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Chapter I

Introduction

"A semigroup is a set considered with respect to a
binary associative operation defined in it. The concept
of a semigroup is so simple and natural that it is hard
to say when it first appeared. As Klein, Lectures On The

Development of Mathematics in The 19th Century (Part I,

Chapter VIII), points out there were doubts, even in the
period when the theory of groups was formulated as a
separate mathematical discipline, as to whether that which
we call é‘semigroup should be taken as the fundemental
concept. However, the problem facing mathematics at that
stage of its development made it necessary to choose a
more restrictive concept, that of a group."l

This thesis is a study of the matrix representations
of semigroups. The main problem in this area: "Given an
arbitrary semigroup, is it possible to find a matrix
representation for that semigroup?"

The matrix representations dealt with are matrix
representations over a group. Chapter I is an introduction
to semigroups, some of the necessary definitions, and a few

‘preliminary theorems. Chapter II contains cthe theorems

1Ljapin, Semigroups (American Mathematical Society,
Providence, Rhode Island, 1903%) p.v. Preface.




and definitions necessary for Chapter III and Chapter IV.
In particular, principal ideals of a semigroup ana the
partitioning of a semigroup by these principal ideals into
.9,#,«(, and ?-classes have been considered. Probably the
most used theorems of the Chapter is Green's Lemma on
transformations from?chlass toyy—class.- It is shown in
Chapter III that any completely O-simple semigroup is
isomorphic to a semigroup of matrices. In Chapter IV an
arbitrary semigroup is represented as a semigroup of
matrices. In the more general case the mapping may be a
homomorphism instead of an isomorphiém as in Ehe case for

completely O-simple semigroups.

Definition: The ordered pair (S,%) is a seamigroup if and
only iff (iff) 4

(1) for all (V) x,yeS, there exists (3J) a unique seS
such that (3) s=x¥%y and

G1) X,¥,2€S, x¥(y¥z)=(xxy)xz.
If the operation is obvious, the set S will be referred to
as the semigroup.
Exauples of semigroups are numerous. To list a few:

- Any group is a semigroup.

The set M of all square matrices over the complex

numbers of order n with respect to ordinary multiplication

of matrices is a semigroup. The non-singular matrices in



M form a semigroup with respect to the same operation.
The set {1,2,3,...,n} with the operation of finding
the greatest common divisor is a semigroup.
Let n be any natural number. Let M:{b,l,2,...,n-l}
with the operation, X multiplication modulo n defined on

the set M. (M,X) is a semigroup.

Definition: An element e of a semigroup (S,%) is called a
left identity of S iff Y a€S, eka=a. e is called a right
identity of S iff a%e=a. e is called an idenvity (two

sided) of S iff e%a=-a¥e=a,

Definition: An element O of a semigroup (S,%) is called a
left zero of S iff V aeS, O%a=0. O is called a right zero
of S iff a¥0=0. An element O of S is called a zero of S
iff O is both a left and right zero of S.

Any binary operation on a semigroup S may be extended
to include an identity element by adjoining the element 1
to the set S and defining 1¥1=1 and for all a€eS, lka=a¥%l=a.
Wher this is done, the resulting semigroup SU{l} will be
said to have had an identity element adjoined and will be

denoted Sl.

Theorem l.l: If a semigroup S contains a left identity e,

and a right identity e, Ghen e =€,.



Proof: Assume e, and e, are, respectively, left and right

2
identities of a semigroup (S,%) and suppose that a€S. Then
e%e, =e, and e %e,=e by definition of left and right

identities. Therefore e, =e,.

Corollary l.1l: A semigroup possesses abt most one identity

and at most one zero element.

Proof: Assume e, and e, are identity elements of a semigroup

(8,%). If e 1is an identity of S then e*e,=e¢ . If e, is
an identity of S then e%e, =e . Hence e, =e, . In the sane
manner, if O, and O, are zero elements of £ then 0%0, =0, and
0,%0p =0, . Therefore 0, =0, .

The image of a mapping, 8, from A into B will be

denoted (a)@, for a€A.

Definition: The mapping € of vhe semigroup (S,e) into
the semigroup (T,%) is said to be a homoworphism, if for
any x,y€S, (xoy)0=(x)0%(3y)G.

If @ is a mapping of S onto T, then & is a homomorphism
of (S,e) onto (T,%).

Definition: A one-to-one homomorphism is called an

isomorphism,



Definition: A mapping of a set 4 infto itself is called
a transformation.
The symbol J, will represent the set of all

transformations of the set A.

Definition: The product of transformations 6{¢6CZ is

defined as the transformation (9°'51’6L23Vae1\ (a)(@°P)= ]:(.3)9_]'9”.

Theorem 1.2: The set (J, of all btransformations of an
arbitrary set A is a semigroup with respect to the opera-

tion of forming the product of the transformations.

Proof: Let A be a set and CZ the set of transformations

A
Vaer; (a)(@<P)= [(a)bﬂ?l/. But by definition of

transformation (a)deA, lZa)é??éA and consequently so is

of A. Suppoce BaﬁquLji

(a)(@o¥) € A, Therefore (CZ,O) is closed under the operation.
For all a€d, (a){(@#’)/"u} :{(a>(9°¢)}/’*= {[(a)@]#f}/u by

definition of product of transformations. Also (a){@%?@yﬂ

- ()] = {R)APfp . mererore () [@Prsu] -(2){0 (Hop]

So (9°¢@y1=9°c¢§u), ziving that (LZ,O) is associative.

Satisfying the necessary conditions, (Lz,o) is a semigroup.

Definition: A one-to-one mapping of a set A onto itself,

is called a permutation., The symbol i% will denobte the set



of permutations of the set A,
Theorem 1.3%: (éi,°) is a seaigroup.

Proof: Let Bypfiéa. Suppose ¥ep is not a permutatian.
Then ¥% is either not one-to-one or else ¥ is pot
onto.

Suppose Y0 is not ope-to-one. Then J a,bens(a)( X70=
(b)(¥s0) but afb. (ab’)/o=a(XjO)=b(a’fp)=(bY)Jo. But o is
one-to—one and therefore (a)¥=(b)¥. Also ¥ is one-to-
one and so a=b. Hence X?O ie one-to-one.,

Suppose Uﬂo is not onto. Then (A)(Z@O)E[KA)Y%O.
(Where (A)(Xﬁo) denotes the image set of Xﬂo and similarly
for (A)Y).

Suppose be[KA)XLo. Then 3 ce(A)X%(ch:b becausefn ig
onto. Hence 3 aeA3(a)¥=c because ¥ is onto.

Therefore Ra))@p=b and so (A)(Zjo):flA)Xyo. There-~
fore Kﬁp is onto. Hence B%p is a permutation. Associativity
holds for general transformations and in particular for

permutations,

Definition: The image of a mapping € of a semigroup S into
a semigroup s! is called a homomorphic representation of
S iff @ is a homoworphism. If & is an isomorphism then &

is called an isomorphic rapresentation of S.



Isomorphic representations are also referred to as

trve or faithful representations.

Theorem 1l.4: Any semigroup with identity, sl, is isomorphic

to a semigroup of transformations. Namely (.ﬁ§,°).

Proof: Suppose (S*,*) is a éemigroup and &59 is the set. of
permutations of g*. By theorem 1.3, (.é?,o) is a semigroup.
For aes! let o, be the permutation defined by (82f&=5**'
ses’. Iet O be a mapping from s into 2&; defined by
(S)eifk‘

For.each xeS' I one and only one (X)9=f&€ ! because
s¥x=s¥xYseS.

For each‘fyeigsag one and only one xeSi. To see this
suppose x£y and (x)8=(y)0. Then f =Py which implies
s¥x=s%y V sest which is impossible because then l¥x=1¢y
or x=y. Therefore 6 is one-to-one.

Suppose 3 a f&ékﬁg 3 there does not exist an
xes' 3 (x)@if&. This is impossible by definition of Px and
(x)0. Let x and y681 and Profye ’bs' Then (x%y)@= ﬁ‘*‘d:
s¥(xyy) VY seSa=(s¥x)¥y V sesl. But s¥x is (s)f& and
((S)fk)*yz ( (S)fk)f@' And by definition ((SZFK)fﬁ=
(s) (Px °)°a) V ses?.

