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CHAPTER I
INTRODUCTION

There are many topological spaces that are not com-
pact, just as there are metric spaces that are not complete.,
The question arises, is there a process to compactify a
topological space corresponding to the completion process
of a metrie space? And, if a process does exist, what
relationships exist between the original space and the new
compact space? Topologists have produced a large quantity

of material in answering these questions.
l. THE PROBLEM

The purpose of this study is to develope the methods
of compactifying a topological space and to show what rela-
tionships hold between the original space and the new com-
pact space. Proofs concerning topological spaces are, at
times, made simpler if the topological space in question is
compact. Thus, if the space in question can be compactified
and if several important relationships hold between the new
compact space and the original space, then the topologist
has a useful tool. Compactifying different types of topo-
logical spaces produces examples and counterexamples of

various topological spaces.
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Since there has been a very extensive development
of the problem under consideration, this paper can only
develope a portion of the solution. The areas covered
in this paper are such that the reader with an introduction

to topology should be able to follow with little difficulty.
2. BRIEF HISTORY

Compactifications are in part dense embeddings,
and as such are sometimes referred to as extensions of
spaces. In 1913 Caratheodory stimulated the development
of extensions by his work on "prime ends." But it was
not until 1924 (Thron @4, 131] ) that Tietze, Urysohn,
and Alexandroff used the concepts of and formed the one-
point compactification. In 1930 Tychonoff showed that
completely regular spaces could be extended to compact
Tz-spaces, for which he used the product space of closed
intervals [ll, 14%]. Then in 1937, independently and
using different approaches, E. Cech and M.H. Stone
obtained what is now known as the Stone-Cech compactifi-
cation. Other types of compactifications have been
developed since then, see for example Thron[iu, 13{] or

Gillman and Jerison [5, 269-70] .
3. DEFINITIONS OF TERMS USED

The reader is assumed to have a basic knowledge of

topology and to be familiar with the basic terminology.
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Definitions of terms fundamental to the entire paper are
presented here, other definitions can be found in the
chapters where they first appear. The reader is referred
to Simmons[ié] for definitions not listed in this paper.

DEFINITION 3.1 A class {oi} of open sets of
the topological space (X,T) is said to be an open cover
of X 1if and only if X 1is contained in the union of
{01} -

DEFINITION 3.2 If {oj} is a subclass of the open
cover {Oi} such that {Oj} is an open cover itself, then
{Oj} is called a subcover,

DEFINITION 3.3 (X,7T) is called a compact
topological space if every open cover of X contains a
finite subcover,

DEFINITION 3.4 If (Y, ') is a compact topo-
logical space such that (X,7 ) is homeomorphic to a
dense subspace of Y, then (Y, 7') is called a compacti-
fication of (X, 7).

After it has been established that (X,7T) is
homeomorphic to a subspace of (Y, 7T'), X will be fully
identified with its homeomorphic image. For example,
instead of saying h(X) is open in (Y, 7') it will be
stated that X is open in (Y, T').



CHAPTER IX
ONE-POINT COMPACTIFICATION
l. INTRODUCTION

In this chapter the concept of a one-point compacti-
fication is developed. The main purpose of this chapter is
to introduce the structure of a one-point compactification
and to note some of the relationships between a topological
space and a one-point compactification of the space. An
important aspect of a one-point compactification of an
arbitrary topological space is the relative ease of the
construction.

DEFINITION 1.1 (Y', T') is a one-point compactifi-
cation of (X,ﬁ/) provided (Y', 7') is a compactification

of (X, 1) and Y' - X is a singleton set,.

2. THE TRIVIAL ONE-POINT COMPACTIFICATION

Several constructions of a one-point compactification
are available. One of these constructions is a one-point
compactification of any topological space (X,'(). This
construction of a one-point compactification is done in
a triviél manner and may be called the trivial one-point
compactification. It is formed by adding a distinct new
single element & to X and by adding only one new open
set to T. The open set to be added is X U {oo}- This

Ly
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space is clearly compact since the only open set containing
the point co is the set X u{oo }. which also covers the
entire space. This new space is clearly not TO. Thus
very few relationships carry over from the old space to
the new compact space. Hence, better constructions of a

one-point compactification are needed,
3. ALEXANDROFF ONE-POINT COMPACTIFICATION

DEFINITION 3.1 The Alexandroff one-point compacti-
fication of a topological space (x,’r) is the set X' =
XlJ(oo}, where o0 is any element which is not a member of
X. The topology of X' consists of the open sets of X
and all subsets of the form HlJ{po} such that the ecomple-
ment of H in X 1is compact and closed in X. The
Alexandroff one-point compaetification of (X, T) is
denoted by (X', T').

The rest of this section will show the relative
importance of the construction of the Alexandroff one-
point compactification.

THEOREM 3.1 Let (X', 7') be the Alexandroff
one-point compactification of the topological space
(X, T)e (X', T') is a compact topological space.

PROOF. Since # belongs to T, # belongs to 7°'.
The null set is compact and closed in X, hence XkJ{OO} or
X* belongs to T'. Let A and B be any two distinct
elements of T“. If A and B both belong to 17 then

ANB belongs to T and hence to T', also arbitrary unions
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of elements in 9 belong to 4 and hence to 4 ', If
A and B Dboth do not belong to 1 then let
A= CX(P) U {oo} and B = C,(Q) U {00} where P and Q
are compact closed subsets of (X, T ). Then, AUB =
(€, (PYU {{@}) U (cg@ u{oe}) = (¢, (P) U ¢, (Q)) U{eo} =
Cx(PNQ) U { m} . But since the intersection of two com-
pact closed subsets is compact and closed, it is seen that
AUB belongs to 7'. The intersection of any collection
of compact closed sets is compact and closed. Thus it
follows the union of any collection of elements in
Te - 7T belong to ’!/'. Now ANB = (CX(P) v {OO} )y N
cy@u{oo})= [exg®rncg@u{e})] u
[{oolncg@u{eh] = [(cg® ncy@)ucyg® n{ew] ]
U{eo}= (cumNncg@u{oeo]= cy(Pudu{w}.
But since the union of two compact closed subsets is compact
and closed, it is seen that AN B belongs to 7',

Suppose A = CX(P) u(oo} and B belongs to T,
then AUB = (C,(P)u{e})uB=(c (PHu{ew}) U
C,(Cy(B)) = (Cy(P)U C (C,(B))) Y {00} = C (PN C(B))
U {oo}. Since B 1is open in X, CX(B) is closed in X

H

and hence, since P 1is closed and compact, PﬂCx(B) is
closed and compact in X. Thus AUB = C, (PN C,(B)) U {o}
belongs to 7's Now ANB = (CX(P) 9] {oo})ﬂB =
(Cg(P)NB)U ({cc}NB) = C (PYAB. Since P is closed

in X, CX(P) is open in X and hence CX(P)()B belongs to 1.
Therefore, ANB belongs to 4'. Thus (X', 7') satisfies

the requirements for a topological space.
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Let {Oi} be any open cover of X'. Since each
Oi is open in X', each Oi is either an open set in 7/or
is of the form CX(P) U {®] where P is a closed com-
pact subset of X. Since {Oi} covers X', some fixed
Oj in {Oi} contains the point @ . It follows that Oj
is of the form Cy(K) U {®©} where X is a closed compact
subset of X. Considering that K is compact there exists
a finite subcover of {Oi} "that covers K. Note that
KUOs = KU (C,(K) U {e} ) =x u{®} =Xx'. Therefore, the
finite subcover of K together with Oj covers X', Thus
X' 1is compact,
THEOREM 3.2 The relative topology on X in (X', T'),
the Alexandroff one-point compactification, is 7’.
PROOF. Let (X', T') be the Alexandroff one-point
compactification. By the definition of the Alexandroff
qa

one-point compactification T ¢

Agsume that O 1is any open set in X'. Therefore
0 is either of the form CX(K) b {(n} or 0 is in 1,.
If 0 is in T then 0AX = 0 is in the relative
topology. If O is of the form CX(K)U {m} then
onx = (¢, (K) U {w})nX =c (K). Since K is closed
and compact in X, CX(K) is open in X and is in T.
Thus the relative topology on X in (X°, T) is T.

