FINITE FIELD EXTENSIONS & GALOIS GROUPS

A Thesis
Presented to
the Faculty of the Department of Mathematics

Kansas State Teachers College

In Partial Fulfillment
of the Requirements for the Degree

Master of Arts in Mathematics

by
Verle Edward Earrison

August 1964



GRADUATE COUNCIL APPROVAL

Vaw
Peetigge, - /274'-—\

o

DEPARTMENTAL APPROVAL

W priion B Eomeneon

213461



ACKNOWLEDGEMENT

I would like to express my appreciation to Dr. Emerson for his
help and encouragement, and also to my wife, Barbara, for her willingness

to put up with mathematics at dinner.



CHAPTER
I. INTRODUCTION . .
The Problem.
Statement of

Limitations.

TABLE OF CONTENTS

PAGE
L] L] L L] L] L] L] L] L] L ] L] L] L] L] L] L] L] L] L] L] L] L] L] l
@ o o © o o o @ © e o » © @ o ® © & o o o°o o o 1

the problem « « o o o o ¢ o o o ¢ o o o o o ¢« 1

L] L] L] L L] L] L] L] L] L] L] . L] . L] L] L] L] L] L] L] L] L] l

Importance of the probleme ¢« « o o ¢ ¢ o ¢ o ¢ o o ¢ o ¢ o 1

Brief History.
Definitions of

II. FIELDS AND THEIR
Addition Table
Multiplication
Addition Table
Multiplication
Addition Table
Multiplication

III. GALOIS GROUPS. .

Multiplication

-
Terms Usede o o o o o o o o o o o o o o o o o 3
EXTENSIONSe « o o o o o o o o o e o e o o oo 7
£0r GF(2%)e v v v o v o o o o o v e v v ea. 15
Table £or GF(27)e o v o o o v o o o o o o oo 15
£Or GF(27)e v o o o v o o e v o oo oo 16
Table £or GF(27)e o v o o o o o s o s o o oo 16
FOT GF(3%)e o o o o v o o o o e oo oo e 17
Table £0r GF(3)e v v o o o o v o o o o o oo 17

L] L] L] . L] L L] L ] L] L] L] L] L] L L L L] L ] L] L] L] L] L[] 20

Table of the Galois Group of

x2—2=’o°verRooooooooooooolooooooo22

x3+x2+x+l=OoverRe................ 23

xh - 5x2 + 6

=00V61“R..-....-....o-....23

P - 2 = o over R [ ] L] L] L] L] L L L L L L L L L L @ L L] L] L] L 24

x4 - 2 = o over Re L ] [ ] L ] L] [ ] L] L] L] L L] L] L] L L L] L] L] L] L] L] 24

IV. SOLVABILITY OF ALGEBRAIC EQUATIONS ¢ « o o o o o o o ¢« o o o & 26



CHAPTER PAGE
V . SUMy‘ARY L] L] L d o L d . L] L . . L] . L] . L] L J L] L] L] L] L] L] L] L L] L d L] L] 30
BI BI‘I mRAPHY L] L . . L L] ° L] L] . ks L] L] . L] L] L . L L L] . L] L] L] ° ° L] . 32

APPENDIX L L] L ] L] L] . L L] L] o o . L] L] L] L] L L L] L] L L L] . L] L . L d L] L] L] 34



CHAPTER I
INTRODUCTION

Often in elementary algebra, equations are found that have no
solution over a given field. This gives rise to at least two questions.
First, if we change the field of the equation, will the equation have a
solution? Second, if the equation does have a solution, can it be found
only by rational operations and extraction of roots? Both of these ques-
tions are now answerable by means of modern abstract algebra, especially

group and Galois Theory.
I. THE PROBLEM

tatement of the problem. The purpose of this study is (1) to

show the development of a root field extension of an irreducible alge-
braic equation; (2) to define the Galois group of an equation and give
some specific examples of Galois groups; (3) to show by using Galois
Theory the existence of equations of degree five and higher that are not

solvable by radicals and give an example of such an equation.

