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CHAPTER I
THE PROBLEM AND DEFINITIONS

1.1 STATEMENT OF THE PROBLEM

The purpose of this thesis was to study bounds of eligen-
values of non-negative matrices. This study extended non-nega-
tive matrices to a special class of non-negative matrices and
certain theorems of this class were introduced.
1.2 DEFINITION OF TERMS

For any nxn matrix, A, gﬁ (A)= det (A-AI ), is called
characteristic equation of A, The values of A satisfying the
equation ¢( A)= det . (A- )\In)=0 are called eigen-values of A,
Eigen-values of a matrix are bounded if there exist real con-

stants s, and s. such that s S’Alé s,, for all values of \ .

1 2 | 2* 1
(lA‘= modulus of A 1f X is conmplex = absolute of M if A is
real = aa + b2 where A = a + bi). 84 and s. are called bounds

2
for the eigen-values of the matrix A. A matrix is non-negative

if all its elements are non-negative.
1.3 ORGANIZATION OF STUDY

The next section of this chapter deals with basic defi-
nitions and terms to be used in succeeding chapters., Chapter
II contains basic information about eigen~values of general
matrices., Effects of certain operations on eigen-values of
these matrices are also shown., Many results and theorems on
bounds for eigen-values of éeneral matrices are stated with an

extensive study of eigen-values of non-negative matrices in



Chapter III. All results are proved and examples are given.
Bounds for eigen-values of a special class of non-negative
matrices are discussed in Chapter IV. Chapter V contains the
concluding remarks of this study.
1.4  INTRODUCTION

Most of the definitions and terms will be defined in the
chapter in which they are used. Before proceeding to discuss
elgen~values of matrices, certain elementary ideas about
matrices are needed. A matrix is a rgctangular array of
numbers or functions., A matrix A, also denoted by (aij) ’
1s a square matrix if it has the same number of columns as
rows, Unless otherwise stated matrices discussed in this paper
are square matrices, A matrix A is over a field F if all of
its elements are members of the field F. Unless otherwise
stated, matrices will be assumed to be over the complex field.

Let A be a matrix of order n

— -
8.11 &]a co e 8.1 n
aal aaa ese aan

A = .

&nl ana esa ann

Consider the equation Ax = 7\x, where A\ 1s a scalar, A
is a matrix and x is a non-zero vector. AX-)Ax = 0; (A - A In)

x = 0; where In is identity matrix of order n. (A -A In) x=0
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is a homogeneous system of equations ( The system of equations

in n unknowns f%:: b 4

- ay§ X4 = 0, (1 =1,2, ¢o.y, n, ) or in matrix

notation, Ax = 0 1s called a system of homogeneous linear
equations ). This homogeneous system of linear equations has

non~trivial solutions if and only if det ( A - X In ) = 0.

¥ritten in nmatrix form:

a5, 8, - A aa',, eee 85

a31 a32 a33 S N a}n

Y . = 0
a, &, L vee B - A

95( A) =det (A -AI ) = 0, is called the characteristic
equation of A, All values of A satisfying the equation det
( A -uXIn ) = 0 are called eigen-values of A, The vectors x
satisfying Ax =Ax, for these vzlues of A are called eigen-
vectors of A,

The vector x ( which is a column matrix ) satisfying
tho squaticn Ax = %1x, is called the corresponding eigen-vector
of /\,._ If Ax = A%, gives x = O for all values of N\, then A
is sald to have a trivial solution. If Ax = ) X gives non-zero
vectors for at least one value of A then the solution is non-

trivial, There are three elementary operations used to simplify



a matrix:

( 1) Interchange of any two parallel lines.

( 11) Multiplying any line with a non-zero constant,

(i11) Addition.of a scalar multiple of one line to a

parallel line.

It must be noted that the third type of operaticn does
not change the value of the determiﬁant of the matrix., A
matrix A is said to be non-singular if 1ts determinant is not
equal to zero, Otherwise it is said to be singular. A matrix
is said to be of crder n 1f it has n rows and n columns, A
matrix i1s said to be of rank r if and only if it has at least
one non-singular submatrix of order r., The three elementary
transformations applied to a matrix A result in a matrix of

the same order and of the same rank,



CHAPTER 11
GENERAL MATRICES AND BOUNDS FOR THEIR EIGEN~-VALUES

General matrices and basic properties of geﬁeral natrices
concerning eigén-values are discussed in this chapter. Informa-
tion about eigen~values of'special matrices are given. Many
theorems about bounds for eigen-values of general matrices aré
stated and all localization theorems are discussed in detail as
another approach to bounds for eigen-values of general matrices.
2.1.1 Let A be any nxn matrix whose expanded form is:

841 %2 °*°* f4n

azl a-22 L N ) azn

>
]

a

n1 a

na L 3 am

and 1et5ﬁ(/\) be defined as an expanded form of a characteristic

equation as:

a5, 8,, <A *°° a5,
95().) =det (4 -AI)= |.




