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Chapter I 

INTRODUCTION 

After having read and studied. a text in mathematics, 

many students find the approach similar to studying and 

reading a foreign language. Quite often there seems to be 

little application or utilization of the material which is 

to become an integral part of one's mathematical knowledge. 

Proofs are so concise, it is difficu.lt to understand their 

actual meaning or implication. 

The objective of this thesis is to sUrYey a small 

area of mathematics, preve the necessary lemmas, theorems, 

and corollaries in detail, and present an application of 

these. 

Group theory is the general area which is explored. 

Specifically, Sylow's theorems are presented, each proved 

in detail, and followed by an application of the theorems. 

Ludwig Sylow (1832-1918) was a Scandanavian 

Jl8.thematiciall from Friedrichshald, Norway. Although his 

three theorems are very important in group theory, little 

has been written about his life, or even his contribution 

to the theory of groups. If one looks through history of 

mathematics texts, only once in a great while does the name 

Ludwig Sylow appear. In Smith's History of Mathematies, 

when speaking of great Scandanavian mathematicians, Sylow's 
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name is foand only in the footnotes indicating that he wrote 

Discours in 1902. Also, he wrote a book with Marius Sophus 

Lie on the contributions of Niels Henrick Abel entitled 

Abel ("3]. Of course, ADel is the u.n whom abelian groups 

are naaed after. As the material in this thesis is presented, 

one will have more insight as to Sylow's contribution to 

..thematics. 

When writing in group theory, one must assume the 

reader has a basic knowledge of groups, Even so, Chapter II 

contains those definitions and theorems which are essential 

in readiag this thesis. A proof of Cayley's theorem appears 

as a lemma, so that it may be used to prove an important 

theorem about simple groups. 

Chapter III contains basic definitions about the 

strllctllre of groups and proofs of Cauchy's theorems. This 

leads to proofs ot Sylow's theorems, which is the essence of 

this taesis. An application ot his theorems follow in 

Chapter IV. 



Chapter II 

BASIC DEFINITIONS AND CAYLEY'S THEOREM 

The notation used in group theory varies widely from 

text to text. This chapter contains the notation used in 

this thesis, while stating the basic definitions which are 

fundamental in the study of Sylow's theorems. Also, there is 

an important theorem proved concerning simple groups, which 

is used in conjunction with Sylow's theorems in Chapter IV. 

The reader may refer to Ames [1] and Herstein [5J for 

general reference texts. 

DEFINITION 2.1. A set G of elements is a group 

under the binary operation (.) if for all a, b, c ~G, 

a) a· bEG (Closure) 

b) a· (b • c) = (a • b) • c (Associative) 

c) There exist e f: G such that a· e = e • a = a 

(Identity) 

d) There exist a-IE, G such that a. a-I = 
a-I. a = e (Inverse) 

The binary operation in all groups considered 

(including abelian groups) is denoted multiplicatively. 

Furthermore, G and G' usually denote groups while H, K, and 

P denote sUbgroups. An abelian group is a group which is 

commutative. 

J 
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DEFINITION 2.2. If H is a subset of group G, and 

H satisfies the properties of a group under the same binary 

operation of G, then H is a subgroup of G. 

DEFINITION 2.J. If S is a set with n elements, 

then the sy!!etric group of degree ft, denoted by Sn' is 

the set of all bijectiTe mappings OR the set S under the 

binary operation of map composition. The order of Sn is 

I'll 0]. 

Coset is new defined. Once coset is defined, we 

define normal subgroup, and subsequently, define a simple 

group. 

DEFINITION 2.4. Suppose H is a subgroup of G 

and x ~ G. A right coset of H in G is the set Hx of 

all elements of the form hx, where h € H. Similarly, a 

left coset is the set xH. 

Any two right (left) cosets are either identical or 

disjoint. Also, the coset xH and Hx need not be equal. 

For abelian groups, xH must equal Hx. For non-abelian 

groups, the following example shows that xH need not equal 

HXe 

EXAMPLE 2.5. Consider the symmetric group SJ' By 

Definitioft 2.J there are JI· 6 bijectiTe mappings on set 

S. Let s· [x, y, z) and fl, f2, fJ' f4, f5' and f6 

represeat the bijectiTe mappings as indicated belows 
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fll	 x .....x f X-PX f 1 x ..... Z
2

1 
3

1~Y Y-t Z y-.y 

z;z Z-ty Z.-ltX 

f 4 1	 x~y fSI x-+z f 6 1 X-+Y 

y-+x Y-+X Y-4Z 

z-+z z-+y z-.x 

Now, under tae binary operation of map composition, 

consider the fellowtag group ta.lel 

. f l f2 . f3 fAJ. fS f6 

f l f l f 2 f3 f4 fS f6 

f 2 
f 

3 
fAt. 

f S 
f 6 

f 2 
f 3 
f 4 
f S 
f 6 

f l 
f 6 
f S 
fAJ. 

f 3 

fS 
f l 
f 6 
f 2 

fJ4, 

f6 

f S 
f l 
f 3 
f 2 

f 3 
f 4 
f 2 

f6 

f l 

f 4 
f 2 
f 3 
f l 
f S 

Coftsider the subgroup Hl = [fl , f4). To show 

xH ~ Hx for 80.e XES , let x· f 2•n

XH1 • ff2f l , f 2f 41 • [f2, f 6) and Hlx - ff l f 2, f4 f 2)

[f2, f S5 · Hence, for x· f 2 £ Sft' xHl ~ HIX. 

Consider anether suDgre.p H2 • [fl' f S' f63. xH2 • 

~f2fl' f2 fS' f 2f63 - [f2, f4' f 3) and H2x. [fl f 2, fSf 2 , 

f6 f 23 • [f2, f 3 , f~. Hence xH2 • H2x. 

