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CHAPTER I
INTRODUCTION

In 1854, Cayley stated the following theoren.
/7 Every group is isomorphic to a permutation group of its

elements,’’ Scottl

and others show that Cayley’s theorem
can be stated in a slightly different way. ‘‘ Let G be a
group, and, for each x an element of G, let Rx be the func-
tion from G into G such that yRx = yx for all x in G, If T
is defined by xT = Rx for x in G, then T is an isomorphism
of G into Sym(G).’’ In other words, every group, G, can be
shown to be isomorphic to a subgroup of the symmetric group
on the elements of G. Since the statement of this theoren,
there has been considerable speculation about the possi-
bility of a given group, G, being isomorphic to a subgroup
of a smaller symmetric group than the symmetric group of
its elements,

The central problem of this investigation was this,
Given & group, G, find the minimum positive integer, n, so
that G is isomorphic to a subgroup of the symmetric group

on n elements,

1
Pe 2'0.

W. R. Scott, Group Theory, Englewood Cliffs, 196l,




In reporting the results of this investigetion,
groups will be defined in terms of generators and relsations,
All permutations will be expressed in cycle notation. The
report is restricted to finite groups.

In carrying out the investigation, the method of
attack varied with the type of group under consideration.
Usueally, however, several concrete examples were used to
suggest a general principal which was then tested and
proved.

The content of succeeding chapters is as follows.
Chapter II is a brief overview of some basic ideas from
group theory and also establishes notation and symbolism
employed in the remainder of the paper. Chapter III con-
tains the results of the investigation pertinent to cyclic
groups., Chapter IV gives a method for finding the smallest
symmetric group containing a subgroup that is isomorphic
to a given Abelian group with two generators. Chapter V
contains the results of the investigation for»certain non-
Abelian groups. Chapter VI gives a summary of the more
important findings and some conjectures on extending ideas
developed in Chapters III, IV, and V., The Bibliography
following Chapter VI lists some of the more useful publi-

cations in the area of groups,



CHAPTER 1T
PRELIMINARY IDRAS

An extensive knowledge of group theory, while desir-
able, is not essential to this report. The definition and
some basic properties of groups, together with some concepts
from abstract algebra, are sufficient background for the
ideas presented.

A group is defined to be an ordered pair (G, o),
such that G is a set, and o is an associative binary opera-—
tion on G, and there exists an element, e, of G so that:

i) if a is in G, then a o e = a, and

ii) if a is in G, then there exists a~t

-1_ 1
= e,

in G such that a o a

The order of a group, (G, o), is the number of ele-
ments in G,

A subset H of G may itself be a group with respect
to the operation defined for G, If so, H is a subgroup of
G. The theorem of Lagrange, which states that if G is a
finite group and if H is a subgroup of G, then the ordef of

H divides the order of G, 1s of considerable use in working

with subgroups. For example, according to this theorem, a

1scott, op. cit., pp. 6-8.



L

group of order 20 could have subgroups of order 1, 2, L, 5,
or 10, A group of order 10, on the other hand, could not
have subgroups of order 3, L, 6, 7, 6, or 9.

A permutation of & set M is defined to be a 1-1 func-

. 2 R .
tion from M onto M. A permutation group, then, is a set

of permutations that fulfills the minimum conditions for a
group. Of the various methods of denoting permutations, the
cycle notation is perhaps the simplest. The symbol (123)(L5)
is understood to mean that permutation on the set fl, 2, 3,
L, S‘} that maps 1 to 2, 2 to 3, 3 to 1, Lt to 5, and 5§ to L.
If P and Q are permutations on some set G, then if a is an
element of G, a(PQ) = (aP)Q. (This binary operation is asso-
ciative.) PFor example, (123)(45) o (12)(3L5) is the permu-
tation (324).3

Two groups G and H are isomorphic if and only if

there exists a 1l-1 mapping, T, from G onto H such that if
x and y are members of G, then (x o y)T=xT o yT. That is,
T is a 1-1 function that preserves operation.