It easily follows from properties of‘determinants that
a matrix A and transpose of A have the same eigen-values. It
has been further stated that multiplication of the elements
of a column (row) of A by a non-zero constant and division of
elements of the corresponding row (column) by the same constant,
leaves the eigen-values of the matrix A unchanged.

2.1,2 RANK AND EIGEN-VALUES

The rank of a matrix has definite effect on its eigen-
values. If a matrix A is non-singular then obviously A has
only non-zero eigen-values #nd A has only trivial solution,
A = 0 is an eigen-value of A if and only if A is singular.
2.1.3 THEOREM

Let A be of rank r and of order n,then A has at least
n - r zero eigen-values.

2.1.4 THECREM .

The equation AX = Ax has non-trivial solution x if and
only if A1is an eigen-value of A. There exists at least one
value of A and corresponding non-zero x such that this equation
is satisfied.

Definitions: A matrix is real if all its elements are

real numbers. A matrix A is symmetric if the transpose of A

15 A itself ( i.e. AT

= A )., Matrix A is a Hermitian matrix
1f A is transposed and conjugated is still A itself ( i.e. A* =

a).



2.1.5 SPECIAL MATRICES
There is quite a lot of information about eigen-values
of special matrices. Diagonal and triangular matrices exhibit

their eigen-values on the main diagonal. All eigen-values of

b

a nilpotent matrix ( 1. e. A" = O for some integer b ) are

equal to zero. While all those of idempotent matrices ( i. e.

2

A" = A ) are equal to 0 or 1. All eigen-values of a unitary

1

matrix ( i. e. A* = A~' ) lie on the unit circle in the complex

plane, Eigen-values of Hermitian matrices lie on real axis
while those of skew Hermitian lie on lmaginary axis. Eigen-

values of a real symmetric matrix are real, A-‘ is called the

multiplicative inverse of A ( 1. e. AA™) =1 ).

2.1.,6 THEOREM

If %I’ '%2, veey )\n are distinct or not distinct eigen~

values of A then the eigen-values of Al (ir !

-1 -1 -1
A] [} AZ’ ooy An-

2 . 1 . 7 THEORH{

exists ) are

If %1, Az, coesy 'An are eigen-values of A then eigen-~
values of Akare k 7\1, kK Ay, eeey KA ﬁhere k is a constant.
2.2.1 BOUNDS FOR MAXIMAL EIGEN-VALUES OF GENERAL MATRICES

As far as eigen-values of a general matrix are concerned
nothing specific can be said about their bounds and location in
the complex plane. They can obviously lie anywhere in the

conmplex plane. However eigen-values of a matrix can be thought

of in term: of simple function of its elements., Therefore



bounds on eigen-values of a matrix depend on the elements of
the matrix. Bounds, of course, are real constants, Most of
the results on bounds of general matrices, in this section are
stated and not proved since their importance is historical.,
2.2.2 HIRSCH'S THEOREM

If A= ( aij aijI )
then |>q S nr for all values of N ( where A is an eigen-value of

) 1s an nxn matrix and r = max. (

A).
2.2.3 SCHUR'S INEQUALITY
If A = ( 3 5 ) is any nxn matrix with eigen-values )\p,

( P = 1. 2, esegy I ), then:

% \APNZ Ss— |aii|2

i=1
Let R = s 1=1 2 .oo,.
e 1 J;f‘ |a13\ ( ? ’ n)
CJ = > aijl (=12 eaey n)
R = max. ( R1 )

nox. ( CJ )
2.2.4 FROBENIUS THEORILM
Frobenius proved that if A is any eigen-value of 4 and R
and C as defined above, then: |
A € min. ( R,C ) E.g. min. ( 3,5) = 3]
2.2.5 PERRON'S THEOREM '

If 01, CZ, 03’ ceey Cn are any positive, real numbers

and R is the greatest of n numbers,



+ 4.0+ C l
n

3|
rn

arJ +C |ar2|

Cy 2 |
r

T - c

(r=1,2,..-,n)

>\|§R.

2.3.1 LOCALIZATION OF EIGEN-VALUES OF GENERAL MATRICES

then,

Localization of the elgen-values of a matrix in the
complex plane is another approach to the problem of finding
bounds for the eigen-values of the matrix, The thing of
interest here iz a curve bounding the region that contains
all eigen~values of the matrix. Here is a theorem which is
called the Hadamard Theorem, Minkowskl ‘heorem and Levy-
Desglanque Theoren.

Define: Pi = 3=

143

2.5.2 LEVY-DESPLANQUE THEOREM

a

| =
g (Ld=ti2znm).

If A = (aij) is a complex n-square matrix and laiil>

Py for i = 1, 2, se., n,then det (A) £ O.