Limitations. Since there has been such an extensive development
of finite groups, fields, and Galois Theory, this paper can deal with
only a few aspects of these areas. Only a brief introduction to Galois

Theory is given; however, included are numerous examples of field exten-

sions and Galois groups.

Importance of the problem. Field extensions and groups, particu-

larly root field extensions and the associated Galois group, play an
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In a letter to a friend written on the eve of his death, Evariste
Galois (1811-1832) outlined some of his thoughts in mathematics. This
letter contained the basis of what has been called "Galois Theory." He
was the first mathematician to give a necessary and sufficient condition
for an algebraic equation to be solvable by radicals. One of the basic
theorems establishes a relationship between subfields of a field and sub-
groups of a Galois group.

From the original work of Abel and Galois many mathematicians have
enlarged upon the idea of a group until today it is one of the most impor-
tant abstract mathematical structures. Cauchy (1789-1857) is creéited as
the founder of the theory of groups of finite order. He proved a theorem
previously stated by Galois, but now called Cauchy's Theorem. One of the
first persons to treat groups abstractly was Cayley (1821-1895) in a
paper in 1854, |

In recent years the work of such men as Dickson (1874-1954), who
did a great deal of work with Galois Fields, and Moore (1862-1932), who
showed all finite fields may be thought of as Galois Fields, show the
importance of the ideas stated in the letter written by Galois on the eve

of his fatal duel.
III. DEFINITIONS OF TERMS USED

The reader is assumed to be familiar with the ideas usually taught
in a course in modern abstract algebra. Below are several definitions
found in any standard textbvook and are included here to help refresh the

memory of the reader.,
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Algebraic element. A zero of a polynomial with coefficients from

a ring is called an algebraic element. Any other element is transcen-
dental.

Automorphism. An isomorphism of a set with itself is called an

automorphism,
Basis. A basis of a vector space is a linearly independent sub-
set of the vector space which generates the whole space. A vector space

is finite-dimensional if and only if it has a finite basis.

Characteristic of a field. If there is a positive integer n such
that na = 0 for every element of field F, then the smallest such‘integer
n is called the characteristic. If no such integer exists, field F is
said to have characteristic zero. Note: na means EE' a where for all

=
1y a; = a.

Conjugate. Algebraic elements are conjugates if they are roots of
the same  irreducible polynomial.

Coset. If H is a subgroup of the group G and a is an element of
G, then aH is called a left coset of H. Ha is called a right coset of H.
If a = Ha for all a € G, then H is an invariant subgroup or normal divi-

sSor.

Irreducible polynomial. A polynomial which has no zeros in a field

F is called an irreducible polynomial over F.
Isomorphism. A 1l-=1 mapping of an algebraic system onto another
system which preserves operations.,
Order. The order of a group is the number of elements in the group.
Prime field. A field which has no proper subfields is called a

prime field.
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The proofs of the following theorems may be found in many textbooks
on abstract algebra or group theory and they are therefore omitted here.

Cayley's Theorem. Every abstract group is isomorphic to a permu-

tation group. (4, p. 69)

Gauss' Lemma. The product of any two primitive polynomials is

itself primitive. (3, p. 98)

Lagrenge's Theorem. If the group G has order n, the order of every

subgroup H of G is a divisor of n. (5, p. 188)

Theorem l.l. A group of prime order has no proper subgroups and
is necessarily cyclic. (3, p. 147) |

Theorem 1.2. All subgroups of a cyclic group are cyclic. (7, p. 21)

Theorem 1l.3. The only prime fields are the field of integers
modulo p and the field of rational numbers.