There are several ways to display the elements of a
group and their relationships. One method employs the op-
eration table introduced by Cayley. For example, consider

the set G = {e, a, b, ¢, d} , and the operation, o, defined

2Ivid., po. 6-12.

3For a more detailed account see Neal H. McCoy, In-
troduction to Modern Algebra, Boston, 1960, pp. 175-1758.




by Table 1, page 5. It can be eesily verified that the
ordered pair (G, o) satisfies the definition and is a group.
The group (G, o) will be referred to as group G. The group
G has order five, written o(G) = 5.

Another method of representing a groun is to estab-
lish an isomorphism with a group whose properties are well
known. For example, the integers modulus 5 under ordinary
addition form a group which 1s isomorphic to the group in
Table I.

TABLE I

OPERATION TABLE FOR THE GROUP (G, o)

o) a bede
a becdeasa
b cdeab
c d e abe
d e & bed
e abcde

A third method, and the one to be used in succeeding
chapters, is to represent the group in terms of its genera-
tors and relations.

Certain elements of a finite group are called genera-
tors of the group if every element of the group can be ex-
pressed as a finite product of their powers.u That is, if
A and B generate the group L, then x is an element of L im-

plies x can be written as some finite product of their

MH. S. M. Coxeter and W. O, Moser, Generators and
Relations for Discrete Grouvns, New York, 1965, p. 1.
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powers, such as x = A2BAB3. When the set of generators 1is
restricted to a single element, the group is cyclic. The
group of Table I can be shown to be a cyclic group of order
five., Consider the group with the single generator T which
obeys the relation T5 = E, where E is the identity element
ol the group. This group is a cyclic group with elements
{T, T2, T3, Tu, E} » and by means of the correspondence

8 toT, btoT%, ¢ to T2, d to ™, and & to E, is isomor-—

phic to the group of Table I.



CHAPTER IIX
'THE PROBLEM FOR CYCLIC GROUPS

In terms of abstract definition, the simplest groups
are the cyclic groups of various orders. A cyclic group is
a group with the single generator T, such that ™ = E,
where n is a natural number. This group 1s denoted Cn and
has order n. Thus, the group CM’ defined by Tu = E, is the

2, TB:} of order four. The elements of

cyclic group {E, T, T
this group can also be represented by the set of permuta-
tions {E, (123L4), (13)(24), (1432)-} , where T = (1234).

By the nature of the definition of the product of permuta-
tions, if ™ = E defines a group, then a permutation that
will replace T could, in every case, be (l23...n), since

the only powers of this permutation that are equal to the
identity are multiples of n.

It is relatively easy to establish the isomorphism
between C3 and a permutation group. By the preceeding dis-—
cussion, one representation of T is T = (123). Then T2 =
(132) and T3 = E where E is the identity element. Then the
isomorphism can be established since it can be verified that
operation is preserved under this mapping. The group C3 is
isomorphic to & subgroup of 83 (the set of all permutations

on three elements), since the isomorphism is between ele-

ments of C, and S

3 3¢ ;
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In the same manner, it can be shown that CLL is iso-
morphic to a subgroup of SH’ and that CS is isomorphic to a
subgroup of SS' In fact, every cyclic group Cn is isomor-
phic to a subgroup of Sn.

3.1 THEOREM: There exists S, a subgroup of Sn’ such
that Cn is isomorphic to S.

Proof: There is an element x of Sn such that x =
(123...n) of length n., (1l23...n) generates a cyclic group
of order n since (123...n)k = B iff k¥ = sn where s is some
integer. Two cyclic groups of the same order are isomor-
phic.l Then S, generated by (l23...n), is isomorphic to C,
and 1s also a subgroup of Sn.