Proof: Suppose det (A) = O, Then Ax = Q has non-

trivial solutions ( A Theorem ). Let x = ( Xy X5y aees Xp )

2

x lfor all 4,
n i

= 2
Since &Ax = 0, =1 a. .. X 0.

o
be a solution, There exlsts r for whick |x,
8, X, =0or

| ry 3= " TV %y %y
:?;% atr._j x‘,j + arr xr = 0.
J# n
8. X, = =2 an.y x\_j
J#r
n
a x| = |~ 3> a .x;|= Lét: a .. x
rr \ r‘ ’ %95 rj 7j ‘jﬁr rj 7
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é%r !arjuxj\ s %Zr 'arj' =] = lxrl ’Pr|

|arrl = P, which is a contradiction, ( det (&) £0 ).

Q. E. D.
2.3.3 GERSGORIN'S THEOREM

The eigen-values of an n square complex matrix A, lie

in the closed region of the z plane consisting of all circular

<
nl =Py

Proof: Let )5 be an eigen-value of A, det ( A->b I.)

diSCS 'z - 8 (i:1, 2, see 9 n ) ee e (i)o

0.

i

Following the proof of Levy-Desplanque Theoremn:
l a4 - A I =P, for at least one i
<
or |AP aiJ = P; for at least one i
Since Ap is an arbitrary eigen-value of A, this in-equality is
true for all eigen-values of A,

All eigen-values are contained in the union of n circular

<

diBCS: 2z - & —Pi (i=1, 2’ 3’ oo e ’n)‘

i
Definition: A matrix is irreducible if it can not be

brought to the form | K ! O| by simultaneous row and column
permutations. Otherwise it is called reducible. If a matrix
A, 1s irreducible, then all eigen-values of A lie inside the

union of n circular discs of ‘z - & s )

i 1 (1=1’ 2, 3' L ]

n ).
2.3.h OVALS OF CASSINI

let A=( a 14 ) be a matrix of order n with real or
complex elements and Pk as defined before. Each elgen~value w

of A lies in the interior or on the boundary of at least one of
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the n (n-1) ovals of Cassini:
2

<

..PkP

€ N, k=1,2, eooy n3 kK £ XN)

2= 2l P T B

eee (1),

Proof: Since w is an eigen-value of A, Ax = wx or

1y 2, eeey N ) oos (i1) has non-trivial

Zak;\x)‘ = WXy (k

solution (Theorem) ( Xps Xps Xzy eess Xp )N

2 max. (

Suppose |x =

X
r

s xvi )for (‘7=1, 2, L Y

n; v r, v£ s ) consider the r-th equation in (1})
n
T a X =W X
??ET rv °v T
or <& a X =-a X = WX_ =~ a v
;%;} rv v rr “r ~ r rr r

or ;?;; a. X, = ( wea . ) X eee (iv)
v #Ar

Similarly s-th equation can be written as

n-_ el -
> a .y Xy = (w Agg ) X oo (v)
v¥£s
If X, =0, then also x, = 0 ( x, = O for all v ) for every
v A r. It follows from (iv) that w = B Since X, £ 0,
’ . <
therefore w lies in the oval 2 avv| Z ass| = Pr Ps coe

(vli). This proves the theorem if X, = 0.
Now suppose X # 0. By multiplying (iv) and (v) °

n n
v - a - = (< =& o
( vV ) (w 8es ) *r %s (:%:1 arv Xy ) (>— 8sv

v=1
w-avl
r

vir . wfs
n
&
rl . .
= TV

vir

BA

x. ). Hence

v X X

r s

W - a IX
S

s
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- - - < =
( 2 L ) = x| [¥g Pr PJ . |W a..| |¥ a| = Pr PJ =
vér ' l
<
Pr Ps' Therefore w lies in the oval [z - arrlwz -a . l= Pr Ps
Q. E. D.

Every point of the oval (vi) lies in at least one of the

Z = &

circular discs, rr‘

- a
2 85

s
2 Pr and

sSp.,
8

In other words the union circular discs contains the
union of ovals and therefore this theorem of ovals of Cassini

is an improvement over Gersgorin's Theoremn.

Example: -
7 + 31 =4 - 6i -lj
Let A = -1 - 61 7 -2 - 61| , be the matrix.
La b - 61 13 - 31
@()\)= ‘7+31->\ ~4 - 61 -4 N
-1 =61 7 ~A -2=-6i|=0
2 L =61 13 <31 -\

wvhich gives eigen-values as 9, 9 + 91 and 9 - Si. These Modulii
are 9 and 12.73.
The bounds given by:
Hirsch's Theorem: iA‘ 2 40.03

Schur's Inequality: Et;}%Ja = 405 S2_ 2 436
i=

aij
Frobenius Theorem: 23.10

Perron's Theorem: 22.55
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z = 13 + 34

Gersgorin's Discs:

z2 -7 = 31.| s 11.21,
s 9.2 '

contain two eigen-values each.
2.4 SUMMARY

General matrices and their eigen-values were discussed
in this chapter, Several theorems stated on bounds give a feel
for the problems going to be discussed in the next chapters.
Localization theorems are discussed in detail as another
approach to the problem of finding bounds for eigen-values of

natrices.