THEOREM 3.3 (X, T ) is not compact if and only if
X is a dense subset of (X', T').

PROOF. Assume that X 1is not compact. Since X

is not compact its complement in X, &, union with {u& is
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not in 7 ', Therefore {®} is not in 7' and hence is
not open in X'. Thus every open set in X' containing
o must contain some point of X, and hence X 1is dense
in X',

Assume that X 1is a dense subset of X'. Since
X is dense in X' every open set in X*' containing 0 must
contain some point of X. Therefore {} 1is not in T°'.
Since {aﬁ is not in T', g cannot be the complement of

a closed and compact set in X. Thus X is not compact.

COROLLARY 3.1 (X, T) is compact if and only if
the point @0 is not an isolated ﬁoint of (X', T").

PROOF., The proof follows from the preceding theorem.

THEOREM 3.4 The Alexandroff one-point compactifi-
cation (X', T') of a non-compact space (X,ﬁ/) is a one-
point compactification.

o PROOF. The result follows from Theorems 3.1, 3.2,
and 3.3,

The Alexandroff one-point compactification is thus
a one-point compactification. The next theorem shows why
if any one-point compactification is to be used, the
Alexandroff one-point compactification is the one con-
sidered most often.

THEOREM 3.5 If any one-point compactification
(Y,’ro) of (X,T) is a T,-space, then (Y,'fo) is
precisely the Alexandroff compactification.

PROOF. Assume that Y 1is a T,-space, then {co} is

closed in Y and hence X 1is open in Y. If Q 1is any
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open set in T, Q@ 1is an open set of X as a subspace

of Y . Therefore there exists an open set M of Y

such that MAX = Q, but this implies that Q 1is also

open in Y. Let N Dbe any open set in Y such that co#_N.
Therefore N<X and hence, N 1is open in X as a subspace
of Y. But this indicates that N 1is also open in (X, T ).

Ilet O be any open set in Y such that e € 0. Set
H to be the complement of 0 in X. Now H = CX(O) =
CX,(O). Then H is closed and compact in X. Thus, if
® € 0 €7 then 0 is of the form C,(H) v {c} where H
is closed and compact in X,

Let K Dbe any closed and compact subset of X. It
must be shown that C,(K) v ’[Q], is open in Y. Certainly
the compact subset K 1is closed in the Hausdorff space Y.
Thus Cy(K) is open in Y. But C,(K) = C,(K) U {ao} .

Thus if a topological space has a Hausdorff one-
point compactification, then that compactification is

precisely the Alexandroff one-point compactification.
4, PROPERTIES OF THE ALEXANDROFF ONE-POINT COMPACTIFICATION

Most of the relationships between (X, T) and (x*, 1)
are concerned with the separation axioms. Several other
relationships partially rely on these separation axioms.

Thus a natural building of theorems might be observed.
Throughout the rest of this chapter (X', T') will denote
the Alexandroff one-point compactification of the topo-

logical space (X, T).
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THEOREM 4.1 (X', T') is T, 1if and only if
(X, T) is Ty

PROOF. Assume that X 1is a T,-space. Let a and
b Dbe distinet elements of X' such that a = @ and
b€ X. Since {_b } is a singleton set in X, it is seen
to be closed and compact in X. Therefore C,{b} v {o]}
is open in X'. Thus the complement of Cx{b} U {&% in
X', namely {b} » is closed in X'. Since X 1is open in X',
the complement of X in X', namely {oo} » 1s closed in X°'.
Thus singleton sets are closed in X' and X' is Tye

Assume that X' is a T, -space. T, is a hereditary

1 1

property. Since the relative topology of X in (X', T')

is 7/, it is seen that X 1is a Tl-space.

THEOREM 4.2  (X*, T') is T, if and only if (X,7)

2
is T2 and locally compact.

PROOF. Assume that X' 1is a T2 space. Since the
relative topology of X as a subspace of X' is 7/, then
(X, T) is a subspace of X'. X is T, since T,
hereditary property. Let a be any element of X. Since

is a
X* 1is T, there exists disjoint open sets A and B in
X* such that a€A and co € B« Because A and B are
disjoint o ¢cly'(A). Now el () = cly.(A) 1 X = cl,,(A)
is a closed subset of X', and is therefore compact. Hence,
X 1is locally compact since every point in X has a compact
neighborhood.

Assume that X |is T, and locally compact.,. Let a

and b Dbe distinet elements of X'. If a, b €X, there
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exists disjoint open sets A and B in X sueh that
atA and b EB. By definition A and B are also in
1*. Suppose a = ® and b €X. Since X is locally
compact there exists a compact neighborhood N of b in
X. By the definition of a neighborhood there exists an
open set 0 in X such that b €0CN. Since X is
T2, N 1is closed. Therefore CX(N) U {m} €T,

Now CX(N) U {co} and 0 are disjoint open sets in X',
and a =0 € Cy(N) U {oo} Thus X' is T,.

Since every compact Hausdorff space is normal the
following corollary holds.

COROLLARY 4.1 If (X, T) is a locally compact
T,-space, then (X', T') is normal.

THEOREM 4.3 If X 1is connected and not compact,
then X' is connected.

PROOF. Assume that X 1is connected and not compact.
Let O be any subset of X' that is both open and closed
in X'. It may be assumed that ¢ 0. Therefore 0c¢X
and 0 €T. Since 0 is also closed in X', X' - 0 1is
open in X'. (X' - 0)NX is thus open in X and is in ’r .
Note that 0N[(X' - 0)NX] =4 and ou[(X' - 0)AX]= X.
Hence 0 and (X' - 0)NX are complements in X, and O
is both open and closed in X.

But since X 1is connected, O 1is either 4 or X.
If 0 =X, then X 1is both open and closed in X* and {co}
is both open and closed in X', but by corollary 3.1, this

contradicts the fact that X is not compact. Therefore
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0 # # and the only subsets of X' that are both open and
closed are @ and X'. Thus X' is connected.

The following example shows that the converse of
the preceding theorem is not true.

EXAMPLE 4.1 Let Q denote the set of rational
numbers with the usual topology. Q 1is neither compact
nor connected, It will be shown that Q', the Alexandroff
one-point compactification of Q, is connected.

Let 0 be any subset of Q' that is both open and
closed in Q'. It may be assumed that 0 1s of the form
CQ(P) U {oo} where P 1is closed and compact in Q.
However, since O 1is open and closed in Q°, CQ.(O) is
also open and closed in Q', but CQ,(O) = P, Therefore
P 1is both open and compact in Q. Since the only set in
Q that is both compact and open in Q is @, Q' 1is seen
to’be connected.

THEOREM 4,4 If X' 1is second countable, then X
is second countable.

PROOF. Assume that X' is second countable. By
theorem 3.2 (X,7 ) is seen to be a subspace of (X°, 7).
Since second countability is hereditary, (X,ﬂl) is second
countable.

THEOREM 4.5 If X 1is a second countable T,-space,
then X' 1is second countable.

PROOF. Assume that X 1is a second countable T,-space.
Since X 1is second countable there exists a countable base

g for the topology ’r on X. The topology T * consists
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of T and all sets of the form Cy(K) U {0] where K is
compact in X, a T,-space. Since there is a countable
bases for ﬁ’ it is only necessary to show that there
exists a countable bases for the sets in ’r' that con-
tain Q.

Let P Dbe the complement in X of the compact

subset K of X. Since X is T K 1is elosed in X

o?
and hence, P 1is open in X. Therefore, there exists a
countable base f * for the complements in X of the
compact subsets of X. Now union each member of p * with
{oo} and denote this by P **, It is easily seen that g ==
generates all open sets in 7/' that contain the point OQ .
Therefore, the countable collection @U ﬁ** is seen to
generate ﬁ/'. Thus X' 1is second countable.