DEFlIfI'fION 2.6. A 8ubgrollp H of a grotlp G i8 a 

normal slI'bgrnp if aad only if xH. Hx for all xl G, or 

equiTale.tly, xHx- l • H for all x £ G. Denote that H is 
normal in G by H<I G. 
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In Exaaple 2.5, H2 is a normal sUbgro.p. 

DEFINITION 2.7. A simple group is a groap which has 

no proper normal SUbgroups. 

It is easily determined that for a group G, G and [e3 , 
where e is the identity element, are nor_l sllbgro.ps of G. 

The set of right (left) cosets of H in G is 

represente. By alH. G/H foras a group in a natural way 

if H <I G. The binary operation on G/H is defined by 

(xH) • (yH) a xyH. The group G/H is called the qu.tient 

group [lJ. 
The index of GIH, or the n••ber of distinct right 

(left) c.sets of H in G, is denoted by /GIHI. 

LaGrange's theorem is fundamental in Gro.p Theory. 

In this thesis, the order of a group G is denoted by #G. 

THEOREM 2.8. (LaGrange's Theorem). If H is a 

II:subgroup of a finite group G, then 'GIH{ $i [1]. 

Thi. 'fheorea implies that the order of a subgroup H 

of a finite group G ..st divide the order of G, and the 

quotient will y1e14 the auaber of distinct right (left) 

coset. of H in G, or tae index of H in G. 

DEFINI'fION 2.9. A homomorphism is a mapping f from 

a group G into a group G' such that f preserYes the 

group operation. That is, if x, l' € G, then f(x)f(y) f(xy).II: 

DEFINI'fION 2.10. An isomorphism is a homomorphisa 

which i. bijective. 
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DEFINIfION 2.11. The kernel of a hom.morphism f fro. 

G to G' is the set of elements in G that are _ppea to the 

identity ele.ent in G'. The kernel of f, denoted by ker(f), 

is a Iloraal sUDgroup of G [1]. 

With the preceding terminology and background, the 

first important theor.m of this thesis is now established. 

fwo 18_8 prepare the way. 

Cayley observed that eyery finite grollp G could be 

realized as a subgroup of Sn where n is the n.mber of 

elements in G. This actually states that eyery grou.p is 

isomorphic to a group of mappings. 

LEMMA 2.12. (Oayley'. 'fhe.re.). EYery group G i. 

isomorphic to a SUbgroup of Sn' where n i. the number of 

element. in G. 

Proofl Suppose G is a group. For each g £ G 

define a .pping egl G~G by 8g (X). gx for every x € G. 

For y € G, Y • ey • (gg-l)y = g(g-ly) = 8g (g-ly). 

Henee, &g i8 surjectiYe. 

Let 'g(x). &g(y), then gx • gy which implies x • y. 

ThllS, 8g is injectiY8. 

Hence, for each g e G, 8g is bijectiYe and thus, 

eg e Sn• 

. Now, consider g, h ~ G where gh E G and 8gh (x) •8gh• 

gh(x) • g(hx) • 8g (hX) • 8g (&a(x» = &geh(x) or equiYalently, 

egeh. Define a mapping ~I G~Sn by _(g) • 8g • • is9gh • 

a hom.morphi.m because &gh • 8g8h• That is, ~(g)~(h) • 

&g~ = egh • ,e'(gh). 
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Let 1ft £ ker til) • ~ (II) • 8. and 9•••st be the identity 

map. Thus &.(e). e. But 8.(e) • me • m. Hence. a • e. 

Therefore. ker til) • (e). and thas. II is injective [1]. 

This iap1ies that II is an isomorphism of G onto 

soae s.bgro.p of Sn' thus. provingo.r theorem. 

In Cayley's theorem. the size of Sn in comparison to 

the size of G is quite large. If the order of G equals 

n. then the order of Sn is nl. Thus. the problem now is to 

find a .et S. which is smaller than G. to reduce the size 

of Sn. The fo11owihg lemma defines the appropriate set S. 

and a1s8 yields valuable information aDoat noraa1 subgroups 

of G. 

LEMMA 2.13. Suppose G is a group. H is a subgroap 

of G. and. S is the set of all left cosets of H in G. 

0(Then there is a ho••morphism of G into Sn where 

n is the n.mber of distinct left cosets. and the kernel of 

Cl( is the largest normal subgroup of G which is contained 

in H. 

Proofl Let G be a group. H a sllbgroap of G. Let 

S denote the set of all left cosets of H in G. Define 

a _ppin« 1:' for each g 6 G. 'rgl S~ S by 'g(xH) • gxH. 

Using the same argument as in Cayley's theorem. one can show 

t gh • I g 'l h' and hence. 1:"g e- Sn for eve ry g , G. ThllS. if a 

upping I G~ Sn is defined by o«x) • '"x. «is ac( 

homomorphism. 
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NoW' let K == ker( I(, ). If m6 K, then ~ (m) == 
f':'
' •• 

Thus,lr is the identity map. Henee, (;m(xH) • xH fora 

every x ~ G. B1lt '_(xH) == 1I1XH by the definition of ?:•• 

This shows that xH. oH for every x ~ G. Therefore, 

K == E. t G J xH == axH for all x e G3. K is a normal 

subgroup of G because the kernel of a homomorphism is a 

normal subgrollp of G [lJ. 

To show that K is contained in H, suppose b ~ K. 

'rhss, xH • bxH for all x E G. In partic111ar, H == eH == beH -= 

bH, whence 'b e Hand Kc H. 

'ro show that K is the largest normal subgroap of 

G in H suppose J is a normal subgroup of G which is 

contaiD.ed in H. 1'0 Terify JC K, let j E J and g ~ G and 

since J<I G, g-l jg f J. But Jc:. H, so g-ljgH::: H wllich 

implies jgH -= gH. And hence, by the aboTe characterization 

of K, j Eo K. 'rhllS, J c:. K. 

'rhis proves that K is the largest normal sUbgroup 

of G wAich is contained in H. 