CHAPTER III

BOUNDS FOR MAXIMAL EIGEN-VALUE

OF NON~NEGATIVE MATRICES

This chapter is exclusively concerned with non-negative
matrices and bounds for its eigen-values. Many fesults have
been proven about bounds mainly by Frobenius, Ledermann,
Ostrowski and Alfred Braur. This chapter gives an extensive
study of their results and »roofs. Each result is exemplified
taking different matrices. Unless otherwise stated all matrices
considered in this chapter are non-negative.

Definition: An eigen-value, r of a matrix A,is called a
maximal elgen-value of A if r %IA‘ , for all eigen-~values,

X of A.

Definition: S = max. (Si), s = min, (Si)

S1 defined before as the sum of absolutes of elements in ith
row of A.

Alfred Braur has proved that every positive matrix has
at least one positive eigen-value. And in another theorem he
has proven that the co-ordinates of an elgen-vector belonging
to the maximal eigen-value of the positive matrix can be
chosen as positive numbers.,

3.1 FROBENIUS THEOREM:

s€r%£s where r is maximal elgen~value of a matrix, A.

Procof: (1) Let x = ( Xyy Xpy eeey Xg ) ba the positive



15
eigen~vector corresponding to eigen-value r and A be positive
matrix by standard continuity argument.

Suppose x, = max. (x;) and x, = min. (x;). Ax =7rX

or%_—l aij x;j = rxj (i=1,2, ..., n ). Considering p-th

rov:

rx =:£§% a . X. 5:2:: .X =X S
p =351 %3 3 T =T % T T Fp 7p

rx. $x S . rss

P p°p p
since sp £ S by definition
r=s

n
(i1) Again?%i-aij Xy = IXy (1 =1, 2, ¢eep n)

Consider , th row

rx, =£—_‘ a,,:5 xJ?:ﬁ: a*‘_j X, = X, S,
J=1 J=1
rx, 2 x, S, rs,
rZs
From (i) and (i1) s 3 r £
Q. E. D.
Example: Let A be the matrix
-3 1 2 5 T;
7 O 3 & >
A= 2 3 6 7 1
2 4 5 1 1
2 1 2 1 L

Row sums: {15, 17, 19, 13, 5} s =5,S =19,
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Frobenius Theorem: 5 2 r £ 19

18, 18, 13}
<

Column Sums: {11, 9,
S 18 using columns and using

By Frobenius Theorem: 9 r
both rows and columns: 9 £r =18,
Definition: A non-negative matrix is row Stochastic if
all row-sums of A equal 1,
ror non-negative matrices, the result of the Frobenius
‘*heorem seems to be the best possible result., It is noticed
that if A is row Stochastic matrix then s = 8 =r = 1,
3.2 LEDERMANN'S THEOREM

S.

If m = min., (a. .) and P = maX. (—5) and not all S, are
i] Sf(Sj Sj i

equal then:
1 < < o«
s+n(=-1 =Sr =S5 -n 1 - .
&ﬁa ) ( JP)
Proof: Let x be corresponding positive eigen-~vector to
an eigen-value r. x = ( Xys Xoy sees X ). Obviously not all

x, are equal,

i
Let X, = max. (% ) and x, = min. ( Xg ).

Ax = rx

- a, Xy = rx, (L =1, 2, ¢eey n )

Considering p-th row

A
n

r



or

From (1) and (ii)

or

or

17

S, £ r‘§'sp
S, <; .
S
P
rx, =)§_;1 2,y x5 X, S, (1)
n .
X, _5521 asy Xy > x, Sp (1i)
g I
X X, S
P P
x. ¥ _ s,
x_ S_
* P
x S
=< | £1IF (111)
P P
a . x
r =ﬁ - B using (i1)
=t %p

r-é‘” X) 48, %, + ... +a

P

8 X a X &
o+ B_ ., 2P, o, 00
X x R

11 x

Looking at C it is found that ;i

P P

®eo oy n )0

xr>=<_a_p] x‘ + a "x"g'l'
xp p2 xp ‘

£1 for a11 n (i1=1, 2,



< x] x2 P xn
r = a -4 a = 4 cee + & + 20e *+ & —
1x 2 X * n x
b P D P b P P

r &

( ap‘l + a0 + ceo # 2on ) + ap*J—P_ - 8.
= - -
r = sp ap, (1 r[F)

rés-m(1-JT")

Similarly
rod- 2%

=1 X«
X

r2( Buy F Byt oeee t oy ;f + ceet2
+

ré(a*1+a.2+..-+a,n)

s'+a'p(r,-;——-l> %s*+m(,fl?-1>'
>(;%‘)

5 +(h ;%.- )E€rss-n(1-[p) Q. E. D.

