be used to solve
the problem.

(1) Find the value of max (-z) by the simplex method.
Then times -1 to max(-z) so that -max(-z) = min z.
(2) Choose the first positive z, - cy in the tableau and
insert that vector into the basis. Let the vector
r leave the basis, where r satisfies the formula
(1-33). Then make a new tableau. Iterate the same
way until all z5 - cjfio.

Method (2) is easy to verify using formula (1-36)
in the proof of theorem 1-1. Since all zj - cjﬁo, z(4pg) <
z2(&'), where &B is an optimal solution and 4' is any
feasible solution.

Consider an example.

EXAMPLE 1-7

x; + 3x2 23
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METHOD 1.
Consider max (-z) = -1.5x1 - 2.5x2. Then form a
system of equations such that

x1 + 3x2 - Xz + X = 3

Xy +- xz - x4 + x6 = 2
X1 Xgs Xg, X, Xg, X >0,

max (-z) = —1.5x1 - 2,5x, + 0-xg + 0-x4 - Mexg - M-x6

2
where M 1s an arbitrary large positive number.
The following tableaux are formed by the use of the simplex

method.

TABLEAU 1-19

-1.5 =-2.5 0 0 -M -M
VB ¢B AB d.1 #2 ¢3 ¢4 #5 16
5 -M 3 1 3 -1 0 1 0
6 -M 2 1 1 0 -1 0 1
- - - + 0 0 0
TABLEAU 1-20
-1.5 -2.5 0O 0 -M -M
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TABLEAU 1-21

2 -2.5 0.5 0 1 -0.5 0.5 0.5 -0.5
1 -1.5 1.5 1 0 0.5 -1.5 ~-0.5 1.5
-3.5 0 0 0.5 1 + +

Therefore, an optimal solution is

x1 = 1.5,

min z

x2 = 0.5

-(max(-2z)) = -(-3.5)

A

1]
w
w

METHOD 2.

Form a system of equations such that,

3 + 3x2 - Xg + Xc =3
X1 + x2 - x4 + x = 2
where xl, X, x3, Xp0 Xgo x62_0
and min z = 1.5x1 + 2.5x2 + 0-x3 + 0-x4 + st + Mx6

where M is an arbitrary large positive number.

Then the following tableaux are obtained by the second

method.
TABLEAU 1-22
1.5 2.5 0 0 M M
vB ¢B &B #1 ¢2 ¢3 d4 ¢5 ¢6
5 M 3 1 3 -1 0 1 0
6 M 2 1 1 0 -1 0 1
+ + + = - 0 0




37

TABLEAU 1-23

1.5 2.5 0 0 M M

VB ¢B &B ai1 d2 i1(3 ¢4 ¢5 ¢6
5 M 1 0 2 -1 1 1 -1
1 1.5 2 1 1 0 -1 0 1
+ 0 + - + 0 -

1.5 2.5 0 0 M M
VB ¢B 4B dl ¢2 d3 d4 ¢5 a‘6
2 2.5 0.5 0 1 -0.5 0.5 0.5 -0.5
1 1.5 1.5 1 0 0.5 -1.5 -0.5 1.5
3.5 0 0 -0.5 -1 - -

All elements of the last row in tableau 1-24 are non-
positive. Therefore, an optimal solution is:

Xy = 1.5, x, = 0.5



Chapter II
SOME APPLICATIONS OF LINEAR PROGRAMMING

Linear programming can be applied to almost any
industrial operation. O0il refinery operations is a large
field of application. Companies in this field spend
large amounts of money to formulate accurate models as
well as solve and implement them. Other well known
applications are in'cattle-feed mixing, the steel industry,
the paper industry and the dairy industry. Since linear
programming is concerned with the basic problem of alloca-
tion of resources to various uses, it is applicable to
almost any economic activity. The cases in which it is
not of much use are those in which the problem is so
trivial that the solution is obvious or cases in which the
model is complicated by constraints which do not fit into
the linear programming model. Other methods have been
and are being developed to cope with these problems.

Consider some simple practical linear programming

problems which are solved by the use of the simplex method.

1. Problem 1
At the refinery of a petroleum company two grades
of gasoline are produced: high test and regular. To

produce each grade of gasoline, a fixed proportion of

38
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straight gasoline, octane, and additives is needed. A
gallon of high test requires 30 percent straight gasoline,
50 percent octane, and 20 percent additives; a gallon of
regular requires 60 percent straight gasoline, 30 percent
octane, and 10 percent additives. It is known that the
petroleum company receives a protit of 6 and 5 cents for
each gallon on the high test and regular gasoline respec-
tively. 1If-the supplies of straight gasoline, octane,
and additives are restricted to 6,000,000, 4,000,000, and
2,000,000 gallons respectively, how much of each grade
should be produced in a given time period, to maximize
profits and make the best use of resources?

Suppose x; gallons of high test and x, gallons of
regular should be produced. Then the following constraints
are formed:

0.3x

1

0.5)(1 + 0.3x2;§_4,000,000

0.2)(1 + 0.1x252,000,000

+

0.6x2$6,000,000

max z 6x; + 5x,
After adding slack variables to the above inequalities, the

following system of linear equations is obtained.

0.3x1 + 0.6x2 * Xgq = 6,000,000
O.le + 0.3x2 * Xy = 4,000,000
0.2x1 + 0.1x2 + xg = 2,000,000
max z =

6x1 + Sx2 + 0-x3 + 0~x4 + 0-xS

Use the simplex method to form the following tableaux.