With the above two 1emaas, the first theorem of great 

importance in this thesis is now established. 

THEOREM 2.1"'. If G is a finite group, and H ~ G 

is a subgroup of G such that #G does not divide lGIHI 
(or #G flGIHI I), then H must contain a nontrivial normal 

subgroup of Q. Hence G is Rot siap1e. 

Proofl Suppose G is a group and H is a subgroup 

of G su.ch that G ~ H. Consider the following three casesl 

l GI H { I • IIG, IGI HI 1< IIG, and / GI HI I..., #G. 
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First, if #G divi4..~t.IH\I, 

which contradicts _~ 

S be theSecondly, suppose t _ 

set of all left cosets of G as ill LI"lIt 2.1). It 

is now shown (~as defi." tR Lemma 2.1) 

cannot be an isomorphism. ~ were an I....rphism, then 

~ (G) would oontain #0 Sinee;;~ In II: 1G.HI ! <. #G, 

0( (G) cannot be a sUbg~ (!flat.';>!:. clear becau.seSn· 

ex (G) would contain JlON"'0"'.ents thu S~). 

Therefore, 0< i••lc'1njective a.i, hence, ker (0<) 
'r:ij~ 

must be larger than {el~' From Le... 2.l), the kernel of 

0< is the largest nor_i:i~'iibgroup of a' which is contained 
1"'\IIi

in H. Hence, H c••ta!.s a nontriYial normal subgroup 

of G. 

Finally, consider IGIH(I > la. If #G t I G.Hls , 

then by LaGrange's tkeorem, Sn do•• not contain a subgroup 

of #G. This impli.. that Sn has no SUbgroups isomorphic to 

G. But 0( (G) is contained in Sn' and since 0( (G) cannot 

be isomorphic to 0, ~ is not an isomorphism. Hence, as 

above, H contains a nontrivial normal subgrou.p of G. 

Therefore, G cannot be simple, for in all cases, 

H contains a nontrivial normal subgroup of G. 



Chapter III 

SYLOW'S THEOREMS 

The objectiYe of this chapter is to proye Sylow'. 

three theoreas. Although they will be designated as three 

individ.al theorem. in this thesis, many texts combine them 

into a single theorem. Regardles8,whether they are written 

as one or three, the same conclusions are obtained. 

Definitions concerning the structure of groups shall 

be necessary in establishing Sylow's theoreas. Proofs of 

Cauchy'. theoreas follow these frequently used definitions. 

Cauchy'. theorems are the basis for the proof of Sylow'. 

first taeorem. 

DEFINITION 3.1. Z(G), the center of a group G, is 

the set of all elements of G that ceamute with eyery other 

~ element of G. 

LEBA ~h2. Z(G) is an abelian normal s.bgroup of 

G [lJ • 

Every group G has a center, because etZ(G) for 

all G~ If G is an abelian group, G=Z(G). 

DEFINITION 3.3. The normalizer or centralizer of 

a ~ G, is the set of all elements of G that co_ate with a. 

'fhus, if a E G, tAe noraalizer of a i. the set N(a) • [x I x ~ G, 

xa = ax] •
 
11
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LEMMA 3.4. M(a) is a sabgroup of G [5] • 

BEFINI'fION 3.5. Ifwo elements x and y ef a groltp 

G are conjugate if there exists z~G such that zyz-l • x. 

Conjugacy is an equiTalenoe relation. 'fllis can be 

shown iD the following -anner. 

Write x "'1' to denote y i. conjugate to x. 

'fo sh•• ~ i8 reflexiTe, consider z. e. Then 

exel • XJ and. thllll, x""x. 

For symJl1etry, if x "'y there exists I fG sl1ch tllat 

zyz-l • x. !ltt this implies y. z-lxz. 'lhus, y- x, and 

hence, "" is s:r-aetric. 

Finally, if x"'y and y""z, for some a, b f G, 

aya- l • x and bzb-l • y. Hence, a(izb-l)a-l • x • 

ab (z )b-la-1 • alJ (z) (ai) -1 which i.plies x - z. 'fherefere, 

'V is tr..sitiTe. 

Siace conjugacy ill an equiTalenee relation, it 

-. partitions a groltp G into equiTalence classes that are 

called eonjltgate classell. A cenjltgate class containing 

x ~ G, consist of all ele.ents of G that are conjugate t. x. 

LEMMA 3.6. For x ~ a, x is the only .e.ber of its 

conjugate class if and only if x~Z(G) [1]. 

One ..y conclude fro. the eontrapositiTe of the a••Te 

Ie..., that if x;Z(G), then the conjltgate class containing 

x contains .ere than a single eleaent. 

If one selects a representatiTe x fro. a conjugate 
olass, then IGIR(x)1 is the n••ber of elements in that 
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conjugate class. Thws, if a representatiTe is seleeted from 

each distinct conjwgate class, then the total number of 

elements ift all eonjwgate classes is ~ lal N(x)I , where 
x6R 

R is the set of representatiTes. Hence, #G. ~ IGIN(x)1 • 
XE R 

Now obse"e that if xEZ(G), theJl N(x):: G. Thu8, 

the D•••er of el••••t. conjugate to x is IGIG(. 1. 

AB i.port_t eq1l8.tion is new deriTed fro. #G:: 2 IGIN(x)/ • 
XE R 

Since x ~ Z (G) implies IGI N(x)/ lIZ 1, one may write #G· #Z (G) + 

~ IG,K(x)/ • This equation is called the class equation.
Xf Z(G) . 
For si.plicity in following proofs, the class equation may be 

writteR as followsl 

#G • #Z(G) + ~ ~1x)xf. Z(G) 

LEMMA ).1. If G is finite and has no nontriTial 

sUhgr.wps H, then G i. cyolic and of prime order. 

