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Numbere Simultaneously Polygonal 

L. B. Wade Anderson, Jr. " 

For the purpose of this study, the term, polygonal number, will 
refer only to positive integers and is defined as follows: let a )  be 
an arithmetic sequence whose first term is 1 and whose common dif- 
ference is m - 2, where m is a positive integer greater than 2. The 
sequence of partial sums, {s.) , associated with (a,) is called a 
sequence of m-gonal numbers or the sequence of polygonal numbers 
with m sides. For example, when m = 3, the arithmetic sequence to 
be considered is {a. ) = { 1, 2, 3, . . ., k, . . . } , and the as- 
sociated sequence in this case is {s.) = (1, 3, 6, . , ., r (i + 1)  /2, . . . . ) 
This is the sequence of 3-gonal (triangular) numbers. For simplicity, 
the rth term of the sequence of m-gonal numbers will be denoted by 

p i .  Table I is a general listing of pr, . Table I was obtained using 
the following well-known formulas for arithmetic sequences and series: 
a, = 1 + (k - 1 )  ( m  - 2 )  and s = ( r /2)  ( 2  + ( r  - 1 )  ( m  - 2)) .  

Historically, the numbers were named polygonal' because they can 
describe, for a given m, a nest of regular polygons of m sides having a 
common vertex and with r = 1, ;, 3, . . . points for each side. The 
diagrams shown below in Figure 1 illustrate polygons which are repre- 
sentative of the first four triangular, square, and pentagonal numbers. 

FIGURE I 

POLYGONS ILLUSTRATING THE FIRST FOUR TRIANGULAR, 
SQUARE, AND PENTAGONAL NUMBERS 

* The author is a member of the faculty of the Department of Mathematics at  
Junction City, Kansas, High School, and recently completed his Ph.D. degree at Michigan 
State University. This study originated in a thesis, under the direction of Professor 
Lester E. Laird, presented to the Department of Mathematics at Kansas State Teachers 
College, Emporia, for the Master of Arts degree. 



TABLE I 

POLYGONAL NUMBERS 

m-gonal 1 m 3m-3 6m-8 10m-15 15m-24 . . . rz  (m - 2 )  -r (m - 4)  
2 



If P denotes the set of all polygonal numbers, it is apparent that 
P is the set of all positive integers except 2. An integer, w, will be 
called si&ultaneously polygonal if, and only if, there exist integers r and 
q such that for distinct integers m and n it is true that w = p; = p:. 
Let the set of all' simultaneously polygonal numbers be denoted by P2. 
The following facts immediately present themselves: ( 1 )  P2 is a proper 
subset of P. ( 2 )  1 P2, since for all m > 2, p 1 = 1. ( 3 )  If w E P2 

then exactly one of the following hold: ( i)  r = q = 1 or ( ii) r # q, 
where w = p i ,  = p . An investigation of the possible ways a given 
number may be polygonal helps to determine the nature of the set Pz. 
Let w be allv integer. If w is the rth m-gonal number, then 

w = p ; =  (r /2)  [2 + ( r  - 1) (m - 2 ) ]  and hence 2w - r [2 + 
( r  - 1 ( m  - 2 )  Now, if any.given w is to be polygonal, then 2 w will 
have to be expressed as a product of two factors. One of these factors 
is r, and the other is 3 + ( r  - 1 )  (m - 2 ) .  The following theorem 
shows that r must be the smaller factor. 