Therefore (xiy)@:f&ff@:(x)QO(y)G. Hence & is an

isomorpnism,.



0
Let G be a group and G =GU{di the group with a zero

element adjoined.

Definition: ZLet X and Y be index sets. A mapping & of

XxY into Go is called a XxY matrix over Go.

Definition: Tet X be an index set with S and T subsets

2
of X. If a is an element of the group (GD,+), i—»ai

will be used to represent the mapping of X into GD.
i§2a3=0 if a; =0V je¢ 8;
Z8; =a if 3 JeTas;#0 and ;=0 V 14

‘;ra; is undefined if 3 j,keTsa;£0, a, A0, jk

. € Go, &;: will denote

4 v
(1,j)¢and will be called the element in the ith row

If (1,))€XxY then for sone a

~and the jth column of the matrix denoted (aU pe
In keeping with standard notations a matrix will

often be denoted with a capital letter,

Definition: DILet ¥X,Y,Z be index sets. Let A=(au ) be
an XxY matrix over G and B=(b5k) be a ¥xZ matrix over

)
G . If for every pair (i,k)€XxZ3cj, = j%(au by is

21f the group operation + is to be used more then

once the suggestive notation = will be used to indicace
this.



defined then bthe matrix product 4B is the XxZ matrix

C=(c;, ) over a’.

- . o .
Definition: An XxY matrix A over G 1is called row
monomial iff each row of A contains at most one non-zero
element. A is called column monomial iff each column of

A contains at mosbt one non-zero elemenb.

Definition: If I and A are index sets, an Ix/\ matrix A
over G is called a Rees IxA matrix over G iff 3 one and

only one ay € Azay AO.

Definition: Let A=(a;,) and B=(b¢“) be Rees IxAA matrices
over G°. Let Pz(p\i) be a fixed AxI matrix over G ..
The Rees matrix product AeB of A and B is A°B=APB, where
the products APB are the matrix prbduct defined above,

P is called a sandwich matrik.

Because there is only one non-zero element in a
Rees matrix, the Rees matrix (a;, ) will often be denoted

(a)iA to distinguish it from bthe sandwich matrix.



Chapter II
Fundamental Theoreuwms

In this chapter ths semigroup is partitioned into
ideals by the relations ﬁ,:(’,f,i/ andy. Green's theorem
will provide a mapping from H-class toﬁy—claés that will
be important in the determination of the non-zero elements
in the matrix. Theorem 2.11 provides a pdssible zroup,
contained in the semigroup, from which elemenés for the

matrix may be selected,

Definition: A non-empty subset A of a semigroup S is a
right ideal of S iff AS A. A is a left ideal of S iff
SASA., A is a two sided ideal of S iff A is a right ideal
and A is a left ideal of S,

Consider the non-empty subset B of the semigroup S.
Let {Al,Az,Aé,...} be the set of left ideals of S 3 for
each A; in the set, BE=A, . Suppose €S and a€(1A;. Then
acd; for each i=1,2,3,... Therefore sae¢i, for each
i=1,2,%5,... So saeﬂA{ for/gach 1=l 2B guss Then
S(NA, )= N\A, and (1A} is a left ideal of S.
Definition: ILet B be a non-empty subset of 2 sezigroup
S and {Al,Az,Aa,...} be the set of left ideals of S 3
B<A; . Then ﬂA; is called tﬁe left ideal of S generated

by B. If the subset B has as its only element



il

the element b then MA{ is called a principal left ideal
af S.

In the following discussion and definition the left
ideals of S were obtained by multiplying on the left by
S. If the same procedure were followed using multipli—
cation on the right by S the same ideas would follow for
right ideals. For each definition about left ideals it
can be seen that commuting the multiplication provides
a ¢orresponding definition about right ideals. These
definitions will be referred to as duals of one another,.

The following example might help to illustrate the
preceding discussion and definition.

Consider the semigroup (Ib,X) where Ib={0’1’2’5’4’5}
and the operation is multiplication mod 6. Let B in the
definition above be 10,21. The left ideals that conbain
B are A|=IQ,A1={O,2,4}. af Az={0,2,4] =A,. A, is the left
ideal of S generated by B=§o,2}. Ir B:i}l then the left

ideals A, =I ,A =§O,3} are the left ideals containing B.

2

Therefore AJ\A2={O,3} =A,. In this case 2

2 2 is a principal

ideal,

The left principal ideals of S generated by a will
be denoted by sta. The symbol S1 will be used to denote
S if S has an identity element and SU{il if S does not

have an identity element.
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Definition: Let SxS be the cross product of the semigroup
S and (a,b) SxS.
{(a,b)\81a=816} will be called an [-relation,

{(a,b)\381 =bSﬁ}will be called anfftrelation and

oy

f= {(a,b)\élas‘=s‘bsf}will be called an.q~relation.

Let (Qz,o) be the semigroup of transformations of the
set {1,2} and the operation is the product of transfor-
mations,

u (11) (12) (21) (22)

(11) | (11) (A1) (22) (22)

(12)] (11) (12) (21) (22)

(21) | (11) (21) (12) (22)

(22) 1 (11) (22) (11) (22) .

FisURa 1

SAZMIGROUP OF TRANSHURMATIONS

It is seen from figure 1 that (11)Cz1=(22)délare right
principal ideels of (J,°). Then‘f;f((ll),(ll)), ((11),(22)),
((22),(11)), ((22(,(22))} i anF-relation of (T, e).

(22) d: —{(22)} . Thererore I- {((22),(22))} )

If 2,b€S are in the reletion £, e{b will often be
used bo denote this fact. Similarly for f,y

In what follows, it 1is important to consider sets of

order pairs formed by teking the composition of the



1%
relations ~1?and { and intersection of 7f) and {. The
largest of these sets is obtained by taking the composition

of the relations fand {

Definition: 09 =:(°7f= ’ (a,c)|3beS3(a,b)e{,(b,c)Eﬂ.
The smallest of these will be obtained from the inter-

section of the relations ‘fando(.

Definition: o( and? are relations. 75/ is the relabion»‘(ﬂf.
From the previous example: & =ZC°7?={((22)(11))((22)(22))}
and W {0t {((22) (22))] .

1 b
Given a semigroup S, Y a€S S a=S a and so afa. Y

i i

a,bcsaa'(b then S‘a=be or S"b=L"a and so bifa. 17 alb

and b{c then sta-gtp-gt

c or _a(c. Therefore ( is an
equivalence relation. In like manner "6),9 and consequently
b and\ﬂ can be shown to be equivalence relations.

The set of all elements of the semigroups S that are L
related to a will be denoﬁed by L, and called the i—class
containing a. Similarly the elements that are in the same
’fnclass, 3-—class,‘ﬂ—class and 18-class as a will be denoted
R 1da sHa s Do s

16 R-§((11), (1)), ((11),(22)), ((22), (1)), ((22), (22))]
and (:i( (22),(22))} as in the previous example, then

R, =Ry, = J(11),(22)] and L(u)=%(22)z.



Definition: An element a of a semigroup S is called
regular iff 3 x€S 3axa=a. A semigroup S is called
regular iff every element of S is regular.

An idea closely related to that of rezularity is

given in the next definition.,

Definition: & and b elemenﬁs of a semigroup S are
inverses of each other iff aba=a and bab-=b,

Because ‘)f’,,(,ﬁ,l/ are equivalence relations it is
known that the corresponding equivalence classes for
f,(,ﬂ, and # are disjoint. Using this fact, a helpful
way of representing the ';f,(,ﬁ, and #-claszsss in a
relatively sinple way is given in Clifford and Preston
and is called by them an egz-box picture.

Dy Ra Ry Re
La [Hoo/Hab|Hac
Ly |[Hoa Hen [Hee|
Lo [ He [Hee [Hep [Heg [He
2 Ly [ Has |Tee |Has Hdg Hyy,

LE Hed ch l{c{’ Heg :. e
L [ Heg |Hge [Hee |Heg [Hen

Ly By Ay [Hy [Hyy [ah]

ba.