Proof I SlIppose g ~ G, g ~ e, and <g>. [ g, g2, g3, ••• , 

~ g" :: 83 w.ere Ii is the smallest power BlIlCh that ~ e.lIr 

(g) is cyclic and. a subgroup of G. But by the hypothesis, 

G has 1'l0 noatriTial sllbgroupsJ thus, <g") = G, and hence G 

m..t be cyclic. If n is prime, then #G is prime. If n 

is not prime, then gn = gmp = (gm)P • e. 'I'hus, # <gm) • p. 

But by the hypothesis, (gm) :: G. Hence, # <gm> • #G • lh 

1ft 1844 A.L. Cauchy prOTed that if p diTides the 

or'er of a finite growp G, then G contains an el••ent of 

order p. Althollgh E. Galois first stated the theorem, Cawchy 

was responsible for the first proof. 
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P will ••note a prime nu.ber hereafter. 

LEMMA 3.8. (Cauchy's Taeore. for Abelian Groups). 

Sup~Gse G is a finite abelian group and p diTi4es 

#G(p I #G). !hen there is an element a ~ G (a,J. e) of order 

p. 

Pro.fa Proe.ed by using induction on the order of G. 

For #G = 1. tAo theorem is TaeGously trae. 

As...e the taeorea is trae for all ab.lian groups H 

sueh tAat #H is less thaa #G. Consid.r two cas.sl G 

does ..ot centain a 1l0JltriTial s'.bgrou., and. G co.tains a 

ftOntriTial .u.gr••p. 

First. suppose G does not contain a nontriTial 

8ubgrou~. !h•• 'by Le... 3.1 G is of prime order and ••st 

be cyclic. If this prime order is P. then G contains 

p-l ele..nts of order p. 

S.cond. suppose H is a nontriTial subgroup of G. 

Consid.r two caseSI p' #H and p (#H. If P I #H. Dy the 
',. 

indllctiT. hnotl1e.is. there exists x6 H (x ,J. e) such that 

xP • e. Tllu. there exists beG of order p. since H is 

a sUDgroup of G. Now ass.... that p t #H. All subgroup. of 

a'beliaR groups are norll8.1. thus H4 G and G/H is a quotient 

group. Since p 111R. p I $i • IGaHI < #G. G/H is necessarily 

abelian since G is abelian. and by the inductiTe hypothesis. 

there exists Hx6G/H (Hz ~ H) such that (Hx)' = HxP. H. 

Thus. xPe HI and heaee. (xP)#H. e • (x#H)P. Therefore. x#H 

is the d.sired .lement of order P. proTiding x#H ~ •• 
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/H •If x e, then (Hx)/H. Hx#H • H. And since 

HxP = H, HxlH • HxP• Thus, #X • p, or is a ..ltiple of p. 

Either way, p I IH which contradicts the assumption of ease 

lHtwo. Thus, x ~ e, and x#H is the desired element or order 

p. 

LEMMA 3.9. (Cauchy'S Theorem). ETery finite gr••p 

whose order i. diTisible by a giTen prime p, mast contain 

an element or order p. 

Proor. Proceed by induction on the order or G. 

For #G • 1, the theorem is triTially true. As••me the 

theorem is true for all groups H such that IH is less 

than #G. 

Consider two cases. p diTides #H (H a proper subgroup 

of G), and p does not diTide #H (H a proper ••bgro.p 

of G). 

First, suppose H is a sabgroup of G, H ~ G. Let 

p be a prime sueh that p I#H. By the ind.ctiTe hypothesis, 

H contains an element of order PI th.s, G also contains an 

element of erder p. 

Secondly, consider the case where p does not diTide 

the order of any proper ••bgroup of G. For x E G, x ~ Z (G) 

implies H(x) ~ G. Hence, p tIN(x) wAich impli.. p I ;'N1;) • 
It follows that p J 2£ #N1~). Thus, considering thex; Z (G) 
class e,.atioR, since IG= #Z(G) + .2---'i5L 

xtJ Z(G) JN1XT ' 

IG - ~ '«1x) • HZ (G). Hence, p I #G - Z. --'i5L 
xfZ(G) x~Z(G) mxr 
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implies p liz (G). P I #Z (G) iapli.s Z(G) is a sUbgroup 

of G taat is divisible Dy p. Since p dees not divide 

any proper su.group of G, Z(G) • G. fAerefere, G is 

abelian. If G is abelian, Leaaa 3.8 aay be applied, and 

thu., G co.tai.s an ele.ent of order p. 

Ap~r.xi..te17 thirt7 years after Cauchy's proots, 

Ludwig S710w gave lectures en groups in Christiania, Norway. 

He was actually exteading the theoreas of Cauchy. It was 

here that he ifttrodaced his three theoreas. 

THEOREM 3.16. (Sylow's First The.re.). If p is 

a priae Duaher and p~ divides #G, tAen G has a subgroup 

of order CII.
P • 

Pr••fl Suppose G is a group of order n. Now 

cORsider ~ n. p r, where r ls not divisible by p. That 

is, ~ is the higAest power of p that divides #G. G 

contains a SUbgroup of order p for each 0 ~ p ~ ac • 

To esta.lish tais, induction on the order ot G is used. 

It G has.o proper subgroups, then G is either 

trivial or of pria. order. If G. £e3, there ls nothing 

to prove. If G is of priae order, the tneorea ls 

satisfiecl. 

As•••• that ev.ry group of order less than #G has 

the r.qtlired .ubgro.ps as stated in the theore.. Now 

consider two casesl p is priae to the iRdex of some 

proper subgr..p of G or p divide. tae index of every 

proper .ubgroup of G. 
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Case II Sllp,ese H is a proper .ubgro~p ofG 

and. l' fIGIH/. !hat is, IIH - po<.s where pts. 'I'hllS,~ is 

the higaest power ot p that diYides #H. By the badllctive 

hypothesis, H aas .ubgroups of order p~ for each o<.! ~ '" , 

since #K i. le.1I thu IIG. Hence, it a subgroup of order 

p P is a sll.«roup of H, it is also a subgrollp of G. 'I'here

tore, the th.oro. i. tree in calle I. 