The group Cé, according to Theorem 3.1, 1s isomor-—
phic to a subgroup of Sé. It is also possible to express
the elements of C6 in such a way that an isomorphism can be
shown to exist between C6 and a subgroup of 85. It T =

(123) (45), then T2 = (132), T3 = (45), TH = (132)(45), end

T6 = E, Then Cé is isomorphic to the cyclic subgroup of S5
that is generated by (123)(L45).
The central concept of this chapter can be stated in

the following way. If Cn is a cyclic group of order n,

where n =‘alxa2x...xat, where each as is & power of a prime

1scott, Op. Cit., p. 3L.
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and (a,, aj) =1 if i # J, then C, is isomorphic to a sub-

group of S +a_+ +a ) also, this is the smallest symmetric

1 2 L I 3 ,t
group that will pernit imbedding of Cn.

a

3.2 LEMMA: If a and b are natural numbers, each
greater than or equal to two, then a + b < a X b,

Proof: Without loss of generality, let a < b. Then
b = a + k where k 1s some non-negative integer., Then a > 2
implies a2 > 2a, Also, a > 1 implies ak > k, But then a2 +
ak > 2a + k, which implies that ala + k) > a + (a + k).
Since b = a + k, then a2 +b < a x b,

3.3 LEMMA: Given any finite set of s where each

as is a natural number greater than one, then
h n
ziai < ?]—ai, where n is the number of a,.

Proof: By induction on n., First, a; <8y for all a;

in the set of natural numbers. Then suppose a,ta,t...*a

1 72 k

IA

8 Xa,XeeeXa, o To show that aqtasteeetay ) < 8yXa Xee0Xa 0y

add 8141 to each side of the inequality involving k terms.
K41 K K ki

Then Z:ai < 'TTai +ak+l' By 3.2, Illai Toa g = 8.

= = =l - ot L
' Kl Kri =l
By the transitivity of inequality, 'Z:ai 5'TTai. Therefore,
n n 1= =1

=\lla; for n any natural number,

t
3el4 LEMMA: If n ='Trai, where &y is & natural num-

iTl

t
ber and (aj, ak) =1 if j #%, and r = 2: 8;, then if a, is
1=
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\,-\I -
. i . —
a power of a prime, Py , then r is minimum,

_ _ 43 v %4
Proof: If a; = ps s then ry = é%pi « Suppose

X .
i . . . . .
as # P; « Then since n has a unique prime factorization

into primes and the ai’s must be peirwise relatively prime,
s o

= i _ =
then at leasz¥one as ;&eri s S=k > 1, DBut then r, Z:ai.
By 3.3, szi 15 TTbi 1 which implies that ry 2, for all
X s
r,. Then r is minimum if a. = p. .
2 i i

If P is a permutation so that the group defined by
™ = B is isomorphic to the group generated by P, tnen P 1is
a permutation such that 1if PS = B, then s is a multiple of
ne If P is a single cycle of length n, then P 1s an element
of Sn and Cn is isomorphic to a subgroup of Sn. If n=
plp2p3, where eeach Ps is a power of a different prime, then
a three cycle permutation (one cycle of length pys one of
length Pos and one of length p3), where the cycles are dis-
joint gives a permutation that generates the cyclic group of
order n., Since this is true, Cn is isomorphic to a subgroup

of S since the generating permutation 1s an element

£ .
R s P N

3.5 THEOREM: If Gn is a cyclic group of order n and
if n = P1Poe - Py wWwhere each P; is a power of a different

prime, then Cn is isomorphic to a subgroup of S i.p .
i

=l
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Proof: Cn is generated by an element T such that

™ = B, For every case, Cn is isomorphic to a subgroup of
Sn. Since n can be factored so that each factor is some

t
power of a different prime, then n = J[ p;, where each p,

P

1=

is a power of a different prime. Then 1t is possible to
form t disjoint cycles so that one cycle has length p,» one
heas length Pos and so on to the final cycle of length Py
This permutation (formed by multiplying the cycles) gives

a representation of T so that the only powers of the per-
mutation that are equal to the identity element will be mul-
tiples of n., Using this permutation, an isomorphism can be

established between C_ and a subgroup of S E-

1=1

3.6 THEOREM: The symmetric group established by

p;°

3.5 is the smallest such group so that the symmetric group
will permit imbedding of C_. |