D

Ly [ By [Huw [Ha [Sne [Hiw

D_:, Li| B E‘I'.', Hiw |Hy |dim

Lj | Hi {55 [ Hix [t [Him

Lk iyl HKJ Hu“ Huy E'Ikvu

. . . Ll. HL& Hl; Ll H_u djw\
FiGURye 2

POSS1BLy £Ga-B0X PICTURH

Where each large square is a 9—c1ass, each row an {fclass,

each column an1?4ﬂass and each square an“H-class.

14
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Iemma 2.1(Gresen): Iet a and b be ﬁzequivalenb elements of
a semigroup S, and let s and s’ be elements of Si such
that as=b and bs =a. Then the mappings x—xs(xel, ) and
y—ys’ (yeLh) are mutually inverse,#FLclass preserving,
one-to-one mappings of L  onto L, , and of L, onto L ,

respectively.

Proof: Denote the two mappings by € and 9/. It is noted
that & is the inner right translation g . Restricted to
L, and 6" is the inner right translation ., restricted to L.
Suppose af%. Then by definition aSi=bsj. But thie
implies that 3 seS! 2 as=b and s'eS 3 a=bs’ . Let xeS?axeLa.
S"x=S1 a by definition and so (Six)s=(81a)s. But because
of associativity Si(xs)=81(as) and hence xs(as or, because
as=D, xs{b. Therefore xs€L,. And 0 maps L, into L,.
Again let xeL;. Then s'x-s'a and so there exists
tes' such that x=lx=ta, and %00 -xss’ -tass’ =tbs’/ =ta=x.
Thus 68 is the identity transformation on L.
Similarly, ©€  is the identity transformation on Ly, and 6
and 67 are mutually inverse, one-to-one mappings of L,
and L, onto each other.
To see that @ is#?lclass preserving, it is noted that
if xeL, and y=xf=xs, then ys’=x, so that yf&. Similarly,
0’ is also f?Lclass preserving.

As a consequence of Green's theorem the following
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theorem follows.

Théorem 2.2: Let a and c¢ be fiequivalenb elements of a
semigroup S. Then there exists b in S such that aﬂ%

and bfc, and hence as=b, bsta, tb=c, t’c=b, for some
s,s’, t, t'€S . The mapping x —>txs(xeH,) and z-—»t' 2" s’
(zeH, ) are mutually inverse, one-to-one mappings of H,
and H, onto each other. Any two H-classes contained in

“the same~5—class have the same cardinal number.

Proof: By the dual of Green's Lemma, the mappings

{:y~+ty.(yeRb) and Arz—tz (zeR, ) are mutually inverse,

{}class preserving, one-to-one mappings of kR, onto R

and R, onto R,. Let & and &' ve as in Green's Lemma, but

restricted to H, and H, respectively. (Since the unre-.

stricted & and & are ﬁlclass preserving, they map

H, and Hy upon each other in a one-to-one fashion.)
Similarly, let T and ' be restricted to H, and H,

respectively. Then 87 and 7’?1 are mutually inverse,

one-to-one mappings of H, and H, upon each other,

But these are the mappings defined in the theorem,

One of the df-classes, D, for the semigroup (s °)

is composed, in part, as shown in figure 3.
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L= {(1222), (2111), (1211), (2122), (1121), (2212), (1112),
(2221), (1122), (2211), (1212), (2121), (1221), (2112)}

L,= {(1355), (3111), (1311), (3133), (1131), (3313), (1113),
(3331), (1133), (3311), (1313), (3131), (1331), (3113)}

R = {(1222), (2111), (1333), (3111), (1444), (4111),
(2333), (3222), (2u44), (4222), (3444), (4333)]

R = §(1211), (2122), (1311), (3133), (1411), (4144),
(2322), (3233), (2422), (4244), (3433), (4344)]
: FIGURE 3

ON& OF THE H-CLASSES, D, FOR THE SEuWIGROUP (,°), LN PART

According then to Lemma 2.1, pick out two
#2equivalent elements of, say, R, . (1222)&?3111). Then
(1222)%(3122)=(3111) &nd (3111)°(2211)= (1222). So in
the Lemma 2.1 choose s= (3122) and s’ = (2211).



x—=x(3122)
(1222)—(3111)
(2111 )—(1555)
(1211)—(31%3)
(2122)—=(1311)
(1121)—~(%515)
(2212)—=(1131)
(1112 )—(3331)
(2221)—(1113)
(1122)—=(3311)
(2211 )—>(1133)
(1212)—(3131)
(2121)——(1313)
(1221)—(3113)
(2112)-—=+(1351)

Notice also that:

x—x(3122)
(1222)—(3111)
(2111)—(1333)
(1211)——=(3133)
(2122)—/(13%11)

and

and

FIGURE 4

y——y(2211)

(1333)—>(2111)
(3111)—=(1222)

(1311)—=(2122)
(3133 )—>(1211)

(1131 )—=(2212)
(3313 )—(1121)

(1113 )—=(2221)
(3331)—(1112)
(1133)—>(2211)
(3311)—(1122)
(1313 )—(2121)
(3131)——(1212)
(1331)—(2112)
(3113)—>(1221)

y—y(2211)

(1333)—>(2111)
(3111)—=(1222)

'(1311)———*(2122)

(3133)—=(1211)

© MUTUALLY INV2RSE OLE-TGC-ONE MAPPINGS

OF L, ONI0 L,

18
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It is seen that under the mappings in figure 4
6lclasses are preserved.-

In the same manner, the mappings may be defined

so that they are mutually inverse {}class pressrving,
one-to-one mappings of R, onto Ry. .

To illustrate theorem 2.2 the computation in
figure 4 is carried out for (fclasses and‘fzclasses.
The needed H-classes would be
H= {(1222), (2111)); H,= §(1333), (3111)];
Hy- §(1211), (2122){ ana H4=§(1311), (3133).

1t

1

Theorem 2.3: The set product IR of any'(;class L and any
fzclass R of a semigroup S is always contained in a

single étclass of S.

Proof: Let a,a’,b,beSzefa’ and bﬁ%’. But a2’ implies
ab{a’b because Sia=Sla’implies st (ab)=(s*a)v=(sta’ )b-
s!(a’b). 1In the same manner, bﬁ%’ implies a’ bka’bv’ .
But applying the defihition of(%%j is seen that
(ab,a’b’)aff%r that abfa’ v’

1For the remainder of the D structure of this semizroup
see A.H.Clifford and G.B.Preston, The Algebraic Theory Of
Semigroups (American Mathematical Society, Providence,
Rhode Island, 1961) Volume I, p. 55
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Lemma 2.4: An element a of & semigroup S is regular

iff R, contains an idempotent.

Proof: Suppose a€S and a is regular. Then axa=a fo? some
xeS. But then aSl=axSl and so ax€eR, and (xa)(xa)=
(x)(axa)=xa. Therefore ax is idempotent.

Suppose that R, contains an idempotent element e.
Then aS'=eS'. Henced xes's a-al =ex. But ea=e (ex)=e?x=
ex=a. Also JyeS'se=ay. Then a=ea=aya. Therefore a is

regular. The dual of this Lemma is also true.

Theorem 2.5: ( i) If a H-class D of a semigroup S contains
a regular element, then every element of D is regular,
(\1) If D is regular, then every L-class and every

ﬁaclass contained in D contains an idempotent.

Proof: (i ) Let 2 be a regular element of a.ﬁ-class
Djaxa=a, Then the‘ﬁLclass R containing e=ax contains an
idempotent element, namely e. Then every element of R is
regular by Lemma 2.4. But, every {;class of D contains
an element of R and every 6201353 of D contains an element
of each Z?class. Therefore every flclass and {-class of
D contains regular elements and hence idempotent elements.
Therefore every element of‘D is regular.

(ii) If D is regular then axa=a for some xeS. But
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ax is an element of some chlass and xa 1s an element of
some {-class. (ax)(ax)=(axa)x=ax. Also (xa)(xa)=(x)(axa)=
xa. Therefore, ax is an idzmpotent in a flclass and xa is

an idempotent in an {-class.

