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CHAFTER I
INTRODUCTION

When studying infinite sequences, there are many of these
sequences whose elements become repetitive., This naturally gives rise
to the questions: (1) How can such an infinite sequence be generated?,
and (2) If given such a sequence, how can its generator be found? When
considering only those sequences of maximum period over a finite field,

such questions may be answered,
I, THE PROBLEM

Statement of the problem, The purpose of this study is (1) to

show that all sequences of maximum period over a finite field may be
generated by a linear recurrence relation; (2) to show an isomorphism
of the linear recurrence definition to a set of quotient polymomials;
(3) to develope the background for synthesis of the minimum degree

enerator iven an infinite riodic sequence,
g » 8 q

Limitations. Since there have been mumerous studies made con-
cerning infinite periodic sequences defined by a recurrence relation,
this paper can deal only with those sequences Which may be defined by
a linear recurrence relation over a modular field of integers., Such
sequences are shown to be purely periodic, thus greatly simplifying the

task of finding the minimum degree generator,

Importance of the problem, Infinite sequences of maximum period



over é modular field have many interesting properites and uses. Hou-
ever, this study was induced by the occurrence of such sequences in
natural and physical science phenomenon. One such physical application
might be in electrical impulse circuits, where the elements of the
sequence are considered as amplitudes of the electrical impulses with
respect to time, Generaters of sucia seguences are then of great import-

ance in determining circuit topolozy.
II, ERIEF HISTORY

In the year 1202 lecnard Pisano, or Fibonaccl, used the recur-
ring sequence 1, 2, 3, 5, 8, 13, ... concerning the offspring of a pair
of rabbits. Iater Girard (15907-16337) noted the linear recurrence,

Usp = Upp] * Un, for this seguence (arithemetic series). This sequence,
referred to today as the Fibonacci sequence, was probably one of the
earliest sequences defined by a linear recurrence relation,

An interesting account of the history of recurring series from
the time of Pisano until the early nineteen-hundreds was ziven by

Dickson (187L4-195L) in his History of the Theory of Xumbers, volume I,

Chapter XVII, "Recurring Series",

Iucas (1842-1891) was the first to make any extensive studies
on sequences. Lucas in his earlier work stated without proof many
theorems on the series of Pisano and also estzblished many properties
of second order sequences. ZIater in 1930 in a paper on extended theory
of the Iucas' functions, Lehmer devised a test for the primality of
Mersenne numbers 2p-l (p, a prime) which has been used for the discovery

of a prime with several hundered digits.



In the year 1913 Carmicheal generalized many of the Lucas!
theorems and corrected several others. Iater in 1920 Carmicheal made
the first attempt on sequences in general and esvablished ruch of the
terminology used to dicuss their fundamental oroperty of modular period-
icity. In a paper presented to the American Mathematical Society in
1930, Ingstrom further develozec the concept of modular periodicity
by reducing the restrictions on the wmodulus.

Ward presented a paper to the Society in 1932 which discussed
methods to determine the least upper bounds for the characteristic
number and the numeric of any solution to a general linear recurrence
relation, Also discussed by Ward, and of great importance to the
present study, was that there cluways exist solutions of the defining
recurrence relation whose characteristic number modulo m is the prin-
cipal period of the defininc recurrence relation. Ward also presented
in the same paper the fundamental theorem on purely periodic seguences
and several useful corollaries.,

Hall in a paper presented to the American lathemztical Society
in 1936 discussed an isomorphism.betwéen linear recurring sequences
and algebraic rings,

Brenmner in a short note presented to the American Mathematicsal

Yonthly in 1954 discussed a method to determine the period of a seguence
using established theorems about matrices,

Zierler in a paper puclished in the Journal for the Society of

Induetrial and Apnlied lMathematics in 1959, discussed the very small

class of linear recurring sequences which are of interest in this study,



i.e., sequences of maximum pericd gernerated by a linear recurrence over
a finite field, Also in the same paper, Zierler gives a proof of the
equivalence of the defining linesr recurrence and a quotient ring of
polynomials, Many of the theorems nccessary to find the minimum degree
ratio of polynomials which gerncrate a given sequence are presented by
Zierler in his paper,

In more recent years linear recurring sequences have also been
examined by Albert, Blankinship, and Golomb., However, most of the
background for the present study was presented by Zierler, Eremner, Hall,

and Ward.
ITII. OUTLINE O APPROACH TO THE ZROBLEM

An isomorphism is made between infinite periodic sequences over
a modular field of'integers and infinite degree polynomials whose coef=
ficients are elements of the same modular field. Turthermore, it is shown
that these infinite degree voiynomiazls may be expressed as a ratio of
finite degree polynomials. These volynomials are defined over the field
GF(p), and their root fields are extensions of GF(p). A general synthesis
orocedure is developed to find the minimum degree ratio of volynomials
which will produce any pericdic sequence over GF(p). The root of their
polynomial representations will be considered so that a synthesis vro-
cedure may be developed.

Chapter II shows that the set of all sequences {li}:;O x € I,

satisfying a defining linear recurrence relation is generated by a (k+1)=

o~ o N
tuple of elements of Ip and each ixi}igo is uniquely determined by the
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- . o e . . b
k-tuple which consists of tn: [irsy ¥ cicrents of tne sequence 3¥;ti=ge
~

[

‘a’\

it is then shouwn that this scv ol k-tuples dencted by A is a linear
.ora of order k. The purvosc of showing the set 4 1s a2 linear

algebra of order k is to make an isomorohism vetween the set 4 and

the algebra of k x k matrices. This iscmorphism will greatly simplifly

the task of finding the gercra.or of any particular seguence.

e

In Chapter IIT an isoricrorism 1s shown between the delining

linear recurrence relation and & set o i

:

inite degree polynomials
efined as a ratio of finite dezree pclyncmials.

In Chapter IV the infinite periodic secquence is defined and
it is shown that there are always infinite sequences which are solutions
of the defining linear recurrence relation wnose characterisiic number

5

is the principal period of tne defininz recurrence.
Chapter V gives a brief outline of extension fields and
the root fields of volynomials of prime characteristic so that a

synthesis procedure might be developed in Chapter VI for finding the

minimum degree generator of & ziven sequence.
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Crariin I

THE DEFINING LINZAR RECURRING RELATION

AND SOME PROPERTIZES O ITS SCLUTIONS

For k20, let cee be elements belonging to
> s s )

the field of integers modulo p, where p is a prime, with aja, # O.

Denote the set of all sequences {xi}zlo satisfying the relationship
. ,
E a;% 3 =0 (1 = %,k+1l,... ) (2.1
3=0

= G(a ans l”"’ak)’ where xiEEID and X, = 0 for i<O0,
. I \ . Y
Now the set G contains p members, since each of the first

k initial terms, x, (i =0,1,...,k=1), of a sequence‘{k } may e

i=0
chosen in the field Ip in p ways and tne remaining terms of the

[ =)
sequence {&i}i-o are then determined by the recurrence relation

i —61 % a‘ﬁxi-j (i = k,k+l,ooo ). (2'2)
51

The elements of G are said to be the {linear recurring)
sequences generated by the {k+1)-tuple of a:L s; l.e., B eeeay
zenerate the set G. (i1, p. 31) \

R 2)

Tet the first k elemenits of a solution, ixi3i=o’ of (2.1);
i.e., an element of G, be associated with the k-tuple (XO""’Xk-l)
vhich will te denoted by (x, ). There are pk such k-tuples with
elements belonging to I satisfying (2. l), hence all k~tuples with
elements belonging to I73 satisfy (2.1). Xow each such k~tuple (Xk)

£

is unique, thus letting the first k terms of a sequence fi Ts= O be



~ oo
those of such a k-tuple, uniquely determines a solution X{§i=0 ol
(2.1)s 4 one-to-one corresmondence may be set up between the set of
all such k-tuples with elements in Io and the set G, i,e,, all sequences
-/A o3 3 . ‘.
ixi};_o satisfying (2.1). Denote this set of k-tuples by 4.
$=
To illustrate the linear recurring relationship of (2.1)

consider as an example the scouence of {}13 senerated by the

OLJ
L-tuple (a 252452 2,a3 = (1,2,1,1) and the 3-tuple of initial values
(xo,xj,xz) = (1,2,2), wher: ai,xiGEID and k = 3, With these specifi-

cations the equations (2,1) bhecome

kg *+ 2, +1x +1xy =0,
Lo o+exg o+ lx, v Ix) =0,
kg +2x o+ 1xy  *1x, =0, (2.3)

n+3 n+2 n+l n
etc,
The following system o equations is cbtained from (2.3) by

solving for the x,'s (i =3,L,5,000 )

Xy = (o, wIxg, o+ 2% )5

%y, =-%2x3 v ik, o+ 2%y ),

= -{(2% + 1 + D3 Wi
Xg (2%, 1x3 2x,, ), (2.14)

x_ = —(27{3_1 *lx ot 2xn_3),

The solution, {j 54 O’ may te obtained from the system of

eguations (2.13). Substitution of the assumed values XO = 1, Xl = 2,
and X, = 2 into the first eguaticn of (2.)) determines the value . _ = 2,

AWV



Having obtained x .3 we may solve for 5, using the second equation of

(2.4). If continuing in this manner indefinitely the solution, {k :51-0

would be obtained, It is this proveriy; i.e., the recurrence of the
+h

wis . ~

xi's (i<n) in determining the n™ term of the sequence, that leads
us to call equation (2.1) a recursive relation. (6, p. 28) After
solving for a finite number o terms, it is reslized tne seguence in
this example becomes repetitive. In fact, all sequences which are
solutions of (2.1) be come repetitive. Since, all that is necessary