Case III Suppose p diYides the index of eyery 

proper .ll.grollp of G. For gEG, N(g) i. either a proper 

.1lbgrollp ot G or N(<<) • G. If N(g) is a proper 81lbgrollp 

of G, the Dumber of eleaents conjugate to g is IGIN(g)/ • 
But }GIN(<<)1 - pt .ince p divides eyery proper sabgrollp 

of G. If R(x)· G, then x€Z(G). 

M.w, llsing the class eqllation, IG • #Z(G) + ~ )GIN(g)/, 
gt. Z (G) 

make t •• following 8ubstitutions. Let a. #Z(G), aDd sinoe 

lGIN(g)/ • pt, let ZIGIN(g)/- pte. 'I'hus, byambstitutioD, 

p~r • a + pte. !herefore, p ..st diyide a. 

Heace, Z(G) is aD a.elian gr••p whose order is 

diTisiDle by p. Thus, by Cauchy's theorea, Z(G) has an 

element of order p. Let x be the element of order p. 

'rlle eye lie grolll' <x> generated 'by x is a 111Ibgrollp of G 

of order p. It is also a nora1 su.bgrOllp of G, since 

x E-Z(G). 

Let <x> • N. COllsider the gro'ttp GIN. The order 
0(,-1

of GIN is p r. hence, we aay apply the indllatiYe 

hypothe.is. 'I'.at is, GIN has BUDgroups of order ~-l 

for each e < fJ ~ c(. 'fIhis produces the neoessary sUDgrenaps 



" .. 

18 

for each ,8 .tch that 0 <:: ,8 ~ ~ -1. Let the .Rbgrotps of 

GIN be of the fora A/N for s ••e abelian .ubgroup A of 

G that contaiDs N. If the order of A/N is p~-l then 

#A is ~. 'I'llw., siace there is a subgroup of order ,11(-1, 

there is a .t.grotp of order p~. 

HeRce, the taeorea is true in case II. 

Anotaer series of definitions and lemmas are required 

to proTe Sylow's second and third taeoreas. 

DEFINI'I'ION ).11. A p-group is a group in which the 

order ef eTery eleaent is some power of p. 

LEMJIA ).12. A. finite grGup G is a p-group if and 

only if its order is a power of p. 

Proofl If G is a p-group, then for a prime q ~ p, 

C[ CaJUlot cliTiae the order of G. (That is, if q I #G, then 

G .nst co.taia an eleaent of order q by Cauchy's theore•• 

But siDce G is a p-growp, the order of all of its eleaents 

must be some power of p.) 'I'hus, the order of G is a power 

of p. 

CO.Tersely, if the order of G is a power of p, 

then G ..at be a p-group, beeause the order of all elements 

of G ..st diTide the order of G. Hence, the order of the 

elements of G .ast be a power of p. 

DEFINITION ).1). A p-subgraap of a group G is a 

subgroup which is a p-group. 



19 

DEFINITION 3.14. A p-subgroup of G is a SYlow 

p-subgroup if its order is the highest power of p that 

diTides #G. 

Fer example, if IG == 72 == 23 • 32, then G has 

p-subgroups of erder 2, 22 , 23, 3 and 32• But only the 

2-subgroaps of order 23 and 3-subgroups of order 32 are 

Sylow p-s'.bgroups. 

DEFIRITION 3.1,5. !wo .1lbgrcnaps H and K of G 

are COJlll1gate s..bgro.ps if K == g-lHg for some g 6 G. It 

can also be said that K is conjugate to H in G. 

If H and K are sUbgroups of G, theft the set 

KH of sUbgroups conjugate to H in K, are those subgroups 

X such tll1at X == kHlt-1 for salle k £ K. KH == £X I X is 

conjugate to H in K3 == [x I X = kHk-1, k f K3 • 
A se1f-co.jugate subgroup H in G is a subgroup 

where xHx-1 • H for sOlie x 6 G. Hence, all normal sub

groups are self-conjugate. 

DEFINIlfION 3.16. The normalizer N(H) of a sllbgreup 

H of G are those elements of G that commate setwise 

with H. !hat is, N(H) Ill:[X~G{XH Ill: HxJ. (xh doe. Bot 

necessarily eq..1 AX.) 

The normalizer of a sllbgrollp H contains HJ there

fore, it always contains the identity element. Also, N(H) 

is a s.Dgro.~ of G [1]. 
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LEMMA 3.17. If Hand K are subgroups of a greup 

G, taen the ntmber of distinct sUbgroups conjugate to H 

in K is IK. Kn N(H)/ • 

Proof. Co.sider Kn N(H). K and N(H) are S\l8grnpSJ 

thus, K nN(H) is a sllbgrotp of K. Let • be the aapping 

that takes eacll conjtgate sUbgrou.p of H in K into the 

set of oOlet. of Kn N(H) in K. That is, for each k 6- K, 

,0'(kHk- l ) -= k(KflN(H». 

Suppese ,I'(klHkil) ,e(k2Hkil). Thus kl(KnN(H» ==III 

-1 -1k2 (Kn N(H» which ~JRplies that kl k2 € N(H). But k l k 2 6 N(H) 

implies klRkil = k2Hk2l • !herefore,,I' is injective. Also, 

the aapping is obviously surjective, hence, ~ is bijective. 

Since • is bijective, the n.mber of distinct suagroups 

conjtgate t. H in K is JK. KflN(H)1 • 

LEMMA ).18. If H is a p-suagroup of G and P 

is a Sylow p-suigr.tp of G, then HnN(P) = Hnp~ 

Proof. Since P is contained in it. normalizer 

N(P), Hnp~HnN(p). 