Example: Let A be the matrix.

uv

r

1 2 3

A= 2 1 1
2 3 4
5=4,5=9 (rows)
s=5,85=28 (columns)
m=1

5 ={%, L, g} , 5, ;{5, 6, §}
AP 1

Ledermann's Theorem: 4,13

1]
\’m
1]
%
O
=]

i

r £g.89 (rows)

A

5.13 £ r £7.89 (columns)

18
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Except in the case of Stochastic or generalized
Stochastic matrices, Ledermann's result gives better bounds
for r since ( 1 -JdP ) is always positive., If the matrix is
non-nagative then Ledermann's result is reduced to that of
Frobenius, Ostrowski further improved the results of
Ledermann for positive matrices.1
33 OSTROWSKI'S THEOREM

If A> O and s<S then,

s +nm ( %?- 1)SrSs-m(1~-&)

S~m
where § =lsom

and s, S, m and other notations as defined before.
Proof: Suppose r is maximal eigen-values of A and

( Xg0 Xy eeey X ), is the corresponding eigen-vector. For

> > >

simplicity assume that 1 = X5 X, T oees X o« 7This can be

n
achleved by pre-~multiplication of 4 by a permutation matrix

and post-uultiplication by its inverse. Let k and t be any

subscripts,
n

rx, = Axk =:%E1 By X3 = 8 X * o Xy AJETTIE I NI &
rxk=ak1+ak2xn+awxn+...+aknxn=akl+xnt

5=
T o= ay v (S - a) X =x, S+ (1 -x)) 8,

2k

1\'lalter Ledermann, "Bounds for the Greatest Latent Root of
a Positive Matrix,' Journal of London Mathematical Society, XXV
(1950), pr. 265-268.
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<. _ i |
S St (1 X ) ay o
S, = (1 =x)m
therefore r S —% n (I1)
Xy

In particular is S, = S and S, = s, then results (I) and

k t -

(II) will yield

X S+ (1 - xn) n

> >
r= % = x) S+ (1 - xn) m
8~-(1-x)m_58=(1=x)mn
and r g X n s % n
t n
or p S ism) o
X
n
Pherefore ¥ (S -m) +m Sr S 28 4 gy
n X
n
or x (S-m)Sr-mSED
n x
n
or x 2 <5 and therefore x < |§:E = §
n S-m n S~-m

Putting k = nand t = 1 in (I) and (II):

¢ 1 < 5.% -
Sn +( X, -1 )m=2r32 S1 - (1 X, ) m

-1 )mSr=8-(1=-8)n

O] —

and s + (



21

Ostrowski's result is sharper than that of Ledermann

since:
-s-:-n-lsgﬁma;s:{ifL where S, < S
Sn - S - * 35, 1% 73
JS
. s-m £ 51
therefore Som = max. 3
J
§2sp since &5 1,P< 1
-3
5=
therefore s + nm ( % -1) 25 +m (J% =1 ) which is a better

bound., Similarly

S-(1-8§)mss-(1 - [P ) which also is a better
bound. Therefore Ostrowski's result is sharper than that of
Ledermann,

Example: Let A be the matrix

1 2 3
A= |3 1 2
1 1 1

8=3,S5S=6,m=1 (rows)
s§=4, S=6,m=1 (columns)
= 2=1
-~ S=n
3.59 é r £ 5,63 (rows)
4,48 £ r £ 5,77 (coluuns)

Alfred Braur improved Ostrowski's results over bounds
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for maximal root of a positive matrix.2
3.4 BRAUR'S THEOREM

I1f A = (aij)> O and Ty 8, S, and m as defined earlier
then:

s+n(h-1)SrSs-nQ - é)

S - 2m + J—- - 4m (S - s)
2 (s - m)

where g =

-5+ 2n + Jsa + im (S - 5)
2m

h

Proof: Assume without loss of generality that S, = S

1
and Sn = B. Let B be the matrix obtained from A by multiplying
the elements in the last row of A by g and those in the last
column of A by é so0 that the last row sum of B 1s the smallest

row sum. Then obviously A and B are similar and have the same

eigen-values, Then i throwof B, (i =1, 2, 3, ..., n-1),

£
is =1 eli‘_j =

in 1
“&at g ° Sy = 844 (1 - g )

§S-m(1--lé).=l{1 (say)

The n th row sum of B is equal to
- - - < - - -
%Es 2,58 = 8p,8 +a =g85-a. (g-1)=z=gs-n(g=-1)=

K, (say)

aA. Ostrowski, "Bounds for the Greatest Latent Root of a

Posltive Matrix," Journal of London Mathematical Society, XXVII
(1952), pp. 253-256. .
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g as defined in the statement of this theorem.’

It will now be proved that K1

_ S =-2m +J(S - 2@)2 + 4m (s - m)
g = 2 (8 -m)

agz + bg+c =0
>

which glves ga (s-m) - (S-2m) g = m =0

=b - Db

_ - Lac
€= 2a

Sg -mg+n gas + mg - mga

gs - m (1 - g)

1
S -mnm (1 =~ 8)

K K

1 2

]

Therefore for this value of g all the row sums of B

are bounded by S -« m (1 = %) and using Frobenlus's Theorem:

rEs-nm (1 - %)
In order to obtain the lower bound one might construct
a matrix C by dividing the elements in the first row of A by
h and multiplying those in the first column by h so that the
Iirst row sum 1s the greatest row sum. The first row sum of

a a

12, 13,

a a a
NPT IS sl R L RN

Cis ( a4y + =527 n I

11 -

) = K3 (say)