N 0
Fad S S <Y PR B4 L 3 + .
for a solutlon,-{%i}i=o with the initial k terms XgsXyseresX 15 to

become repvetitive is that some k consecutive terms previously used,
occur again later in the sequence. Now, some k consecutlve terms
must always re-occur later in the sequence. Since there only pk such
k-tuples over the field I s Suppose that the first pk terms of a

sequence {ﬁ f =0 are elements of the Field I such that no k consec-

. . . . th .
utive terms re~cccur up to and includinz the {: k) term; i.e.,

S } ' mare (v
S PRTRIL SO PRy xiGEIp where (x e ""’X1+’) %,(X1+t’k1+t+l’

g . - k o ", L} - > -
. & ) for 0£i=(p -(k+1)). 1Iow with these conditions we realize

1+t+k

that there are at most only (k-1) k-tuples which are not included in
- K o Co s . -
the first p terms of the sequence. aAnd that 1f the terms of any

k-tupie (xnk,x r) where to comprise the next k terms

veeyX
pK+1? xpk+2 2 > 3”
of the seguence, then the sequence rust at least repeat some k consec-

C‘)th

. . . . k
utive terms upon reaching the (o +% term, since all p~ k-tuples

1 %
have definitely occurred ty the (pK+(k-l))"h term. In fact, the nuwicer
X X -y eo
of terms in which a sequence {%.% _g» & solution of (2.1), must become

3
A

< . e - - . . R
repetitive is at most p’. 4 result of this arzument ... sunmarized in



Chapter IV, Theorem L.l, after ¢ periodic seguence is defined. The
solution to the example given atove is {?,2,2,2,1,0,0,1,1,0,1,0,2,
1,2,2,...}3 which begins reweating after the thirteenth term.

Now recalling that the set 4 is the set of k-tuples whose
elements are the first k elements of a solution to the defining
recurrence relation (2.1), define cperations of sum on & to be

() + (v )= (u +v) (2.5)
and scalar oroduct to be

clv,) = (ev, ], (2.6)

where c(EIp and (uk),(vk)EEA. The operations are obviously closed
since these are the ordinary operations defined for k-tuples over
a field. The identity element for the operation of addition is
(0) = (0;0544.,0), and the additive inverse of (uk> is -(uk) = (—uk)
which is defined to be (—uo,-ul,...,-uk). Furthermore, it is evident
that addition is commutative and associative. Therefore 4 is an
Abelian group with respect to addition, and for c,dEEIp, c(vk + uk)

(cvk) + (dvk). Also (cd)(vk} = c(dvk}

I

= (v ) *+ (ew), (e +d)(v,)
and l(vk) = (vk). (9, p. 1237)
Hence, according to the following definition, A 1s a vector

space.

Definiticn 2.1. 4 "vector space® V over a field T consists

of a nonemply set of elemenis, called vectors, such that for any two
vectors X,YE€V the sum X + ¥ is a unique vector of V, and for any

scalar a€F, the scalar product aX&€V, The set V is then called

ta vector space over the field F'" if V has the following properties:



(i) V is an Abelian rroud with resrect to addition,

(11) a(X +Y) = ax

]
b)
+
o
[
A ]

i "R e Ves
aCF,L,lC Y »

(111) (a + B)X = aX + b, a,bET;RET,
iv)  a(uX) = (ab)X, 2,0 EFNGT,
(v) W =X, 1 the unity of 7.

The following is & dclirnition of a linear algebra.

Definition 2.2. 4 "liresr algedra™ is a set of elements X

waich forms a vector space over z Tield F and which has defined an

assoclative and bilinear multipiication, t

5

at 1s

4

(1) o(BT) = (L 37, | oy R, YEX,
(i1)  x(cB +3YV)

c(xA) + dY), o, 2,Y EX;c,d€F,
(iii) (e + AR)Y

(X7 ) +d(BY), =,3,YEXK;c,eEF,
K has a unity element & if there exists o5 € ¥ such that 8% = & =oldf
for all W€K, The "order" of a linear aloebra ¥ is the dimension of

T

K when K is considered as a vector space over the field

vy

Now on the set of elemeniis contained in A define multiplication

(v,) o ()

I 8

(VO," .’vij_.. . .,'V}A{”‘j) % (\lo, . .',ui" N .,111 -—l)

~
(V -u"/" \r’"_. _.‘Ll."oo,v‘ -Ku + e + v uL‘ )a
0 S5 203 127 e=170 Ok-1

ince the elements u, and v, are

2.7

—~

[ 9]

o)
(o]

lements of a field, it follows that

t

he stove operation is closed. Now it is easily shown that multipliication
% 1s commutative and asscciaiive and satisfies the two postulaies of
pilinear multiplication in derinition 2.2.

Defining the wnity © = (1,0,0,...,0), it is obvious from‘che

definition of 4 that



(1,0,0,.0.,0) 3¢ (uO,uj,..., 1) = (u :ul,...,uk_l) # (1,05054..,0)

i
N
<
e
A"
.
*
¥
IS
i
-
g

~ -

Consequently 21l of the posivlicies of a linear algebra are satisfied.

Zence we have the fcllcowing theorem,.

o

Theorem 2,1. The voles defined by the correspond-

. 5 _ ‘
ence (x 0¥y e esF q ~—={xb. o, wrere ix.{._ is a solution of (2.1,

forms a commutative linear » vnity for the three coperations
defined by (2.5),(2.6) and (2.7).

Definition 2.3. An isomorvhism vetween two algebraic systenms

£ and B' is a correspondence between b and B', That is, if «,FEZ,
— . - : . ]
o5 8 VEB', and the correspondence iz X!, 5 < g',
with the operation in E dencted by (L) and the overation in B' denoted
by @, then
DB O g

Theorem 2.2, Zvery linear alvebra of order k, with unity is

isomorphic to an alzebra of k x k matrices. (U4, pp. 216-217)
Theorem 2.3. The correspondence of
'. -

,00 ,0  ,..4,0

OG

T
A

.es0

T LY seea,0 (2.3)

!
,
,
j
]
i
:
i
i
;
i
i
|
{
‘,
I

}J“
-
&
-
(@]

-
*

(uo:ul:Oo-g%_l)Hd = [ula} =

L]

19 oY _qseees
|_.<* (=2 % =3 uOJ

(where w; =y, etc., as defined vy (2.8)) and

(1,0,0,40.,0)—> I

[t

J.., with
Ll

0, if i # 5
Sy = ;
ij T . .
L,lf l=Jj



)
o

»

defines an isomorphism between 4 and the k x I matrices of type U.
Proof. The correspondence ig obviously one-to-one onto.
Congider
(u{) v (v, ) >0+ 7V
2 [2S

by definition of matrix addition

R R T R TR

which corresponds to (u_+ v, ). Yow

& e

“
c(vk) = (cv, ) *———+—év.1 = c[}ii] = cV.
Therefore addition and scalar rulticlication are nreserved.
Supnose (uk) and (vk) belenz to A. Now if multiplication
% is preserved under the corresnoncence then (uk) s (vk) e [

where U and V are defined according to (2.8). Let W = UV = rw;gju
N

Consider wij located in tre 17 row and 3 column of W. Now the

. - a . ‘s . . .th
element wij is the result of tne wmatrix multiplication of the i~

gh | - N N . C msosix
row of U and the ;™ column ¢f V, which accerding to the definition

of matrix multiplication can te exvressed

i
. = U, V. ..
iz in nj
n=1
Zut according to the corrcsnondence (2.8) U, e U and
v_.~—v_ . where the tcrms U, =0 forn = i+l,...,% and
nj n=3 i-n
= ] Ty, -
Vies T Oforn=1,2,...,j~1. “hus
=J
i
w_’ L = U.J _\'V
iy S i=1n =]
n=j



Zor all i<j, w.. = 0 and w.. = u.v The subdisgonal elements
My id G0 @
3 i
We = - T WA V. T UV
i,i=-1 1°0 0°1
and in general
i&
W, . = U V.,
l’.l—"t / SE=" T
r=C

But these are the elements of W defined by (2.5) where

(w) * (v,) = (w,)

Fence multiplication is onressrved under this mapving. This concludes

the proof of Theorem 2,3,



CiLiPTar
POLYNOMIAL GENZRATING CONCEZPT CF

T T

: LT ALA_JL/‘U“LJ.-L {C :JkahUY“-\TCE

A one-to-one corresnconcence tetween the generating (k+1)-

tuple (ao,...,ak), which genersies G throuzh the relation (2.1),

and the polynomial f(z) of degree k with £(0) # O may be establishe
by the following
(8 yeeeya Jo—m{z) =a, + a2+ 0 ¥ 2 25, (3.1)
O) e @] 1 K

. w0 . ps - .
Now any secquence {?;3, 5 setisfying (2.1) can be placed in a 1-1
ifi=

correspondence with an infinite degree polynomial in zj; i.e.,

ol
oy i
ix., o +—>nls) = > %2 (3.2)
(e
i=0

Iet G(f) dencte the set of infinite degree polynomials
<o -

cenerated by z(z)/f(z) which is defined to be

., . E
G(f) = ?z\z)/f(z) b a(£(z)) = k and

d(z(2))< % where f,gczlofilf. (3.3)

[l

“eorem 3.1, The set G{f) is identical with G(aO,...,a )

through correspondence (3.27. (1I, p. 33)

~ 4 -~ T .« N s
Proof. Suppose tnat ~iz)EI [z7 with d(g(z))<k. Now the ratio

(2)/£(z) = % 27 = nz) with x €I .
-t i~ o
1=0

vem

T
.5
N

«
1
O



t
UL

Yow since d(g{z)) <k, tWA‘

Therefore the sequence b
-

satisfies (2.1).  Hence the sct of 2 o (f) when considered

.

as sequences is a subset of Z{ar,eue,a, /e
A .

low since both G(f) and
Glags eessay) contain p elementie and G{Z) is o subset of Glagyesssay)s
they must be identical within ine corresponcence (3.2).