TABLEAU 2-1
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6 5 0 0 0
¢B IKB a"]. "‘2 ¢3 ¢4 ¢'5
0 6,000,000 0.3 0.6 1 0 0
0 4,000,000 0.5 0.3 0 1 0
0 2,000,000 0.2 0.1 0 0 1
0 -6 -5 0 0 0
TABLEAU 2-2
6 5 0 0 0
£3 4p Ay A, Az Ay Asg
0 3,600,000 0 0.42 1 -0.6 0
6 8,000,000 1 0.6 0 2 0
0 4,000,000 0 -0.02 0 -0.4 1
48,000,000 0 -1.4 0 12 0
TABLEAU 2-3
6 5 0 0 0
¢B *B d1 iz ‘3 44 ¢5
60,000,000 50 10
20,000,000 10 20
40,000,000 1 3
0 —=——1 0 0 5T 5 1
60,000,000 0 0 10 10 0
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All elements of the last row in tableau 2-3 are non-
negative. The problem is completed. The optimal

solution is:

20,000,000 . ; g57,142 &

X, = ; -
x, = 60,000,000 - g,571,428 &
7

max z = 60,000,000
Therefore, 2,857,142 g gallons of high test and 8,571,428 ;
gallons of regular are produced to obtain the maximal profits

of 600,000 dollars.

2. Problem 2

A car plant can produce both automobiles and trucks.
It has four departments: metal stamping, engine assembly,
automobile assembly, and truck assembly. The net revenue for
an automobile is $300 and for a truck is $250. The following

data is known:

Department Capacity Automobile Truck
h/year requirements requirements
h/unit h/unit
Metal stamping 110,000 4 2%
Engine Assembly 70,400 2 3
Automobile Assembly]| 66,000 3 -
Truck Assembly 41,250 - 2%




(a) Find the optimal production program for this
plant using the simplex method.

(b) Interpret every element in the final tableau.

42

Suppose there are x; automobiles and x, trucks to

be produced. Then
4x) * 2g_x2 < 110,000
2x1 + 3x2 < 70,400
Z’>x1 < 66,000
2% < 41,250

and an objective function is

300x, + 250x

1 2
Add the slack variables

max z =

above inequalities.

formed:

max z = 300x

1 2

+ 250x, + 0-x3

Xz, X4, Xg, and Xg to the

The following system of equations is

110,000

70,400

66,000

»
]

41,250

+ O-x4 + 0-x5 + O-x6

Then form the following tableaux using the simplex method.




TABLEAU 2-4
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300 250 0 0
fy &y Ay A, Ay As
0 110,000 4 zg 0 0
0 70,400 2 3 1 0
0 66,000 3 0 0 1
0 41,250 0 2% 0 0

0 -300  -250 0 0
TABLEAU 2-5

300 250 0 0
f3 £y 1 A, A A5
0 22,000 0 2% 0o - %
0 26,400 0 3 1 _2

3

300 22,000 1 0 0 %
0 41,250 0 2% 0 0
6,600,000 0 -250 0 100




TABLEAU 2-6
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300 250 0 0 0 0
B £y #1 Ay Ay Ay Ay g
250 7,700 0 1 7 0 _ 7 0
20 15
0 3,300 0 o _ 21 1 11 ¢
20 15
300 22,000 1 0 0 0 % 0
0 22,000 0 o 7 0 7 1
8 6
8,525,000 0 0 175 0 50 0
2 3
TABLEAU 2-7
300 250 0 0 0 0
£p L A ) A3 A4 As te
250 9,800 0 1 -7 7 0 0
22 11
0 4,500 0 0 _ 63 15 1 0
44 11
300 20,500 1 0 21 _ 5 o9 0
44 11
0 16,750 0 0 70 _35 1
88 22
8,600,000 0 0 700 250 0
11 11
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In tableau 2-7 all elements of the last row are non-
negative. The problem is done. ‘The optimal solution is:
x; = 20,500, x, = 9,800
and
max z = 8,600,000
Therefore, the optimal production program is to
produce 20,500 automobiles and 9,800 trucks to make the maximum
profits of $8,600,000 per year. There are x_. = 4,500 and

5

Xe = 16,750 in the final tableau. 'This means that there are
4,500 hours in the automobile assembly and 16,750 hours in

the truck assembly which have not been used each year. Hence,
it is enough to spend 66,000 - 4,500 = 61,500 hours in the
automobile assembly and 41,250 - 16,750 = 24,500 hours in the

truck assembly each year.

3. Problem 3

A company has three warehouses, denoted by Wis Wo,
and wg, containing 8,000, 5,000, and 3,000 units of its
products, respectively. In the next month, 2,000; 1,000;
3,000; 4,500 units must be shipped to four retail outlets
denoted by 0;, 0,, 0z, and 04. The unit cost of shipment

from any warehouse to any retail outlet is contained in the

following matrix. Find the minimum cost shipping schedule.
0 0, 03. 04
Wi 10 8 16 3
Wo 19 25 18 7
20 17 2 5
w3 0
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Let aij be the amount sent from the warehouse Wy
to the retail outlet Oj, where 1 =1, 2, 3, and j = 1, 2,
3, 4. Set up the restraints for each warehouse and for
each outlet.
In warehouse 1:
aj) + aj, * ajz toap, < 8,000.
In warehouse 2:
521 *ayy *t g *toap, = 5,000,
In warehouse 3:
2., * a;52‘ tag. 4 a34_<_ 3,000.
In outlet 1:
all + a21 + a:,,1 = 2,000.
In outlet 2:
a12 + a22 + a32 = 1,000.
In outlet 3:
a3 * 8,7 + 875 = 3,000.
In'outlet 4:
a14 + a24 + a34 = 4,500.