Theo~em 1:  If w = p : , ,  then r < 2 +  ( r - 1 )  ( m - 2 ) .  
Proof : By definition, m - 2 - 2 1. Hence, by multiplying each 

> member of the inequality by r - 1, (1 . -  1 )  ( m  - 2 )  = r - 1 is 
obtained. Adding 2 to both members yields ( r  - 1) ( m  - 2 )  -t 
2 2 . r  - + 1. And it follows that r <  2 + ( r - 1 )  ( m - 2 ) .  QED 

It is now clear that the smaller factor of 2 w is r, and that by subtract- 
ing 2 from the larger factor, the product ( r  - 1 )  ( m  - 2 )  is obtained. 
Using the preceding fact, m is easily determined. As an exampke of 
this method; the problem of deciding the number of ways 36 may be 
polygonal is examined. The first step is to express 2 x 36 as a prod- 
uct of two factors in all possible ways: 

2 x 3 6  = 3 x 2 4  = 4 x 1 8  = 6 x J 2  = 8 x 9  
The first factorization, 2 x 36, is then considered. Since r must cor- 
1.espond to the smaller fartor, r - 2. Bv subtracting 2 from the larger 
factor, 34 is obtained. Hence, ( r  - 1 j (rn - 2) must be 34 in this 
case, and m is, therefore, 36. Thus, this factorization indicates that 
36 = p ?j6 . Similarly, the factorization 3 x 24 indicates that r = 3 
and ( r  - 1 )  (m - 2)  = 22, which implies that m = 13. From this 
factorization, it is concluded that 36 - p f 3  . Not all factorizations 
are indicative of a manner in which 36 is polygonal. I t  will be noticed 
that the factorization, 4 x 18, shows that 36 is never the 4th element 
of an m-gonal sequence; since in this case r = 4, ( r  - 1) (m - 
2 )  - 16, and since 3 = r - 1 does not divide 16, there can be no 
integral value for m - 2 and, hence, no value for m. Table I1 indicates 
all of the ways in which 36 is polygonal. Hence, 36 is polygonal in 
exactly four ways. It is possible that some factorizations can be 
elminated from consideration. The following theorem indicates that 
consideration need only be given those factorization of 2 x w, where 



the smallest factor is less than or equal to 34 ( 4- - 1) . 
Theorem 2: If w - p ' ,  then r z  1/2 ( d m - 1 ) .  

Proof: If w = ( r /2 )  [2 + ( r - 1 )  (m--2)] ,  then solving for 
> m - 2, m - 2 = eb'i=d . But, also, by definition m - 2 - 1. 

r ( r -  1) - 
2 ( w - r )  > > > r ( r - 1 )  So, ------ = 1 or 2 (w - r )  I r ( r  - I ) .  Hence w = ------ + 
r ( r - 1 )  2 
r or 2 w Z  r' + r and completing the square 8w + 1 2 4 r z  - + 
4r + 1 = (2r + 1 ) 2 .  Thus, 8w + 1.2 - Zr + 1; and there- 
fore, l/s ( v m -  1 )  2 r. ' Q ~ ~  

A number that is not an element of P2 is 26. This is apparent, 
since 2 x 26 = 4 x 13 are the only factorizations of 2 x 26. The first 
factorization shows that 26 = p g6 , but since 3 does not divide 
11, this is the only way 26 is polygonal. It also follows that, if w is 
any prime, then the only factorization of 2 x w is 2 x w and, hence, 
w = p :. . This is the only way w is polygonal. Thus, P2 contains 
no primes. Furthermore, the above method reveals that there are 
twenty-seven composites less than 150 that are not elements of P2: 
4, 8, 14, 20, 26, 32, 38, 44, 50, 56, 62, 68, 74, 77, 80, 86, 98, 110, 
116, 119, 122, 125, 128, 134, 140, 143, and 146. The following con- 
jecture seems appropriate at this point: - -  - 

Conjecture: With the exception of 4, there does not exist a composite 
integer that is not an element of Pz that is not congruent to 2 modulo 
3. In partial support of his conjecure is the following theorm: 
Theorem 3: If w is a composite and is congruent to 0 modulo 3, then 
w is an element of P2. 