¥ote that (3.2) is merely an abstract correspondence between
sequences and infinite degree volynomials, And £(z) is the generating

polynomial of the long

.
(@]
w3
e
*'.\'
(T)
w
w

2(2)/t (2} justified by

Theorem 3.1, i.e., the volynomial peneration of G(f) is identical

.

with G(aO,...,ak) generated by {2.1).
The following theorewm nroves the algebraic structure of G(I)
is a vector space.

Theorem 2,2, “he set 3{(f) =<1
—_— .

forms a vector space.

o . ("EUO TR T
2roof Any t eguences ~u. and ! . ging
roof, Any two segue s Lu5j1=0 and th ;=0 pelongzin to

o

G(f) have vpolynomial representations of z(z)/f(z) and ¢(z)/f(z),

o T i Y i,
respectively, where g(z) = / 1.2, and q(z)= ;) Q2 if the

[
@
(@]
[
il
/\ O

d(£(z)) = k. YNow if we consider z{z)/f{2) and ¢{z)/f(2) as vectors

i

defined over the field I , tuen sum of these twe vectors is taken to be

D.’
-1
4 1
> (2. + g, )2
i i
LA
L




16
which is a2 unigue vector of G(£), low it is evident that the vectors
of G(f) form an Abelian group with respect to addition and that

the postulates of Definition 2.1 are satisfied if the field I is

Ip. Eence G(f) is a vector s»pace.



AT YT uti
CAATT AR IV

PERIODIC PRCPLETIES

Definition L.,1l, An irnfinite sequen £ elen nicn af
Defini n L.l an infinite zequence of elements whicn ter

a finite number of terms, say s, beccmes repetitive in the following
sense
(u sU s e e oty 15U Ugays oo voUgap ] 0 Yo

Ugypserostypp 1aeee )

will be defined as a "perlodic sequence " 57 deriocd t.

. a £S5 . -
The least pericd of o wericdic sequerce iyﬁjizo is szid to

B ‘\l.»\g . .
oe the "characteristic number™ of Uy Tlmo—-all other overiods are

multiples of this least perisc. (10, p. €00)

. PO T . y .
The "numeric" of ju;i:_5 1s the number of noarepeating terms

—a . A SN @ . o
if the numeric of a secuence ~u.-._~ is zero, then St
- L iy 1i=0 171y i=0

is said to be "purely veriodic.®
4 number which is a veriod of cvery scguence satisfying the
difference equation (2.1) is suid %o e & '\

T

et t

I P Ty
the least such

o2
[¢h]

"orincipal vericd® of (2.1).
Theorem l1.1. There are always solutions of (2.1) whose
characteristic number is the princioval period of (2.1). (lO, oo, E0%-
€0l )
. - LT ‘100
Proof. Suppose thalt Ju.r.

solutions of (2.1). If there are element
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Ip which satisfy

u = blvm +b

m 2Vmel * e * PVinag1o (L.1)

(m=0,1,2,... ), then the characteristic number of~{%i}z;0 is a
multiple of the characteristic number of {}€3§:O' Because of the linear
recurring nature of the eélements beyond the first k elements of any
solution of (2.1) and because the equations resulting from (4.1) are
linear, it is only necessary to consider the first k equations of (L.1).

The linear simultaneous set of equations in matrix form

- - — T ~3

uo Vo Vq v2 cee vk-l biw

u1 vl v2 v3 ves vk b2

u2 = V2 V3 Vh so e vk"’l b3 (J.L.Z)
Mer] [Vieel Vi Vierl o* Vek-1] | Pkl

has a unique solution for the bi's if and only if .the determinant of
the coefficient matrix is nonzero.

Now consider the sequence {?é}zzo whose first k components
are (vk) = (1,0,0,...,0). The coefficient matrix of (4.2) becomes

1 00 ...0 0
0
0 0 0 eV Vi (L.3)

O Vi Vil ** Vo2 Vo1
k-1

and its determinant (vk) -1)k is nonzero., Since

k
v, = —a t v, .a, = =a-la
k 05 k=3 0 %k
j=1
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<0
j_:O,

is nonzero by hypothesis of (2.1). Thus for this sequence {&i}
(L.2) determines a unique solution for the b, 's. In fact, if (4e3)
is the coefficient matrix of (4.2) there is a unique solution of b's
for every solution {ﬁi};ﬁo of (2.1). Now according to the original
statement of the argument the characteristic number of {%i};jg is a
multiple of the characteristic number of ‘UQI::O if there are elements
b sbyseee,b satisfying (L.1). We have shown that if (L.3) is the
coefficient matrix of (4.2) there is a unique solution of b; 's for
every {ﬁi};io divides the characteristic number of-{%i%EZo.
But the principal period of (2.1) is the smallest general period of
every sequence satisfying (2.1), so it follows that the characteristic
number of {%é};io equals the principal period of (2.1). Thus
Theorem 4.1 is proved, i.e., there is at least one solution of (2.1)
whose characteristic number is the princinal period of (2.1).

Iet the first n terms of a sequence {?33220’ a solution of
(2.1), be the coefficients of a polynomial u(z) of degree n-l, i.e.,

u(z) = ug *wz + ..+ un_lzn_l. (L.L)

Now consider
£(z)ulz) = [(ugag) + (wag + uga))z * «.e
k«l] -
+ (uk_lao + .. ¥ ank-l)z ]
Ru a, + + u.a )zk
0 s 0%k

( a +...+ua)zk+l+ooo
Ue+120 1%k

n-1l
(un_lao+ eee + un_k_lak)z ]

n
[un—lal Feeo un-ka‘k)z
)zn+l

+

+

+

+

+

+

(un_laz * 00 t un-k+lak

(un'rk-lak)zmk-l]

+
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1,
Note that the coefficients g ui-jaj = 0 for 1 = k,k+1,+..,n-1,
J=0

so that the coefficients of zk,zk+l,...,zn-l are zero.

Using this linear recurring relation, the coefficients of

zn+s’ for s = 0,1,..0,k=1, may be expressed as follows:

(un-las+l Toeee U, k+sa’k)

k

= zn+s E u a
nts=j J

n+s

_o0*s|
+S'J J

After applying this substltutlon (z)u(z) may be expressed in the

O

following form.
£(z)u(z) = [(ugay) + (way + uga)z + ..
* (neqag *oeee Fuga )2 <]
-z Bunao) + (w2 * unal)z + eee

k-{]
+ (un+k-1a.o + qee * una.k-l)z

Denote the two polynomials in brackets by u'(z) and u"(z), respectively.

Then
£(z)u(z) = u'(z) - 2 u(z)
But £(z)u(z) £ 0 (mod £(z))
Therefore ut(z) - zu"(z) T 0 (mod £(2)) (L.5)

Now the following theorem can be proved.
Theorem 4,2, (Fundamental Theorem on Purely Periodic

Sequences,) let
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u(z) = (way) = (way +uya )z + ...
ke
* (u&—laO e ank-l)z

-l 1

5::j> ‘J J

i=0 j=
0
where the u, are the first k-1 terms of a sequence {uiki=0 satisfying

(2.1), and let f(2) be the volynomial associated with (2.1). Then
{ui}?;o’ a solution to the linecar difference equation (2.1), is
| purely periodic with a pericd of n if and only if
(1 - 28)u(z) 2 0 (mod £(z)). (10, p. 606) (L.6)
Proof. If {ui};io is purely periodic with peried n, then
wM(z) = ut(z) since Up = Wis W W L, ete.
Then (L.5) becomes
(1 - z2Mu'(z)Z 0 (mod £(z))
Conversely, suppose that there exists an n such that this congruence
holds, then equating congruence (L.5) and (4.6) leads to the conclusion
that u'(z) = u"(z). Furthermore two polynomials in z are equal if
coefficients of like powers of z are ecual. This, of course implies
Ug = W Wy T w0, ete. Therefore if (4.6) holds, {ui}:__o is purely

periodic of period n.

o ,

Corollary L.2. Assume that {u;} 520 is purely periodic. Then
the least value of n such that congruence (L.6) is satisfied is the

. - w
characteristic number of {ui}i-—-o' (10, p. 607)

Theorem L.3. All sequences {ulyzo satisfying (2.1) where
ui,ai€ Ip are necessarily purely periodic, Furthermore, the principal
period of (2.1) is the value of n for which (2™ = 1) £ 0 (moed £(z)).
(10, p. 607-608)
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Proof. According to Theorem 3.1 the correspondence

{?i}:ioap——+-u(z) = E:: uiz'1 = g(2)/£(2)

1=

is an equivalent generating process to (2,1). Then

o | K

i

@ ) g
i=013=0

which implies
8 =/ Wo3fy for 3 =0,000,k-10 (4.7)

Comparing (L.7) with the coefficients of u'(z) of Theorem L.2
results in

g(z) = u'(z).

Then

(1 -2 )g(z)

(1 - z)u(z)£(z) 2 0 (mod £(z)).