The i-th row sumof C, (1 =2, 3, «v.y, 0 ), is

Sl b

h
S ia.(1-1y284n¢(1 -
h 1" h b

- = - 2 - _
%;5 aiJ aq * ailh = Si +a,, (h=1) 2 8 + m (h-1) = K4 (say)
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¥When h has the value given in the statement of this theorem

pe=8t2n + As® + um (S-5)

-

2m
it easily follows that K3 = K4
% th 4+ (s-2m) h + m - s = 0 which gives

% +m (1~ % ) =s +m (h-1)

Thus all of the row sums of C are bounded below by s + m (h-1)

and again by the Frobenius Theorem:

v

T s +m (h=1)

Therefore 6§ + m (h=1) S r S em ( 1 ~ é )

Q. E. D,
Example: Let A be the matrix
1 2 3
A= |3 1 2
1 1 1
8=3,S=6, m=1 (rows)
8 =4, S=6, m=1 (colunns)
h=1.78, g = 2.23> (rous)
h=1.45, g = 1.55 (eolumns)

Therefore by the Braur's Theorem:
3,78 Sr £ 5,31 (rows)
.45 = r 2 5,64 (columns)
Let P and Q for which it is assumed that the numbers

S> s2nm > 0 are prescribed and whose maximal eigen-values
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attain the upper and lower bounds in the inequality.

5 +m (h=1) SrESwm(1 - é ).

i
[}
b
Let I
!

where every element is not less than m, the row sums of the

n-1 square matrix P1 are equal to S-m, all the elements of P2

are equal to m while those of P, add up to s-m. Then the matrix

|
| -

P, | 8 P2

PR PR

&, =
has the same eigen-values. Each of its n-~1 row sums is equal
to S - m + % = K1 and its last row sum is gs - gn + m = K2 = Ki
Hence by the Forbenius Theorem the maximal root of P is K,H |

Similarly,

vhere every element is not less than m, the row sums of the
(n~1) square submatrix Qq are all equal to s-m, all the elements
of Q3 are equal to m, while those of Qz add up to S-m., Now if
the first row is divided by h and the first column is multiplied
by h the resulting matrix is similar to Q and has the same
elgen-values and is a generalized row Stochastic matrix ﬁith

the row sunm K3 = K4 and therefore maximal elgen-value of Q 1is

KB.
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Thus Alfred Braur's bounds for the positive matrices are
the best possible using S, s, and m.3
3.5 SUMMARY
The main problgm discussed in this chapter was bounds
for maximal root for non-negative and positive matrices, If
bounds for a non-negative matrix is S,then all eigen-values of
the matrix lie in the interval - S S A £ 5, which easily
follows from Gersgorin's Theorem. It has been realized that
bounds depend upon the elements in a matrix. If a matrix is
non-negative, then the result of Frobenius is the best., If a
matrix 1s positive,then the result of Alfred Braur 1s the
sharpest using S, s, and m. If a non-negative matrix belongs
to a class of matrices,then better bounds for eigen-values can
be obtained.
Example: Let A be the matrix
1 1 2
A = 2 1 3
2 3 5
The bounds given by:

A

Frobenius: 4.§ r 10 (rows)

5Sr<10 (colunmns)

3Alfred Braur, "The Theorems of Ledermann and Ostrowski
on Positive Matrices," Duke Mathematical Journal, XXIV (1957)’
PP. 265-2?4-




7.531.

Ledernmann: L.225 Sr
Lo14 S r
Ostrowski: 4.722 £ r
4.500 S r
Braur: 5.167 &£ r
5.86 £ r

The actual value of r to 4 significant figures is

HA A A A

A

s

9.816
9.707
9.577
9.667
9.360
9.527

(rows)
(coluuns)
(rows)
(columns)
(rows)

(columns)
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CHAPTER 1V

BOUNDS FOR MAXIMAL EIGEN-VALUES OF TWO SPECIAL

CLASSES OF NON-NEGATIVE MATRICES

Two special classes of non-negative matrices, namely
povier~-positive matrices and matrices satisfying the inequality

o<a’

S A are discussed in this chapter., Some theorems on both
¢lasses have been proven and statements about bounds of their
eigen~values were made.
4.1.1 POWER-POSITIVE MATRICES

A matrix with real elements of which a positive-power
( 1.e. natural number ) is a positive matrix is called a péwer-
positive matrix, If only even powers of such a matrix are
positive then'the matrix is called power-positive of even
exponent, otherwise power-positive of odd exponent. Every
power-positive matrix has a greatest eigen-value r which is
the maximal eigen-value. If A is power-positive of an odd
exponent, then r is positive. If A is power-positive of an
even exponent then it may be positive or begative. If r is
negative, then the matrix -A has the greatest positive eigen-
value -r. Hence it is sufficient to consider such power-
positive matrices which have positive maximal eigen-value.
While the maximal eigen-value of a positive matrix is greater
than the greatest main diagonal element,'this is not always

true for maximal eigen-value of a power-positive matrix. There
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exist matrices with positive maximal eigen-value r for which
r is greater than the greatest row sum,

The aim of this thesis was to see that the power-
positive matrices have the most important properties of
positive matrices.