Proof: By 3.3, if n is a power of a single prime,
then the shortest permutation that will generate a group of
order n is a one cycle permutation of length n. Then the
minimum symmetric group that allows imbedding of Cn is Sn.

t

If n is a number of the form I Py where each Py is a power
1=l t

of a different prime, then by 3.L, Z:pi is the minimum sum

il

of the form required in 3.5. Then the shortest possible
permutation that will generate a cyclic group isomorphic to
. +t ) - . .
Cn is an element of S s ool The symmetric group S Z*‘ ps is,
1=

i=| 1
therefore, the smallest symmetric group that permits imbed-
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ding of Cn. :

Ir s, a specific symmetric group, is given, it is
possible to find cyelic subgroups of Sn‘ The following
theorems give a method for finding the largest cyclic sub-
group of Sn under a speclal condition,

3.7 THEOREM: Given r, a natural number, the maximum

m so that m = a,a, where r = a, + a, and (al, a2) =1 is

1
given by:

1) p2 -1 if r is odd,

ii) -1 if r is even and L4lr, and

I

. s s 2 . .

iii) r© =l if r is even and Lfr.

Proof: i) Consider pairs of integers a and b such

that a + b =r, Thena =r -m, b =m, and a X b = (r;m)m.
If f(m) = (r -— m)m = rm - m?, then, upon differentiation,
f’m) =r-2m, If r - 2m = 0, then n = %, and this is a
maximum since £’’(m) = -2, However, since r/2 is not an
integer (r is odd), consider pairs of integers near

1 r+1

(r/2, r/2). The numbers E%— and =% are integers with the

required characteristics, since r2—l > r2—9 > r2—25 > eee e
L i n

To show that r+l and r-1 are relatively prime, sup-
2 2
pose that they are not. Then (r+l, r-1l) = d # 1 implies

2
that r+l = dp and r-1 = dq where p ang q are integers., Then
— == v
r = 2dp-l and r = 2dq+1l implies that 2dp-1 = 2dq+l. Then
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2d(p-q) = 2 and d(p-q) = 1 and then 4|1 which implies that

d = 1, This contradicts the assumption that & # 1l; there-

(r‘+l r-1

fore, =5 _E_) =1,

ii) Given L|r, then the maximum product occurs at
(r/2, r/2). While these numbers are integers, they are not

relatively prime. As before, examine pairs of numbers near

(r/2, r/2). Consider % L % Z2, ... . Certainly,
21> p? -4 > ««. + Then checking to see that r + 1 and

I I 2
L
2
i

-1 are relatively prime, since L|r then r = Lp, where p

s some integer. To show that (2p-1l, 2p+l) = 1, suppose in-
stead that (2p-1, 2p+l) = d # 1. Then there exist integers
s and t so that 2p-1 = ds and 2p+l = dt. Then ds+2 = 4dt im-
plies that d(s-t) = 2 which in turn implies that d|2. Then
either d = 1 or 4 = 2. Since 2p-1 is odd, d # 2. Then
d =1, but this is a contradiction of the assumption that
d # 1. By contradiction, % -1 and % +1 are relatively
prime,

iii) Given 2|r and Lfr, the maximum product occurs at

(r/2, »/2). While these are integral, they are not rela-
tively prime. Consider % +1 and % -1, since r is even but

not divisible by four, +1 and % -1 are both even and so

s

they are not relatively prime. Now, since rz/u > rz/u -1>
rz/u - > ..., then consider ra/u -Lj, given by r/2 +2 and
r/2 -2. These numbers are relatively prime. To show this,

supnose that (r/2 +2, r/2 -2) = d # 1. Then there exist
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t and s, integers, such that r/2 + 2 = dt, and r/2 ~ 2 = ds.
This implies that ds + lj = dt or that d(s-t) = L4 and so
d|lt, Then either 4 = lf dad =2, or d =l. However, r/2 + 2
is odd so d must be odd and then d = 1, which contradicts
the assumption that 4 # 1, and so (r/2 + 2, r/2 - 2) =1,
3,86 THECREM: Given Sn’ a) if n is odd, Sn contains

C, , b) if n is even and k|n, then S_ contains C
n
n -1 n
L in

and ¢) if n is even and lfn, S contains C

3
2

n2 -l )
L

Proof: a) Let n be odd and let e be an element of
Sn. Then each e 1s a permutation of length less than or
equal to n and consisting of disjoint cycles. Then some
e, consists of two disjoint cycles (cycle I and cycle II)

Py

such that the order of I is n+l, the order of II is n-1l.