The objective function is to minimize the cost of shipment

min z = 10-a + 8-.a + 16-a1 + 3-a + 19-+a

11 12 3 14 21
+ 25'a22 + 18'a23 + 7-a24 + 20-a31 + 17-a32
+ 20-a

33 * Stagzy



47
Provide the slack variables 3100 29 23 and the
artificial variables ag1s 202 20p3» 204 to the above

restraints. Then

311 * 815 * 313 Y a;, * a3, = 8,000
By1 * By * Bz 3y, * 3,5 = 5,000
8z * B3y *Azg * Az, + 35, = 3,000
217 Y %1 * 23 v 3y = 2,000
312 Y 8y T 23 * ag, = 1,000
813 T 823 T 233 v agg = 3,000
314 * 224 * 23y vagy = 4,500
Since min z = -max(-z), consider max (-z) as follows:
max (-z) = -10a11 - 8a12 - 16a13 - 3a14 - 19a21

-25a22 - 18a23 - 7a24 - 20a31 -17a32
-20a33 -Sa34 + O-a10 + O-a20 + O-a30

- Ma01 - Ma02 - Ma - Ma

03 04°

where M is an arbitrary large positive number.

This problem is too complicated to compute by hand,
using the simplex method. A FORTRAN program for the simplex
method is listed in appendix I. Using this program, the
result is:

x(4) = 0.45000000 E 04

x(14) 0.25000000 E 04

x(15) 0.30000000 E 04
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x(1l) = 0.20000000 E 04
x(2) = 0.10000000 E 04
x(3) = 0.50000000 E 03
x(7) = 0.25000000 E 04
max (-z) = -0.94500000 E 05, where
x(1) = ayqs x(2) = 359 x(3) = ajzs x(4) = aj4
x(7)7= a23’ x(14) = 3500 x(15) = 370
Therefore, the optimal solution is:
all = 2,000,.a12 = 1,000, a3 = 500, a1 4,500,
a23 = 2,500
and min z = -max (-z) = 94,500.

This means that 2,000, 1,000, 500, and 4,500 units are shipped
from warehouse 1 to outlets 01, 02, 03, and 04 respectively,
and 2,500 units are shipped from warehouse 2 to outlet 3

having a minimum cost of 94,500.



Chapter III
CLASSIC TRANSPORTATION PROBLEMS
1. Transportation Problem Tableau and Initial
Feasible Solutions
A product is available in known quantities g; at
each i of m origins. It is required that given
quantities dj of the product be shipped to each j of
n destinations. The cost of shipping a unit of the product
from origin i to destination j is cij‘ Determining
the shipping schedule which minimizes the total cost of
shipment is a transportation problen.
Assume that
m n
Z BT j>=:1 £

Let a be the quantity of the product sent from origin

ij

i to destination j. Set up

n
z ajy = g5 g;>0 i=1, , m (3-1)
i=1
m
¥y a..=4d. d.>»0 j =1, ... , n (3-2)
i=1 I ] ]
and minimize
z = ;E- cijaij (3-3)
1,)

49



Consider the transportation problem tableaus.
TABLEAU 3-1
°11 “12 : €1j “in
€21 €22 €2 “2n
i1 €i2 1] in
cml cm2 cmj cmn
TABLEAU 3-2
D, D, Dj D_ g
G| 211 212 213 21n g
Gy | ap 232 273 2on g7
G; | 213 ) a5 2in g
Gm 2n1 4m2 amj 4mn Em
d; | 4 d, d; d_ |Tg; =Xd,

Tableau 3-1 is a cost tableau,

activity tableau.

and tableau 3-2 is an

50
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EXAMPLE 3-1: A transportation problem has

g, = 30 d1 = 20

g, = 50 d, = 40

gz = 75 d, = 30

gq = 20 dy = 10 (3-4)
d5 = 50
d6 = 25

and a cost tableau shown in tableau 3-3.

TABLEAU 3-3

The first step of solving the transportation problem
is to find an initial feasible solution. There are five
methods used to find an initial feasible solution.

(1) NORTHWEST CORNER RULE.

In tableau 3-2, let aj; = min(gl, dl).

‘(a) If a;; = g,;, then set a, = min(g,, d,-g;),

and if 3,7 = By, then set
a31 = m1n(g3, d1 - 81 - gz) and continue in
this manner. When dy, e By = d1

then set ay, = min(gk-akl, dz).
(b) If a;j; = dl’ set a;, = min(gl-dl, dz). If

a12 = d2’ set a;; = min(g; - d; - dp, d3).
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Continue in this way, until a11 + ... 4+

ajp = 8 then set asry = min(gz, dh- alh).

Repeat the process for the resulting tableau. Then there
is an initial feasible solution which contains m + n - 1
basic variables. All values of the other variables are
zero

This method is used to find an initial fecasible
solution of Example 3-1. It is shown in tableau 3-4.

If the i-th row constraint and the j-th column

constraint are satisfied simultaneously, then set

3541,5+1 ° min(g;,q, dj+1) and put 83 j+1 OT 3341 0
in the tableau.
TABLEAU 3-4
D D2 D3 D4 De D¢ g

Gl 20 10 30

G, 30 20 50

Gz 10 10 50 5 75

G4 20 20

dj 20 40 30 | 10 50 25 |175

(2) COLUMN MINIMA.
Choose the minimum cost in column 1. If it is

not unique, select any one of the minima. Suppose it is in
row k. Then let akl = min(gk, dl). If a1 d; then

remove column 1 from the tableau and consider column 2.