Definition: An eigen-value >\ of a matrix A is simple
if Al is distinct from all other eigen-values of A.

Definition: If the maximal eigen-value >\1 of a matrix
is simple then all eigen-vectors are of the form ( CXy3 €X,,
ooy cxn), where ( Xys ¥oy ey Xp ) is an eigen-vector
belonging to A].

4.1.2 BRAUR'S THEOREM

Every power-positive matrix has a real eigen-value >\1
which is simple., Its absolute value is greater than the
absolute values of 21l the other eigen-values. ‘'he coordinates
of an eigen-vector belonging to 7\1 (r =’>‘II ) can be chosen as
positive numbers,

Proof: Let A = (aij) be a power-positive matrix of the
order n with eigen-values‘A], Az sees An. 2K is positive for
the positive integer K. Then maximal eigen-value of AK is

positive., Since the roots of AK are

AE D> max. <,\K ,ABK , ...,Af) ,

hence |/\1‘ > max. ( 2‘ cees I/\nD ’

and -X is the maxlmal elgen-value of A. Obviously >\ is real.
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Since neither 4*1 nor its complex conjugate can be one of the
nunbers Aa"Aj’ eees Ay 1t follows that->\l =-X1 and therefore
)\l is real and the simple eigen-value of A}
Let ( Xy Xyy seey xn) be an eigen-vector belonging to
A] of A, Since this eigen-value .A‘ is simple, all eigen-
vectors are of the form (cx], CX59 sesy cxn).
It is well-known that an eigen-vector belonging to the
eigen-value 'Nl of A is also an eigen-vector belonging to eigen-

X

value‘AIK of A®. On the other hand, since )HK is a simple

elgen-value, the set (cxl, CXoy eeey cxn) is the set of all

21
elgen-vectors belonging to‘AIK. Since%lK is maximal eigen-
value of A (a positive matrix) all coordinates of the given
vector ( CXyy €X5y eaey cxn), have the same sign. Thefefore
coordinates of an eigen-~vector belonging to the eigen-value
)H can be chosen as positive numbers.2
Q. E. D.
4.1.3 THEOREM
A power-positive matrix of an odd exponent has the

positive maximal eigen-~value Al'
Proof: AK is positive where K is odd. By Theorem

1Alfred Braur, "On the Characteristic Roots of Power-
Positive Matrices,”" Duke Mathematica) Journal, XXVIII (1961),
Pp. 291-196.

2Alfred Braur, "Limits for Characteristic Roots of a
Matrix," Duke Mathematical Journal, XV (19438), pp. 871-877.
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4.1.2, the maximal eigen-value of A is real and >~1K 1s positive.
Q. E. D.
L.1.4  THECREM
The maximal eigen-~value ‘A1 of a power-positive matrix
lies between the greatest and the smallest row sums of A.
Proof: Let S1, SZ’ eeey Sn be the row sums of A.

Assume 51 z S2 2 ... 2 Sn' Consider the system of linear

equations belonging to '*1 with regard to columns.

%aijyi=>\1yj (3=1,2y) ecoeyg n)

Adding these equations we have,

SIY +sY+...+SnYn=%1(Y1+Y +0.-+Y).

1 2 "2 2 n
It may be assumed that Y1, IZ’ sy Yn are positive,
) (Y1 +Y

>
a-v...+1!n).>\1 (Y1+Y2+...+Yn)

‘S
2s (Y, + Y+ + Y )
n ‘ L X N ] n ’

v n

2
Therefore S, = >\1 S,

4,1.5 THEOREM

If all the elements of a row in the power-positive matrix
A are 21) non-positive (non-negative), then the maximal eigen-
value is negative (positive).

Procf: Suppose that the first row of A has only non-

positive elements,

Let (x,, X55 eeey xn) be an elgen-vector with negative

coordinates belonging to the maximal elgen-value >V.(
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-i&l aij Xy = ?\xi For 1 =1,

X = AX

1M %5 T3 Xt e v A, X, 1

The left hand side of the above equation is positive. A x, is

1
positive and X\ is negative.

A similar proof holds if all the elements of a row are
non-negative.
L.1.6 THEOREM

If all the elements of a column of the power-positive matrix
A are non-positive (non-negative), then the maximal eigen~value
is negative (positive).

Proof: The Proof is similar to the previous theorem and
it would only be repetitious to present it here,
Lol1.7 STATEMENT

The proceeding theorems show that many properties of eigen~
values of positive matrices hold for power matrices of odd
exponents, But the maximal eigen-value of such a matrix is not
always greater than the main diagonal element.
5.1.8 MATRICES SATISFYING 0<A% € A

Now consider matrices satisfying the inequality 0<AZ S A.
The inequality A S B means that every element of A is less than
or equal to the corresponding ele-ent of B, Of course, both
matrices are of the sawme order.