THEOREM 4.6 (X, 73 is separable if and only if
(x*, T*) is separable.

PROOF. Assume that X 1is separable, then there
exists a subset G of X such that G 1is countable and
c1y(G) = X, Let G' =G U {00} and note that G* is
countable, Let p be any point in X' and let O be
any open set in X' that contains p. If O contains
the point O , then 0 contains a point of G's If O
does not contain the point Q@ , then 0 1is also an
open set in ’T +« Hence O contains a point of G and
thus a point of G's. Therefore ch-(G') = X* and X' is
separable, |

Assume that X' 1is separable, then there exists a

subgset G* of X' such that G' 1is countable and
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clx'(G') = X'. Consider the set G such that
G=6'-{o} . Thus G is a countable subset of
X. Let p Dbe any point of X and lef 0 Dbe any open
set in T that contains pe Since 0 1is in T it is
also in T' and hence, 0 contains é point of G'. But
since @ ¢Cn 0 must contain a point of G. Thus
clx(G) = X and X is separable.

THEOREM 4.7 If (X, ) is a locally compact
separable metrizable space, then (X', ﬁ") is a separable
metrizable space.

PROOF., Assume that X 1is a locally compact
separable metrizable space. Since X 1is metrizable and
separable, X 1is normal and second countable. By
corollary 4.1, since X 1is locally compact and T,s
X* is normal. By theorem 4.5, since X 1is a second
countable TZ-Space, X* 1is second countable. Hence,

X' 1is a second countable normal space and by Urysohn's
metrization theorem, X' is metrizable. Since X is

separable, by theorem 4.6, X' is separable. Thus X'

is a separable metrizable space.

The reader interested in necessary and sufficient
conditions for a topological space to be metrizable is
referred to Kelly [10].

THEOREM 4.8 If the set A 1is a nowhere dense
subset of X', then A NX 1is a nowhere dense subset of X,

PROOF. Let A be a nowhere dense subset of X°'.

Let O be any non-empty open set in 1/. Now O 1is also
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in T+ and o¢el ,A. Since ol (ANX)ccly,(ANX)cely,(a)
it follows that Ofecl (ANX). Thus ANX is nowhere
dense in X,

THEOREM 4.9 If the set A 1is a nowhere dense
subset of X, then A 1is a nowhere dense subset of X'.

PROOFs Let A be a nowhere dense subset of X,

Let 0 be any non-empty open subset of X, then 0 ¢clx(A).
Note that since A is a subset of X, clx,(A)c:clx(A) v
{w}. Therefore if 0€ T and 04cl (A), then O0gdcly,(a).
Let H be any open set of X' that contains the point @ .
H is of the form CX(P) ) {ao} where P 1is a closed com-
pact subset of X. Therefore CX(P) is open in X and
hence, CX(P)q‘,ch(A). Thus H = C, (P) U {m} ¢clx,(A)
and A 1is a nowhere dense subset of X'.

THEOREM 4,10 Let (X,7T) be a non-compact topo-
logical space. (X.1’) is first category if and only if
(X', T*') is first category.

PROOF. Assume that X 1is first category. There-
fore X 1is the countable union of nowhere dense subsets.,
The set {ﬁﬁ} is closed in X' but not open because X is
not compact, it follows that {aﬁ is a nowhere dense
subset of X'. By theorem 4.9, X' 1is the countable
union of nowhere dense subsets. Therefore X' 1is first
category.

Assume that X' 1is first category. X' 1is the
countable union of nowhere dense subsets. Restrict each

of these nowhere dense subsets to X. Then by theorem 4.8,
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X is seen %o be the countable union of nowhere dense
subsets.s Thus X 1is first category.

COROLLARY 4.2 Let (X,T) be a non-compact
topological space. (X,1’) is second cétegory if and only
if (X, T“) is second category.

PROOF. The result is immediate from the preceding

theoren.
5. EXAMPLES OF THE ALEXANDROFF ONE-POINT COMPACTIFICATION

The following are some examples of the Alexandroff
one-point compactification.

EXAMPLE 5.1 Consider the Alexandroff one-point
compactification of the complex plane C, The point QO ,
called the point of infinity, is added to C and the new
space is denoted by Cg . The open sets of Cg consists

of the open sets of C and the complements in Cep of

closed and bounded subsets of C. Coo is often cglled the

extended complex plane.

The extended complex plane may be visualized as
a sphere of an arbitrary fixed radius tangent to the

complex plane at the origin. The tangent point is
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referred to as the south pole and the north pole is con-
sidered to be the point of infinity. Thé indicated
projection from the axis of the sphere to the plane sets
up a homeomorphism from the sphere less the north pole,
to the complex plane., The sphere is usually called the
Riemann sphere. (The Alexandroff one-point compactifica-
tion of the Fuclidean plane may be demonstrated in a like
manner, )

The following example may be found in Burgess [2:}

EXAMPLE 5.2 Consider the space R, the real number
line, with the usual topology 1’. The Alexandroff one-
point compactification of R consists of adjoining the
point C0 to R and of adding to ’T the subsets of the
form O v {a% where CR(O) is closed and bounded in R,

It follows that if the open set S contains 00 then
there exists points a and b of R such that a<b and
the set {xéRlx(a or x)b} is a subset of S. Hence,
a sequence of real numbers { xijyz converges to @ if and
only if given N>0 there exists an integer n such that
|xi l)N, for all i) n. Thus OO can be considered as a
point at infinity.

EXAMPLE 5.3 Let X be any infinite set with the
discrete topology. Let 0 be any open set of X' con-
taining the point OO . Since CX(O) must be compact,

CX(O) must contain all but a finite number of points of
X, the finite subsets of X being the only compact subsets.
EXAMPLE 5.4 Consider the topological space (O, {]

with the usual topology. The Alexandroff one-point
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compactification of (O, 1] yields the space [O, 1] .
However, the function defined on (0, i] by f(x) = sin(%)
is bounded and continuous but the function cannot be ex-
tended continuously to [0, 1] .
The problem of extending a continuous function
defined on X +to a continuous function defined on Y

where Y 1is a compactification of X 1is discussed in

the next chapter.



CHAPTER III
STONE-CECH COMPACTIFICATION

This chapter is concerned with the Stone-Cech com-
pactification, its construction and properties. The
Stone-Cech compactification is a compactification of an
arbitrary completely regular space, which in this paper
implies Tl. Since spaces that are locally compact and
T, are also completely regular, it is possible to con-
struct a T2 Alexandroff one-point compactification as
well as the Stone-Eech compactification. However, the
Stone-Cech compactification has a very useful property
which the Alexandroff one-point compactification fails
to have, the property of being able to extend specifiec
continuous functions defined on X to continuous functions
defined on p X. F3X will denote the Stone-ﬁech compactifi-
cation of the topological space (x,q’) where X 1is com-

pletely regular.
l. PRELIMINARIES

DEFINITION 1l.1 Iet X Dbe a non-empty set and let
{Xi} be a non-empty collection of topological spaces. For
each 1 let f; ©be a mapping from X to X;. The weakest
topology on X such that fy: X=X, is continuous for
each 1 1is called the weak topology generated by the f,'s.

19
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DEFINITION 1.2 Let {X;: iu} be a non-empty
collection of topological spaces, indexed by the indices
i of the index set I. The product of the topological
spaces X; is denoted by 1f{xix i¢I }. The topology
on 1T{Xix i.€I} is the weak topology generated by the
projections of p; of 1T{Xi: ieiI} onto Xi’ for all
i in 1.

DEFINITION 1.3 Let S be a subspace of Y and
let f be a function of S +to the space X. If h is
a function of Y to X such that h(t) = f(t) for all
t in S, h 1is called an extension of f.

Let C(X, R) denote the collection of all bounded
continuous real-valued functions defined on X.

LEMMA 1.1 Let (X,T) be a completely regular
topological space. The weak topology on X generated by
C(X, R) equals the given topology on X.