If ap] = 8y then remove row k from the tableau, and
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consider the next lowest cost in column 1, say in row h.
Set

= min(gh, b —gk) and continue in this way until

h1 1
the requirement of destination 1 is satisfied. Then
remove column 1 from the tableau and repeat the same
procedure for column 2. Continue until the requirement
of column n is satisfied.

1f the i-th row constraint and the j-th column
constraint are satisfied simultaneously, remove only the
i-th row and consider the next lowest cost of the j-th
column. Assume it cccurs in row P. Then set apj =0
in the tableau, remove column j and consider column j+l.
The column minima method is used to find an initial

teasible solution of the same example. It is shown in

tableau 3-5.

TABLEAU 3-5

D b, D, D, Dy Dy g
G, | 20 10 30
G, 20 | 10 | 20 50
G, 20 30 | 25 | 75
G, 20 20
d; | 20 | 40 | 30 | 10 | 50 | 25 |175

(3) ROW MINIMA.
The procedure of this method is the same as
the procedure of column minima method except that where

the column minima method moves horizontally from column 1
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to column n, the row minima method moves vertically from
Tow 1 to row m.

The row minima method is applied to find an initial
feasible solution of the same problem. It is shown in

tableau 3-6.

TABLEAU 3-6

b D, Dy Dy Dy Dy gy
G, |20 10 30
G, 20 | 20 | 10 50
. 20 30 | 25 | 75
G, 20 20
d; |20 |40 |30 | 10 ] 50| 25175

(4) MATRIX MINIMA.

Choose the smallest cost in the whole tableau.
Say it occurs in (i, j). Then set ajj = min(g;, dj).
Remove row i from the tableau if aij = g; and subtract
g8 from dj' Remove column j from the tableau if aj5 = dj
and subtract dj from g,. Repeat the process for the
resulting .ableau. If a row and a column constraint are
satisfigd simultaneously, remove either the column or the
row but not both. If the minimum is not unique choose the

i+j that is the smallest.

This method yields the initial feasible solution for

the same example. It is shown in the following tableau.
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TABLEAU 3-7

p, D, D, D, D Do g
G, | 20 10 30
G, 20 | 10 | 20 50
Gy 20 30 | 25 | 75
Gy, 20 20
d; |20 | 40 | 30 | 10 |50 ] 25 |175

(5) VOGEL'S METHOD.

For each row and each column, find the difference
of the lowest cost and the next lowest cost. There are m + n
numbers. Choose the largest of the m + n numbers. Suppose

it is in row i. Select the lowest cost ci in row i. Then

j

set ). Remove row i or column j depending

a;5 = min(g;, dj
on which constraint is satisfied. Repeat the process to get
an initial feasible solution. If the largest difference

of m + n numbers is not unique, select any one maximum. If
a row constraint and a column constraint are satisfied
simultaneously, remove either the row or the column, but

not both. '

The Vogel method is used to find an initial feasible

solution for Example 3-1. This initial feasible solution

is shown in tableau 3-8.



TABLEAU 3-8

b, Db, Dy D, Dy D gy

G, |20 10 30

G, 10 |10 | 30 50

G, a0 | 10 25 | 75

G, 20 20

d; |20 |40 |30 |10 | 50 |25 |175
2| 1] | 2| 1| 1

2. Stepping Stone Method.

Select the northwest corner

feasible solution of example 3-1.

56

rule to find an initial

Denote the cell of the

basic variable with an asterisk (*).

following tableau.

TABLEAU 3-9

D1 b, Dy D, D D g
Gy 20* {10~ 30
G, 30* | 20¢% 50
Gz 10* [ 10* | 50%* 5% | 75
*
G4 20 20
dj 20 40 30 10 50 25 {175
Fill the blank cell (i, j) with the value of

Let z.. - ¢c.. = ¢
1) 1]
where Cik» € x» ©

B 2}
Wy
¥

ik

m’

Cc

+
rs

c...
T)

C..
ij

This is shown in the.

cij .

(3-5)

are costs of the basic
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variables ik 2hkr hme v 0 Brge arj' The technique
used to choose these basic variables is illustrated as

follows. In tableau 3-3 there are Y basic costs.

i1 = 1 Cyp = 10 Chy = 3

C23=2 C = 5 = 9

(g]
"
(o)}
(g]
n
N

B)’ (3"5),

231 7 €21 T €22 " ©12 * ¢ "€y =3 -2+1-3-=-1,

31 31 53 7 %23 T €22 7 12 11 - ©31
=5 -2+ 3 -24+1-4-=1

Similarly, the other values can be found and tableau 3-9

completed. The new tableau is shown in tableau 3-10.

TABLEAU 3-10

b, b, Dy Dy Dy Dg gy
G1 20*| 10* 0 1 -3 -4 30
G, | -1 [ 30%[ 20| 5 | -1 [ -4 | s0
G3 1 4 10*| 10*]| 50* 5*] 75
G5 6 9 2 10 6 20*| 20
'dj 20 | 40 | 30 | 10 | 50 | 25 [175

If all 25 €ij < 0, then an optimal solution is obtained.
Not all 2ij - Cyj € 0 in tableau 3-10. Consider

the largest one, in this case Cpq = 10 where

244
244 ~ 44 = 46 - 36 * S34 " S44 - (3-5)

The coefficients of C46 and Cg4 are positive in (3-5). By
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the simplex method the variable mln(a46, a34) = ag, is
determined to leave the simplex method tableau. Hence,
replace az, by 344" Now a,, is a basic variable in the

new transportation problem tableau.
The new feasible solution is obtained in the follow-
ing way.

a44= agy= 10

—

346 = %46 " 234
azg = azg + az4 = 5 + 10 = 15

= 20 - 10

546 and 336 are obtained by the formula (3-6).

a.. - a,,, 1f the coefficient of c.
ij 34 i

in (3-5) is +1

j

Y|
i

in (3-5) is -1.