(1 -2 )u(z)

[}

Hence congruence (4.6) always holds for those {ﬁi};io defined by the
hypothesis of the theorem, and by Theorem 4.2 the sequences-ﬁ%}zio
are all purely veriodic,

Since all sequences of G(f) are purely periodic, then there
exists a sequence of G(f) whose characteristic number is the principal
period of (2.1) (Theorem L.1).

If a sequence is purely periodic, then (L.6) holds which
becomes for this sequence

%=1y = 5 (nod £(z)).

n
This congruence may be expressed in the following form

(1 ~2M1(2) 2 (1 =2 62" (mod £(z)). (1.8)
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The left side of (L.8) is congruent to zero., Now since fk #0
by assumption in definition (2.1) and zk and f(z) are relatively
prime, then (4.6) becomes
(2% = 1) 20 (nod £(z)). (L.9)
Then from Corollary L.2 it-follows that the least value of n such
that (L.6) is satisfied is the principal period of (2.1). This
completes the proof of the second part of the theorem. Consequently
z" - 1 is the smallest degree of such type polynomials for which
£(z) | 2z* - 1. This least n is defined as the “"period" of the poly-
nomial f(z) which will be represented by p(f). Thus the period of a
polynomial f(z) is the principal period of all sequences in G(f)
generated by f(z).
Cenote the characteristic number of a sequence {ul}:):o by
o(u), which is sometimes called the period of the sequence {ul}io
iiow the following may be concluded from the definition of a prineipal
period of G(f) and the definition of the characteristic number of
every {uj}‘);oef}(f)-

(%]
Corollary Li.3.1l. For every {uI} 120 G(£), plu) l p(f).

Corollary 4.3.2. p(f) = max{p(u) l {ul)ﬁioé G(f}

The following theorem summarizes the argument on page 8
concerning the maximum period, or i.e., the maximum number of elements
before which a sequence becomes repetitive.

Theorem L.i. For every {ui}ioéi}(f), p(u)_épk.

~Sufficient concepts and background have now been developed to

further consider some periodic properties of polynomials which generate
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the sequences of G(f).
Theorem L.5. let the G(fi) = {gij(z)/fi(zé} as defined by
(2.3) be n vector spaces (i = 1,2,...,n) over Ip.

Then the sum vector space is given by

I 3
] o) = fey/za) = ote) (1..10)

i=1
ahere £(2) = Loc.m. [2(2),2,(), .., (2)] .

n
Proof. 4 member of the sum vector space }[::G(fi) is of type
=1
n
kigij(z>
j £.(z)
i=1

where the ki's are over Ip. Reducing to a common denominator, the

n
}:: kiri(z)gij(Z)
£(z)

i=1

typical element becomes

with £(z) = l.c.m.[fl(z) £,(2), 0y, (2) and ry(z) = £(2)/2,(a).

tb(z) Zkr(z (z).

i=1

Also denote the degree of a polynomial s(z) by deg(s(z)) or
d(s) when no confusion arises.
Then
deg(g (z)) £ max deg(ri(z)gij(z))

= max deg(f(z)gij(z)/fi(z)) < deg(£(z)),



since deg(gij(z))< deg(fi(z)) by definition,

Hence (gj(z)/f(z))EG(f), so that

_n_
>L_‘G(fi)C:G(f).
=1
But since
I
) o) - g (/)
i=1

is a vector space, gj(z) must of necessity range over all possible

polynomials over Ip of degree up to and including d(f(z)) - 1.

n
Thus }:::G(fi) contains exactly pd(f) elements which is exactly
i=1
the same number of elements in G(f). Therefore
n_
) o) =0
i=1
where £(z) = l.c.m.[%l(z),fz(z),...,fn(zil.

Corollary L.5.1. If (f,,f,) =1, tnen C(f)) + G(£f,) = 2(f,1,).

This follows from Theoren 4.5 since if (fl,f2) = 1, then 1.c.m.(fl,f2)

= f,f,. Furthermore, if (fi’fi) =1 for i,j = 1,2,...,n and i # j,

1

= 1 £ Her si iy larm
then l.c.m.[fl,f2,...,%3 -1f2.,.‘q. hence an extensicn of Corollary

L.5,1 is

Corollary L.5.2. If (fi,fj) =1 for i,j = 1,2,..4,n and i £ j,

then
n

e
E::.G(fi) =G(TT £,).

i=1 i=1
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Corollary 4.5.3. Let 7(z)f(z) # 0. 4 necessary and sufficient

Proof. Suppose G(f) (g). liow since G{(f) is a subspace
of G(g), then G(f) + G(q) = G(g) for some g(z), so that g = L.c.m.(£,q)
by Theorem L.5., Therefore f(z) ‘ g(z). Conversely, if f(z)l g(z),
then 2(z) = s(z)f(z) for some volynomial s(z). Iow consider any

{ulTl o€G(f), then for some polynomial »p(z), u(z) = p(z)/f(z).

but then u(z) = %E:g:gzg = p(gzzgz) which is an element of G(g).

Therefore G(f) < G(g).
Theorem L6y 2° = 1
(11, p. 36)

2® = 1if and only if s l t for s,t70.

Proof. If s |t, thenz" - 1= (25 - 1)(z"5 + 2%+ [, + 1),

Thus we have the desired conclusion, z° - 1l 2t - 1. Conversely, if
a1 l 2 - 1, then G(2° - 1)< a(z® - 1) (Corollary L.5.3). iow
let {ui}:io G(z°% - 1) with o(u) = s, the principal period of G(z° ~ 1).
Every sequence belonging to G‘(zt -~ 1) has a period that divides
o(z% - 1) = t. Fence s |t
Theorem L4.7. If £(z) lg(z), then p(f) |p(g).

Proof., If f£(z) |g(z), then G(£) = G(g) by Corollary L4.5.3.

All {ui}?zoeG(f) have p(u) Ip(f), and for all such {u]} 5=0° p(u)‘ o(g).
Since {ulj :Oé;G(f)C: G(g) and according to Corollary L.3.1 p(u)l o(z)
for every {u%w €G6(g). Now suooose{v%‘.’ooé(}(f) with o(v) = p(f).
The existence of such a sequence { } -0 is guaranteed by Theorem L.1.

Then p(v) = p(f) and p(v) I p(g). Thus the desired conclusion D(I)l .



27

Corollary L.7.1. A polynomial f(z)l 2% - 1 if and only if
p(£) | t. (11, p. 36)
Proof., If f(z)‘ zt - 1, then p(f)l p(zt - 1) = t by Theorem

4.6, But f(z)\ zp(f)

- 1 (Theorem L.3) and by the transitive property
of divides, f(z)l 2t -1,

Theorem L.8. The set G(zJt - 1) contains all the sequences of
neriod t and all other sequences of veriods ti which divide t.

Ezggﬁ. The set G(zt - 1) contains all of the sequences
satisfying (2.1) through the correspondence (3.1) and (3.2) where
£(z) = 2’ - 1. There are pt distinct sequences satisfying (2.1)
so that G(zt - 1) has pt distinct members. For every {;QSZiOGEG(zt - 1),
o(w) | t.

The total number of distinct sequences of length t over Io
are pt in number. If these pt geguences of length t are reveated
neriodically, then this set of pt sequences are all possible
distinct sequences over Io of pericd t znd all other sequences of
ty which divide t. Hence G(zt - 1) contains all sequences of periods
t; that divide t.

Theorem L.9. Every veriodic sequence {ﬁi%;ioéiG(f) also
velongs to a unigue smallest set G(g) where (gl,g) =1 if gl(z)/g(z}
cenerates {hi%;:o. Furthermore p(u) = p(g).

Proof. By assumption, {?i%;:oéZG(f) so there is a polynomial
£1(z) such that d(£y)<d(f) for which fy(z)/f(z) = u(z). Suppose
(fy,f) = d, then there are polynomials gl(z) and g(z) with d(gl)<5d(g)

such that fy(z) = d(z)zy(2) and £(2) = d(z)g(z).
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aence
r1(z)  dlz)gy(z)  g1(2)
= = = u(z) with (g1,3) = 1,
£(z) da(z)g(z) g(z)

¥ow by (3.3) {j'% _Oéiﬁ(g) which by Corollary L.S5.3. is a subset

of G(£) since g(z)l £(z).
The degree of g(z) cetermines the number of elements in G(g).

1

Since if d(g) = k, then there are ~° elements in G(g).

To show that G(g) is unique and the smallest set containing
{hi};iO’ suppose {ﬁ;};ioéiG(h) where d(h)<d(g),
Then there is an hl(z) such that hj(z)/h(z) = u(z). Also u(z) =
z (z)/g(z) from which it follows that h(z)g (z) = by (z)z(z), implying
that g(z)l h(z)., This is only oossivle if g(z) and h(z) differ by
a constant multiple in which case G(g) = G(h). Hence for every
{ﬁ EEG(f) there exists a uaique smallest G{(g) and the generator

Jl(z)/b z) of the sequence fhl)l has the property that (g,,z) = 1.

1=

To show p(u) = p(g), consider a(2P p(a) - 1). The sequence

2

u%fo of veriod p(u) is an element of the set by Theorem L.b.