Lemma 2.6: If a and a’ are inverse elements of a seaigroup
S then e=aa’ and f=a’a are idempotents 3 ea=af=a and
a’e=fa’ =a’. Hence LR, N L, and feRafﬂ L,+ The elements

'a;a',e,f all belong to the came 8-class of S.

Proof: Suppose e=aa’ and f=a’a whefe a and 2/ are inverse

elements of S. e’=(aa’)(s2’)=a(a’aa’)=aa’ =¢
r¥=(a’a)(a”a)=(a"aa’ )a=a” a=f

Therefore e and f are idempotent elements of S. If

e=aa’ then e€R, and ec<L,r. Therefore ¢€RNL, . Likewise,

if f=a’a then feR, and feL,. Therefore feRyNL,. efh

and aff implies efr, af% and e(% implies afa. Also e and

a in the same ?zclass implies efla. Therefore e,f,a,a’

are all elements of the c=came ﬂ—class.

Leoma 2.7: If a3 is a regular element of a semigroup S,

then aS!=aS and S*a=Sa.

Proof: Obviously'aeag'because a=a+1l, It 1is necessary then
to show that =z€aS. But a is regular and so axa=a. Let

f=xa which has been shown previously to be an idempotent.



Then af=a implies that acaS. In like manner Sla=Sa.

Lemma 2.8: If a and b are regular elements of 5, then

alb iff Sa=Sb.

Proof: Suppose a and b are regular elements of S and

a{b. Then sia=s}

a. But by Lemsa 2.7, S'a=Sa and S"b-sb.
Therefore Sa=Sb.

Suppose a and b are regular and Sa=Sb. Then by
‘Lemma 2.7, Sa=S'a and Sb=s'b. Therefore S'a-s'b and

hence a(b. Similarly for aﬁ%.

Lemma 2.9: Any idempotent element e of a semigroup S
is a right identity element of L,, a left identity

element of Re, and a two sided identity element of H,.

Proof: If a€l, then aeSte and hence 3 xe813a=xe.
Therefore ae=xee=xe=a, 50 e is a right identity of Lg.
In the same manner e is a left identity of Rg. If

a€le=R.NL,, then ea=ae=a.

Definition: A subset T of a semigroup S is a subgroup of

S iff aT=T a=TVaeT.

Iemma 2.,10: If & and abeH then Hb=H.

22
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Proof: Suppose a and abeH. Then aﬁ%b and 3 ses'sas=ab.
Let s=b. Then by Lemma 2.1, x--xb is a one-to-one
mapping of H onto itself. Therefore Hb=MH.
Dually if b and abeH then aH=H.

Theorem 2.11 (Green): If a,b and ab all belong to the
same A -class H of a semigroup S, then H is a subgroup of S.
In particular, any #-class containing an idempotent is a

"subgroup of S.

Proof: Suppose a,b,abeH. Then by Lemma 2.10 aH=Hb=H.
Let x be an arbitrary element of H. Then x,axeH
and x,xbeH, From Lemma 2.10 it follows that Hx=H and

xH=H. Therefore Hx=xH=HY xeH. Hence H is a subgroup.

Theorem 2.12: If a and b are elements of a semigroup S,
then abeRNL, iff RNL, contains an idempotenp. If this

is the case, then al, =H,b=H H,=RNL,.

Proof: Assume first that abeRNL, . From abeR, there
exists b€ S such that (ab)b' =a. By Green's Lemma, the
mappings @.x —xb (xeL,) and 9?y~—ayb/(yeLab) are
mutually inverse,‘flclass preserving, one-to-one
mappings of l,onto L, and of Labonto L,, respectively.

/ i
But abel,, and so L,y=L,. Thus O maps the element b of
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L, upon the element ob’ of L,,» and moreover beaRb since
9/ iS'ﬁchass preserving. Hence bb’eRgWLa. If xeL,, when
xbb’ =x 687 =x; putting x=bb’, therefore tb’ is idempotent.

Conversely, assume that R/ L, contains an idempotent e.
Then eb%b by Lemma 2.9. Since ef%, it follows from éreen's
Lemma that 6ix—>xb (xeLp) is an 1?—olasS preserving,
one-~to~one mapping of Lg onto Lb'. Since éeLe, abeLb;
moreover, abeR since 6 is'#tclass preserving. Hence
abeRN L, .

Continuing with the hypothesis that R,NL, contains
an idempotent e, let xeH, and yeH,. Then e=R,NL,, and
hence xyeRNL,=R,NLy. Hence H HERNAL,. Since L.=L, and
Ly=Lg, » O:x—>xb maps L, upon L,,. Since 6 is %-~class
preserving, it maps H, upon H,,, and so H, =H,,. Hence,
HowsH H =R NL, =H,,=H, , and equalities hold all down Gthe

line. Dually aH,=H,,.

Theorem 2.1%: Let a be a regular element of a semigroup S.
(1) Every inverse of a lies in Da.

(\i) An‘ﬂLclass H contains an inverse of a if and only

if both of the H-classes R,NL, and RNL,, contain
idempotents.

(}\\)) No H-class contains more than one inverse of a.
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Proof: (1) If a and a’ are inverse elements of each
other they all belong to the same f-class by Lemma 2.6.
(1) Suppose H, contains an inverse a’ of a. By
Lemma 2.6 the H-classes RN L, =RNLy &nd RNL; =R, OL,
contain the idempotents aa’ and a’a respectively.

Conversely, suppose e is an idempotent in Rd\Lb,
and that f is an idempotent in RNLy. From af% and aff;
ea=a=af, by Lemma 2.9 and e=ax, f=ya, for some x,yeS, by
‘Lemma 2.8. Let a’=fxe,

y
Then fa’ =a’e=3a’,

ad =afxe=axe=e”=e

a’ a=fa’ a=yaa’ a=yea=ya=f
Since az’a=ea=a and a’aa’=a’e=a’ , a and a’ are mutually
inverse., From fa‘’=a’ and a’a=f, aﬁ?f. From a’e=a’ and
aa’=e., a’{e. Hence d'c RNL,=RNLy=H_.
.(iﬁ) Let b and ¢ be H-equivalent inverse elements of a.
By Lemma 2.6, ab is an idempoteﬁt element in RNL,, and
ac is an idempotent ip R,NAL.. If ab and ac are idempotents
such that H,, =H;.  then by Lemma 2.9, each is a two sided
identity of the other and hence L, =L, and ab=ac,
Similarly from R, =R, , ba=ca.

Therefore b=bab=cab=cac=cC.



Chapter III

Representations of Completely O-simple Semigroups

A special class of semigroups known as completely

O-simple semigroups can be represented isomorphically

by a semigroup of matrices. It will be foundAChat theorem
*%111 provides the group onto which the matrices will be
defined. Theorem 3%.14 will then provide the necessary
isomorphism,

Definition: A semigroup S is said to be simple iff S

~does not contain any proper two sided ideals.

‘Definition: A semigroup S with zero O is called O-simple
iff (1) s*= ssto,

(1)) O is the only proper two sided ideal of S.

ILemma 3.1: Let S be a semigroup with zero O, and such

that SZ0. Then S is O-simple iff 3aS=8 for every a#Z0 of S.

Proof: Suppose S is O-simple. Let B={b]SbS=Of. From
the expression SBS=0€B it is seen thst B is an ideal of S.
But because S is O-simple B=0 or B=S. If B=S then s? =0.
But since S%=S, 0=5’=5'-=S which is impossible because

8*40 if S is O-simple. Therefore B=0 and SaSZO for every
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aZ0. But SaS is an ideal V a#0 and SaS£0. Therefore

SaS=5.
Suppose SaS=S V aZ0. Iet AZ0 be an ideal of S and

aZ03aeA. Then S=SaSsSAS<SA so that S=A. Hence S contains
no proper ideal £O0. But S#AO therefore S contains an element
a£0. From S=SaSss®, it is seen that s?£0. Therefore S
is O-simple. '

It should be noted from this Lemnma that neither

Sa=0 or aS=0 if S is to be O-simple.