+ azy, if the coefficient of Cjj

All other basic variables will not change their values if
their costs did not occur in (3-5).
A new feasible solution is shown in the following

tableau.

TABLEAU 3-11

D D

1 2 3 Dg Dsg D¢ g
G, 20*| 10+ 30
G, 30% | 20+ 50
G, 10% sox| 15%| 75
G, 10* 10*| 20
4 20| 40 | 30 | 10 | s0 | 25 |175
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By referring to tableau 3-3, compare the value of
z from tableau 3-9 with the value of z from tableau 3-11.

In tableau 3-9

N
1]

1-20 + 2-10 + 3-30 + 2-20 +# 510 + 910 + 6-:50
+ 25 + 6-20 = 740
In tableau 3-11
z = 120 + 2-10 + 3-30 + 2-20 +# 5-10 + 3:10 + 6-50
+ 2-15 + 6°10 = 640
The value of z for the new feasible solution is smaller than
the value of z for the initial feasible solution.

Use the same method to complete tableau 3-11. This

yields tableau 3-12.

TABLEAU 3-12

D, D, Dz b, Dg Dg g

G1 20*]| 10* 0 -9 -3 -4 30
G2 -1 30*| 20*| -5 -1 -4 50
Gz 1 4 10*|-10 50*) 15*] 75
Gy 6 9 2 10* 6 10*] 20
,dj 20 40 30 10 50 25 | 175

Not all Zij " ©ij < 0 in tableau 3-12. Continue using the

same method for each subsequent tableau until the optimal
solution is reached. These tableaus are shown in tableau

3-13 through tableau 3-18,



TABLEAU 3-13

Dy Dy by Dy Dg Dg g4
20*| 10%| 0 o | -3 | -4 | 30
-1 | 20%|z0* | 4 | -1 | -4 | s0

1 [ 4 |ox | -1 |s0%]| 25+ 75
-3 [ 1o* -7 f1o=]|-3 [-9 | 20
20 | 40 [ 30 |10 [s0 |25 [175

TABLEAU 3-14

by Y Dy Dy Dg Do gy
20#f10*[ o | o | 1| o |30
-1 | 20| 30%| 4 | 3 | o |50
-3 | o*| -4 [ -5 | 50%]| 25+ 75
-3 | 10*| -7 | 10*] 1| -5 |20
20 | 40 | 30 | 10 [ 50 [ 25 |17s




TABLEAU 3-15

p, D, D, b, Dg D, g
20| 10*| o | -4 1 o | 30
-1 | 10*| 30%| 10%| 3 0 | 50
-3 o*| -4 | -9 | so*| 25*%| 75
23 | 20%| -7 | -4 1 | -5 | 20
20 | 40 | 30 | 10 | 50 | 25 [175
TABLEAU 3-16
b, D, Dy Dy Dy Dg gy
20| 10| 3 | -1 1 o | 30
4 | -3 | 30%| 10%| 10%| -3 | s0
-3 | 10%| -1 | -6 | 40| 25%]| s
-3 | 20%| -4 1 1 | -5 | 20
20 | 40 | 30 | 10 [ s0 [ 25 [175
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TABLEAU 3-17

b, D, Dg Dy D Dg g
20| -3 | 10*|-4 [-2 |-3 | 30
1 | -3 | 20% | 10% [ 20 | -3 | 50
o | z0%] -1 | -6 | 30% | 25%| 75
o | 20%| -4 | -1 1 | -5 | 20
20 | 40 | 30 | 10 | 50 [ 25 [175
TABLEAU 3-18
Dy D Dy Dy Dy Dg gy
20%| -3 | 10| - 2| -3 | 30
-1 | -3 | 20%| 10*| 20%| -3 | s0
o | a0%| -1 | -6 | 10%| 25%| 75
1| -1 | -5 | -2 | 20%| -6 | 20
20 | 40 | 30 | 10 | 50 | 25 [175
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In tableau 3-18 all zij - cij < 0. Therefore, an optimal
solution is

a;; = 20 a,z = 10 agz = 20

a,4 = 10 a5 = 20 az, = 40

azg = 10 azg = 25 agc = 20
All other a.. - 0. ‘Then

1)
min z = 1°20 +# 110 + 2+20 + 1-10 + 4-20 + 240 + 610

+ 225 + 4-20 = 430.

3. Justification of the Stepping Stone Method.

Consider the transportation problem

a11 + ...+ aln = gl
a,y t ... a2n = g2
am1 * ... ta 0= gm
a1 oAt *dm = 4
a . + a2n + ... 4+ amn = dn
(3-6)
or in matrix form
Pd = p (3-7)

where P 1is a matrix with m + n rows and mn columns.
Denote the origin rows of P by ¥;, i =1, ... , m, and

the destination rows by Yj, i =1, , n. Then
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=
o

¥, - . =9 (3-8)
i=1 j=1 3

Hence, the rank of P 1is less than m + n.
Consider a matrix C which is formed from P by

first deleting the last row and then taking columns n, 2n,

, man, 1, 2, ... , n-1. Hence
m n-1

1 0 0 1 1 1

0 1 0 v 0 0

0 0 1 0 0

C = m+n-1

0 0 1 0 0

0 0 1 O 0

0

0 0 0 1 }
Since C is a square matrix of order m+n-1, r(P) = m+n-1.