2
Then the order of their product is n2—l and Sn contains
C o e Further, this is the largest cyclic group in Sn
n -1

L

generated by a two cycle permutation., To show this, the
following argument could be employed. Given B, a permuta-
tion from Sn, such that B has two cycles (for example, in

84 B might be (13)(24) ) and the two cycles together‘con—
tain all n elemenfs, then B is a generator of a cyclic group.
If the lengths of the two cycles are relatively prime inte-
gers, then by 3.7, the largest cyclic group generated by a

two cycle permutation from Sn will be generated by the permu-—
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tation with cycles of length r-1 and r+l .
2 2 '
b) Let n be even and lL|n, and let ¢ be an elemen

ct

ol
Sn. Then each e is a permutation consisting of disjoint

cycles and e is of lengté n or less, Then some e. is a pro-
duct of two disjoint cycles (cycle I and cycle II) such that

the order of I is n . , and the order of II is + 1 and the

nols

order of the cyclic group generated by en is n2_ 1 Then
i

S, contains C , if L|n. The same type of argument as in
):-1_-1

a) will show that C 5 is the largest cyclic subgroup gen-—
E—l

erated by a two cycle permutation from Sn.

¢) Let n be even but not divisible by four, and let
e be an element of Sn' Then some eq is a permutation con-
sisting of two disjoint cycles (I and II) such that the or-

n

der of I is 5 = 2 and the order of II is = + 2, The degree

2
of °q is n- i, Once again, by 3.7, this is seen to give
the largest cyclic subgroup generated by a two cycle per-—
mutation of Sn.

In terms of the central problem of this investigation,
Theorems 3.5 and 3.6 are the important concepts in this sec-
tion. They give a general rule for finding the minirmum

symmetric group that will permit imbedding of a given cyclic

group.



EAPTER IV
ABELIAN GROUPS W%TH TW0 GuNZRATORS

Abelian groups are those groups with the vroperty
that the elements of the group are commutative with respect
to the operation., This chapter will deal with Abelian
groups generated by two elements R and T such that RM=T=L
where RT=TR.,

If G and H are groups, then the direct product of G

and H is:

GxH = {®, T)| Ris in G and T is in E J .
As an example, the group C3x02, where 03 is generated by R
such that R3=I and 02 is generated by T such that T-=I, has
elements {(I,I), (R, I), (8%, I), (®, T), (%, T), (I, T)}.
The order of a group formed by the direct product of groups
of orders m and n is mn,

TIwo theorems will be used without proof in this chap-
ter., Their proofs can be found in the sources cited.,

L.l THEOREM: ZEvery Abelian group is the direct pro-
duct of cyclic groups whose orders are powers of primes.l

.2 THEOREM: The direct product of cyclic groups of

orders p and q is an Abelian group of order pg which is

lWalter Lederman, Introduction to the Theory of
Finite Groups, Edinburgh, 1949, pp. 140-1lJ,
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cyclic if p and g are relatively prime.2
L.3 THXOREM: If A is an Abelian group generated by
R and T such that Rm=Tn=I, RT=TR, then A 1s isomorphic to
the group meCn where Cm is generated by R such that RM=1
and C_ is generated by T such that T'=I,