Let H*· Hf)N(P). H* is a p-subgrotp of p-group 

H and also a p-stbgroup of N(P). P is a normal stbgroup 

of its ••raalizer N(P). !hts, by the second isomorphism 

theorem [1]. H*/H*n P is isomorphic to H*p/p. 

Therefore, since the order of H*/H*n P is a power 

of p, H*p/p is a power of p. Hence H*P is a p-subgroup. 

This iaplies PC H*P, bllt siBce P is the maximal p-Stlbgrollp 

of G, P = H*P. 
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H*P III P iap1ie.s H* C P, and. since H*C H, it follows 

that H*cHf)P. ht HI}PCH*. Therefore, H* HI'\PJ andlI: 

hence, H nP -= HI) N(P ) • 

COROLLARY 3.19. If H is a p-s8bgroup of G and P 

is a Syl.w p-s••group of G, tken the number of distinct 

sUbgrnpe e•• jugate to P in H, is I Hs Hfl pl. 
Proofs This follows directly from Lemma 3.17 and 

LeB1Jll8. 3.18. 

LEMMA 3.28. If P is a Sylow p-subgroup of G, then 

eTery p-s.Dgroup of G is contained in some subgroup con

jugate t. P in G. 

Proofs Suppose H is a fixed p-slIbgroap of a grollp 

G whose order is divisible by the prime p, and P is a 

Sylow p-subgroup ef G. Gp [x I X is conjugate to P in G3 •lI: 

( X ) X III gPg-l for s.ae gt G] • 
Define an eq_iTalence relation en Gp as followss 

Xl '" X2 if Xl -= hX21tl for SODle h 6 H. For e == h, 

Xl == 
-1eXl e , thus , Xl'" Xl. If Xl"" X2, then Xl == 

-1hI2h 

for some hE: H, nt this implies h-lXlh == X. Hence, X2'\..Xl • 
-1 

If Xl"""X2 and X2"" X3' then for some hI' h2 t H, Xl :z hl X2hl 
~-l (-1) -1 h h h-l - l

and X2 • h2X38 2. 'fhus Xl == hI h2XJh2 h1 • l' 2X3 2 hI • 

Hence, Xl'''' X • 'herefore, "" is an equiTalenee relation.3
Now, ~ partitions Gp into "H-conjugate classes". 

For any partioular X to Gp' the number of subgroups conj..gate 

to X ill H is IHI HI)N(X)! {Hs HnxJ. Also, theIII 

number of .u~groups c.njugate to P in G is IGs G~N(p)l· 

IGs N(p)1 • 
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Bat, tae n••ber of subgroup. conjugate to P in 

G may also be represeated by2.1 HaHn xl where the sUUJation 

is taken OTer the «ietinct "H-conjugate" (equiTalence) 

classes. Henoe, /GaN(P)1 -= :ElHaHnxl • Each entry in 

the .....tio...st De a power ot p or on.e. ('faat is, 

sinoe H i. a ,-s.bgro.p, IHaH f) XJ is a power of p 

URless H :: X then IHaH (l XI :: IHaHI 1.) Since P is a:I 

Sylow p-subgr.tp and p does not divide ]GaN(P)/ , at 

least ••e ot the eatries in the s.mmation mast be one. Hence, 

HnX :: H tor sOlle .IE: Gp• 

neretore, Hf X • gpg-l tor some gc G. 

!KEOREM J.2l. (Sylow's Secoad 'fheorea). Any two 

Sylow p-.tbgre.,s are oonjugate. 

Pre.ta It P is a Sylow p-subgroup ot G and H 

is a p-subgro.p ot G, then by Lemma 3.20, H is contained in 

soae s••grnp conjugate to P in G. That is, Hf X where 

X E Gp :: £X) X :: gpg-l for so.. g 6 G3. Now let H be 

an arbitrary Sylow p-••bgroup. Hence, #H:: #X since H 

and I are bota Sylow p-stbgroups. Thus, H • X :: gPg-l for 

so.. g E G. Theretore, if H is a Sylow p-s..bgroup, it is 

coajtgate to P. 

!HEOREM 3.22. (Sylow'. !hird Theorell). 'fhe number, 

~, of distinct Sylow p-s.'bgroups ot a tiaite grollp G is 

.p -= 1 + kp where k ;> 0 anelnp diTidea IIG. 

Proota Suppose P ia a Sylow p-subgroup et G. 

The n..mD.r .p et .u.groups conjugate to P in G is 
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IGIN(P)I • It H 1. a p-subgroup ot G, then as in Lemma 

3.20, R p • jGIN(P)/ - ~ IHIH nxf • Set H II: P. Thus, 

"p IGaN(P)'. ~JpIPn XJ 
I 

•II: 

SiDe. Gp == Ex I X II: gpg-l tor s••e Ii' G3 , it 
g, N(P), tAft X,J P. 'I'heretore JPI Pn X I is a power CIt p. 

It g E )( (P), theft X P. 'fh•• , IPI PnX \ become.II: 

IPIP n pI • !PIP} • 1•. :Bllt g ~ N(P) onlywhen g == eJ 

henoe, one w1ll oo.ur only once 1n the suamatio•• 

faeretore, J\l' IGIN(P) I == Z /PIP 11 xl = 1 + kp,II: 

where k ~O. PWrtheraore, 1 + kp diTioes IG by LaGrange's 

theorem. (That is, ., • JGIN(P)/- IN1;) which implies 

(1 + kp) • (#N(P» #G.)II: 

Th1s oo••ludes the proof ot Sylow'S theorems. About 

twenty years atter Sylow proTed his theorems, they were 

extended turtker by George Frobenius at the UniTersity ot 

Berlin. He saowed Rot only the distinct number ot Sylow 

p-subgroups is ot the tora 1 + kp, k 20, but that the 

distinot •••ber of p-s.hgroup. is .t the torm 1 + kp, 

k ~ o. 'fa•• , eTen it pSI #G and pD1+l 1IG, the Dumber 

ot disttact p-••bgr..,s ot order p. is ot the torm 1 + kp, 

k '2 o. 