Hence, there exist a set of m+n-1 constraints in (3-6)
which are linearly independent. Therefore, an optimal
solution of a transportation problem never need have more than
m+n-1 of the aij with a nonzero value.

From (3-8) the remaining row vector is a linear com-

bination o. the set of linearly independent row vectors.
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Thus, choose any m+n-1 row vectors which are linearly

independent.

THEOREM 3-1 Any determinant of KxK submatrix obtained from
P by crossing out m+n-K rows and mn-K columns have the
value +1 or 0, where 1gK<£Lm+n-1.

PROOF. Suppose that PK is such a matrix.

I1f PK contains one or more columns of zeros, then

o

[Pl =
If each column of PK contains two of the number 1,

then one must be in-an origin row and the other one must be

in a destination row. Then the sum of the origin rows minus

the sum of the destination rows equals 0. Hence ‘PKl = 0.
If every column of P contains one or two 1l's,

K
and at least one column contains a single 1 then

[Pl= = JPx-d

where PK_1 is a (K-1) x (K-1) submatrix. Either IPK_1|= 0
or lpK-l‘ = + IPK—2| . However, every lPl‘ =0 or 1, so
|PK| =0 or +1.

THEOREM 3-2 Let PZ = b represent the transportation problem.

From the simplex method

I S 3-9
5 ycd cd ﬁ1J ( )
where fcd is a basis vector. Then every yzé = +1 or 0.
PROOF. In (3-9) R#ij = pij, where R 1is a matrix

formed from m+n-1 linearly independent columns of P. From

the above discussion, any one row of R can be crossed out



and the new matrix S

will be nonsingular.

66

Suppose the i-th

row is crossed out, then all components of iij are zeros

except the j+m-1th component, where

formed from ﬁi]

Sfij = n+jo1’ where ¢m+
m+n-1 components. Then
fij =
-1
S ¢m+j-1

of this column is a cofactor of an element in S

Is{.

of the submatrix obtained from

by deleting the i-th component.

j-1

s~1lg

pij is a column vector

Hence,

is a unit vector containing

m+j-~1

A cofactor of an element in S

is the (j+m-1)th column of s~l and each component

divided by
and ISl are determinants

P by deleting certain rows

and columns. Therefore, from theorem 3-1, they are either
+1 or 0 but |sl# 0. Thus, every yzé = 0 or +1.

Equation (1-33) gives the method for moving from one

simplex method tableau to the next simplex tableau.

B
a
- _ %rs
a%h - Tkn
Yrs
and
51.3. = ab
1] 1]
Now, ykh must equal 1,
TS
- _ B
3kh T Zrs
and
ad - ag'
ij ij

thus

Therefore,

(3-10a)
kh
Z%% where ij # rs
Yrs
(3-10b)

for all ij # rs
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In (3-6), every column vector pij in P has the following

form:

ﬁ.. = ¢. + ¢ . (3"11)

where the ék are the unit vectors containing m+n components.

The basis z{cdj contains m+n-1 vectors. Each f;d is

a column vector of the matrix P. Using (3-9), omit the
terms for which yij = 0. Then,
By = L, (3-12)

since ﬁij and fc& have the form (3-11). Hence,

pij = (ip - IAP + Iqr - .. - t}u + t;j (3-13)
where ﬁij is the column ij of P and (st is the column st
of P. Therefore, the value of yig depends on (3-13).

From (1-28),

Zij - 3§ © ji Yed Czd - Cij (3-14)

where cgd is the cost of the basic variable a_4. For

ﬁij in (3-13), (3-14) can be written as

- B B B _ _ B B _ .B
#ij T %43 T Cip T Cgqp T Car “vu T Svi T Cij
(3-15)
This justifies equation (5-5). By the same reason and from
(3-10b), the new basic variables are
- _ B _
akh = ars (3-16)



and

azf - azf (3-17)
if cgf does not occur .n the equation (3-15) representing
Zkn ~ Skhe The new basic variable

Ao = aly - al (3-18)
1f the coefficient of cgf in Zxh - Sknh is 1, and

ap = agg A (3-19)

B

if the coefficient of Cof in Zxkh - Skh is -1.

These equations determine the new tableau.

4, Inequalities in the Constraints of a Transportation
Problem

If, in the transportation problem, more units are
available at the origins than are required at the desti-

nations, then it has the following form:

n
jflaijé g3 i=1, , m
(3-20)
m
Y a.. =4d j=1, , N
i=1 1) J

a,.2 0, for all i, j.
- S
i3 13 13

The inequalities can be converted to equalities by the addition

of m slack variables.
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Thus,
n
j§1 235 * %in+1 T 84 =1, > m
m
2 a,. =4d, j =1, ... , n (3-21)
i=1 1) J
m m n
Z faner 7 F 8T JEIdJ " o
where a, R i=1, ... , m are the slack variables and
in
min z = ,Z.Cijaij
1,)

There are m+n+l constraints and mn+m variables in (3-21).
Hence, there is an optimal solution which never need have

more than m+n of the aij different from zero.

Consider problem 3 in the last chapter. The cost

tableau is presented in tableau 3-19.

TABLEAU 3-19

10 8 16 3 0
19 25 18 7 0
20 17 20 5 0

The northwest corner rule yields an initial feasible solution
for this problem. Then the stepping stone method is used to

set up the following tableaux.



TABLEAU 3-20
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D1 D2 Db D4 S g;
Gl 2000* 1000* 3000*% 2000* -4 8000
Gz -5 -13 2 2500* 2500* 5000
G3 -6 -5 0 2 3000* 3000
dj 2000 1000 3000 4500 5500 16000
The column S is the column of the slack variables.