Proof: If w = 0 (mod 3 ) ,  then there exists a positive integer k 
such that w = 3k and then Zw = 2 (3k).  Factorizations of 2w 
include 2 (3k) and 3 (2k) .  The first factorization implies r = 2 
and ( r  - 1) ( m  - 2)  = 3k - 2 and hence m - 2 = 3k - 2 which 
implies m = 3k = w or w = p:. The second factorization implies 
r = 3 and ( r - 1 )  ( m - 2 )  = 2 k - 2  and hence m - 2  r k - 1  
so that m = k + 1 and w = p 3, + . Therefope, w e p2. QED 
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Numbers Both M-Gonal and N-Gonal 

This section deals with the determination of integers w such that, 
for specific values of m and n, there exist integers r and q such that 
w = p A = pa;, . Although a general treatment of this question may 
be considered, it necessarily becomes quite involved, and when specific 
instances are treated, the method will vary somewhat to facilitate 
brevity. This general approach could, however, he followed in all 
cases to be cc~nsidered. From Table I. if 1) ,:, =. p :: then ?AL ( (m  - 2 )  
r -  ( - 4 )  r )  ( ( - 2  - ( n - q ) .  Let a = m - 2  and 
b I n -2 .  Then, 1/2 ( a r z - ( a -2 )  r )= $$ (bqz - ( b - 2 ) q ) ,  or 
multiplying by 8a and completing the square the equation becomes: 
(2ar - ( a  - 2 )  ) 2 = 4abq" 4a (b  - 2 )  q + ( a  - 2 )  2 .  Upon multi- 
plying by ab and completing the square on q, the following is obtained: 
(1) ab(2ar  - ( a  - 2 )  ) " +a? ( b  - 2 )  " (2abq - .I ( b  - 2))2 + ab 
( a - 2 ) "  Let y = 2a r -a  + 2, x = 2abq-n  ( b - 2 ) ,  and C = 
a 2 ( b - 2 ) z - a b ( a - 2 ) 2 .  Now, (1) may be written as ( 2 )  x2- 
aby2 = C. 
Hence, the problem is reduced to finding all integral solutions of ( 2 ) .  
I t  is noteworthy that if r, m, q, and n are integral, then x and y must 
be integers, but that the converse is not true. That is, integral solu- 
tions (x, y )  of xz - abyz = C will not necessarily indicate an integral 
s~lutioil ( r ,  q )  of p ,,: = p ;;. It is also noted that x = ab + 2a, y - 
a + 2 is always a solution of ( 2 )  since r = 1, q - 1 is always a 
solution for p ;, = 11 :. This will be called the trivial solution. 

To find all solutions of ( 2 ) ,  two cases must be considered, First. 
if ab is a perfect square and ab = k2 for some integer k, then ( 2 )  
becomes (x  + ky) (x - ky) = C. Without loss of generality, C is 
assumed to be positive, for if it is not, (2)  may be rewritten as 
(ky + x) (ky - x) = -C. The following theorem will now be estab- 
lished: 
Theorem 4: If ab = kz fos some integer k, where a = m - 2 and 
b = n - 2, then there are at most a finite number of solutions (r ,  q )  
such that p ,:, = 11;. 

Proof: In equation ( 2 )  above x = abq - a ( b  - 2 )  and y = 2ar 
- a + 2. A solution x > O, ky > O of C = xz - (ky)  2 = (x -k 
ky) (x  - ky) implies a factorization of C in the form C = de where 
d = x + ky and e = x - ky. Hence d + e = 2,x and d - e = 

2ky. It  follows that d e (mod 2 ) .  Conversely, there is a solution 
x - ( d  + e )  / 2  and ky = (d  - e )  /2. 



( i )  Since C is the difference of two squares, C + 2 (mod 4 ) .  
(ii) If C 1 (mod 4)  or C = 3 (mod 4 ) ,  then C is odd, 

and both de and e must be odd, so that d E e (mod 2 )  will 
be satisfied. If C ic; not a cquare, then every factnrization of C 
implies d # e. There are r ( C )  choices for d where r (C)  is 
the number uf divisors of C. r (C)  is even a i d  there are exactly 
r ( C ) / 2  choices for d > e > 0. If C is a square, there is one 
and only one factorization of C = de in which d = e, which 
would' not lead to a solution. In this case, r ( C )  is odd, and 
number of solutions (x, ky) is (r  ( C )  - 1) /2. 