There exists a polynomial fl z) such that f (z)/(zp(u) 1) = u(z),
which also equals gl(z)/g(z) (gl,g) = 1. Hence g(z)fl(z) =

24 (z)(zp(u) - 1), from which it followe g(z)' zp(u) - 1, Taus one
may concluded from Theorem L.7 that p(r [ n(u). But since {quZiO
is an element of G(g), p(u)l o(g), thus imolying that p(u) = plg).
This concludes the proof of Theorem L.9.
Analysis and synthesis reguire a lmowledge of the root fields

of the polynomials discussed in this chapter. The root fields of
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volynomials over Ip are suitable extension fields of Ip. Thus,
Chapter V is an attempt to develop sufficient background material
aboul extension fields in general so tnat the exact nature of the
root fields of polynomials cver Ip will follow naturally. However,
since generators of infinite periodic sequences over the field Ip,
are the topic of this thesis, the developement given is not too

extensive,



CHAZTER V

EITINSION FIEIDS

I. DEFINING CCNCEPTS AND PROPZRTIES

Definition 5.1. A field X is said to be an Yextension

field" of the field F if ¥ is a subfield of K. Notation: &KX,
For example, if R is the field of real numbers, then the
field of complex numbers C is an extension field of R,
From the definition of an extension field K of a field F,
it follows that X forms a vector space over the field ¥, If K

¥

forms an n-dimensional vector space over ¥, the extension field
X over F is said to be of finite dezree n over ¥,

Consider an element k€K and form all polynomials of the

type alk) = a + a k + + 2 %" with all a,EF
> O l LN ) a-nLL L :l. L]

Define addition and multiplication in the usual way as for
nolynomials in an indeterminate z. This set of polynomials in % is
closed with respect to addition and multiplication, and they form
a polynomial domain in k denoted by F[k]. This set of polynomials
m

forms a suodomain of K. he rational expressions of the type

a(k)/o{k) where b(k) £ O may be formed as with the polynomials
in an indeterminate z. Revresaznt this system of rotional exsressions

oy

.

=J

{x).

F,

F[k] is a subset of (k) where F[k] forms an integral
domain. ZEvery nonzero element a(k)/o(k)EF(k) obviously has an
inverse. Consequently F(k) is a field, so that F(k) is an extension

field of 7.
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Definition 5.2. If XE€Y¥, then the extension field F(k)

formed by the single element k is called a "simple extension" of
its subfield F. An element k of an extension field K over F is
called "algebraic" if k satisfies a polynomial equation

a(k) = ag + ajk + ... + a.nkn = 0
with all aiEF and not necessarily all ay # 0. Otherwise k is
called a "transcendental" element of K over 7,

The following theorem indicates the nature of simple algebraic
extensions if k is transcendental,

Theorem 5.1. If k is a transcendental element of K over F,
then the simple algebraic extension F(k) of F is isomorphic to the
quotient field F(z) of rational polynomials in an indeterminate z
with coefficients in F. The correspondence is k +— 2z and a<—ra
for each a in ©s (L, pe 375)

Theorem 5.2. Every "algebraic" element k of K over ¥ is a
root of a unigue minimum degree irreducible polynomial

£(z) = fg * £12 + oo * T2y £, = 15 dee.,

n
#(z) is a monic polynomial, and all fié.F. This polynomial f(z)
will be called the minimun function of k. Furthermore, every

polynomial g(z) such that g(k) = 0, is a multiple of f(z). (L, p. 376)

Definition 5.3. The dezree of this minimum function f£(z) of

the algebraic element k of K over F will be defined as the degree of
the algebraic element k, denoted Ec,l_{] .

Using the vector space concept, the following may be proved.
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Theorem 5.3. Let F[k] be the simple extension field, where
¥ is an algebraic element of XK over F and f(z) is the minimum function
of k of degree n. Then F[k] forms a vector space of dimension n over
" with the linearly independent set of elements 1,k,k2,...,kn—1 forming
the basis of F[k]. (4, p. 38L)

This result is rather obvious since every polynomial belonging
to F[k] can be expressed as a oolynomial of degree at nost n-1 where
the degree of the algebraic element k is n.

As a corollary it could be shown that every element of a
simple extension F[k] is alzebraic over I,

Thus far it has been vpostulated that if k is an algebraic
element of X over F, then certain conclusions may be derived., The
following theorem enables us to determine which extensions contain
only algebraic elements,

Theorem 5.4, Every element of a finite extension field of F
is aleebraic over F, Moreover, the minimum function of every element
kK€K is of degree at most n where n = [%;ﬂ s the degree of the finite
extension. (L, p. 385)

The following theorem may be proved.

Theorem 5,5. If the set of elements {kl’k2""’k53 forms a
basis of the extension of X over F, and the set {;l,sg,...,sé} forms
a basis of the extension N over K, then all mn products k.l. for

1
i=1,2,seeymand j = 1,2,4.4,n, form a basis for N over F, (L, p. 388)
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IT. ROOT FIELDS OF A POLYNOMIAL

AND ALGEGRAIC COMPLETE EXTENSION FIELDS

Definition 5.h. A root field M of a polynomial f(z) over

a field F is an extension field over F in which f(z) can be factored
into a product of linear factors, i.e.,
£(z) = c(z -~ al)(z - a2)...(z - anp

for d(f) = n, c€F, and the root field M is a multiple extension of
F generated by the roots, iie., M = F(aj,as5ees5a ).

Now the existence of a root field of any polynomial can be
pfoved. e e
Theorem 5.6, Every polynomial f(z) over a field F has a root
field. (4, p. L10)

Theorem 2;1. Every field F has an algebraically complete
(closed) extension field. (1, p. 280)

Corollary 5.7. Every field of prime characteristic has an

algebraically complete extension. )
This is analogous to the fundamental theorem of algebra
where the polynomials f(z) are defined over the real field and
the algebraically complete extension is the field of complex numbers.
A polynomial over a field F may or may not have repeated
roots in its extension field, Some generalizations may be based

on the following definition.

Definition 5.5. A polynomial f(z) is separable if it is

factorable over its root field into linear factors of n distinct
roots if d(f) = n. Otherwise, f(z) is said to be inseparable. A

finite extension N of F is said to be separable if every element of
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N satisfies a separable polynomial over F,

Let a formal derivative of f(z) = o+ £12 + ou0 + fn;n, all
fig:F‘where F is any field be defined as

£1(z) = £y + (2£,)2 + vau + (nf )2 (5.1)

where mf; is the mth multiple of fy.

Theorem 5,8, If the greatest common divisor of f£(2) and f£'(z)
is one, then f(z) is separable, Otherwise, f(z) is inseparable. (L, p.
419) |

III. FINITE FIELDS

Definition 5.6, Any field which contains a finite number

of elements will be called a "finite field", Denote a finite field

of q elements by Fq.

Definition 5.7. The smallest positive integer n such that

nxa-=0 for every a€F is said to be the "characteristic" of the field
F. If no such positive integer exists then the field is said to
have characteristic zero,
Now if p> 0 is the characteristic of a field, then p is a
prime. (3, p. 5L)
Consider any finite field Fq of characteristic p, q» p.
Its prime subfield is Ip, the field of integers modulo p. Since
F_is a finite extension over Ip, then every element of Fq is

q

algebraic. So let ) X550 0050C, be the basis of Fq over Ip.

Every element /9 of Fq may be expressed as a linear combirnation of

its base elements, i.e.,
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2 = 210y + a0y + 4.0 + apcl, all aiéIp.
Each aj can assume only p distinct values, thus q = pn. These
results may be summarized in the following

Theorem 512. Every prime subfield of é field of characteristic
p is a finite field Ip of p elements and every finite extension Fq of
Ip is also finite with q elements, where q = pn for some positive
integer n. (L, p. L29)

The nonzero elements of any field form a multiplicative group.

Definition 5.8, The "order® of a group G is the number of

elements in the group. The "period" (often called order) of &n élement
a&€G is the least positive integer k such that ak =1, It is a well
known result that every element of a finife group G has period which is
a divisor of the order of G, For a finite field Fq of q elements, the
gq-1 nonzero elements form a multiplicative group of order g-1,

Therefore every nonzero element of Fq satisfies zq—l =1, or

23 - 2z = 0. Now the derivative of 2% - z as defined by (5.1) is

q-1

(zq -32)! =qz -1=~1, Hence (£f(z),f'(z)) = 1 so that 2% - o

has q distinct roots by Theorem 5.8.

let 31’32’°‘°’aq be the q elements of any finite field Fq.

Since each nonzero element satisfies zq—l =1, (z = al)(z - a2)...(z - aq)

q

divides 2% - z, but each is a monic polynomiél with 2@ - 2z having q

distinct roots. Therefore they must be 313850003805 and hence
(2% = 2) = (z - a9)(z = 35)e0(z = aq). This proves

Theorem 5.10. The elements of any finite field Fq of q elements

are elements of the root field of z% - z, (L, po L29)
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Now since any two root fields are isomorphic the following is
true.

Corollary 5.10. Any two finite fields with equal numbers

of elements are isomorphic. (L, p. 429)

The only finite fields F, of q elements that exist are those

q
for which q is expressible as a power of a orime, These finite fields
are often called Galios Fields with pn elements denoted GF(pn). cf
course, GF(pn) is an extension of its prime subfield GF(p). (6, p. L430)

Theorem 5,11. The nonzero elements of a GF(pn) form a cyclic

group under multiplication. (L, pp. 430-431)
All of the subfields of a given finite field GF(pn) may be
determined by the following.