PROOF. Let 7 be the given topology and let T,
be the weak topology on X generated by C(X, R). Let
0 be any open set in ‘T;. Let p€ O, then there exists
fl’ f2, ¢ o v fn € C(X, R) and Ol’ 02, o o o On
open in R such that peﬂrl1 f;l(oi)co since 0 is in

. n .- . ~
T;. Each fi is continuous, hence nl fikoi) is in 1.

Therefore 0 € T and we have Tw ST.

Let Q Dbe any open set in T and let p Dbe any
point in Q. Set F = X - Q and note that F 1is closed.
Since X 1is a completely regular space there exists a

continuous function g such that g: X-o[p, i] s g(p) = 0,
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and g(F) = 1. Note that g€cC(X, R). Since (-%, 1) is
open in R, g'l(-%, 1) is in wa. g=1(-4, 1) = Q@ since
g(Q)c [0, 1) and g(F) = 1. Hence,qféq’w. and therefore
the weak topology generated by C(X, R) equals the given
topology on X.

LEMMA 1.2 The relative topology on a subspace of
a product space is the weak topology generated by the
restriction of the projections to that subspace.

PROOF. Let P = T{X;+ 1€I} and let Y be a
subspace of P, Now S = {p{l(oi)f\Y: 0; 1is open in
X3, i.eI} is a subbase for the relative topology on Y.
But S = {(pi

S 1s also a subbase for the weak topology on Y generated

Y)‘l(oi):oi is open in X35, i.eI} and thus

by the restriction of the projections to the subspace Y,
Hence, the two topologies are identical.

LEMMA 1.3 If f 1is a mapping of a topological
space X into a product space TT{Xi: i.GI}, then f is
continuous if and only if p;ef is continuous for each

projection p;, i1€l.

}Tf{Xi: i eI}

Pl
~

PROOF. Assume that f 1is a continuous function.

Each p; 1is continuous by the definition of the topology
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on TT{Xiz i.EI}. Hence, each p;ef 1s a composite
mapping of two continuous functions and is continuous.

Assume that each piOf is continuous. Let Oi
be any open set in Xi, i€I. Since pi°f is continuous
for each 1i¢1I, f'l(pil(oi)) is open in X. Now pil(oi)
is an arbitrary subbasic open set in Tf{xiz i.EI} » and

thus it follows that f 1is continuous.,
2, CONSTRUCTION OF ﬁX

This section is concerned with the construction of
the Stone-Gech compactification QXI of X.

THEOREM 2.1 Let (X,7T) be a completely regular
topological space. There exists a compact T,-space px
such that:

(a) X 1is homeomorphic to a dense subspace of pX;

(b) every bounded continuous real-valued function

defined on X has a unique extension to a
bounded continuous real-valued function defined
on fX. |

PROOF. (a) Let C(X, R) Dbe the set of all bounded
continuous real-valued functions defined on X. Index the
functions in C(X, R) by the indices i, of the index set A,

hence C(X, R) = {fi' ie A}. Let I, be the smallest

i
closed interval containing the range of the function fi'
Each I is a compact T,-space and hence their product
I= 1T{ii: i.ﬁzg}is also a compact Tz-space by Tychonoff's

theoremes Since I 1is compact and Tos I is normal and
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hence completely regular. Every subspace of I is com-
pletely regular and to show that X 1is a subspace of I
it has to be assumed that X is completely regular,

Define the mapping Fi1 X-—I where F(x) is
equal to the point in I whose ith coordinate is the real
number fi(x). For each i€ A, pi°F = fi, and thus by
lemma 1.3, F is continuous. Now C(X, R) separates the
points of X since X 1is completely regular. Therefore
F 1is one-to-one and X can be embedded into I as the
set F(X). Instead of using F(X), X can now be thought
of as a subset of I. Thus X 1is seen to have its own
given topology and the topology that it has as a subspace
of I. Since F is continuous, the subspace topology on
X 1is weaker than the original topology. The following
argument shows, without resorting to this fact, that the
two topologies are identical,

C(X, R) 1is the set of all restrictions to X of
the projections p;y of T onto each I By lemma 1l.2 the
relative topology on X, as a subspace of I, is equal to
the weak topology generated by the restrictions of the
projections p; to X. Since X 1is a completely regular
space, by lemma 1.1 the weak topology generated by C(X, R)
equals the given topology. Thus the given topology of X
is equal to its relative topology as a subspace of I,
Therefore X 1is a subspace of I. Sinece 1 1is a compact
T,-space, X 1is a compact T,-space. Let (X denote X

Thus X is homeomorphic to a dense subset of px.
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(b) For each 1€ A, fi is the restriction of
the projection p,l to X. Thus 1h extends fi to 1I.
Let p; denote the restriction of p; to X. Hence,
each f; has an extension to a continuous bounded function
defined on X = X. Since X is dense in the T,-space
X it follows that this extension is unique. Therefore,
not only is the StoneQEech compactification of an arbitrary
completely regular space compact and Tz, but every bounded
continuous real-valued function defined on X can be
extended to a bounded continuous real-valued function
defined on ‘3X. Another important aspect of the Stone-
Cech compactification is shown in the following theorem.
This property helps characterize @)( as will be shown
later in this chapter.

THEOREM 2.2 Every continuous function from X +to
a compact TZ-Space Y can be extended uniquely to a con-
tinuous function defined on @X to Y.

PROOF, Let Y be any compact TZ—Space, then Y
is completely regular. Let QY be the Stone—aéch com-
pactification of Y and let L be the embedding map of
Y into Y. Index the functions in C(Y, R) by the
indices i of the index set A. Then (Y is a subspace
of the product space ‘fr{Iis ie A}. where I; 1is the
smallest closed interval containing the range of the bounded
continuous real-valued function g3 defined on Y. Note

that I, is a compact T, -space.

2
Since Y 1is compact, Y is homeomorphic to @Y.

Therefore L(Y) = ﬁy and hence we can fully identify Y
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by (Y. Let y Dbe some point of Y, then y= {y;) where
the ith coordinate is the point g;(y), i € A . Let f
be any continuous funetion from X +to Y. Therefore, if
X 1is a point of X, then f(x) = {f,(x)) where the ith
coordinate is equal to g;(f(x)). For each i€ A ,
pi°f = fi’ and thus fi a bounded continuous real-valued
function from X +to I Therefore there exists a
?i of f.l such that ?i is a bounded

continuous real-valued function from ﬁx to I,l. Define

the function % from Bx to 'fr{Ii: iéA} by f(x) =

unique extension

<?i(x)>, for any x 1in BX. Then for each 1€ A »
p.lo? = %i' Since ’f\i is continuous, p.lo? is continuous
for each projection pje Thus by lemma 1.3, 3 is a
continuous function from @X to Tr{Iis i EA}.
N A
Let x€X, then F(x) =<F (x))={t;(x)> = £(x).

Therefore ? is a continuous extension of f. Since X

>

is dense in the T,-space px, it follows that is

2
unique. Therefore, it must only be shown that /f\ maps
@X strietly to (SY and hence to Y.

Let p be any point in BX, then ?(‘p) is a point
in Tr{I.l: ie A}. Let O be any open set in Tr{Ii: iEA}
that contains the point f(p). Then £-1(0) is an open
set in @X that contains the point p. Since X 1is dense
in BX, ?‘l(o) contains a point x of X. And, since £
is a unique continuous extension of f, f(x)é& 0. Thus

A
every open set containing f(p) econtains a point of eY.

P
It then follows that f(p) is a point of closure of pY
A A
and hence f(p) € ﬁY. Therefore, f(@X)C ‘BY.
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The next theorem shows that BX is unique. That
is, px is unique in the sense that if T 1is any other
compact TZ-Space such that X 1is dense in T, and every
continuous function from X to any compact T2-Space Y
can be extended uniquely to a continuous function from
T to Y, then @X and T are homeomorphic.