(iii) If C = 0 (mod 4 ) ,  then C is even, and, hence, d and 
e must both be even. Let d = 2D and e = 2E. Hence, C / 4  = 
DE where D > E >O ;and the number of solutions depends exactly 
on the number of factorizations of C / 4  = DE. Proceeding as in 
case ( i i ) ,  the number of solutions is 7. ( C / 4 )  /2. QED 
If? however, ab is not a square, the following propositions will be 

needed to find a11 solutions of ( 2 ) .  The proofs of these results can be 
found in elementary numl~er theory texts arid will not be included', here. 
Definition 1: If D is a natural number, not a perfect square, and if 
(xl, yl ) is a solution of x z  - Dyz = 1, then (x, , y, ) is a fi~ndamental 
solution if, and only if, x1 > $$y - 1. 
Theorem 5: The fundamental solution of x ?  - Dy" = 1, where D is 
not a perfect square, is unique. That is, there is only one solution 
(xl,  y, ) that satisfies the inequality xl > ?L2y ? -- 1. 
Theorem 6: If (xl , yl ) is the fundamental solution of xx - Dy" 1, 
where D is a natural number, and not i i  perfect square then all posi- 
tive solutions are given by (r , , .  v,,) where x,, + &I,,, = (xl + 
) for n =  1. 2. 3, , . . . 

Theorem 7:  If D is a natural number and if xg - Dyx -- N has one 
qnli~tion. then it has infinitely many. In  T,urticulal., if ( u , ,  vl ) is a 
solution of u'-' - Dv' -- 1 and (s, y l  1 is a solutioii uf x' - Dy" N,  
integc1.s x and y determined 11y a + y fi = (u l  + vl ) (xi + 
y1 ) form a solution of xx - Dgz r Y. 

Examining the Pellian equation 112 - Dvz x 1 with (u, v) any 
solution of the equation and with (x, , vl ) any solution of x2 - Dy? = 
N, then according to Theorem 7, integers , and y, will also be a 
solution where xq + f l y : !  = (u  -k mv) (x, fly,). The 
solution (x?, y2 ) is said to be associated with the solution (xl , yl ) . The 
set of all associated solutioils forms a class of solutioils. Since there are 
infinitely many solutions for the Pellian equation, each class will contain 
infinitely many solutions for xz - Dyx = N. It  is possible to tell 
whether two given solutions (x,, yi! and (x,, y!) belong to the same 
class. The necessary and sufficient condition for the two to be as- 
sociated is that ( x ,  x, - y, y, D )  / N  and ( y ,  x, - x, y, ) / N  be integers. 
If S is the class consisting of the solutions (x,, y, )  , then sol~itions 



(xi, -y.) also constitute a class which is usually denoted by 8. S and - 
S are called conjugate classes and may be distinct or coincide. In the 
latter case, they are called ambiguous classes. Among all solutions (x, 
y )  in a given class, the fundamental solution is chosen in the following 
manner: if yl is the least non-negative valuc of y which occurs in S 
and if S is not ambiguous, then the number xl is also determined, for 
the solution (-xl , yl J belongs to the conjugate class 5. If S is ambigu- 
ous, a unique xl rnay obtained by prescribing that xl > 0. In the 
fundamental solution, the number Ixl has the least value which is pos- 
sible for 1x1 when (x, y )  is an element of S. The case x = 0 can only 
occur when the class is ambiguous, and similarly for the case y - 0. 
Tlzeolrem 8: If S is a class of solutions for the dquation x" Dyz = IK 
where N is a positive integer with (x, y )  the fundamental solution of the 
class S and with (u l ,  vl ) the fundamental solution of u" Dv* 1; 
then 
(3) 0 5 y 5 (vl fi) l d-) and 
( 4 )  O <  1x15 V ? h ( ~ l  + 1) N. 
If N is a negative integer, N = -- M. Now inequalities (3) and 
( 4 )  beconie ~, 

(5)  0 < y 5 (v l  m) / d- and 
(6)  0 1x1 5 (u l  - 1) M. 