Theorem 5.12., The necessary and sufficient condition that

67(p") e a subfield of GF(p") is that k |n. (2, p. 127)

IV. STRUCTURE OF RCCT FIELDS CF

POIYNOMIAIS CF PRIVE CHARACTERISTIC

In this section some properties of irreducible polynomials

which are factors of zq

- z, the generator GF(g), will be stated.
‘Theorem 5,13, Every irreducible polynomial g(z) of degree
n
n over GF(p) is a factor of £ - z. (5, p. 257)

Theorem 5.1k, For every polynomial g(z) of degree m in GF(p),

uhich is a factor of z° - z in GF(p), m lt. (5, p. 257)

n
Corollary 5.1.1. Every irreducible factor g(z) of LA

in GF(p) is of degree less than or equal to n.
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This is obvious, since degree of g(z) must divide n by

Theorem 5.1l

Corollary 5.1L.2. The smallest extension field of GF(p)

that will include all of the roots of an irreducible‘polynomial
£(z) of degree n over GF(p) is GF(p").

Proof. Suppose GF(pk) with k<n is a root field of f£(z).
Now all roots of zpk - 2z are elements of GF(pk). Since GF(pk) is
the root field of £(z), then f(z)l zpk - 2z, However, by Corollary
S.14.2, £(z) must be of degree less than or equal to k. This
contradicts the assumption that k<n. Therefore GF(pn) is the

minimal root field of any f(z) of degree n over GF(v).

Theorem 5.15. Let f£(z) be an irreducible polynomial of

degree n over GF(p). Any root o¢ of f(z) has a period e that is
a divisor of pn-l and no pk-l where k< n,

Proof. The fact that the root o€ must have a periocd e
which is a divisor of pn-l is obvious. 3ince o€ is a root of £(z),
an irreducible volynomial of degree n over GF(p), then o€ is an
element of GF(pn) (Corollary 5.14.2). XNow the nonzero elements of
GF(pn) form a multiplicative group of order pn—l. It is a well known
theorem that the period of an element of such a group divides the
order of the group.

Now suppose e | pk-l where k<n. This implies that o< is an
element of GF(pk) and that f(z)l zpk - z, But according to Corollary
5.14.2, GF(pn) is the smallest extension field of GF(p) that contains

all of the roots of f(z).
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Theorem 5.16, If o¢ is a root of f(z), an irreducible

n
polynomial of degree n over the extension field GF(p ), then
p P pa-l

o€ ,0€ seseyoc  are all the other distinct roots of f£(z). (8, p. 118)

Theorem 5.17. If f£{z) is an irreducible polynomial, then

every root of f£(z) has the same period.
Proof. Suppose o€ is a root of f(z) over GF(p), then
. n
all of the roots of f(z) are contained in GF(p ) and according to
- P2 -l .
Theorem 5.16 they are o4 o€ ,0C ,...50C . Now suppose the period
of the root o< is t, i.e., t is the least positive integer such that
t n
oc = 1 where t |p -1, Then
kt 'tjr)k
()" = (<)? =1 for k = 0,1,2,...,n-1.
Thus it is only necessary to show that no positive integer s exists
such that
p<.s
(™ )7 = 1 where s« 4.
Suppose that there does exist such an s, Then
k
pf.s
(o )" = (o™ )

Which implies s |t. Sut this contradicts the assumption that t is

the period ofnc, Therefore all roots of f(z) have the same period.

Theoren 5.18. Let £(z) be any irreducible polynomial over

GF(p) of period t, If oC is a root of f(z) over its root field,
then the period of the root oc equals the period of the polynomial
£(z).
Proof. Let d(f) = n, and p(f) = t. IfO¢y is a root of
n
f(z) over the root field GF(p ), then

£(z) = e(z - K)(z ~0Ly) ..o (z - 9C,), c€GF(p).
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. 2 3
Now according to Theorem 5.16 &<, = oci, oCy = acf s X = ocg yesey
-1
=<, = ocgfl « By partial fraction decomposition
1 £ B2 ‘ B n n
= + + ... + ——— with B;E€GF(p ).
£(z) C(l -2 o£2 -2 o« -z

The sequence generated by /E?i is
ey -2

A [(ee ) 002 e, ]
If oC; has period e, so haSAchl, and the period of the above
is e, Now since every root of oty of f£(z) has the same period
(Theorem 5.17), then the sequence generated by Ai s 1= 1:..:,n

&Li -2z

has period e. Sequences of the same period e added termwise result
in a sequence whose period is a divisor of e. By hypothesis the period
of £(z) was t. From Corollary L.3.1 the period of the Sequence
generated by 1/f(z) divides the period of f(z). Now since (1,f(z)) =1,

then e = p(f) = t (Theorem L.9), thus proving the theorem,-

)

Theorem 5.19, If t £ 0 (mod p) for t any integer and p a

prime, then 2t - 1isa separable polynomial and conversely.

Proof. Suppose t % O (mod p), then p is not a factor of t.
The formal derivative of £(z) = zb = 1 is £1(z) = tzt-1 which is not
congruent to zero. Therefore (f,f') = 1, and by Theorem 5.8zt -1
is separable,

Conversely, suppose t £ O (mod p), then pl torpr =t,
for some integer r., Consequently f'(z)E O (mod p) and over GF(p)
(£,£1) =1, _Applying Theorem 5,8, one concludes zb - 1 is inseparable,

This is obvious since z¥ = 1 = 2PF = 1 = (2T - 1)P, Hence the theorem
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is proved.

Theorem 5,20, If 2% - 1 is separable over GF(p), then the

smallest root field of 2t . 1 is GF(pk) where k is the smallest integer
such that ¢ | p*-L.

" Proof. The polynomial 2% - 1 has as divisors all polynomials
g(z) with distinct factors for which p(g)l t. By hypothesis, A
is over GF(p). Thus zt -1 ]zp - =~ 1 for some smallest integer k.
This is true since every polynomial of finite degree over GF(p)
has a root field which is a finite extension field of GF(p). But
all finite extension fields are of the type GF(pk) for some k- *
whose nonzero elements are roots of zpk-l - 1. Since the roots of
2% - 1 belong to GF(pX), then z¥ - 1 l 2P0 _ 1 uhich is true if
and only if t ka;l. Thus some k exists and the smallest integer
k such that t ka-l gives the smallest root field, For all subfields
GF(pn) of GF(pk) require that nl k or equivalently pnkll pk—l.
However, by assumption k is the smallest integer for which,tl pk—l.

t

Therefore GF(pk) is the minimal size root field of 2z~ - 1,

V. CONSTRUCTION OF THE ELEMENTS OF GF(pn)

In the previous section the smallest root field of any
irreducible polynomial f(z) over GF(p) has been expressed explicitly
in terms of the period of f(z)., These extension fields of GF(p) are
finite fields of the form GF(p"). For later use it will be necessary
to readily generate the elements of GF(p ).

The nonzero elements of GF(pn) form a cyclic group with the
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operation multiplication. tence given any generator of the group
one may easily obtain all the elements of the group. In order to
determine the periods of the memoers of GF(pn), the following result
is helpful.

Theorem 5.21. Let G be a cyclic group of order h and o a

generator element of G (i.e., © has veriod or order h). Every
element oc” is also a generator of & if and only if (w,h) = 1.
(8, pe 57)

Euler's @-function., Define the function g(h) as the

number of positive integers relatively prime to h and less than h.
(8, pp. 112-113)

In a cyclic group G of order h with oC a member of G, such
that o(c¢) = h, all elements oc" where (u,h) = 1 are also of oeriod
h. 3o that ¢(h).is also the number of distinct generators of a cyclic
zroup (or the number of nrimitive elements of G).

A computational expression for @(h) can readily be derived

to be
B(n) = BpI)E(D2). . B(p")
= py (1 = 1)pg2(1 = L)wupg™(1 - 1)
5 Py Py
- | [ -1
pi|h Py

. s . ey e e .
wnere the positive integer h = Py ‘22...pn3, a unique product of powers

of prime integers.
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n
One method of determining the elements of GF(p ) and classi-
fying the elements according to orders could proceed as follows.

n
Since the nonzero elements of GF(p ) form a cyclic group, assume

s . n -
oC is a primitive element, i.e,, p(e¢) = p -1, For n = 1, such

n
an element is p ~l; and for n>1, o€ is a root of a minimum function.

: n
Considering the latter cases, the nonzeroc members of GF(p ) are
B E}

2 3 pn-L
QL,0C ,0C",0ve,0C .
ot

i 7 . , .n -
Alloc” i =1,2,,..,0 -1 for which (i,p =1) = 1 are of period

n n . | i . n N
p‘-l. Suppose tj p -1, Then all &~ for i = 1,2,...,p =1 such that

(i,tj) = 1 are of period 1t By Euler's @-function, there are ﬂ(tj)

jo
i
elements of period tj. This follows since all roots O& of neriod

ts .
t: are also roots of z 4 - 1. Hence the periods of each of the

[

n
elements of GF(p ) can be determined,

The element o¢ of veriod pn-l is the root of an irreducible
polynomial, £({z), of degree n (f(z) is a minimum function of OC).
In fact, o< can be assigned to ve a root of any nth degree irre-
ducible monic polynomial of period pn-l. Suppose any such f(z)
is chosen, then

£(€) = 0 = o€ + £y q0C T * wes ¥ £19C ¥ £
and o’ = -(fn_loc.n-1 + o * £g)
Thus every element oCi EGF(pn) where i2n may be reduced to a
nolynomial in OC of degree less than n, whose coefficients
1€GF(p). This is one way of representing the elements of
G=(p ).
If another nth degree irreducible monic polynomial g(z)

n
of period p -1 where chosen, a root of g(z), call it B, could
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n } .
generate all the elements of GF(p ). An equivalent reduction of
i . X s ,
all # for i2n could be performed as indicated avove. But
since all finite fields containing the same number of elements
. : . iy R
are isomorphic, then all such representations of GF(p ) as pre-

viously generated are lsomorvnic.