THEOREM 2.3 Let (X,T) be a completely regular
topological spaces, Let T be a topological space
satisfying:

(a) T 1is a compact T_-space;

2
(b) X 1is homeomorphic to a dense subspace of T;
(¢) Each continuous map from X +to a compact
T2-space can be extended to a continuous map
from T.
Then T is homeomorphic to (X.
PROOF. Let f denote the embedding map from X
into T and h the embedding map from X into BX. Let
£ denote the extension of f to QX and N  the exten-

sion of h to Ts It follows that the following diagram

commutes.

x/:\ﬁ§ Bx

The unique continuous extension of h to ﬁX is

e In a

AN
the identity on QX, iﬁX’ and therefore hef = iax
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. A A A
similar manner foh = iT, the identity on T, Thus f and
A N
h are both one-to-one and onto, and ﬁ‘l = f, Since 5;
and ? are continuous, it follows that T and @X are

homeomorphic.
3. PROPERTIES OF 6X

This section contains some of the relationships
between X and @3X. A number of other relationships lie
beyond the scope of this paper and require extensive back-
ground material. The reader is referred to the bibliography
for additional material. Each topological space considered
in this seetion is assumed to be completely regular.

THEOREM 3.1 Let S De a subspace of X, then
every bounded continuous real-valued function f defined
on S has a bounded continuous extension to X if and
only if f has a bounded continuous extension to (BX.

PROOF. Let S Dbe a subspace of X and let f Dbe
a bounded continuous real-valued function defined on S.
Assume that £ is a bounded continuous extension of f on
X. By the construction of PX there exists a bounded
continuous extension £' of T defined on PX. It is
easily seen that ?' is a bounded continuous extension of
f defined on @X.

Assume that f has a bounded continuous extension
h defined on BX. Denote the restriction of h on X
by f'. It is seen that f' 1is a bounded continuous

extension of f defined on X.
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THEOREM 3.2 Every bounded continuous real-valued
function defined on the subspace S of X can be extended
to a bounded continuous real-valued function defined on X
1f and only if elgy(S) =@s.

PROOF. Assume that every bounded continuous real-
valued function f on S has a bounded continuous exten-
sion ? on X. By the preceding theorem f has a bounded

continuous extension ?' on pX. It is thus seen that

has a bounded continuous extension defined on (S), which

01@X

is unique. Since S is dense in clpx(s) and clﬁx
compact and T2, it follows by theorem 2.2 and theorem 2.3

(S) is

that ClQX(S) = QS.

Assume that Clﬁx(s) = @S. Thus by theorem 2.1
every bounded continuous real-valued function f defined
on S has a unique bounded continuous extension ? defined
on @S and hence on clﬁx(S). Then by Tietze's extension
theorem T has a bounded continuous real-valued extension
' defined on px. Now by theorem 3.1 it follows that
every bounded continuous real-valued function defined on S
has a bounded continuous extension defined on X.

COROLLARY 3.1 If K is a compact set in X, then
every bounded continuous real-valued function defined on K
can be extended to a bounded continuous real-valued function
on X.

PROOF. Assume that K 1is a compact subset of X.
Thus °1px(K) = K and @K = K. Therefore clpx(K) = BK

and by theorem 3.2 every bounded continuous real-valued
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function defined on X has a bounded continuous extension
defined on X.

THEOREM 3.3 If S 1is open and closed in X, then
ClGX(S) and clﬁx(x - S) are disjoint complementary
open sets in @X.

PROOF, Assume that S is open and closed in X,
then X - S 1is open and closed in X. There exists a
bounded continuous real function f defined on X such
that f(S) = 0 and f(X - S) = 1. Every bounded con-
tinuous real-valued function defined on X has a unique
bounded continuous extension defined on px; Let T be
the unique bounded continuous extension of f. Therefore
$(s) =0 and F(x - 8) = 1. Tt then follows that

?(clpx(s)) =0 and f(el,,(X - S)) = 1. Since X is

RX

dense in pX it follows that clﬁX(S)Ucl@X(X - 8S) = @X.

Thus ClQX(S) and ¢l X(X - S) are disjoint complementary

open subsets of px. ¢

COROLLARY 3.2 An isolated point of X 1is an
isolated point of [X.

PROOF. Assume that p 1is an isolated point of X.
Therefore, gince X is Tl’ {p} is both open and closed
in X. By theorem 3.3 °lpx{p} is both open and closed
in px. However, since X is T, then cl@Xip§ = {p}.
Thus p 1is an isolated point of pX.

COROLLARY 3.3 PXZ is connected if and only if X

is connected.

PROOF., Assume that pX is connected. Iet A Dbe

a proper subset of X such that A 1is open and closed in
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X. By theorem 3.3, cl X(A) is both open and closed in

g
X and C1ﬂX(X - A) 1is disjoint from cle(A). It then
follows that cle(A) is a proper subset of gx. But this

contradicts that px is connected. Thus X must be
connected.

Assume that X is connected. Let B be a proper
subset of pX such that B is both open and closed.
Hence QX - B 1is both open and closed. Since X is
dense in @X it follows that both B and @#X - B contain
points of X. Thus BNX 1is a proper subset of X +that
is both open and closed in X, but this contradicts the
hypothesis that X is connected. Hence px is connected.

The corollary to the next theorem is very important.
The theorem itself shows an important relationship between
X and QX.

THEOREM 3.4 X 1is open in @Xﬁ if and only if X
is locally eompact.

PROOF. Assume that X 1is locally compact. Let
P€X and let K be a compact neighborhood of p in X.
Therefore there exists an open set 0 in X such that
p€O0cK. K 1is compact in pX and hence closed since @X
is T2. Since 0 1is open in X, there exists an open set
H of pX such that HfN1X = 0ec¢K. It is clear that
claX(Hn X)ccle(H)ncl (X) = cl X(H). Let x be a point

R g
in cle(H), then every open set N in px: that contains
X, contains a point of H. Now NA(HAX) = (NAH)AX and

NQH 1is a non-empty open set. But since X 1is dense in
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@X, every non-empty open set has a non-empty intersection
with X. Hence, NN (HNX) # # and it follows that
X (olﬁX(H{\X) and clax(H(\X) = cng(H)' Therefore,
}{cclpx(H) = cle(H(\X)c!(cX and X is seen to be open.

Suppose that X 1is open in @X. Since X is a
compact T,-space, BX is regular. Let pé X, then
every neighborhood of p contains a closed neighborhood
of p. X, being open, is a neighborhood for each p in
X. Therefore, each p in X has a compact neighborhood
in X since closed sets are compact in @X. Therefore
X 1is loecally compact.

COROLLARY 3.4  Each open set in X is open in X
if and only if X 1is locally compact.

PROOF: The result is immediate from the preceding
theorem.

Let (Y, g) and (2, k) denote Tz-compactifications
of X where g and k are the embedding mappings. Then
Y is sajid to be larger than 2Z, denoted by Y22, if and
only if there exists a continuous function f defined on
Y fto Z such that feg = k.