Definition: An ideal M of a semigroup S 1s called minimal

iff there does not exist an ideal N3N<li.

Definition: An ideal M of a semigroup S is called O-minimal
iff (1) A0
(11) O is the only proper ideal of S contained in i.

Comparing this definition with the definition for
O-simple it is seen that.any O-simple semigroup is a
O~minimal ideal of itself.

It will be necessary to indicate whether the zero
element is to be omitted when discussing semigroups with
zero elements. If L is the subset under ccnsideration
and s° is the éemigroup with zero element; then L\O will
indicate the set L without the zero element.

The word ideal in the preceeding two definitions is
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intended to mean two sided ideals. It should be
noticed that the definitions apply equally well for left

or right ideals.

Lemma %.2: Iet L be a O-minimal left ideal of a semigroup
S with O, and ceS. Then Lc is either O or a O-minimel

left ideal of S.

APfoof: Suppose Lc#0., ILc is a left ideal of S generated
by c. Iet A be a left ideal of S contained in Lc. Let
B={b| beL and beeA], then BoSA. TIf xeisx=yc then yeeh and
by defiﬁition of B, yceBc. Therefore AsBc and A=Bc. If
beB and se€S, then sbcesisA, and besL<L. Hence sbeB, and
so B is a left ideal of S. From the O-minimality of L,

either B=0O or B=L, and therefore A=0 or A=Ic.

Theorem 3.,%: Iet S te a semigroup with O. Let M be a
O-minimal ideal of $§ containing at least one O-minimal
left ideal of S. Then M is the union of all the

O-minimal left ideals of S contained in M.

Proof: Ilet A=UBi(i=l,2,3,...) where B is a O-minimal
left ideal of S contained in M. A is a left ideal of S.
Let zeA and ceS. T hen 3 B;sUB 3a€E; . By Lemma 3.2,

B; c=0 or B; c is 3 minimal left ideal of S. Also BJcEMcCM,
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and Bjc<A. Hence acea and thus A is a right ideal of S.
A£O because it contains at least one O-minimal left ideal
of S. Therefore A is a non-zero ideal of S contained in

M and hence A=M because M is O-minimal,

Temma 3.4: If L is a O-minimal left ideal of a semigroup

S with zero O, then IL\O is an <£-class of S.

Proof: Tet acLN\O. Then either Sa=0 or Sa=L.

Suppose Sa=L¥ae¢INO. Then S'a=5'b Va, beINO. Hence
INOSL,. If ceL, then ceS'a=L and hence LEINO.
Therefore I\O=L,.

Suppose Sa=0 for some ael\O. Then L={O,a] is a non-
zero left ideal of S contained in L. Then if S%a=L andV

1

xeIN\O, s!'x=s' a it can be concluded x=a. Therefore

INO= {a}-L,.

TLenmma %.5: Let L be a O-minimal left ideal of a O-simple

semigroup S, and let a€¢I\O. Then Sa=L.

Proof: Since S, is a left ideal of S contained in L, it
follows that Sa=0 or Sa=L. The case Sa=0 is ruled out by

ILemma 3.1,

Definition: Iet e,f be idempotents of a semigroup S.

e&f iff ef=fe=e.
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Definition: An idempotent elewment f of a semigroup S is
called primitive iff f#0 and if e%f then e=0 or e=f for

all idempotents e€S.

Definition: A semigroup S is said to be completely O-
sinople iff 5 is a O-simple seamigroup containing a primitive

idempotent.

‘Example: Any group G is a simple semigroup because for any
ASG, GAG+G and G is not a proper ideal of G. GU{0} is
comple;ely O-simple and the primitive idempotent is the
identity of the group.
Let I be a set. Let S= (IxDUfo]. For 1,5,k,1ex
define (i,j)e(k,1)= )(i,1) if j=k,
0 if jik;
00(i,3)=(i,3j)e0=000=0

Then (S,°) is a completely O-simple semigroup.

Theorem 3.6: Iet S be a O-simple semigroup. Then S is

completely O-simple iff it contains at least one O-minimal
1
left ideal and at least one O-minimal right ideal.

1

There are 11 Iemmas needed to prove this theorem.
They are not used elsewhere in the paper. See A.I.Clifford
and G.B.Preston, The Algebraic Thecry Of Semigroups
(American Mathematical Society, Providence, Rhode Island,
-1961) Volume I, p.78
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Theorem 3.7: A completely O-simple semigroup is the

union of its O-minimal left (ri ht) ideals.

Proof: Let S be a completely O-simple semigroup. By
definition S is O-simple. Therefore SZ*£0 and O is the
only proper ideal of S. So S is O-minimal. By theorem
3.6, S contains at least one O-minimal left (right) ideal.
By theorem 3.3, S is the union of all the O-minimal left

-(right) ideals of S.

Theorem.3.8: If S is a completely O~simple semigroup

then S\O is a -class of S.

Proof: let S be a completely O-simple semigroup. Let a
and b be non-zero elements of S. By Corollary 3.1, a‘
belongs to some O-minimal right ideal L of S, and b belongs
to some O-minimal right ideal R of S. By Lemma 3.5,

L=Sa and R=bS. By Lemma 3.4 and its dual, L,=L\O and
R,=R\O. Since aeL and beR, bSasRNL. Since S is O-simple,
and aZ0, b#0, SaS=S and SbS=S. Hence S=5%=5bSSaS<(bSa)S£0,

so that bSaf0. Since RNL, contains the non-empty set

bSa\O, it follows that abb.

Corollary 3.1: If S is a completely O-simple. semigroup

then S is regular.
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Proof: By definition of complete O-simplicity, the
P-class S\O contains an idempotent. By theorem 2.5 ( } ),
every element of S\O is regular. Since 0 is regular, S

is regular.

Terminology: A completely O-simple semigroup S is said

to be O-bisimple iff S\O is a H-class of S.

Theorem %.9: Let S be a completely O-simple semigroup.
(1) If aeS and a%£0, then a*eH,, and H, is a group.

(1) If a,beS and abf0, then abeR NI,

Proof: (1) By Corollary 3.1, a belongs to some O-minimal
left ideal L of S. Then a*elL. By Leusnz 3.4, L\O is an
{-class of S. Since a%?#£0 by hypothesis; and af0, both'a
and a* belong to IL\O, so that afa®*. Dually aﬁ%z.
Therefore afa? and hence by theorem 2.11, H, is a group.
(11) If abf0 then a#0 and b#0. By theorem 3.8, aﬂb,
and hence Rf1L,#£0. Suppose ceRNL,. Then czeIth. By
theorem 2.3, either L R =0 or L,R,<S5\O. The former is
excluded by abfO. So c¢?£0. By (1) H,=RNL, is a group.
By theorem 2.12, abeR,NL,.

To illustrate theorem 3.9 consider figure 5.
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Therefore He=ie,l,2}.

Obviously H, is the group of Integers mod. 3.

The Rees Ix/\ matrix semigroup over the group G’ with
0 0
sandwich matrix P will be denoted by )V(G;I;f\;P) or /Y.
(2
will be referred to as the structure group of T, Denote
0 o
the elements of J{ by (a)iA with 2eG , ieI, and 2ed,
0
Let Ri={(a%l\ aeG,ke/\} and R; = RﬂJO;
[¢]

le{(a)ﬂl aeG, ieI} and L,= IuUO;

Hilz R.‘ﬂLf {(a)“\ aGG].
0
Lemma 3.10: The Rees IxA matrix semizroup J{(G;I;A;P)
0
over & group with zero G , and with ssndwich matrix P is
regular iff each row and each column of P contains a

non-zero entry.

55
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Proof: Iet P=(py). Let a,beG;i,jel;a,uch,  Then
(@i ® (b)(y.x ° (a), =(apzj bp,,; 3,
This is equal to (a)ix iff Dyj bguisz (;1 is the inverse
of a). With (a), given, 3 such an element (b)~ ilewoiff

£

#0 and p, ; #0 for some jel andJqu that is, iff the

p)j j”
Ath row and the ith column of P each contains a non-zero

element of G .