I t  is now clear from the preceeding theorems that if ab  and C are 
natural numbers and if ab is not a perfect square, the equations, 
x 2  - abyz = C and xz - aby" -C, have a finite number of classes 
of solutions. The fundamental solutions of all classes can be found 
after a finite number of trials by means of the inequalities (3) and ( 4 )  
or (5)  and (6 ) .  If (x, , v, ) is the fundamental sol~tion of the class 
S, all the solutions (x, y )  LC S ma e obtained from 
( 7 )  x + y lm = ( X I  + y1 hb a ) (u  + v G) 
where (u, v )  run through all the solutions of u2 - abv" 1. When 
an equation has no solutions satisfyine: . - the above inequalities, it has no 
solutions at all. 



'I riangular Numbers 

The methods developed in section I are used in this present 
section to determine the nature of integers that are both triangular and 
m-gonal for specific values of m # 3. 

The question to be treated initially concerns solutions for p i  = p 5 . 
Here, m = 4 and n = 3. Thus, equation ( 2 )  becomes x" 2y2 = 4 
where x = 4q + 2 and y = 4r. To facilitate solutions, the equivalent 
equation Z2 - 8r" I where Z = x/2 = 2q + 1 will be considered. 
According to Theorem 6, all positive solutions of the above equation are 
given by Z + fi r = (Zl + f i r l  ) ", r l  = 1, 2, 3, . . . where 
(Zl ,  r l )  is the fundamental solution. This solution is readily deter- 
mined by trial to be Z = 3, r = 1 which corresponds to p : = 
p = 1. Hence, all solutions are given by 

( 8 )  Z +  f i r =  ( 3 +  f i ) " , n =  1. 2, 3, . . . 
A listing of the first ten solutions (r, q )  and the corresponding polygonal 
number is given in Table 111. The following recursion formula may 
be derived to further simplify the problem of finding solutions: if 
(Z,,, rn) is any solution obtained by then (Zn + rn 6) 
( 3  + fi) = 32, + 8r, + (Z, + 3rn) Thus, the solution 
(Z , + l r  r + is given as 
(9)  Z n + ,  = 32, + 8 r n  and 

(10)  r , + ,  = Z n  -t 3 r n .  
Solving equation (10)  for Z , and substituting the expression in equa- 
tion (9 )  yields Z , = 3 r n  - r , - , . Now, by replacing Z ,, in (10). 

- 6 - r . 1. A similar procedure gives Z + , = 6Z ,, - Z ,, - , . r n + l  - 
Themem 9: All solutions of p; = p y: may be determined by 
r ,  = 6r , - , - r  .-, and q .  = 6q , - , -a  ,,-, + 2 where ( r , .  q = 
(1, 1 )  and (r2r q2)  = ( 6 , s ) .  

This follows from above derived formulas and the fact that 
z = 2q + 1. 
Theorem 10: If p ', = p has solution ( r  ., q ,) and the next larger 

- solution is ( r n + , ,  q , + , ) ,  then r .  + q n  - q , , , ,  - r , + l .  
It will be necessary to present the following lemma before the 

proof of Theorem 10 can be established. 
Lemma: 1 = P 3 ,  the11 (4 ,, = (f + e ,, - 2 )  14 and r ,, = 
( f - e n  where f n  = (3 + \/8) " and e n  = (3- fl)" 
for n = 1, 2, 3, . . . . 



TRIANGULAR NUMBERS THAT ARE SQUARES 

Proof: If Z = 9q + 1. all solutions ma be obtained from 
Z +  f i r =  (3+ flln. Now, Z +  d r = f ,  and Z - f i  
r = e. Eliminating r, Z = ( f  A- e /2 or q = ( f  + e - 2) /4. 
By eliminating Z, r = ( f  - e )  / ( 4  ) is obtained. Hence, the 
lemma is proved. 