Proof: Since every field is an integral domain, all fields are of
either characteristic O or characteristic p. Consider a field of charac-
teristic p. The elements of the additive group generated by the unity
element e will form a field isomorphic to the field of integers modulo p,
using the mapping ae ¢—> ap, where a is an element of the additive group
and ap is the residue class a of integers modulo p. Hence every field
of characteristic p contains a subfield isomorphic to the field of inte=-
gers modulo p. Now consider a field of characteristic O, The subgroup
generated by the unity element e will be isomorphic to the domain of
integers, using the mapping ae ¢«> a, where a € I. The subfield gener-
ated by e will contain all quotients ae/be, b # O and hence is isomorphic

to the field of rational numbers, using the mapping ae/be <> a/b, b £ O.
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Hence all fields of characteristic O contain a subfield isomorphic to the

field of rational numbers.

thesis:

The following is a list of notation that will be used in this

G

F

K
Fc K
Flagy a5y oee)
¢

Re

R

I
QR
(K/F)
F[x]
£(x)

GF(p%)

Denotes a group

Denotes a field

Will always denote an extension field

F is a subfield of K

The extension of F by the elements ayr By eee
Field of complex numbers |
Field of real numbers

Field of rational numbers

Set of integers

Vector space Q over R

Degree of the extension K over F

Ring polynomials in x over ¥

Polynomial

Galois Field of pn elements



CHAPTER II N
FIELDS AND THEIR EXTENSIONS

The purpose of this chapter is to give an introduction to the
theory of field extensions, particularly finite field extensions.

Definition 2.1« K is an extension field of F if F is a subfield

of K. Notation: F CK.

Consider a set S = {al, 85y 8z ...} of elements of K; and let
F(al, 854 «+s) denote a set of elements in K which arises from rational
operations with the elements of F and the elements of S. Hence
F(al, a2, eee) is a field and also the smallest extension of F contain-
ing 5. (2, p. 13)

Definition 2.2. The field F(al, 85y 839 ees) is said to be formed

by the adjunction of the elements of set S.

Definition 2.3. If K = F(al). then K is called a simple extension.

Example: If K = F(u), then the elements of K would be of the form

1 2 -1
et b2u + eee)

(ag + alul + a2u2 + )by + b » where a,, b, ¢ F and u
is the adjoined element.

Ve may consider any finite extension as arising from repeated or
iterated extensions.

For example: Suppose K = R( 4/ 2, A/ 3) then it has elements of the
form a + b'ﬂfE +cA 3+ d-«FE'AfE} where a, b, ¢, d € R, i.e. all
rational operations with elements of R and the elements A2 and 4f§. Now
let J = R(V2) and L = J( V' 3)

a+b QfE EJ a, b, € R

cl+d1'VBEL cl’dl’E'J
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but ¢, = e+ £A2 and dl =g + nv2 e, f, g, h € R. Hence substituting
for c and d1

(e + £42) + (g + M) V2)ANVZ €L
o+ £42 + gd2+ hd243 L
Therefore L = K. In general the simple extension of F by the element W

followed by the simple extension of F(ul) by the element u, yields the same

2
field as F(ul, u2). Furthermore the order of adjunction is immaterial, i.e.
F(ul, u2) = F(uz, ul). It can be shown by mathematical induction that any

finite extension may be obtained by this process of iterated extensions.

Definition 2.4. If the elements of set S are algebraic, then

F(al, 3y 8z, ees) is called an algebraic extension; otherwise, it is a

transcendental extension.

Example: The field of complex numbers C is an algebraic extension
of the field of real numbers Re. The elements of C are of the form a + bi
where a, b €Re and 1 is the adjoined element. Using the above notation
this field is also denoted by Re(i). An example of a transcendental fieldl
extension of the rational numbers R is R(Tf) with elements (ao + a17f+
anf® + )by + b+ b2+ L7, where a, b, € R andffis the
adjoined element. DBoth of these extensions are simple since they are cre-
ated by the adjunction of one element.

Theorem 2.1. Any two simple transcendental extensions of the same
field are isomorphic.