Theorem 3.11: The set of all Rees Ix/A matrices over the
group ¢° with sandwich matrix P is a semigroup with respect

to matrix multiplication.

Proof: Let (a),, (b); e)’lmth (py) €+  The (a),° (b)}A
(ap0)y, e M. 4lso for (@) 0 ()00 ()yelll [<a> o<b>}]
() [(amy 03] @ (e)yy - ([ap”@}/ukcxy (ap,J[ogukc]], -

(a%xo (bp kc%) (a) °[(b) (c)kyj Hence )(15 a semigroup.

Lemma 3.12: (1) For each i in I, R; is a righc ideal

0 0
of /% ; any two R-equivalent elements of /7\0 must belong
to the same R;, for some 1 in I.
(W) If P is regular, then, for each ieI, R? is a

o 3

O-minimal right ideal of;ﬂ , and R; is an‘fzclass.
(W) If, for some i in I, p) =0 for every' Ainf,, then
Rils a two-sided ideal of ){ such that )(ﬁ =0: in

J
particular, (Rf )Z=O.
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(1Y) The set H-n(isI,ZEA) contains an idempotent element
iff Py £A0. If P #£0, then H; i is an H-class of )(o, and
is a subgroup of /V(owith identity element ei;\:(pzi—l )il

The mapping a—»(apﬁ"t ).n is an isomorphism of the group
G onto H . .

(v) PFor every i,jel and A p 1nA

Hiz' Hj}‘ = H-‘)‘ if sz £0,
0 if P.. =0
A}

: )
Proof: ILemma 3.12 (1) Let <a)i1€ Rg and (b)j)f-ﬂ'
o _ 0 0 . P o
(a).l)‘ (b).j)u = (apx-jb). e R, . Therefore R, 1s a right
0
jdeal of M, TLet (a) and (b) be non- zero, ‘f—equivalent
elements of )"( . Then there e*clst:s (chy 1nﬂ such that
(a).no (c)k)) =(b).ijk » hence (ap,, c)if(b)j}x‘ Since b#£0, this
requires Jj=1i.
(11) Assume that P is regular, and let (a).‘k and (b)-‘}k be
(non-zero) elements of R, . ©Since P is regular, there
exists k in I suchothat P;\«J‘O' Then (a).‘l° (c)“)* = (b)-‘}‘_ it
- o
czp;\gL a" b#£0. .‘.Ri #0. This shows that R-‘ is a
0
O-minimal right ideal of M , and that any two elements of
R;
from (1 ).

are R-equivalent. That Ri is an ‘f—class then follows

(113) Suppose p,; -=0 for every e, If (a) K R and
(b)- (]‘( then (b) - (a) -(bp ) =0, Hence/( R =OER?.

From this and (i) 1t follows that R is a two sided ideal.



%6

(w) Let (a%ke H,,. From (a)-mo (a), =(apkaa%A it is
seen that (a)3A is idempotent iff p,; #0 and a=p,; -
Assume P #0. Then Hia contains the idempotent iy =

-1 . _ -1
(pl‘ %l . For a in G , let 89_(apk‘ )il' Then for

-1 -1 : .
a and beG, (ae)o(b0)=(apki P bai )ik=(ab)6, and, since
for each a 3 one and only one (a)8 and for each (a)d 3 one
and only one a 481is a one-to_one mapping of G onto H;y , it
follows that € is an isomorphism of G upon Hi,+ Hence

0
Hio is a subgroup of }7 with identity €1y

a ) 3 .
Let H be the H-class of ¥ containing €i:a- Evidently

HhﬁEH since Hi is a group. But by (1) and its dual,

A

HER.N LA=H1 and hence H=H

T A’
(apljb)y*. If pU =0, thig¢ is 0. If pkiﬁo, it belongs

. We have (a%}°_(b)bp=

to H In the latter event, any element (c)i)u of H; may

o 2

be obtained as such a product by taking a:p&* and b=c.

Theorem 3,1%: A Rees matrix semigroup is O-simple iff

it is regular, and if so it is complefely O-cimple.

Proof: Iet jﬂgG,I,A,P) be a Rees matrix semigroup.
Suppose first that }10is not regular. By Lemma 3.10,
'-there is a row or column of P which consists of zeros,
say the ith column: p,;=0 for all X inA. By Lemna 3,12

T o ) ) 0
(), R, 1s a non-zero nilpotent ideal of {, and so
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can not be O-simple.

0
Assume conversely that M is regzular. Let (a%l and

o
(b)‘ijLL be any two elements of /{ with a#£0. By Lemma 3.10,

there exists Yin A and k in I such that Ibiﬁo and ;ak#O.

-

Tet c=b(p»-laplk)x , and let e be the identity element of

G. Then (c)w° (ao)uo (e-)v*:(b)j)" and it follows from
Temma 3.1 that M is O-simple.

. o
By Lemma 3,12 (1v), the non-zero idempotents of M are

the elements eil=(p);1) There is one such for each

e
pair, 12 (1€I, aeA) such that p; 0. If €i2° €5u =m® €A “€ju

Ip IM 14 J)A
e,.,» Thus every non-zero

wo Ip

. o o
idempotent of J{ is primitive, and so.ﬂ is completely

then i=j and A=M, so that e

O-simple.

Iet D be a P=class of a semigroup S. Let iRﬂ HEI}
and iLA\lfAz be the sebts of ﬁ7and (}classes of S contained
in D. Then the set of #-classes contained in D is
{H-ul teI,MA} and Hiz =R-lﬂ L',l' Chooge an H-class of D that
contains an idempotent element ana call it Hii‘ For each
ieI select and fix an element r, of Hiz' For each AeA
select and fix an element Q. oflgl.

The AxI matrix P=(p,; ) over Hy is then

_ q, r: if q r.eH
O otherwise
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Definition: Let D be a B—class of a semigroup (S,e).

Let T=DUO. T will be called the trace of D.
If a and b are any elements of D then a product
(%) may be defined in D,
a*b:}lab if abeRNL,,
O otherwise

a¥ 0= 0 %a=0

Theorem 3.14: Every element of D is uniquely representable
in the form riaq, with a in Hy , in I, and AinfA. The
one-to-one mapping @ of }Youpon T defined by
ryaq, if a#0
(a)~]l D= 0 if a=0,
is an isomorphism.

/
Proof: For each 2eA, let e be an idempotent in Ly. L

A
exists by theorem 2.5. By theorem 2.13, A has a unique
inverse q; in Re{\L. Then eq,=q, and qlq; =e, where e is
the idempotent in Hy, . By Green's Lemma 2.1, the mappings
x->xq,(x 1) and y—qu; (yeLA) are mutually inverce, ﬁ?-class
preserving, one-to-one mappings of I, onto LA’

Dually, for each iel, 3 an inverse r{ of riERi’ and
the mappings x—’rix(xéRi) and y—»r{y(yeRi) are mutually
inverse, ‘(fclass preserving, one-to-one mappings of Ri

/ u . . - :
onto Ri . Combining the two mappings as in theorem 2.2,
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/

X >0 Xq (er“ ) and y—r; yq (yeHiA) are mutually
inverse one-to-one mappinzs of Hu onto Hix
Since every element of D belongs bto exactly one Hi,, 1t
follows that the mapping # defined in the theorem is
a one-to-one mapping of M°onto DUO-T.

To show @ is an isomorphism suppose qArieHzi‘ Then
by theorem 2.12,(riaq )(r'b%M)EHDL=RJ\E&'
Therefore I aq eQ P o b%ng F
From the definition of the trece product (¥ ) (riaqk)ae(;jbgy)
is the product in D. From the definition of pli[(ah)}i}*

; = i *x . =1y & . -
[(b) 8]= (x, ag,) *(r bq)rdqrbqj,\rapjbq}* (apr) p=
[(a)z° (bzuélﬂ Now suppose q, r; ¢Hlﬁ' Then plj-o, Hjx
does not contain an idempotent, and (riaql) *(r:ibc%“),{H-yJL
Again by the definition of p, (riaqx)xr(pjb%u)=OeT.