This lemma allc)ws thz fol!o\vins proof for Theorem 10. 
Proof: If f n =  ( 3 4  fl)" and f , , + l  -- (3-i- f l ) " ' 1  and 
e  ,, and e ,, + are defined in ,i similar fashion, then by the above 
lemma q n  = ( f , ,  + e , , - 2 ) / ~ ,  r , ,  = ( f I l  - e l , ) (  ( 4 f l j .  
q n + l  = ( f , , + l  4 e l  - 1  - 2) 12 and r n + ,  = ( f , , + l  + e n + l )  

4 1 .  The theorem now  follow^ from the fact that f + , = 
( 3  + f i ) f ,  and = ( 3 -  f i ) e n .  QED 



Now, investigations will be directed toward solutions for p j = p: 
Here, m = 5, n = 3 and, hence, a -- 3 and b = 1. Thus, equatiol, 
( 2 )  becomes x-" - 3y3 = 6 where x = 6q + 3 and y = 6r - 1. The 
equation may be simplified and rewritten as 
(11)  y z -  322 = - 2  whereZ = 2q + 1. 

TABLE IV 

TRIANGULAR NUMBERS THAT ARE PENTAGONAL 

NOTE: Solutions (u ., v ,,) are determined by u . i- v ,, fi = (2 + I' 

Then, solutions (y, Z) are determined by y + ~ f i  = (1 + fi) (u . + v fi). 
Thus y = 6r - 1 and Z = 2q -t- 1 yield solutions (r, q). 



The fundamental solution of u2 - 3vz = 1 is obtained by trial and 
is found to be (2, 1). Possible classes of solutions for (11)  are deter- 
mined by its fundamental solutions. These fundamental solutions are 
found by applying inequalities (5) and ( 6 ) .  Here, M = 3, vl = 1, 
and ul = 2. Thus, possibilities for fundamental solutions are 0 < Z 
2 fl/ fl= 1 and 0 5 / y J  5 fi/ fl or (0, O), (0, I ) ,  (1, O ) ,  
( 1  1 ) .  Of these possibilities, only (1, 1) is a solution for ( l l ) ,  and, 
therefore, there is just one fundamental solution and one class of solu- 
tions. All solutions may be determined by (12)  y + Z fi = 
( 1  + fi) (U + v f l )  where (u, v )  run through all the solutions of 
uz - 3v2 = 1. Once again, not all solutions (y, Z) lead to solution 
(r, q ) .  A listing of the first five solutions (r, q )  appears in Table IV. 

The following theorem is useful when solutions (r, q )  of p j = p 5 
are required : 

Theorem 1 1 :  If ( u  ., v .) is a solution of u' - 3vz = 1, then ( u  ,, + l ,  
v . + l )  will yield a solution ( r ,  q )  of p = p p f ,  and only if: ( i )  
when 9v. = 0 (mod 6 ) ,  then u ,, = 1 (mode 6 ) ,  or (ii) when 9v ,, 
= 3 (mod 6 ) ,  then u 4 (mod 6 ) .  

Proof: A c c o r d 3  ) to Theorem 6, u , + + v . + fi = ( u  ,, + 
f l v  n) ( 2  + or u , + ~  = 
2v. .  By equation (12)  y , + 