2

Examine A in the expanded form:
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n
-]

&
nn

Consilder b11

2

By = (o + 8 85y * a5 85 + eee + 8y, 8y )

By the above inequality

2 <
Dyg =85 *Rp 8y a8yt ta, 8, =8,

a, 1( 1 and

a a a a a,_ a :
a4 + 12a 21 + 13a31 PO 1n “ni gl.
11 11 291
which gives the result that
<1
aij =5 if 1 £ 5
Therefore
a, < 1 if 4 =3
o<A2§A:>{13<1
i aij=-n- ififj

where n is the order of A.
Now certain proofs of some theorems on bounds for
maximal eigen-~values of this kind ¢f matrices will be pre-

sented.

It has been examined that if n 2 3 then a s < %.

4.1.9 THEOREM
If 0<AZ € A then the maximal eigen—value r of A lies
between the least row sum and Eil, where n is the order of A

and n 2 3.
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Proof: Since A is positive matrix, therefore the
maximal eigen-value r of A lies between the least row sum and
the greatest row sum. (Frobenius Theorem)

Therefore r = s when s is the least row sum of A.

Suppose the first row sum of A is the greatest row sum, if
2

nZ23 and ASS A then:
< 2 _
ag; =3 if i =}
< 1
a5 % 3 ifi £33
rgs = &a +a +.o.+a
1 1 12 1n
<2 1.1 1
r_n+(n+n+...+n)
r €2, 01 _ntl
n n n
< £n+1
S—I‘—'——n
Q. E. D.

This usually increases efficilency in finding bounds since
looking af the order of the matrix is enough to find the bounds
for maximal eigen-values.

Example: Let A be the matrix such that 0 < A2 S
1/3 1/4 /5
A= /5 /3 /6
E/q /5 /7

By the sbove theorem:

593 S r £ 1,333
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4.2.0 THEOREM

If 0 <aA® S A then the maximal eigen-value of A lies
between ajj’ the greatest main diagonal element, and %gl

(where a > 1).

Proof: Since a AZ S A, therefore the obvious inequal-

ities are:

<2 -
a5 2 5a iti=3j

<1 .
2855 % 7a ifi £

Following the pattern of the previous theorem, it can be easily

shown that 253 S r, where a,, is the greatest main diagonal

Jd

element of A and

r 22 , Bl _ n+l
na na na
< . s 1l
8537 % na
Q. E. D.

Example: Let A be the matrix such that 0<a AZ €
100 150 .100]
A= [.150 .150 100
100 .100  .150]
o2 .ou5  .0n0]
A- = |.047 OS5k L0455
.os0 .02 .035]

2 £ A where a = 1.9

a Al
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By theorem 4.2.0 «150 s r S %ﬁ% 9

rs 667

1A

-150
This theorem is sharper than the previous theorem since
according to the previous theorem the bounds for the maximal
root are .150 S r S 1.333.
One does not have to obtain A2 to find the bounds if

aij s %n for all i and j then the bounds can be obtalned by

the above theorem. i. e. & < r < n+l
33 na

Summary: The bounds for the maximal eigen-values of
power-positive matrices and matrices satisfying 0<ZA2 s
were discussed in this chapter. Similarity of the properties
of power-positive matrices tc those of positive matrices were
shown., Two new theorems on bounds of matrices satisfylng

0<A2 S A were proved.



CHAPTER V
CONCLUSION

5.1 SUMMARY

The primary purpose of this thesis has been accomplished
by detailed discussion of the bounds for eigen-values of non-
negative matrices. Tke study was carried deep into two special
classes of matrices, power-positive matrices and matrices
satisfying 0<<A2'§ A. Properties of power-positive matrices
were discussed in the form of theorems in order to show that
povier~positive matrices behave like positive matrices in many
ways ( not in all ways ). Two new theorems stating:

1. If 0<42 < A and n2 3 then the maximal eigen-

value of A lies between the least row sum of A

a n+1

- ( where n is the order of A ).

2. 1If0<a A2S A for the positive real number a
and n 2 3, then the éigen-values of A 1lie

between the greatest maln diagonal element adj

n+1
na

and
have been proven. Examples were given for each.
The results obtained give easy and quick solutions for
the bounds of maximal eigen-value. The bounds can be obtained
without considering the row sums or the characteristic equatlon

by the second theorem which is sharper than the first as it

gives better bounds,
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5.2 SUGGESTICNS FOR FURTHER STUDY
R, E. Demarr of the University of New lMexico presented
& paper on the bounds for eigen-values of non-negative matrices
before the American Mathematical Society meeting ( September
1968). He proved a conjecture sfating that 1f 0 <AZ € A then

12J§i His proof is not

all eigen-values of A lie between 1 and
published. An attempt to prove this conjecture can lead to an
interesting research,

This problem could further be extended to a theorem

saying if 0& G £ A, for some real positive number a>0

1-42
2 L 4
thecrem is true, it would be an improvement over Demarr's

then all eigen-values of A lie between E and If this

conjecture.
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