Therefore P=0 which is true by definition of @.

Theorem 3%,15: (Rees) A semigroup is completely O-simple
iff it is isomorphic with a regular Rees matrix semigroup

over a group with zero.

Proof: 1If a semigroup is isomorphic with a regular Rees
matrix semigroup with zero, then it is completely O-simple
by theorem 3.13%.

Conversely, let S be a completely O-simple semigroup.
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By theorem 3.8, S is O-bisimple, so that D=S\0 is a -
class of S, Construct /YzHu ;I,A:P} for D as in
theorem 3.14. Now theorem 3.9 (j1) shows that S is
isomorphic with the trace T=DUO of D, product ( %)
thorein being defined by (2). By theorem 3.14, T ssd /1
are isomorphic. Hence, € and /70are isomorphic.

Consider the following example of a semigroup (S, %)

where ¥ is defined by the table in figure 6.

¥ |labcdoO
a lab 00
b |00 aboO
¢c |ecd OO0O
d |[00cdo©
0 |0O00O00O0
FIGURS 6

BXAMFLy OF A SpulGROUP
(8, %)
S is O-simple because S%#0 and O is the only proper two

sided ideal., Also a and d are primitive idempotents.

The *6Lclasses of S are Rl=§a,b} Rz={c,d}. The £ -classes
of S are Ll=ia,c} L2={b,d§. The H-classes of S are

H, =RN L, ={a} H11=RJ‘Lz=ﬂbl Hm.=Rf]L1={°} sz=Ranz=fdi'



I‘z =C q2=
by =qy % =a3=a p,, =q, T, =ac=0
pm.=q2r1=ba=0 _ p22=qzrz=bc=a
a O
p:
0O a
(a')ii f «»r, aq =2 (a), @ «>r aq,=b
(a), B «>r,aqy=c (a),, @ <=r,aq,=d

The matrix representation of S is bthen:
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Chapter IV
Schutzenberger Representations

In order to represent a semigroup as a semigroup of
natrices over a group it is first necessary to construct

the structure group.

Definition: Iet S' be a semigroup and H an ¥-class of Si.

T (H) = {tftes' and HtSH] . Notice that for each beT (H) ,
the imsge of H under the transformation s't is a subset

of H. The symbol po, will denobe the transformation of S

by an element of T(H).

Definition: [(H) = {th t€T(H) and J't=)0,c! H; (Wnere )ollH
is P restricted to H)

In other words, each B} is,in effect, a transformation
of the A-class into itself and [(H) is the set of all

such transformations.

Lemma 4.1: Iet H be an H-class of a semigroup S. Let
h,€H, and let tes' such that h, =h,teH. Then hy=h,t for
some t' in S!, and the mappings 'X;x~+xt and %fx—axt
are mutually inverse permutations of H. Thus t and £’
belongs to T(H), and XlYﬂ=Bb Xt=B;.

If L is the ZL-class containing H, then the mappings

Vé . .
x—xt and x~—»xt are mutually inverse, one—to—one,'flclass
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preserving mappings of L upon itself,

) .
Proof: Both h, and hyeH and t and ¢ €eT(H)., By Green's

. /

Lemma the mappings ZEx~eMt(xeLh ) and szx—axt (xeLh ),
o . . 1

are mutually inverse, ﬁlcléss preserving, one-to-one

onto L, . Because in
1 ho

and the mappings are 12class preserving

nappings of L, onto L, and of Lh
= (=] [}

this case Lh°=Lhi

the mappings };and Bi’are mutually inverse one-to-one
mappings of H onto itself.
The second part of the theorem is the same direct

applicetion of Green's Lemma.

Definition: A set [(H) of transformations of H is said to
be simply transitive iff given any two elements x and y

of H3one and only one element of [(H) mapping x onto’y.

Theorem 4.2: Let H be. an ¥-class of a gemigroup 2. Then
the semigroup T(H) of trznsformaticns of H induced by the

inner right translations of st is a simply trarpsitive

group of permutations of H. It follows that |T(#)|=|H|(|a
denotes the order of H), If H is itself a subgroup of S,

then [ (H) ®H. (T(H) is isomorphic to H).

Proof: Let Kier(H) with t in T(H). If h eH, then h, =h, teH,
and, by Lemma 4.1, XL has a group inverse Kt in T(H).

Hence [(H) ie a group.



To show V(i) is simply vransitive, let h, and by
be any two elements of H. From h&fhl it is true hob=h(
for some teSl; by Lemma 4.1, teT(H) and hoK;=h1.

To show that ¥, is the only element of [ (H) mapping

h, onto h,, suppose h03;=hi for some seT(H). ILet x be an
1

arbitrary element of H. From xfbo, x=yh, for some yeS~,

and so x3£=xt=yhot=yh1=yhos=xs=xﬁ;. Hence X =¥,
Suppose H is a group. Let e be the identity of H,

and let h be an arbitrary element of H. From what has

been said there is exactly one element of [(H) mapping e

upon h. But Xhmaps e upon h. Thus [(H)= imjheHz.

Lemma &4,%: Let H be an H-class of a semigroup S, and let
R and L be the ﬁgand zlclasses of S containing H.

(1) For every seS, either HsflR=0 or else Hs is an
‘H-class contained in R, and Ls is the chlass of S

containing Hs.

(1) If HsfiR=@, then HstNR=@ “or every t in S.

Proof: (1)) Suppose HsNR#®. Let beHsNR, Then b=as for
some a¢H., Since af%, a=bs’ for some s’e S. By Green's
Lemma 2.1, Xx—»Xs is an.‘flclass preserving, one-to-one
mapping of L, onto L,. Hence HS=H65R; and LS=L¢2H.

(112 ) If Hst\R£A@, and beHstNR, then b=ast for some

. /
a¢H, and bf%, so that a=bt for some GtE€S.



But the equations b=(as)t and as=b(t’s) imply that
bfas, so aseHsNR, contrary to the hypothesis that Hs(R=0.

As has been necessary so often, Green's theorem will
again be resorted to, to "move" from Z-class to {-class
and from ?-class to f—class or coubining thé two ideas
fr_om H-class to %—class. The ‘?—olasses will be {R‘| i(IZ.
The {-classes will be {L,]2€A}. They will be contained in
the ﬁ—class D. The #-classes will be denoted as Hia =R. N Ll
and it will be assumed I and A have an element in common.
Also, H;, =H.

For 'eac;h Aef, pick an element hye H,,. Since h):l?hi,ﬂ
elements ql,q{esi,?hl:hiqa and h1=hhq; . By Lemma 2.1,
the wmappings X =>Xq, and y—>yq; are mutually ‘inverse,
one-to-one, f-class preserving mappings of L1 and LI1 onto
each other. For each 2¢A, make and fix a selection of such
elements ql,q; € Si.
Definition: Iet seS. MD(S)=(m1}L(S)) is a AxA matrix over
\‘(H)o defined as

mw(s) = X(quqju) if Hns;Hij,n

0O otherwise

Theorem 4.4: The mappings s——»MD(s) is a representation of
o

S by row monomial AxA matrices over [(H) . Given Ay eA

and ¥ (t) in T(H) (teT(H)), 4 an seSam l}‘L(S)JI‘G.
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Proof: PFirst it is shown that each Mo(s) is row monomial.

Let seS end Ae/l. E, =RNL, implies that H,SR,. Applying

1
1 s=H1/u,/ug1.

In the first case, the condition of the definjition has not

Lemma 4.3 (} ) to H,, elther Hy,siR =@ or else H,

been satisfied and therefore the Ath row is 0. In the

second case, it has ¥ (q 59 ) in the)ucolumn and zeros

/u

elsewhere,

To show that my (s)=Y(t) take s=q” +tq,.. Then
p Y ° =79, %uy
H . s=H tq, =Htq,,=Hq =H and then m =
12 577 9y %u q u bu( ) (ql(au

If h a eleme t f H, th h = =

is any ment o en qls%u_ hqlq)‘ /u%u. =ht
, g””ftthkeH Hence K(qlsql)—?(t)o
To show MD(S)MD(t)—MO(st)V%, teS it must be shown that

because qu%L =x and X

(1) .}E;F§P£S)Bu»(t)=m)lﬁst)V)4D6A. Suppose first

that m st )A0. Then H st=H), and

Alﬂ 1A
(2) my,(st)=¥(a,stay ).