( u , , . ~  + f l v n t l ) ,  and, thus, 
( . i l l  , + 9v ,) + (3u ,, + 5v ,,) fl. Hence, r = (5u ,, + 9v ,, + 
1)/6 and q = (3u ,, + 5v ,, - 1 ) /2. If r is to be an integer, then 
S u n  + 9v ,, must be congruent to 5 modulo 6. Any multiple of 
9 must be congruent to 0 modulo 6 or 3 modulo 6. In the first 
case,5u ,, must be congruent to 5 modulo 6 which implies u . 1 
(mod 6). and in the later case, 5u .  is necessarily congruent to 2 
modulo 6 which implies u ,, = 4 (mod 6 ) .  These conditions are 
also sufficient for q to be integral. Conversely, if 9 v n  = 0 (mod 6 )  
and u ,= 1 (mod 6) or Qv ,= 3 (mod 6 )  and u ,E 4 (mod 6) ,  
a solution (r, q)  is obvious. QED 
Determining solutions of p X = p; is a simple matter since equa- 

tion ( 2 )  becomes ziz - 4y" 0 where x = 8q + 4 and y = 8r - 2. 
Thus, q = 2r - 1 and solutions are obtained. The next theorem follows 
from the above solution. 
Theorem 12: If for an integer, w > 0, there exists an r such that 
w = p F , then there exists a q such that w = p 5 .  

The converse is obviously not true. 
As a final example of triangular numbers that are simultaneously 

polygonal, the ~ r o b 6 m  of finding solutions for p i = p 5 is treated. 
For this case, equation ( 2 )  becomes: (13)  x2 - 9y2 = - 360 where 
x = 9 (2q  $- 11 and y = 181- - 7. In this example. ab = 9 is a 



perfect square and thus is indicative of a finite number of solutions. The 
exact number of solutions (3y, x)  determined by (3y + x )  (3y - x) = 
360 is given by Theorem 4 to be r ( 3 6 0 / 4 ) / 2  = 6. These solutions 
are easily obtained from the six factorizations of 360 where both factors 
are even and are the following: (91, 89), (47, 43),  (33, 27),  (23, 
13), (21, 9), and (24 ,  1 ) .  Of the above solutions for ( 13), only 3y = 
33 and x = 27 lead to integral values of r and q. This solution implies 
r = 1 and q = 1. 
Theorem 13: The only triangular number that is 11-gonal. is 1. 



Square Numbers 

The problem of finding numbers that are square and triangular 
was treated in section 111. In this next section, the determination of 
squares that are polygonal in another specific manner will be the object 
of investigation. 

Finding solutions (r,  q)  for p: - p: by direct substitution in 
equation ( 2 )  indicates that m = 5, a = 3, n = 4, b = 2, C = a2 
(b - 2 )  2 - ab ( a  - 2 )  % - 6, ab = 6, and, thus, all solutions of 
xz - 6y" - 6 must be examined. This equation may be simplified 
somewhat, since x = 2abq - a ( b  - 2)  = 12q and (12q) 2 - By2 = 
- 6 is equivalent to y2 - 24q" 1:  Here y = 2ar - a + 2 = 6r - 1. 
Accordin to Theorem 7. all solutions of ~2 - 24q2 = 1 are given by 
Y + hqn = (yl+VZ;lql)"  for n = 1, 2, . . . where (yl ,  q l )  
is the fundamental solution of y2 - 24q2 = 1. By trial, ( y  
found to be ( 5 ,  1). Hence, all solutions are given by yn + n - 
(5 + a)" for n = 1, 2. . . . . Table V shows the first nine solu- 
tions for the above equation and the corresponding integrals values of r 
and q. It is, once again, noted that only values of y which yield 

r + l  integral values for r = ----- will be indicative of solutions for 
6 

p.:, = p i .  
As a final illustration of the method, all solutions (r,  q) of p j = p 2 

will be considered. This case differs from the preceding examples in 
that there are two classes of solutions. Here, a = 5, b = 2, 
y = l o r  - 3, x = 20q and C - - 90. By direct substitution equa- 
tion ( 2 )  becomes x2 - lOy2 = - 90 or 40092 - 10y2 - - 90 or 
equivalently y2 - 40q 2 = 9. The fundamental solution of u2 - 40v2 = 
1 is found by trial to be (19, 3), and, thus, according to inequalities ( 4 )  
and ( 5 ) ,  possible fundamental solutions (y, q)  for 2 - 40q" 9 must 
satisfy 0 5 q 5 ( 9 l 2  \Jm) < 2 and 0 < lyJ < 3 \jib< 10. Thus, the 
only possible fundamental solutions (y, q )  must have q = 0 or q = 1. 
If q 5 0, then a solution ( y l ,  c j l  ) = (3, 0 )  . If q = 1, a solution is 
(y2, q2) = (7, 1). To see that there are indeed two classes, the ex- .. - 