Let (Y, g) denote any T,-compactification of X

2
and let (fX, h) denote the Stone-Jech compactification
of X. By theorem 2.2 there exists a continuous extension
g of g from X +to Y such that §0h = g, Therefore
@X is referred to as the maximal Tz-compactification of
X

EXAMPLE 3.1 Let N represent the set of natural

numbers with the discrete topology. Hence, N 1is completely
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regular and it is possible to construct the Stone-tech
compactification BN of N. Let S be any subset of
N, Every bounded real-valued function defined on S may
be extended to a bounded continuous function defined on N,
since every real-valued function defined on N 1is con-
tinuous. Thus by theorem 3.2 C13N(S) = 3S. Any subset
S of N 1is both open and closed in N, therefore, by
theorem 3.3 019X(S) is open in @Dh Since N 1is loeally
compact, by theorem 3.4 N is open in @N. By corollary
3.2, each point of N 1is an isolated point in QN; Since
pN - N 1is closed, it is compact,

EXAMPLE 3.2 Let @ denote the rational numbers
with the usual topology. Thus Q is completely regular.
Let @Q denote the Stone-Gech compactification of Q.
Since Q 1is not connected, by corollary 3.3 fQ 1is not
connected, By theorem 3.4, since Q 1is not locally
compact, Q is not open in BQ. N and Q have the
same cardinality, therefore, there exists a bijection
from N to Q<@Q. Since N 1is a discrete space, f is
continuouss Therefore, by theorem 2.2, there exists a con-
tinuous extension T of f from @N to (Q. But, ?(@N)
is compact in BQ and is therefore closed in Q. Note
that Qe T(BN). Thus, it follows that T(BN) = BQ.
Therefore §Q 1is a continuous image of pPh

Since @Q 1is compact and Tz, every neighborhood

of a point in @Q contains a compact neighborhood of the

point. However, since Q 1is not locally compact, no
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compact neighborhood can be entirely in Q. Therefore, no
neighborhood of a point in QQ can be entirely in Q.
Thus @Q - Q 1is dense in Q. Suppose @Q - Q is a
finite set, 1t then follows that @Q is not T,+ Hence,
BQ - Q@ must be an infinite set. Now since ?(QN) = @Q
where ¥ is defined above, @PJ-N must be an infinite

set, It then follows that neither @N or FQ can be one-

point compactifications.,.



CHAPTER IV
A DIFFERENT CONSTRUCTION OF ﬁX

A different construction of the Stone-Cech compacti-
fication of completely regular spaces is the main purpose
of this chapter. The construction to be developed uses
the concepts of Z-ultrafilters. The first part of the
chapter will include definitions and basic theorems con-
cerning filters, ultrafilters, zero-sets, Z-filters, and
Z-ultrafilters. The reader interested in a more complete
discussion of filters and ultrafilters is referred to
Thron [14]. The rest of the chapter will be devoted to

the construction of the compactification.
1., FILTERS AND ULTRAFILTERS

DEFINITION 1.1 A family JF of subsets of a set
X 1is called a filter on X if and only if it satisfies
the following:

(a) The family F is non-empty;

(b) If A€ F and BE€ F , then AnB € F ;

(¢) If AcCB and A€ F , then B € F ;

(a) £ ¢ 3.

EXANMPLE 1.1 Let 'ﬂp denote the collection of all
neighborhoods in the topological space (X, T) that contain

the point p 1in X. 'np is a filter on X, it is called
the neighborhood filter of the point p.

34
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DEFINITION 1.2 A non-empty family B of subsets

of a set X, such that B does not contain the empty set
and the intersection of any two members of B contains a
member of B, is called a filter base on X.

DEFINITION 1.3 A non-empty family £ 1is called
a filter subbase if the intersection of any finite number
of elements in £ 1is non-empty.

THEOREM 1.1 If € 1is a filter subbase, then the
family @ of all finite intersections of elements in (3
is a filter base. If B is a filter base, then the
family ¥ of all super-sets of the sets in @ 1is a
filter.

PROOF. The proof follows from the definitions.

DEFINITION 1.4 Let (X, 7) be a topological space
and & a filter on X. JF is said to converge to the
point p in X if and only if ¥ contains every neighbor-
hood of p. The point p 1is said to be a limit point of
the filter F. It is also said that the filter & con-
verges to the point ps The point t 1is said to be a
cluster point of the filter F if and only if for each
neighborhood N, of t and any A ¢ F, A (]Nt # A

DEFINITION 1.5 If Q) is a filter on X such that
no other filter & on X properly contains WU , then Y
is called an ultrafilter on X.

EXANPLE 1.2 Let Sa denote the collection of all
subsets in X that contain the point a of X. S is

a
an ultrafilter on X.
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Let {‘ui} denote the set of all filters on X
that contains the filter F on X. It is easily shown
that the union of all members of {ui} is a filter. By
applying Zorn's lemma, the union of all members of {‘ui}
is seen to be an ultrafilter on X that contains J .
Hence, every filter on X 1is contained in an ultrafilter
on X,

The next few theorems will be used in the construc-
tion of BX.

THEOREM 1.2 A filter { is an ultrafilter on X
if and only if AUB € U implies that either A € W or
B€ U.

PROOF. Let 9 be an ultrafilter on X. Assume
that AuB € U such that A ¢ 4 and B ¢ U . Define F
to be the family of all subsets H of X such that
HuA € U. Since AuB € A\, JF is non-empty, and
FUA = A ¢ A, hence # ¢ M. If HuA € Y| and HCO,
then OUADHUA € q| which implies that 0 € F. If H
and 0 are in F , then HUA € AL and O0UVA € 4.
Thus (HUA)N(OUA) = (HANO)UA € 14 and HNO € &F.
Therefore JF is a filter. Let C € W, then AUCDCEU
implies that AUC € 1, and hence ¢ € F. But since |
B € F and B ﬁ W, F properly contains 1 which contra-
dicts the fact that U is an ultrafilter. Thus, if
AUB € 1, either aAelor B € U.

Assume that AUB € Y implies that either A or

B is in U. Now X € U since X 1is a super-set for all
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sets. Therefore, for every subset A of X either A
or X -A 1is in Y. Suppose some filter € properly
contains Ql, then £ contains some subset B of X
such that B ¢ . But if B ¢ Y, then X - B ¢ Y.
Now B € € and US €. Hence X -B € £ and £ =
BNX - B € £ , but this is a contradiction. Thus U
must be an ultrafilter.

THEOREM 1.3 A filter U 1is an ultrafilter on X
if and only if ANB 1is non-empty for all B € U implies
that A € Y.

PROOF. Assume that U is an ultrafilter on X.
Let ACX such that AGNB # g, for all B in U, 'L(U{A}
is then a filter subbase for a filter £ that contains Y
and the set A. Sinece 7 is an ultrafilter, §= U and
A e,

Let U be a filter on X that is not an ultrafilter.
Then some filter & properly contains U. Hence there
exists a set A in € that is not contained in 11. Let
B be any set in U, then B is in £ and ANB # A.
Therefore the statement that A NB 1is non-empty for all
B in U implies that A €7, is denied. The theorem
is thus proved.

The last two theorems of this section help show
some of the uses of filters in topology and analysis.

THEOREM 1.4 Let f %be a function from X to Y
and let £ be a filter on X. For all A & § the
collection f(A), denoted by f(£), forms a filter

base on Y.
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PROOF. Since & is non-empty, f(€) 4is non-
empty. Since f(A) ¥ § for any A € £, the null set
is not in f(&). Let A and B be in £, then ANBE £,
Now f(ANB)Cf(A)Nf(B)., Hence, f(L£) is a filter base
on Y,

THEOREM 1.5 Let f be a function from (X, T) to
(Ys £)e Then f is continuous at the point t in X if
and only if for every filter £ on X that converges to
t, the filter ¥ generated by the filter base f(£) con-
verges to f(t).

PROOF. Assume that f 1is a continuous function from
X to Y. Let Ngi Dbe any neighborhood of f(t). Since
f 1is continuous, f'l(th) is a neighborhood of t in X.
Since & converges to t, f'l(th) is in £ and hence

Net is in 3". since Jf(f'l(th)). Thus &F converges

Nes
to f(t).

Suppose f 1is not continuous af t, then there
exists a Ney such that f‘l(th) does not contain any
neighborhood of t in X. Y., the neighborhood filter of

t, is a filter on X that converges to t. Let N be

t
any neighborhood of +t, then f(Nt)<#th. Thus Ngy is
not an element of JF, the filter generated by f(4),
and hence ¥ does not converge to f(t). Therefore, if
the filter F on Y generated by f(£), where £ is

any filter on X that converges to t, converges to f(t),

then f must be continuous.
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2. ZERO-SETS AND PRINCIPAL Z-ULTRAFILTERS

In this section the concepts of zero-sets and
principal Z-ultrafilters are introduced. Zero-sets and
principal Z-ultrafilters are used in the construction of
Bx, the Stone-Cech compactification of a completely
regular space., Definitions and the basic theorems used
in the construction will bé given in this section. The
reader is referred to Gillman and Jerison.[5] for a more
complete discussion of zero-sets and Z-ultrafilters.