By Lemma 4.3 (1)), Hy, SNR, #0, since otherwise H,=H,,

stﬂR1 =0, By Lemma 4.3 ()} ), H&As;ka for some #¢A, and so

mAH(s)=(quqé), m, (s)=0 for/p;fﬁ. Since H1»=H12t, it

)9.1

follows that m«»t=X(q tqi,) Hence the left side of (1)

is (3) ¥(aq, SO’ )X(q tq )= X(q so o

" (2) and (3) equal it is cuff1c1ent to show hg sq«qﬁtq

hqlstqlfdheH. But this is so because hq,seH, s=H,, , and

tq ) To show

X9y

Now suppose that mA»(st)=O, so that HilstﬁHip. It is

is the identity mapping of HTK onto itself,

necessary to show the left side of (1) is also 0. If
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HllsﬂR=Q then m&u(s)=OYFm’ and (1) is O in this case. If
B,, sNRA0, then by Lemma 4.3 (1), By, s=H s=Hy, for some KeA.
Since m%p(s)=0%uﬁﬁ, it is sufficient to show that m,,(t)=0.
But Hﬂ<t=Hilst%Hi»f Therefore m«»(t)zo.
As an example of Schutzenberger represeﬂtations

consider the following set of transformations and the

operation defined by the table in figure 7.

* (11) (12) (21) (22)
(11) | (11) (11) (22) (22)
(12) | (11) (12) (21) (22)
(21) | (11) (21) (12) (22)
(22) | (11) (22) (11) (22)

| FIGURE 7

SET OF TRaNSFORWALIONS

r- fan @)} 1= {avl
= {2}
Hyy =RALg {(ll)i Hy, =R NI, = g(22)?
v - {an), a2} ¥ av an = a1 ¥ an a2)-)
{(H) is the group consisting of the identity element,
call it e. By computation it is seen
h,= (11) q,= (11) gq.= (1)
h,= (22) q,- (21) q,- (21)

By further computation it is seen



m,, (11)=¥{(11)
m,, (11)= ¥{11)
m,, (11)= ¥[21)
m,, (11)= Y[(21)

m,, (12)= Y(11)
my, (12)= ¥(11)
m,, (12)= ¥[21)
n,, (12)= ¥21)

my, (21)= ¥{(11)
m,, (21)=¥[11)
n,, (21)= Y{(21)
m,, (21)= ¥i(e1)

m,, (22)=¥{11)
m,, (22)=¥{11)
m,, (22)=Y{21)
m,, (22)=Y[(21)

(11)
(11)
(11)
(11)

(12)
(12)
(12)
12)

(21)
(21)
(21)
(21)

(22)
(22)
(22)
(22)

(11)] =¥(11)=e
(21) =¥(22)-=0
(11)} =¥(11)=e
(21) =Y¥@12)=0

(11)] =¥(11)=e
(21)] =¥(22)=0
(11)) =¥(11)=0
(21)] =¥(12)=e

(11) =Y(11)=0
(21)] =¥(11)=e
(11)] =¥(11)=e
(21)) =¥(21)=0

(11)] =¥(11)=0
(21)] =¥(11)=e
(11) =¥%(11)=0
(21} =¥(11)=e

(1) —{e
o
(l2)--+ e
0
(21)—f0
e
(22)~—f0
0

)
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Chapter V
Summary

The question considered in this study was whether
an arbitrary semigroup could be represented by a semigroup
of matrices. The Rees Theorem showed that a completeiy
O—simple semizroup was representable. Not only can a
completely O-simple semizroup be reprecentad, it's repre-
sentation is an isomorphism., Gre:sns theorem 2.2 provided
the group for the Rees matrix elemenis. In the case of
any other semigroup, the representation may or may not be
en isomorphism.,

In the more gemneral case, Cthe Schutzenberger group
of an #-class provided the group. In the case of an arbi-
trary semigroup, however, the representation may or may not
be isomorphic.

It might be well to discuss the chain of events that
lead from the elements s of the semigroup So to the finel
elements of the semigroup of matrices,

Recall that S° was first partitioned off into its
B—classes. (—classes and‘flclaSScs. The L-classes and
fzclasses were indexed by the sets I and A . This indexing
was then used to provide an indexing of the Waclasses
formed by the intersection of ctae L~classes and 7f1classes.

In this manner, one of the ﬁiclasses was given the
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index Hii' This F-clags was arbitrarily selected to form
the Schutzenberger group. The elements of this group
would become the elements of the aatrices.

It was necessary then to set up a mapping from the
elements of S° to the X(t) of T(Hix). .

Green's theorem 2.2 was used to caleculate tha qy that
provided a mapping from the H-clr s Hyy to Hy, and the
q; that provided the auapping from By, to Hii' It can be
readily seen that given any seSO and heH11 that the product
hqks%;. is 2gain an element of Hy, « Breaking the product

down hqhe H by definition of q,+ But the conaition thut

iA
H1A5=Hyu'forces hqas to be in ny' The means used to cal-
culate q{ then guarantees that hqxs%ﬁ € B, and so qls%ae

T(#) end ¥(qysqy, Je [(H). ;

Therefore the element in the row A and the column/u of
the matrix has the value X(qxs%;') 1f H113=Hyu otherwise
it is zero.

After the matrices have be¢n calculated to represent
the elements of So the question, how the preservation of
operations is bthe result, occurs, To put this more pre-
cisely given.r,s,t;eso and Gthe matrix representations
A, By, C of rys and t respectively. Why is ic chat if
r¥s=t then AeB=C?

First recall that the matrices are row(or column)

monomial. This means tkat when rows of A are "multiplied"
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by each of the columns of B the resulting summation will be
concerned with at most one non-zero element. Only the case
where a non-zero entry in C is calculated will be considered
here,
a1 183200y Bap is an arbiérary row of

Suppose that a

matrix A and bv*’byu"" is an arbitrary column of

b
Y\),A
matrix B. Also suppose that axkbk AZ0. Then alk=ﬁzq1rqé

and b -B/(qk J S0 alkbk}_A';X(q:) k )b/(q

k”,u
/
=¥(a,ra %5, )
The rea=on for this is given in the proof of theorem

q/ ) to be the element in

/ ~
4.4, In'order for X(qquk %kS,M
the 2Ach row the mth column of che matrix C, hqqu; qks%;_
must equal hqlc;p_ for 211 heH,, . But g} and q, are

inverse mappinzgs by theorem 2.2 and so r is wmzpped onto the
element of H,, that is mapped onto r. Therefore hqxrq; qks%L
= hqxrs%L.= hqkt%; . It czn be concluded from this that the
"product" a;, bb“ = C%P_.

The preceeding is not intended as & coauplete answer
to how the representation is established or why the mapping
is at least a homomorphism. It is hoped that it does
provide a feel for some of the more bothersome questions
that may enter ones mind as he flounders in the theory.

In the special case of representing a group as a group
of matrices it was found that following the definitions all

matrices were 1x1 due to the fact that there was only one

ﬁtclass.
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A few added theorems are of interest and can be found
in the book Algebraic Theory of Semigroups, by 4.H. Ciifford
and G.B. Preston.

1. Let S be a regular Rees matrix semigroup JVEG;I,A;P).
Then the Schutzenberger representations of S éorresponding
tQAthe O-class D=SN\0 can Be taken to be Mo(s)=Ps where s
denotes an arbitrary element of S.

2. Let H and B’ be #-classes of a semigroup S both
contained in the same d-class of S. Then [ (H) is isomor-
phic to [(H).

3. Any of the theorems on completely O-simple semi-
groups are also true about completely simple semigroups.

4., For any of the theorems on Schubzenberger represen-
tations, there exists dual theorems on anti-represencations.
Anti-representations are anti-icsomorphisms or anti—hoﬁomor-.

phisms defined by (a¥b)@=(b@)(ad).
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