Y 1  Y2 - 91 (42 40 pression ----------- must be examined. Since this expression is not 
9 

integral, there are two classes of solutions. All solutions ( y  " , cj ) as- 
sociated with (3, 0) may be obtained from y . + q ,  m= 3 



( u  . + 11. m) where (u ., v .) is a solution of uz - 40v2 = 1. A11 
solutions associated with (7, 1) rnay be obtained from y . + q ,, 0 = 
(7  + m) ( u  . + v ,, @). Table VI shows the first few solutions. 

The following theorem identifies those m-gonal sequences that 
contain a finite number of squares. 
Tlteorern 14: There are, at most, a finite number of solutions (r,  q )  
for p = p 1 if m is of the form m = 2k2 -2 where k is an integer 
greater than 1. 

Proof: Using equation ( 2 )  where b = 2, solutions for p :,, = p 1 
are given by x2 - 2 a y k  -2a(a - 2 )  2. but since b = 2, x = 

TABLE V 

SOME SOLUTIONS FOR p h = p! 

NOTE: Solutions (y, q) are determined by  y + mq = (5 + a 4 )  
and values for r are then obtained from y = 6r - 1. 



4aq and the above equation can be rewritten as (4aq) 2 - 2ay2 = 
-2a (a  - 2 )  2 or 16aZqZ - gay2 = - 2a(a - 2 )  2 or equivalently 
y" 8aq" ( a  - 2 )  3 .  According to Theorem 4, there can be 
at  most a finite number of solutions if 8a is a perfect square. Now, 
8a is a perfect only if a is the double of a perfect square. Thus, 
m = 2kz + 2 implies a = m - 2k2. QED 

TABLE VI 

SOME SOLUTIONS FOR p ; = p F, 

Associated 
n (U ., V n ) solution (y ,, q .) r - 

rn PA - p i  

Fund. soln. ( 3,o) - 

Fund. soln. (7 , l )  ( 7 4  1 1 

NOTE: Solutions (u ,, v ,) of u2 - 40v2 = 1 are determined by 
u , + ir . m= (19 + 3 a " for n = 1, 2, . . . . Solutions (y . , q ,) are 
determined by y . + q , = 3 (u . -i- v .m) if associated solution is (3, 0) 
and y , -i- q . \/mr = (7 + JZ) (u , -i- v ,, dTO) if associated solution is (7, 1). 

yn + 3 
Values for r , are given by r . = ----- 

10 ' 



Area For Further Study 

The objective of this study has been to present a general method 
for finding numbers polygonal in more than one way. Section I1 pre- 
sents such a method that allows the determination of values of r and q 
such that p ' = p ':, for given values of m and n. The substitution 
of these valugs of rn and n in equation ( 2 )  results in an equation that 
may be solved, if possible, by finding the fundamental solutions of all 
classes of solutions through the use of inequalities ( 4 )  and (5) or (6) 
and ( 7 ) .  By examining solutions of these classes, one may determine 
the values of r and q. A few of the infinitely many theorems that con- 
cern particular types of simultaneously l~olygon:al numbers have been 
stated and proved. There also seems to be no end to the number of 
available theorems concerning simultaneously polygonal numbers. Each 
particular pair of values for m and n lead; to a multitude of these 
theorems. 

A source of further study seems to lie in the nature of the set P2. 
Also, the definition of P" for n qreater than two seems evident and the 
nature of these sets is compl.eteG unknown. 