Cyclotomic Polynomials. (8, pp. 113-115) Suppose the @(t.)
elements of GF(pn), where tj \pn-l, are all roots of a polynomial
thi(z). This polynomial thi(z) is called a cyclotomic polynomial
(circle-dividing) of period (order) ts.

A1l irreducible polynomials fj(z) of period t; divide

nt . pﬂ""l

z + ~ 1, Since by # 0 (mod p), then zti - l] 2 - 1 for some
smallest integer n so that all the roots of any irreducible poly-
nomial fj(z) with p(fj) = t; are members of a GF(pn). Thus
thi(z) contains as irreducible polynomial factors all distinct
irreducivle polynomials fj(z) of period T Therefore if cyclotomic
polynomials are easily generated and factored over GF(p), then this
is a systematic way of obtaining all irreducible polynomials of a
given veriod. That is, zt - 1 can be factored over GF(p).

In order to illustrate the usefulness of several of the
previous theorems and concepts, consider the factorization of
zt - 1 into cyclotomic polynomials of periods til t. Each cyclo-
tomic polynomial ﬂJti(z) of period t; has as factors all the
irreducible polymnomials (minimum functions) whose roots are of
order t; where til t over GF(p).
If the number of roots of thi(z) is f(t;) (Euler's g-func-

tion), then the number of irreducible polynomials in each Y’ti(z)
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is ¢(t )/m, where m is the degree of each rminimum function. The
integer m is the smallest integzer such that t, \ el (Theorenm 5.15).
The degree of thi(z) equals the number of roots which is ¢(ti).

In particular consider the following example, Iet t =20

20

and p = 3. Then z°° - 1 is completely factorable in GF(3h) since

= ], is the smallest k such that 20] 3k - 1. Thus GF(3h) is the
minimal root field for ZZO -1,

2 4 5 10

The polynomials z - 1, 2° -1, z° -1, 27 =1, 27 -1all

divide 220 - 1. The cyclotomic polynomials ﬁjti(z) of period

ti are
ﬁjl(z) =z =1 (degree 1)
2.1
WJZ(Z) =z (degree 1
Y1(2)
4 1
Hjh(z) -2 - (degree 2)

ﬂ’l(Z)\F2(Z)

(degree 1)

ﬁjg(z) =

l(z)
10 -1
%jlo(z) = z : : (degree L)
b 1@ Yo W)
10
WJ2O(Z) - _z - L (degree 8

V() ¥, (2) W) (2) ¥ (2) ¥ o(2)
The number of roots of order 20, for example is also given
by @(20) = ;z(z'2 .+ 5) =20(1 - 1/2)(1 - 1/5) = 8, which checks with

the degree of Yon(2).



to determine the number of irreducible polynomials in each

Y't;(2z), make use.of Theorem 5.15. For

Vo(2) = 2 3" 21 implies m =1

‘\Jh(z) : L | 3m -1 impliesm =2
Yg(z) = 5 ‘ 3" =1  implies m = L.
Since m<£k, \{Jlo(z) and ‘f’zo(z) are composed of irreducible
factors of degree l each. \[—’20(2) consists of tw.o fourth degree
irreducible factors of period 20.
Completing the factorization gives
v 1(z) =2 +2
Yale) =
ﬁjh(z) 2
\ijs(z) 4 3+z2+z+l
\)/lo(z) = zh + 223 + 22 + 2z + 1
6

¥
o
+
]

u
N

+
.

H
[ ]
+
N

\f/zo(z) = z8 + 2z + zh+ 222 + 1
3

(zh+z3+22+l)(zu+2z +z + 1),

L5



CHAPTER VI

DECCIMPOSITION OF PERICDIC SHQUENCES INTO

THEIR GINERATING POLYNOMIALS

I. UNIQUE DECOMPCSITION OF A PERIODIC SEQUENCE

INTO A WINIMUM THGRIE GXNERATING FUNCTION

. g ne (1 o 2%

If a periodic sequence {“1) 1=0 1s specified where {h{g i=0

belongs to a known G(f), then the minimum degree ratio of polynomials
5 o0

generating {hi§i=0 can be determined by the following theorem.

Theorem €.1. Let {nst. . €G(f), where £(z) = fo + £12 + ...

k - - c e

+ £z, 5 # 0, and €L If £(z) has distinct roots ag,...,a. 3
in the root field K of f£(z), then for every such linear recurring
sequence {h%;o:o there exists a unique set {bo,...,bk_l_f, bi€ X,

which are determined by

-1

r .
h,, =Z ;005 (r =0,1,... ) (6.1)
1=0
. . -1 { .
with oC; = a; . Conversely, for a set 1b0""’bk-i}’ b; €%, such
that all the h; defined by (6.1) belonz to I

90
o then {hls j=0 Pdelongs

to G(f).
S
Proof. Suppose {ﬁi§i=O€iG(f). Then h(z) = g(z)/f(z) for
some ¢(z). Over K, the root field of f(z), £(z) is factorable
into distinect linear factors by hypothesis. That is,
£(z) = £i(z = apg)(z - a7)...(z = a, ;)

k \

or f(Z) = fk(-l) (ao - Z)uou(ak_l - Z)n (602)

By partial fraction decomposition,



g(a) _ (2,70 a(2)
£(z)

(ag = 2)(ay =2) ... (g4 = 2)

may be decomposed into a sum of linear Ifactors

g(z) bg o) b1
= + T eee T o—————— .
£(z) ag =2z a) -2 a1 = 2
In series form
O o'F]
bi (. 1 \ :

} -LJ J J 3

21 - @ =0 j=0

[x¥4)
The polynomial corresponding to-{hi}i=o is

o0
h(ez) = 2:::hizl
i=0

Thus equating the two series representations of h(z),
oL OO

i i i i i
n(z) =/ hsz = (bo%g + 1L *+ .ov * Dg1Fko1)z
1=0 1=0

L7

(6.3)

(6.54)

Two power series in z are equal if and only if the coefficients of

like powers in z are equal, which implies

k=1
By = ij"“jr
3=0
or in matrix form
o | %0 %1 ... Cra| oo
hy °"*’é °C§ ...°C12<-1 by

: k Lk k y
Mear] [0l ... Fx-1] Pkl

Alternately this may be written as h = Ib', i.e.,
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ho 1 1 cee 1 bg

hl do OC 1 s e e DCI(_I bl'

. = . . (6.6)
. s el kel PRIt

N1 oLy X e -] bl

where by ' = OCibi.
Thus there exists a uqique solution of the bi' if and only
if M 1s nonsingular, but I is the transpose of the Vandermonde
matrix, and it is nonsingular if ofy,...,%, 4 are distinct. (7, p. 13L)
This is satisfied by the nypothesis of the theorem. Therefore
the first part of the thecrem is oroved.
In application the determinant of the matrix ¥ may ve
calculated in order to determine Mrl . Since M is the transpose of
the Vandermonde matrix its determinant may be written

detfi] = €6y -, )6 = el = H(e ) - &)

AY

x (e p =o€y z)eeu(oby 5 = &)( 5 - eCy) x
X (€ = %3, = otg) u

Wnich may be written more briefly in the form

k=),
det¥] - | I (€5 = C)), 1>, (6.7)
i, j=0
i.e., the determinant M is equal to the product of differences

Ly - ocj, vwhere 1,j assume values O,1,...,k~1 in such a way that i>j.

Now returning to the proof of the above theorem, we cre ready

)
x-15>

b.EX, the resulting {hl} 500 defined by (6.1) will in general have its

. . (.
to prove the converse. That is, for any arbitrary set IbO""’b
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elements in K. Now

k Iz k-1
, _ r-]
fJnT-J 2___fb 0;0C4
3=0 j=0 i=0 ;
£=1 -
r=k k3
i= i=0

k

§ k=3 .
To show that fjoci I oo C fer all 1, consider the polynomial
J=0

7 -

£1(z) = + + + “ K
z) = fl’. B2 oo iz + fp2
which is factorable into the form

£1(zg) = fo(Z - fgo)---<z - /;k—l) (6.9)
where the }?i are over an appropriate root field X', But

k k
£(z) = 2 £1(1/2) = 2 £5(1/z - Bo)ee (L2 - Bry)

fo(l —ﬂoz)(l - ﬁ-_,_z)...(l “/gk_lZ)

-1 , o=l -1 \
hif (/go see /gk-l)(ﬁO - z)(ﬂl - Z)-oo(ﬂk_l - Z)-(é.lO)

Ey assumption of the factorization of f(z) and the fact that factor-

[}

ization is unique over a root field, then from (6.2) and (6.10)
-1 -1,
Py mag = (1= Opeee,k=1)
- k
Therefore the root field of f(z) and £'(z) coincide, and any root
a; of f(z) has a{‘ = ol as corresponding root of £1(z)., Hence
(6.8) is zero, implying that the-{hi};:O resulting from the arbi-
trarily chosen bp,...,by ;7 satisfy a recurring relation of the
type (2.1). Hence if the resulting h; all belong to I, then the
hiloo €G(f) by definition of G(£).
ifi=0
The minimal size G(f) which contains all sequences of period

t is specified by



Theorem 6.2. Let the volynomial £(z) be defined over GF(v)
and let G(f) be over GF(p). The mininal degree volvnomial £(z)
such that G(f) contains all secotvences of period % is the polymomial

t
f(Z)=Z "1.

m de ey o Ymd N t )

Proof. Theorem L.8 states that G(z ~ = 1) contains all

sequences of periods tj which civide t. The minimality of the

t . . ; _ co
degree of 2 - 1 is obvious. -or consider the sequence {ﬁi}i—o
7(z) e ’ v
generated by _& where (g,z - 1) = 1. Since (g,z° - 1) = 1,
1 -zt

then p(u) = t and {uz(f__o cannot beleonz to any other G(f) where
d(f)<t (Theorem 4.9).