Proof: The group A has elements {i, RT, RzT,...,

1o gel, 3, ..., RT®Y, R9T2, R9T3,..., R, R%,..., R°L,

T, T2,..., Tn_l‘}. The elements of C xC_ are {KI, I),

(R, T), (R%, T),..., (B%L, T), (R, T9), (R, T3),...,
(R, 1), (8%, 1°), (R%, 13),..., (R, I), (§%, I),...,
(7L, 1), (1, ™, (I, T°),..., (I, %) } . Ir (4, B) and
(C, D) are in C_xC_, then (4, B)o(C, D) = (AC, BD). If F is
a function from A to meCn such that (RPPYF = (RP, Tq),
then F is 1-1 and onto. Also, since RPTERFTY=RP™*73%V  then
(RP7%) (R¥* Y )r = (RPY*, 7977y = (8P, 7%)o(R%, TV) =
(Rqu)Fo(RxTy)F. Since F preserves operation, F is an isomor-
phism from A onto mecn.

The shortest permutation that will generate a cyclic
group of a given order is a product of disjoint cycles.
By 1.3, each element of CmXCn can be expressea as the pro-
duct of the permutations that generate Cm and Cn. Then

each element of meCn can be expressed as the product of

pairwise disjoint cycles. For example, if A is the group

2Coxeter, Op. Cit., p. 3.
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generated by R énd T such that RM=T2=I, AT=TR, then 4 is
isomorphic to CuxC2. Theorem 3.5 gives the shortest per-
mutation that will generate CM’ (abcd), and the shortest
permutation that will generate 02, (ef). The group ele-
ments can be expressed as_ {i, (abed), (ac)(bd), (adcb),
(ef), (abecd)(ef), (ac)(bd)(ef), (adcb)(ef) } . Then every
element of A can be represented as an element of Sé and
A is isomorphic to a subgroup of Sé.

12_715_1

The group A generated by R and T such that R
where RT=TR is isomorphic to the group 012X015° By L.2,
C12 is isomorphic to CLLXC3 and ClS is isomorphic to CSXCB'
Then the group can be expressed as CMXCBXC5XC3 and, using
3.7, the shortest generating elements for Cu, C5, and C3
can be found., Since the permutations used to generate each
of the four cyclic groups must be pairwise disjoint, then,
by L.3, every element of A can be expressed as a permuta-—
tion of length fifteen or less, and there is at least one
element of length fifteen. Then SlS is the smallest sym-—
metric group containing a subgroup isomorphic to the given
group.

L.y THEOREM: If A is an Abelian group generated by
R and T such that R'=T'=I, RT=TR, then A is isomorphic to a

s t
subgroup of S fla + ‘=b where m= ]!ai and n= Hbi where each
2 83 i i= 7=

i=} L 1= 1 !

a. is a power of a different prime and each b

3 ; 1s a power of
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a different prime,
Proof: By L.3, A i1s isomorphic to CxC,. By L.l and

s £

L.2, since m=17'ai and n='rrbi, then A is isomorphic to the
iz iz

direct product C_ xC_ x,,.xC_ xC. X,,.xC._ .,

81 8 85 Py Py

shortest permutation that will generate a cyclic group of

By 3.5, the

order ass, where.ai is a powsr of a prime, is a single cycle
of length 85 Then since all generating permutations of the
cyclic groups are disjoint, each element of A will be a per-

S T .
mutation on..Ziai+ > b, elements. A is then isomorphic to
i= i=!

a subgroup of S & + & .
é}ai g&bi

Table II shows selected results of this theorem. The
groups whose definitions are followed by a A are cyclic
groups. (See Ch, III).

4.5 THEOREM: Theorem L.l gives the minimum symmet—
ric group containing a subgroup isomorphic to a given Absel-—-
ian group with two generators,

Proof: By contradiction. Suppose A is isomorphic

s t
to a subgroup of Sq, where g < o ay -_i-Zbi. Then A has no
s + i:‘ ‘|=|
element of length Zrlai + Y b.. But, since all C; and C
=l :

¢ . b.
1= 1

1

are generated by permutations that are disjoint, then at
s

t
least one element of A has length.'z:ai + Z:bi. Therefore,
= i=

is the smallest symmetric group containing a

Me

b.
i 1

somorphic to A,

S 3
> a. +
=1 1

subgroup

-
1"