Chapter IV 

AN APPLICA'fION OF SYLOW'S 'fHEOREMS 

O.e application of Sylow's theoremsi. to show that 

all simple groups G of order less than 60 have prim. order. 

Before beginning en this problem a restatement of 

the four theorems which are of primary importance to this 

thesis is given. 

Theorem 2.11. If G is a finite group and H is a 

sUbgroup of G such that G ~ H and G does not d.ivide 

IGIHI I, then H contains a nontrivial subgroup of G. 

Hence G cannot be simple. 

p 

Theorem ).10. (Sylow I). If p is a prim. and pm 

divides IG, then G contains a subgroup H of order ,m. 

'flleorell ).21. (Sylow II). Any two Sylow p-su'bgroups 

of G are conjugate. 

'fheorem ).22. (Sylow III). 'fhe number n of dis

tinct Sylow p-subgrollps of a finite grollp G is IIp • 1 + kp, 

k ~ OJ and 'furthermore, ftp divides IIG. 

Also, a simple group is a group containing no proper 

normal	 sllbgro.ps. 

Now, consider all groups of prime order less than 60. 

Let IG· p. By LaGrange's theorem, the order of a 

SUbgroup of G ERSt divide the order of G. Since IIG. p, 

the only possibilities are 1 and p. But these are trivial 

24 
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subgrowpsJ hence, there are no proper normal sUbgroups. 

Therefore, G is simple. 

!hU8, whe. the order of G is 59, 53, 47, 43, 41, 

37, 31, 29, 23, 19, 17, 13, II, 7, 5, 3 and 2, G is 

simple. 

Now consider groups of order less than 60 such that 

the order is a composite namber, with the exception of 56, 

40 and 30. 

Suppose #G· 58 29 • 2. G has a subgroup HIll: 

where #H. 29 by Sylow I. By LaGrange's theorem, if 

IH 29, IGIHI • 2. Now apply the test of Theor•• 2.11.Ill: 

Ill:(Does IG / IGIH/I 1) 29 doe. not diTide 2! 2. !herefore, 

H contains a nontrivial normal subgroup of GJ and hence, G 

is not simple. 

In the following table, one can see that the above 

argument holds for all the composites less than 60 except 

for 56, 40, and 30. (See pages 26 and 27). 

It remains to consider groups of composite order 56, 

40, and 30. 

To show Why the aboTe argument does not hold in these 

cases consider the following. 

If #G· 56 • 23 • 7, then the possibilities for the 

IH, such that #M is a power of p, are 2, 22, 23, and 7. 

If IH. 23 , then IGIRI 7. But 56 divides 71 Ill: 5040. IfIll: 

#R • 22, then IGIHI • 14. But 56 diTides l4!. If #H 2,Ill: 

then IGIHI • 28. Bitt 56 divides 28!. If #H 7, then (GIR{Ill: = 

8. But 56 diTides 8!. Hence, for all possibilities, nowhere 
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TABLE "'.1. 

Lei: the G c.ni:ains The order The order of
order of a 811bgroap of la. HI G does not
G eqaa1 H of order eqlla1s divide IG.HI! 

II:58 29 • 2 29 2 58 t 21 • 2 

57 • 19 • 3 19 3 57 r31 • 6 

II: II:55 11 • 5 11 5 55f 51 120 

54 II: 33 • 2 27 2 5~ 1 21 == 2 
2 

II:52 • 2 • 13 13 4 52 r 41 24 

51 11 • 3 17 3 51f31 = 6 

50 == 52 • 2 25 2 50f21 II: 2 

II: 

21f.9 • 7 7 7 49 171 = 5040 
4 1648 -= 2 • 3 3 48 t 31 • 6 

46 23 • 2 23 2 46 r 21 211:1 III 

45 =: 32 • 5 9 5 14.5 t 51 • 120 

44 -= 11 • 22 11 4 41f. rIf.l := 24 

11:142 • 2 • 3 • 7 7 6 1f.2 t 61 720 

39 11:1 13 • .., 13 3 39 f 31 == 6 

11:1 11:138 19 • 2 19 2 38 t 21 2 

36 = 22 • 32 9 4 36 t 41 -= 21f. 

35 7 • 5 7 5 35 f 51 120II: II: 

31f. == 2 • 17 17 2 31f. r 21 == 2 

11:1 11:133 11 • 3 11 3 331 31 6 

32 := 25 16 2 32 t 21 2II: 

28 -= 22 • 7 7 4 281 41 := 24 

27 = 33 9 3 271' 31 :: 6 

II: III26 13 • 2 13 2 26 f 21 2 
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TABLE 4.1. (Continued) 

Let the G oentains The order The ord.er of 
order of • nqro_p of fGIH{ G dee. .et 
G equal }J ef erd.er equals di.ide IGIHI I 

25 = 52 .5 5 25 t 51 • 120 

24 = 23 • J 8 J 24 f)1 • , 

22 • 11 • 2 11 2 22 t 21 • 2 

.,21 = 3 • ., J 21 t 31 • , 

20 = 22 • .s s 4 20 t 41 • 24 

18 = )2 • 2 , 2 lS t 21 • 2 

2416 • 8 2 161 21 • 2 

15 = .5 • J 5 J 15 131 • 6 
.,14 • ., • 2 2 14 t 21 • 2 

12 • 2
2

• :3 4 J 12 t JI • , 

10 • .5 • 2 .5 2 10 1 21 • 2 

9 = 32 3 J 9 r31 • 6 

8 • 23 4 2 8 t 21 • 2 

6 • 2 • 3 3 2 61 21 • 2 

2
'" • 2 2 2 41 21 • 2 
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does #G not diTide IGIHI I. Thus, theorem 2.11 does not Terify 

that G is D.t .iaple. Similar resalts are obtained when 

con.idering gr••ps of order 40 and 30. Therefore, another 

argument ...t •••••4 to Terify that groups of order 56, 40 

and 30 are ••t .iaple. 