The results of Theorens (6.1) and (6.2) allow the minimum
degree generating function to ve computed for any periodic sequence
%ﬁ‘i?:zo over GF(p, of period t provided that t # 0 (mod p). If
t ;‘é 0 (mod p), then any purely neriodic sequence {hl%c;o over GF(p)
with p(h) = t belongs te G(z"G - 1), where z.t - 1 1s separable,

The roots of zt ~ 1 are elements of the extension field
GF(pn) where tl pn-l. Hence the rcote of zt - 1 may be found
so that (6.1) may be solved for the b.', 1 = 0,...,k-1,

Consider the following oroblem to illustrate the use of
Theorems (6.1) and (6.2) with respect to computing a minimal degree
generating function from a glven vericcic sequence {ﬁi};:o. Supvose
the ziven sequence is

{hi}-;_fo - 12,1,2,0,2,1,2,0,... }.
This sequence of numbers is perlodic with period t = Ly, Since
the maximum element is two, then a field of characteristic three,

GF(3) would adequately represent the set of elements contained in
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“ s L . s 4 3 \ e ;s 700 a“
the sequence with t = 2 0 {med 3). The sequence <hi%; o must beleng
-

,t
to the set 3(f) where f{z) = z - 1., Since t # 0 (mod p), then the
ewl
L 3"

2
polynordal zh - 1 has GF(37) as its roct field. For z -1 \z -1
2
for k = 2 and no smaller k, and thus the elements of 23 - z form the

minimum extension field of G¥(3) in which z}-L - 1 is completely
factdrable.

In order to apply Theorem 6.2 for obtainingz the generating
function z(z)/7(z) = h(z), the nolynomial Z\LL - 1 must be factored
over its root field. The irreducible factors of zh - 1 will be

2

factors of z2° - 2z, whose factorization may te accomplished through

use of cyclotomic polynonials,

Y/l(z) =gz -1=2g +2
2
Yola) = 2222z
Yi(z)
Lo
( = z . = 2 + 1
Y ite) AN AG
Ys(z) = e -1 2+ 1

V1@ Yo (2)Vi(z)

Each %jti(z) consists of all irreducible volynomizls of vperiod
=2

. B . . . o o
t.. Since z° =~ 2z contains irreducible factors of dezree =2,

l.
then z° + 1 is factorable inito two second degree polynomials

wnich are

zh + 1= (22 + g + 2)(22 + 22 + 2),

Zoth of these polynomials have roots of period pk - 1= 32 - 1.

T"

9,
he nonzero elements of GF(32) may be formed by the pK -1=28

> S S hnl 2 b : .
nsowers of a primitive element of GF(3"). 3upvose "a' is a root



2
of 2 +2z + 2, thena =2

Equivalently a root

o

2
+ 1 and the elements of GF(3 ) are

2a + 2
a + 2
1

2
of z + z + 2 might have been chosen in

order to form a field isomorphic to the one exhibited above.

Returning to the problem at hand, it is necessary to factor

Zz = 1 into linear factors.

h

Over GI(3)

z =~1l={z«1)(z - 2)(z2 +1).

2
The roots of z + 1 are of order L, which are

2
a

at+tlya =2a

Therefore
2

From (6.6)

+ 2.

2 +1=(z=-a=1)z -22=2)=(z - az)(z - aé).

r1 1 1 1 byt

1 2 3 2
2 2 2 2

o “eC “oC 1

1 % 3 by




1 2
ol = (aé)-l - 32.
L

The vandermonde matrix becomes
1
1

M =

1
1

sy cdefinition, the inverse of %h

M-l -
= g
o — p—
byt
by! ;
by!
'bh|

so that the solution of the bi'

: 2 6
bl' = 2, b2' = O, b3' = a ’ bh' = a

-1
and by = byteC]

wnich gives

=]

4

2

1

2
a

L
a

6
a—1

e matrix M is

are

)

bl = 2, b2 = O, b3 = 2, bu

1/det ¥ » adj ¥

2.




Therefore the decomposed form of the desired generating function is

P
g(z) 2 0 2 a2’ 1 2z
= + + + =

= +
f(z) 1l-2 2-2 a¢-z aP-z z+2 2%+1
z + 1

23 + 222 4+ 7 + 2

Checking the result by long division gives

g(z) z + 1 , N 2 3 L
= — s =h{z) =2 +2 + 2z + 0z + 2z +

f(z) 2° +2z2°+ 2z +2 g 4 7

7z + 22 + 02 +* .04

Hence the sequence generated is {é, 1, 2,0, 2,1, 2, O, ...2- and the

desired result has been achieved--that of determining the minimum
o

degree function whichtgenerates fhi}i=o'

IT. AN ALTERNATIVE METHOD OF DETERMINING THE

MINIMUM DEGRZIZ GINERATTNG FUNCTION

An alternative calculation procedure can be developed for
determining the minimum degree generating function of a given periodic
- . s s Y Ead .
sequence, In fact, any given vericdic sequence-fhi§i=o of period
. . .
t has a polynomial renresentation of h(z) = q(z)/(1 - z ) for some

q(z) where d{a) < £ - 1. So

t t-1 t
a{z) = (1 =2 )(h *+hz+...+heqz + hyz

t+1
+ ht+lz + e e )

t-1
(ho + hlZ + ...t ht_lz )

t t+1
+ (ht had ho)Z + (ht+l - hl)z + K] (6.11)
‘ t-1
If o(z) =qg+qz *+ «ss + Q432 , it follows from the above
equality that

q; = hy for 1 = 0,1,¢00,%t-1
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How if (a(z),z - 1) = gy(2) # 1, then She factor qq(z) may
clearly be eliminated, yieldin=

n(z) = a(z)  ay{z) aplz}  q,{z2) (6.12)
2t =1 qu{z) o(z)  o(z) ”

which is minimal, This bLypasses the neocessity of determiningz the
roots.

The theory of cyclotcmic nolyvnonisls and their irreducible
factors becomes quite valuanle cs a svsteratic method of reducing
(6.12) to the lowest dezree. in fact, this method may be used <o
handle both the distinct root case when T £ 0 (mod p) and the mult-
iple root case where t = 0 (wmod »).

Fither of these two vrocedures determines the same minimum
degree representation of a periodic sequence when the period
of the sequence is not congruent to zero riodulc p. However, for
the multiple root case, t = 0 (mod p), the alternative calcula-
tion method may be applied very systematically while the method

of Theoren 6.1 does not apply.
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For a given (k+1)-tuonle (fo:fl""’fk)’ the solutions of

X

} £ihy 5 =0, (1 =1k, ktl, ... )

3=0

are members of the set G<f0’f1""’fk) which forms a vector space.
kS

The members of this set are equivalently generated by elerments

6(2) = n(z) {g(z)/f(z); 5(z) < a(e)
and g4 G"r‘(p)%

where the corresvondence is

k
£(z) = fo v fqz ..+ D27 < (£gsyseesty)
and
= ¥ t ¥ = o)
h(Z) ﬂiZ *'———)(ho’hl,.‘. ) I“iii=0'

1=0

]

. A ~aa e o0 . . AT
The inherent property of a solution, Ytl“!}i=0’ is that it is
purely periodic seguence whose neriold is a divisor of the pericd of

the polynomial £(z).

Hy

O
It was shouwn that any ourely »eriodic sequence, -{xj}i:O, o

. . T : . .
period t belongs to G(z =~ 1) and that the minimum degree ratio of

4+
volynomials g(z)/f(z), where G(£)=G(z - 1) could be determined.



TIPS
casLlCoia Y

Alvert, &4, Adrian. lodern Iighe

& rebra, Chiczro: The
University of Chicago “ress, 1937,

Albert, A, Adrian., IFundamental Concenis of disher ilsebrs,
Chicago: The Jnlf ersity of Cahicaro Press, 1956

Artin, Emil, Calecis Theory. Second edition. UlNotre Dame, Indiena:
University of Notre Dame, 19L2,

rl

Birkhoff, Garrett and Sanders Xaclane. £ Zurvery of lModerrn Alzcbra,
New York: Macmillan, 19L1.

Carmicheal, Robert D, Introduction to the Theory of Groups of
Finite Order. Boston: Cinn, 1937,

McCoy, Neal H, Introduction to “odern Alzebra. Boston:
Allyn and Bacon, 1920,

-

L el

Mostowski, Andrzej and !7, Siark. Initroduction to E- Llrebra,
International Series of onogravns on ~ure and / ~led “ather acics
Translated by Dr. J. “usiclak. HNew York: ‘acmll*an, 19¢L.

3

Waerden, B, L. van der, ?odeln 4lr7ebra. Vol. I, translated bty
Fred Blum, WNew York: Irederick Unzar Publishing Co., 1949.

3. PZRIODICAIS

oy

Bremner, J. L. "Linear RECHTT»”CC Zlelations," American Mathe-

matical Monthly, 61:171-173, Yarch, 1S$5h,

Ward, nof ran, ""The Arithmetical Theory of Linear Recurring aequeﬁ
ces," Transactions of the American :zunematical Society, 35:£00-

628, July, 1933.

Zierler, lieal, "Linear Zecurring Sequcnces," Journal for the Society
of Industrial and Anplied athematics, 7:31-U48, March, 1959.