TABLEAU 3-21

G1 2000* 1000* 500* 4500* -2 8000
G2 -7 -15 2500* -2 2500* 5000
G3 -8 -7 -2 0 3000* 3000
dj 2000 1000 3000 4500 5500 16000
All zij - cijé;O tableau 3-21. Therefore an optimal

solution is:

2000

1000

500

4500

2500

2500

3000




71

10-2000 + 81000 + 16500 + 3-4500 + 18-2500

and min z

+ 0-2500 + 0-3000

94500.

This is the same as (2-2).



Chapter IV
CURVE FITTING BY LINEAR PROGRAMMING

Linear programming can be applied to curve fitting
problems.

Given xj, Yio i=1, ... , n, (4-1)
fit this data to the equa.ion:

Yy = €0 (x) + cyfy(x) + ...+ Py (X)), (4-2)
where the f;(x) are -known functions without constants to be
determined. The object is to find values of c., j = 1,..., k
so that the data in (4-1) "best'" fits the curve in (4-2).

Consider two methods whereby the problem can be solved by the

use of linear programming.

1, Method 1.
The first method is an attempt to minimize the sum of
the absolute values of the deviations. Thus, a system of

equations are formed as follows:

n (4-3)

M

. cjﬂj(xi) + Si - Ti =vy; s 1= 1, ... ,

J
where S; and T; are the positive slack variables, the
positive surplus variables or the artificial variables. In

the linear programming problem the objective function is:

M=
12}
+
ar

min z = i i (4-4)

[ N
n
—

72
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+ Consider an example.

EXAMPLE 4-1

Given the set of points which are shown in (4-5),
try to fit the curve y = ax + b to the set of points, under

the assumption that a and b are positive.

X y
-1 | 1.1
0 | 4.1
(4-5)
1 | 6.8
2 19.9

Set up and solve the linear programming problem that
determines a and b so that the sum of the absolute
values of the deviations is a minimum. By (4-3), there
is a set of constraints such that

a*(-1) + b+ 5 -T; = 1.1

a0 + b + S, - T, = 4.1

a-1 + b + Sz - Tz = 6.8

a2 + b+ 854 -Ty =29.9
The objective function is:

min z = S1 + SZ.+ S3 + S4 + T1 + T2 + T3 + T4

Let x 1° X2 X3, X4, Xg, Xg, Xg, Xg, Xg, and xlobe
a, b, Sl, Sz, SS’ S4, Tl’ TZ’ T3, and T4 respectively.

Use the simplex method to form the following tableaux.
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TABLEAU 4-1

0 0 1 1 1 1 1 1 1 1

£p £ A 4, Az A, As ie 4, ig ig 410
1 1.1 -1 1 1 0 0 0 10 0 0
1 4.1 0 1 0 1 0 0 0 -1 0 0
1 6.8 1 1 0 0 1 0 0 0 -1 0
1 9.9 2 1 0 0 0 1 0 0 0 -1
21.9 2 4 0 0 0 0 -2 -2 -2 -2

TABLEAU 4-2

0 0 1 1 1 1 1 1 1 1

g & Ay 4, Ay 4, is P A, g Ay 410

1 6.05 | o 1. 1 0 0 0. -1 0 0 ~0.5
1 4.1 0 1 0 1 0 0 0 -1 0 0

1 1.85 | o 0. 0 0 1 -0. 0 0 -1 0.5

0 4.95 | 1 0. 0 0 0 0. 0 0 0 -0.5
12.0 0 3 0 0 0 1 -2 -2 -2 -1
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TABLEAU 4-3

0 0 1 1 1 1 1 1 1 1

Vs g &p ) Ay Az Ay Ag e Ay g iy 410
3 1 0.5 0 0 1 0 -3 2 1 0 3 2
4 1 0.4 0 0 0 1 -2 1 0 -1 2 -1
2 0 3.7 0 1 0 0 2 -1 0 0 -2 1
1 0 3.1 L 0 0 0 -1 1 0 0 1 -1
0.9 0 0 0 0 -6 2 2 -2 4 _4

TABLEAU 4-4

0 0 1 1 1 1 1 1 1 1

Vs “p %y 1 4, Ay Ay Ay e 4, g A9 110
6 1 0.25 | o 0 0. 0 -1 1 20.5 0 1 )
4 1 0.15 | 0 0 -0. 1 -0. 0 0.5 -1 0 0
2 0 3.95 | o0 1 0. 0 0. 0 -0.5 0 -0 0
1 0 2.85 | 1 0 -0. 0 0 0 0.5 0 -0 0
0.4 0 0 1 0 -3 0 -1 -2 1 -2
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TABLEAU 4-5

1 1 1 1 1 1 1
Ve #, & i, A, 4 ;A 4 4y Ag,
o1 g N e T
S -5 1 o s 03 -1 o 3
2 0 4z 2 0 0 LR . o -1
1 0 2%% - % 0 0 % % 0 0 - %A
% -1% 0 -2 % % -2 0 -1%
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All 2y = Cj in tableau 4-5 are non-positive. An optimal
solution is: a =214, p =241
15 30
s, = 1 T, = 1
2 ’ -3
15 > 6
and min z = . .
30
Therefore, the curve is y = 214x + 41 . This result is

15 30
expressed graphically in figure 4-1.

FIGURE 4-1

5
0,4.1) .
L 3
2
(-1,1.1)
L 1
. 8 4> x

f 0
(- 2,0
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2., Method 2.