DEFINITION 2.1 1f A ={x€X: £(x) =0} for
some continuous real-valued function f on X, then A
is called a zero-set.

Since f 1is continuous, A 1is closed and thus
all zero-sets are closed. Therefore, the finite union
and arbitrary intersection of zero-sets are closed.

THEOREM 2.1 Finite unions and finite intersections
of zero-sets are zero-sets,

PROOF, Assume that A and B are zero-sets. Let
A ={xEX: f(x) = O} and B = {xEX: g(x) = O}, then
{xéX: f(x) = 0 or g(x) =0 } and AQNB = {XEX:

0 and g(x) = 0 }. Define h by h(x) = f(x) « g(x),

AUB

f(x)
note that h 1is continuous. The zero-set of the function

h is C={x€X: f(x)-g(x)=0}. Hence, AUB = C

and AUB is therefore a zero-set. Define k by k(x) =
,f(x)l + ,g(x)l » note that k is continuous. The zero-
set of the funetion %k is D = {xEJX: , f(x) I + lg(x)l = O}.

Hence ANB = D and therefore ANB is a zero-set.
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Since zero-sets are closed and finite intersections
and unions of zero-sets are zero-sets, a relationship
between zero-sets and closed sets of a topological space
might be questioned. The following theorem gives such a
relationship between closed subsets and zero-sets of a
completely regular space,

THEOREM 2.2 Let (X,T) be a completely regular
space. Then the zero-sets of X forms a base for the
closed subsets of X,

PROOF. Let B Dbe a closed subset of X, then there
exists a continuous real-valued function f on X such
that f£(B) = 0. Let K ={x€X: f(x) =0}, clearly BcK
with K Dbeing a zero-set. For every point p in K - B
there exists a continuous real-valued function f_ such
that fp(B) = 0 and fp(p) # 0. For each such fp let
Kp = {xG.X: fp(x) = 0 } and denote the collection of all
such zero-sets by {Kp: p€E€EK - B } « Then B = (n{Kp: P EK-B})
N K. Hence, the collection of all zero-sets of X forms a
base for the closed subsets of X.

DEFINITION 2.2 Let 2 denote the collection of all
zero-sets in X. A filter & on X and an ultrafilter U
on X intersected with 2 are called Z-filters and Z-ultra-
filters, respectfully.

DEFINITION 2.3 Let x be a fixed point in X, then
the family of all zero-sets of X +that contain the point x

is called a principal Z-ultrafilter on X, and is denoted

by uxo
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THEOREM 2.3 Let (X,7T) be completely regular and
let 14x be a principal Z-ultrafilter on X. Then QJX is
a Z-ultrafilter.

PROOF. Since X 1is a Tl-Space, the singleton set {x}
is closed. Hence, some zero-set contains the point x and
llx is non-empty. The empty set is not in \ix since
x#}lf. If A and B are zero-sets where A € ’Ux and ACB,
then by the definition of ’Ux, BeU. If A and B are
both in ‘L(x, then x€ A\B. By theorem 2.1, ANB is a
zero-set and hence, Af}B € t&f Thus U, 1is a Z-filter
on X,

Suppose Q 1is a zero-set that does not contain the
point x. Since Q 1is closed and X 1is completely
regular, there exists a continuous real-valued function f
such that f(Q) = 1 and f(x) = 0. Therefore there exists
a zero-set Kx that contains the point x Dbut does not
contain any point of Q. Since K, €Y  and K. NQ = [/
it is clear that 11x is not properly contained in any
Z-filter., Thus le is a Z-ultrafilter.

3. CONSTRUCTION OF RX

A different construction of X is developed in
this section. It will be shown, however, that this con-
struction will satisfy the characteristics of the Stone-
Eéch compactification and by theorem 2.3 of chapter three
will be homeomorphic to the construction developed in the

last chapter.
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DEFINITION 3.1 (3X will denote the set of all
Z-ultrafilters on X.

DEFINITION 3.2 C, is the set {Ue€ @x:+ ae U},
where A 1is any zero-set in X,

THEOREM 3.1 Let (X, T) be a completely regular
topological space. The collection {CA: A 1is a zero-set
in X } is a base for the closed sets of some topology on
fx.

PROOFs Let U be any Z-ultrafilter on X. Since
there exists zero-sets having empty interseetion, a Z-
ultrafilter cannot contain every zero-set. Let K be a
zero-set that is not contained in 11. hence U ¢CK. Thus

for any point in X there exists a C, that does not

A
contain the point.

Let Ue€PX such that u¢CAU Cge By theorem
2.1, C = AUB is a zero-set. Now Cg, ={'L(e(3x: C 67..(}
and by theorem 1.2 11*CC, since if C € U then either A
or B is in U. It is now only necessary to show that
C,UCg&Cqe Let Y € CAUCB, then U either contains
A or B, | must therefore contain AUB and U is
thus in CC' Hence, {CA: A is a zero-set in JX} forms
a base for the c¢losed sets for a topology on pX.

THEOREM 3.2 Let (X,1/) be a completely regular
space and let @Xﬁ be the collection of all Z-ultrafilters
on X. If the collection {Cu¢ A 1is a zero-set in x }
is a base for the closed sets for a topology on @X, then

(a) X is homeomorphic to a dense subset of (Bx;
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(b) QX is compact and T,
(¢) If (Y, 8) 1is any compact T2-space and
f: X-»Y 1is continuous, then there exists
a unique continuous extension of f from
Bx to Y.

PROOF, (a) Define the mapping h: X-fX by
h(p) = TJP’ where le is the principal Z-ultrafilter
ascribed to the point p of X. If Zip # Qlt then
clearly p #t and h is well-defined. To show that
h is continuous, let CA be any basic closed set of @X,
then U{ua: aGA} € C, and therefore A = h_l(U{'ua: aé A})
chl(cy). Let p€n~l(c,). Now h(p) = ’up, L(pe Cy» and
hence, A€ Up. Therefore pe€A and h'l(CA) = A, A is
closed since A 1is a zero-set. Therefore the inverse of
a basie closed set is closed under the mapping h and
thus h 1is a continuous function.

Let a and b be distinct points of X. It has
been shown that there exists a zero-set K that contains
the point a but not the point be K 1is therefore an
element of Qla but not an element of Iib' Therefore,

h(a) # h(b) and h is a one-to-one mapping.

If A 1is a zero-set of X, then h(A) = h(X)f\CA.
Since CA is closed in ﬁX, h(X)(lCA is eclosed in h(X).
Hence, zero-sets map toclosed subsets of h(X). Since the
collection of all zero-sets forms a closed base for the
topology on X, it follows that closed sets of X map to

closed sets of h(X). Therefore h is a closed mapping of
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X to h(X)s Thus h 1is a continuous one-to-one closed
mapping of X onto h(X) and hence X 1is homeomorphic
to h(X)e

To show that h(X) is dense in px observe that X
is contained in all Z-ultrafilters on X. This implies
that Cy = fX. If K is a closed set of §X that con-
tains h(X), then K 1is the intersection of a collection
of basic closed sets each containing h(X). Note that h(X)
is the set of all principal Z-ultrafilters on X. If CH
contains h(X), then CH contains as a subset the set of
all principal Z-ultrafilters on X. Now Cy ={U€@X: H(U}
and this implies that H 1is an element of every principal
Z-ultrafilter. But the only set contained in every
principal Z-ultrafilter is X. Thus H = X and Cx is
the only closed set of (SX that contains h(X). Therefore
h(X) = Cy = @X and h(X) 1is dense in @X.