It i. Rec••eary to interject ene more theorem at this 

time. 

THEOREM 4.2. Let G be a group and P a Sylow p

subgroup of G. If P is the only Sylow p-subgroup of G, 

then P i8 normal in G. 

Proofl for each g € G, let X • [gpg-l/ P € pJ •g 
lFor PI' '2 € P, if gPlg-l 

== gP2g - , PI == P2. Thtls, #Xg == 

#P. Hence, Xg is a Sylow p-subgroup of G. But P is the 

only Sylow p-subgroup of G. Thu., P == Xg. By the construc

tion ,of Xg , I g is normal. Therefore, P is a normal 

subgroup of G. 

Let #G == 56 • 23 • 7. By theorem 3.21 (Sylow III), 

there exist Sylow 2-subgrollps of order 8 and Sylow 7-sllbgroups 

of order 7. 

The number of Sylow 2-subgroups, n2' is 1 + 2k, k ~ 0, 

where 1 + 2k I 56. Thus, n2 ::: 1, or 7, when k == 0 and 3, 

respectiTely. 

The number of Sylow 7-subgroups, n7' is 1 + 7k, k !O, 

where 1 + 7k I 56. ThUS, n7 ::: 1 or 8, when k == 0 and 1, 

respectiTely. 

There must be at least one Sylow 7-su.bgroup, so consider 

n7 == 1, and then, ft7 :: 8. 
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1 

If n7· 1, by theorem 4.2, that subgroup would be 

nermal. 

If -7· 8, th.n there exist only one Sylow 2-subgr..p 

as can be •••• 1n the following diagram. Hence, by theorem 

4.2, th1s Syl•• 2-••Dgroup is normal. 

DIAGRAM -'.3. 

1
•I

I 

"';: 
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One can see that the eight Sylow 7-slIbgrollps account 

for 48 elements and if the identity eleaent is counted, the , 
,1 

total is 49. Kow, since the order of G is 56, that 1eaTes 
1 only 7 elements unaccounted for. !here must be either 1 orj 
I 
i 7 Sylow 2 •••gr••,s of order 8. therefore, since oa1y 1 

j element. are aTai1ab1e, there can be only one Sylow 2-sub

group of order 8. 'hat subgroup would contain the 7 elements 

pllls the identity element. Hence, by 'heorem 4.2, it is a 

normal ••"'gr.,. 

All p••sibi1itie. for the number of distinct Sylow 

7-subgr••ps, n" has been considered. n7· 1 or 8. In 

either case, there exist a nontriTia1 normal s.bgroup. 

Therefere, if #G = 56, G is not simple. 

Let #G. 40 = 23 • 5. By Sylow III, there exist 

Sylow 2-subgr••ps of order 8 and Sylow 5-s.bgroup. of order 

5. n2· 1 + 2k, k~O, where 1 + 2k r 40. 'fh•• , n2 • 1 or 5 

when k • 0 and 2, re.pectiTe1y. n5· 1 + 5k, k? 0, where 

II:1 + 5k I AJ.O. Thus, a5 • 1 when k O. 

There is only ODe Sylow 5-subgroup regardless of n2. 

Hence, by !aeorem 4.2, the Sylow 5-s.bgroup is normal. 

Therefore, if #G· 40, G is not simple. 

Finally, to conclude the problem, let #G· 30 • 

2 • 3 • 5. Applying Sylow III, n2 = 1, 3, 5, or 15 when 

k is 0, 1, 2 and 7, respectiTe1y. n3 • 1 or 10 when k is 

o and 3, respectiTe1y. R 5 II: 1 or 6 when k is 0 an4 1, 

respectiTe1y. 
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Assume G is siaple (R '> 1). If n :> 1, thenp p n2 

would be at least 3, BJ would be 10, and ft5 would be 6. 

!his is the aini..l case. 

!he follo.ing diagram shows that this minimal case 

yields ~8 el.ments. 

1
 
I DIAGRAM 4.~
"I 

,} 
~ 

"'~ 
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G cannot contain 48 elements sinee #G· 30. ThUS, 

if #G· 30, G is not simple. 

If #G· 1, then #H· 1. This is a trivial subgroup, 

thus, G is simple. 

This concludes the problem of showing that all simple 

I
 

groups of order less than 00 have prime order.
 

Consideration is now given to a group of order 60.
 

A .,...etric grculp has been previously defined
 

(Definition 2.3). !he order of Sn = ftl. 

J 
DEFINITION 4.S. The alternating group An is the 

subgroup of Sn which consists of all even permutations 

on n elements. !he order of An is inl. 

THEOREM 4.6. The alternating group An is a simple 

group except when n equals 4 [2J. 

Henoe, the order of AS· t(SI) • 60, and by Theorem 

4.3, AS ia simple. 

It kas been shown that a group of order 60 may be 

aiaple. Tkerefore, 60 is the first order in whieh a group 

say be simple. (In faot, AS is simple). 



Chapter V 

CONCLUSION 

The parp.se of this thesis has been to present 

Sylow's theorea. in such a way that a student with a 

basic knowledge of grotp theory might taderstand the•• 

As tae reader now realizes, there is more prepara

tion inTolTed in preparing to proTe the theorems, than taere 

J i8 in the aetwal proofs. This preparation is what ...y 
t 

texts ofteR .ait whe. praTing a theorem, and also What is 

eluded to in the introduction, that is, proofs are often 

too 08Roi.e t ••nderstand the•• 

After haTing read the first three chapters, the 

ulti..te test to see if this thesis has accomplished its 

goal, is whether or not one understands the application 

in Chapter IY. If so, the thesis has ••cceeded in 

pre.enting Sylow's theGrems in an waderstamdable aanner. 
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