The second method is to minimize the maximum absolute

value of the deviation. Consider
k
r = max . - c.P. (x. 4-6
x| v J_§=:1 §95(x3) (4-6)

Then the following equations must be satisfied:

k

Yi - 2= Cjﬂj (x;j)=r (4-7)
j=1

and

k

Yyt 2 Cjﬂj'(xi)ﬁr (4-8)
j=1

i=1, , N

Therefore, the linear programming problem is to minimize r

and have the following constraints:

k
- X cjﬂj (xi) -T= -y, (4-9)
i=1
k
Z.Cjﬂj (x;j) - T=vy; (4-10)
i=1
i=1, . , N,
where cj, j=1, ..., k, and T are variables.
This method is used to solve example 4-1. First, set up

the following constraints:
(-a)-(-1) - b - =< -1.1
a-(-1) + b -r=<1.1

- b - r<-4.1
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a-1
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a -2
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b
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and an objective function

min 2z

T
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Then add the slack variables, the surplus variables, and

the artificial variables to the above inequalities. Thus,

a-(-1) +

a-(-1) +

a 1 +

a 1 +

a 2 +

a 2 +

and min 2 = 0-a
+ 0

+ M

where M .

b

b

b

+

-+

0 .

T

-+

+

X4 + Xlz
Xg
Xg ¥ X13
X7
Xg * X4
Xg
X10 * X15
X11
T + 0-x4

+

1.

1.

1

1

.9
.9

‘Xg *+ 0-x6 + 0-x7

*Xg *+ 0-x9 + O-x10 + 0-x11 + Mx12 + Mx13

X1

4

M

X1s

is an arbitrary large positive number.

It is too complicated to compute this problem by

hand. The FORTRAN program which is listed in appendix I,

with necessary format changes,

linear programming problem by the computer.

result is obtained.

is used to solve this

The following



Thus, max (-z) -0.99999840 E -01

x(4) = 0.99999480 E -01
x(3) = 0.99999840 E -01
x(6) = 0.19999980 E 00
x(5) = 0.10000060 E 0O
x(9) = 0.19999970 E 00
x(2) = 0.40000000 E 01
x(10) = 0.19999970 E 00
x(1) = 0.28999980 E 01

Hence,

r = min(z) =.—max(-z) = 0.09999984 = 0.1
and

a = x(l)y= 2.9
b = x(2) = 4

Therefore, the curve is y=2.9x + 4.



Chapter V
SUMMARY

In this paper the basic linear programming problems
have been discussed graphically and numerically. The
simplex method has been presented and justified, and some
practical applications of linear programming discussed.

A special method, the transportation method, of linear
programming has been discussed and justified. It was
shown that linear programming is also applicable to curve

fitting problems.
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APPENDIX I

The following is FORTRAN IV program to solve a

linear programming problem using the Simplex method.

C USING THE SIMPLEX METH@D T@ SPLVE THE
LINEAR PRPGRAMMING PRPBLEM
DIMENSI@N A(25, 25), C(20), R(20)
READ (5, 1) N, M

1 F@RMAT (215) -

M3 M+ 3

NI = N + 1
C READ TABLEAU
READ (5, 2) ((A(CIJ), J =1, M3), I = 1, N)

2 FPRMAT (F6.0, 2F8.0, 8F5.0/11F5.0)

]

READ (5, 3) (C(I), I =1, M)
3 FPRMAT (10F7.0/9F7.0)
C CPMPUTE THE LAST R@W
30 Dp 6 J = 3, M3
A(N1, J) = 0.
Dp 4 I =1, N

A(N1, J) + A(I, 2) * A(I, J)

4 A(NL, J)
IF (J-3) 100, 6, 5
5 K= J-3
A(N1, J) = A(N1, J) - C(K)
6 CONTINUE
C DETERMINE THE CPLUMN THAT ENTERS

J=4
83
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9

10

DETERMINE THE R@W THAT LEAVES

11

12

13

14

15

16

17

IF (A(N1, J)) 7, 8, 8

L =J
GP T@ 11
J=J +1

IF (J-M3) 9, 9, 10
Gp TP 18

G@ T9 90

Dp 14 I = 1, N

IF (A(I, L)) 12, 12, 13

R(I) = -1.
GP TP 14
R(I) = A(I, 3)/A(I, L)

CONTINUE
K = -1
Z =1.E + 20

DP 17 I = 1, N
IF (R(I)) 17, 15, 15

IF (R(I) - Z) 16, 16, 17

X = R(I)
K = I
CONTINUE

IF (K.EQ. -1) G@ TQ 80

KK =L -3

NEW TABLEAU

D=L -3
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22

23

n
o

A(K, 1)

A(K, 2)

C (KK)

S = A(K, L)

DP 21 J = 3, M3
A(K, J) = A(K, J)/s
DP 23 I = 1, N

IF (I.EQ. K) G@ Tp 23

T = A(I, L)

DP 22 J = 3, M3

A(I, J) = A(I, J) - T * A(K, J)
CANTINUE |

G@ TO 30

UNBPUNDED S@PLUTIPN

80

85

WRITE (6, 85)
FORMAT (19H UNBPUNDED S@LUTI@N)

Gp TP 100

WRITE SQLUTI@N

90

91

92

93

100

WRITE (6, 91) A(N1l, 3)

FPRMAT (18H @PTIMAL VALUE IS , E20.8)
DP 92 I = 1, N

IT = A(I, 1)

WRITE (6, 93) II, A(I, 3)

FPRMAT (10X, 3H X(, I3, SH ) = E20.8)

ST@P

END
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