’—l-

As an example of 4.5, in the group A generated by R
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TABLE IT

SUMMARY OF SELECTED RESULTS OF THEOREM L.3

Abstract Definition Factorization Sum of Powers Order of Smallest Sym-

AM = B0 = T, AB = BA of my n of Primes Croup metric Group

A2 =8 =TI, AB=BA m=2 242 = | L ),
ns=2

A6=B3=I,AB=BA m = 3x2 342+3 = 8 18 Sg
ns=23 -

A12- 8152 1, AB = BA m = Lx3 L+3+5+3 = 15 180 815
n = 5x3

Al0=pl5 = I, AB = BA m = 5x2 5+245+3 = 15 150 s

15

n = 5x3

A3=82 =TI, B=BAa m =23 342 = 5 6 S
n=2

A20= B2la T, AB = BA A m = Sxl S+4+7+3 = 19 120 S19
n = 7x3

A8 B66a 1 4B = BA m = 3x2b 3+16+11+3 - 3168 S5

n = 11x3x2 +2 = 35
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20_n36_ _rm ) =
and T such that R™=T-“"=I, RT=TR, represented by C20x036—
Chxcsxchcu, the generating permutations for each of the
four cyclic groups must be disjoint so that A 1s Abelian.
By inspection of the elements of A, one element is formed
by the product of the four generating permutations. This
element must have length L+5+9+,=22, and so S,, is the smal-

lest symmetric group that has a subgroup isomorphic to A,



HAPTER V
CERTAIN NON-—-ABSLIAN GROUPS

The groups generated by two elements R and T such
that Rn=T2=(RT)2=I where n>2 are non-—Abelian groups of order
2n, These groups, denoted by Rn, are called dihedral groups
if n is even, and metacyclic if n is odd.

The group generated by R and T such that Ru=T2=(RT)2=

2p, R37,

I is the group with elements {h, RZ, R3, T, RT, R
I ]-. Thus, Rh is a group of order eight and is, by Cayley’s
theorem, isomorphic to a subgroup of SB' However, if R=
(1234) and T=(1lh)(23), then RT=(13)(24), and since b=
(1234)4=1, 2= [(14)(23]] 2=I, ena (81)2= [(13)(24]] 2=I,
the group has elements {(123L), (13)(24), (1432), (1L)(23),
(13), (12)(3L), (2&),'1:} corresponding (in the same order)
to the elements of the group above. Then Rh is isomorphic
to the group generated by (1234) and (14)(23), and Rq is
isomorphic to a subgroup of Sh'

If G is a group of order eight and G is isomorphic
to group H, then o(H)=8., The smallest integer n so that
8|n! is four, so by Lagrange’s theorem, four is the smallest
integer n such that Rﬁ is isomorphic to a subgroup of Sn.

The group generated by R and T where R6=T2=(RT)2=I,

denoted by Ré, is a group of order twelve and is isomorphic
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to a subgroup of S However, if R=(123456) and T=(16)(25)

12°
(34), then RT=(15)(2h). Since (123456)%=I, [(16)(25)(34)] 2=
I, and [(15)(2h)] 2=I, then R, is isomorphic to a subgroup
of Sé. Sé is not the smallest symmetric group with g subgroup
isomorphic to R,. If R=(123)(45) and T=(13), then R®=(132),
R3=(15),..., ’®=I,..., T2=I,..., RT=(12)(45), (RT)®=I. Thus
the group Ré is isomorphic to a subgroup of 35'

5.1 THEORZIM: Ir Rn is a group with generators R and
T such that Rn=T2=(RT)2=I, then R 1is isomorphic to a sub-
group of Sn. .