(b) To show that (X 1is compact let {Cyt e A}
be any collection of closed subsets of BX with the finite
intersection property. Each Cg4 1is the intersection of a
family of basiec closed sets, denoted by Cgy = N {CA(u,p)‘
@6.’\.1}. Therefore the family {CA(u, @):?c_,\_”ge A} also
has the finite intersection property. Hence, so does the
family of zero-sets {A(Q,@):Qedk“,dézg. Therefore
{A((,p):@EJ\_‘)OLEA} satisfies the definition of a subbase
for a Z-filter., Let &£ be the 2-filter generated by the
subbase and let 1( be a Z-ultrafilter that contains £ .
Therefore u contains each zero-set in {A(a(,@): (Se_/\_u’uLeA}
and Y is in every basic closed set in {CA(«,@)' Be-'\-q';QEA}'
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It then follows that ‘u is contained in each C&. Therefore

Uen {C“s o € A}. Since each class of closed subsets of
@X which satisfies the finite intersection property has a
non-empty intersection, @X is compact.,

To show that PX is a T,-space, let € and JF be
distinet points of @X. Since £ and F are distinct
Z-ultrafilters there exists a zero-set A in § that is
not in g: » and hence a zero-set B in F such that
ANB = 4. Note C, and Cy are disjoint. Since A and
B are zero-sets of X 1let A = {xéXs fr(x) = O} and
let B = {xEXs g'(x) = 0} » Define the function k by

= 1 _ 20 (x) |
k(x) § Imx) I + }I(go(le

thus k 1is a continuous function. Define the function f by
f(x) = k(x) if k(x) O
= 0 if k(x)2o0.

Denote the zero-set of f by F. Define the function g by

g(x) = k(x) if x(x)>O0
= 0 if kx(x) £0,.

Denote the zero-set of g by Ge. The functions f and
g are continuous.

C,CPX - C, since ANG = g, and CgxCPX - Cp since
BNF = #. Therefore the points £ and J are in the open
sets ﬁx - CG and @X - CF’ respectively. Suppose some
point U of @X is in QX - Cps then F 4 W . But since
X€ YU and FUG = X, then G € U since U 1is a Z-ultra-

filter. Therefore W€ CG and ‘uf.@x - Cg. Thus QX - CG
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and BX - CF are disjoint. @X is therefore a T,~space.

(¢) To show that any continuous function f from
X to Y, a compact TZ-Space, has a unique continuous
extension from @Xﬁ to Y it is only necessary to show
that there exists at least one continuous extension. The
fact that X 1s homeomorphic to a dense subset of ‘SX and
that Y 1is a Tz-space implies that any continuous extension
will be unique.

Let f be a continuous function from X to Y.
If C 1is a zero-set in Y, then £~1(c) 1is a zero-set
in X. Let uepx and for notation purposes let E(f,Y) =
{zero-sets AcCy: f'l(A)€U}. To show that E(f,Y) is
a Z-filter, note that f'l(Y) = X a zero-set in U,
hence E(f, U ) 1is non-empty. Let B and C Dbe elements
in E(f,U), therefore f 1(B)€U and r l(c)eU . Since
U is a Z-ultrafilter on X, f'l(B)(\f'l(C) € U and
hence £ 1(BNc) € Y which implies that BACEE(f, W).
Let HEE(f,Y) and let O Dbe a zero-set in Y such
that HcCO, then £ 1(H)cf 1(0) and £ 1(H)€ U . There-
fore £ 1(0) 1is an element of U . This implies that
0€EE(f,U). The null set is not an element of E(f,U)
since f'l(ﬂ) ¢ U. Thus E(Ff,UY) is a z-filter on Y.
Suppose AUBEE(f,Y), then £ 1(auB)eU. But £ 1(aUB)=
£ a)ur1(8) and since U is a Z-ultrafilter, either
£=1(a) or £ 1(B) is in U. Hence, if AUBEE(f,Y)
then either A or B is in E(f,Y).

Since Y 1is compact, every class of closed subsets

of Y with non-empty finite intersection, has a non-empty
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intersection. Hence, /I{Az AeE(f,u)} is non-empty.
Assume that the intersection contains two distinct points
p and q. Since Y 1is a compact Tp-space it is com-
pletely regular. Therefore there exists disjoint open
sets P and Q of Y that contain p and q respec-
tively and whose complements are zero-sets. Hence, (Y - P)U
(Y - Q) = YEE(f, W) and this implies that either Y - P
or Y-Q 1is in E(f,U). Since pgY - P and qf€Y - Q,
p and q cannot both be in N{Az AeE(f,l[).} . Thus
N {A: AeE(f,u)} contains a unique point which will be
denoted by P(U). Therefore f can be defined as a
function from X to VY.
Let ae€X, then the corresponding point in @gX is
Ua+ Now f‘(ua) = p, where p €Y and pef){Az AeE(f,ua)}.
Note p 1is the only point in N{A: ac E(f,U.a)}. Then
E(f,U,) = {zero-sets acy: fla)el a} and this
implies that f(a)- is in every zero-set in E(f,ua).
Hence, f(a) = p and ? is an extension of f.
To show that T is continuous it will first be shown
that CIPX(A) = Cp» where A 1is any zero-set in X. Let A
be a zero-set in X and let h Dbe the embedding map of X
into $X. Now h(A) = {z(a: aeA}C{UEQXz AclL} = Cpe
Therefore, clyy(A)C Cye Let Cp contain h(A) = {Ugr acaf.
Then CgNh(x) = {d+ bEB} . Hence, ACB and if Cp
contains h(A) then C,CCqre It follows then that
CIQX(A) = Cpe
Let O be any open set in Y and let p be a point

in 0 such that there exists a uepx where FT(U) = p.
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It will be shown that there exists an open set in FSX that
contains U and is contained in ?‘1(0),.thus showing that
'i\‘ is continuous,

Since Y 1is completely regular, there exists a
zero-set-neighborhood F that contains ?(U) and is
contained in 0. Let Q denote the open set contained in
F that contains the point ?( U). There exists a con-
tinuous real-valued function %k such that k(Y - Q) = 0
and k(’f\‘( U)) = 1. Therefore there exists a zero-set
F'S2Y - Q such that the complement of F*' in Y 1is an
open set contained in F and containing the point ?(U).
Note that FUF' = Y and hence f'l(F)Uf-l(F') = X, It
then follows that clgy(£™1(F)) U clpx(f‘l(F')) = BX.

1t U € elgy(£7H(F")) = Ce-1(pr)» then r7H(F)eU.
Hence, F'€E(f,U) and F(UY)EF'. But this is impossible
and, therefore U ¢ clpx(f‘l(F')). Hence @X - elyy (r71(F"))
is an open set H in pX that contains the point &{ . Let
U' be any element of HC clpx(f'l(F)), then £ 3(F)e "'
Now ?(2.(') = ﬂ{As AEE(f,u')% , hence ?('L(')e F. Thus

A
?‘(H)CF<O and f is a continuous function.



CHAPTER V
SUMMARY

This paper covered the concepts of a one-point
compactification and the Stone-Eéch compactification,

The first chapter introduced the paper, presented the
purpose of the paper and the problem under consideration,
and listed definitions basic to the entire paper.

Chapter two developed the one-point or Alexandroff one-
point compactification. The second chapter also
developed several relationships between (X, 7T ) and

(x*, T*). Chapter three developed the Stone-Gech com-
pactification and several relationships between X and
@X. It also demonstrated the uniqueness of the Stone-
Cech compactification. The fourth chapter used Z-ultra-
filters to construct the Stoneigech compactification,
Chapter four also introduced some basic notions of filters,
ultrafilters, Z-filters, and Z-ultrafilters.

The possibilities for further study in this aresa
are many. Several relationships concerning the Stone-
Eech compactification lie beyond the scope of this paper.
Other types of compactifications have been developed. The
Wallman compactification is noted in Gillman and Jerison [5]
to be equivalent to the Stone;Eéch compactification if and

only if (X,'r) is normal. Thus other types of compacti-
4o
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fications, see Gillman and Jerison [5] and Thron [ﬁ] for

examples, lend themselves to further study.
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