Proof: Case l, If n is even, let R=(a1a2...an) and
T=(a1an)(a2an_l)...(ian/zan/2 +1)- Then RT=(aja _,)(aja__,)
...(an/2 —lan/2 +1). Every element of R_ is isomorphic to a
subgroup of S . (Table III gives some specific results of
5.1 for n even,)

Case 2. If n is odd, let R=(a1a2...an) and

T=(alan_l)(a2an_2)...(an_lan+l). Then RT=(alan_2)(a2an_3)

2 2
"‘(an-gan+l)(an—lan)' Every element of R can then be re-

2 2

presented as an element of Sn’ and Rn is isomorphic to a
subgroup of S . (Table IV gi%es some results of 5.1 for
n odd.,)

5.2 THHOREM: If R, is the group generated by R and
T such that R =T2=(RT)2=I, then if n is prime, S_ is the
smallest symmetric group containing a subgroup isomorphic

to Rn.



TABLE III

SELECTED RZASULTS OF 5,1, n EVEN

2l

Order Abstract Definition Cyclic Decomposition
8 g* = 72 = (RT)Z = E R=(123) T=(1L)(23)
T=(13)
12 R =12 = (g7)2 =& R= (12;4 6& T=(16) (25) (3L) 6
(2
16 R =1 = mrm)2 ==& (123&5678 ) T=(16)(27)(36) 8
(L5) (17)(26)(35)
20 8% 12 = (RT)2 = & R=(a,8,500021,) T=(a)8)0)ees 10
(asaé) RT=(ala9)...(aua6)
TABLE IV
SELECTED RESULTS OF 5.1, n ODD
Order Abstract definition Cyeclic Decomposition n
6 R =7T°=(RT)® = E R=(123) T=(12) RT=(23)
10 R’° =1%= ()2 = E R=(12345) T=(14)(23) 5
=(13)(45)
1, R/ =1° = (RT1)® = E  R=(1234567) T=(16)(25)(34) 7
=(15)(2L.) (67) ,
30 RYS= < = (RT)2 =R R=(ala2...a15) T=(alélu)... 15

(a7a8) RT=(a

18,13) eese (alh-a:LS)




Proof: If n is prime, then by 5.1, Sn contains a
subgroup that is isomorphic to Rn. Suppose there exists
some integer m such that m<n where Rn is isomorphic to a
subgroup of Sm' Since o(Rn)=2n, then by Lagrange’s theo-
rem, 2n|m!, and so nlm% . Suppose nIE% , then n is a product
of integers less than or equal to m. Since n is prime,
then n is not a product of integers, Further, n is not a
single integer less than or equal to m since m<n., There-
fore, the statement that nlm% is false and n is the smallest

integer so that Sn contains a subgroup isomorphic to Rn.

™



CONCLUSIONS AND CONJECTURES

This paper contains the results of an investigation
of Cayley’s theorem. The investigation was restricted to
selected finite groups. The most important conclusions
are the following.,

It Cn is a cyclic group of order n, then the smallest
m such that Sm contains a subgroup isomorphic to Cn is ob-
tained by adding the factors of the prime factorization of
n. Thus, C60 is iéomorphic to a subgroup of 812 since 60 =
22x3x5 and L+3+5 = 12,

If A is an Abelian group generated by two elements R
and T such that R® = T = I, RT = TR, then the smallest q so
that Sq contains a subgroup isomorphic to A is the sum of
the factors in the prime factorization of n and m.

It Rn is a group generated by R and T such that RT =
78 = (RT)2 = I, then R is isomorphic to a subgroup of S _.
If n is prime, then Sn is the smallest symmetric group con-
taining a subgroup isomorphic to Rn.

Some conjectures that could furnish material for fur—

ther study are:

1., If A is an Abelian group generated by Al’ A2,...,

A_ where AT = Al = = 5% - = :
T 1 o Teee Ar I, AiAj Ain, then the sum

of the prime factorization of m, n, ..., z gives the minimum
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q so that Sq is the smallest symmetric group containing a

subgroup isomorphic to A,

2., If Rn is a group generated by R and T such that

n

R 7 = (RT)2 = I and n is not prime, then the smallest m

Il

so that Sm contains a subgroup isomorphic to Rn is the sum

of the factors in the prime factorization of n.
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