Proof: Consider the two extensions of field F, F(v) and F(w) where
v and w are transcendental. Now F(v) and F(w) are clearly isomorphic under
the mapping v <> w, by considering the elements of each fiela as polyno=-

mials in indeterminates v and w respectively.
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An extension K of a field F is a vector space, where the elements
of F are the scalars and the elements of K are the vectors, since for
a, b€ F and A, B € K we have the following:

a(A + B) alh + aB

(a + b)A = aA + bA

a(bA) = (ab)A
1A = A
Hence the extension K of F is a vector space over F and is denoted
K/F. The dimension of this vector space is the degree of the extension K
over F and is denoted by (K/F). An extension is called finite ifyits
degree is finite.
Theorem 2.2. If F €K <€K', then (K'/F) = (K'/K)(K/F), where K and
K' are finite extensions.
Proof: Let (K'/F) = n, (K'/K) = m, (K/F) = q and let the basis of
K'/K be Vis Yoy eee Vo and the basis of K/F be Wiy Woy eee wq. Now if

t €K' and r € K they are of the form

Yr %
t = ;=oai v, r = JZzloj W a; € K, b€ F
now by substituting for a, t = %;( §:bi3 wj) vy
t =%Z %Z bij (wj vi)

Hence tlie independence of the elements of K' depends upon the independence

of w, and v, . These are linearly independent with respect to F, since if

J

: ; y s
they were not%:' 2; bij g vy o= O and since the v, 's are linearly inde

pendent with respect to K then.'Zbij wj = O but the wj's are linearly
J

independent with respect to F. Therefore mgq is the degree of the exteunsion

K' of the field F.
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Theorem 2.%. An extension K of F is algebraic if and only if the
degree of the extension K is finite.

Proof: Let the extension K over F have finite degree n and let
a € K. Since the powers 1, al, a2. 5o § a? are linearly dependent, then
there are ci's, not all zero, such that ﬁ;bci ai = 0. Consider the
equation j%o s xi. The element a of K ;; a solution of this equation;
hence K i;—algebraic.

Now assume K is algebraic. Adjoin any algebraic element of degree
n. This gives us a finite extension with basis 1, a, es., a®. By The-
orem 2.2 successive finite extensions always yield finite extensigns.
Hence K is a finite extension.

We may now use the terms finite algebraic extension, finite exten-

sion, and algebraic extension interchangeably.

Definition 2.5. If an extension K is formed by the adjunction of

all roots of an equation f(x) = O, then it is a root field (also called
splitting field or decomposition field). This means that f(x) must factor
into linear factors in K and that K = F(al. sy ey an) where f(ai) = O,
Note: Most of the fields in this paper will be root fields.

Example of a root field extension:

Consider the field of rational numbers and the equation x3 -2=0,
The roots are r, wr, war. where r = Agré—and w3 = 1, then the root field
would be K = F(r, wr, war). with elements of the form a + br + cwr +
dw2r + ewr2 + fw2r2. Note: This field may be formed other ways also, i.e.
K = F(w,r) is exactly the same field.

Theorem 2.4. For every polynomial f(x) of degree n in F[x]), there

exists a root field.
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Proof: Either f(x) is completely reducible into linear factors
or it has irreducible factors. In the first case F is the root field;
therefore, assume it has irreducible factors. Factor f(x) into these
factors. f£(x) = fl(x) fZ(X) f3(x) . fn(x). Now adjoin a root r, of
fl(x) to F obtaining F(rl). Now factor f(x) into irreducible factors
over F(rl) and continue this process. There are at most n steps, since
f(x) is of finite degree.

Theorem 2.5. If Tys Tpy seey T, are conjugates, then the fields
F(rl), F(ra), &% g F(rn) are isomorphic. (3, p. 382)

Another classification of extensions follows from the idea‘of root

fields.

Definition 2.6. A field K is called normal over F, if it is alge-

braic over F and if ‘every irreducible polynomial f(x) in F[x), which has
one root in K, factors completely into linear factors in K.

Theorem 2.6. If K = F(al, . wy an) is formed by the adjunction of
all roots of a polynomial f(x), then K is normal.

Proof: Let g(x) have a root r in K, but assume g(x) does not factor
into linear factors in K. Now extend K to a field K(r') by the adjunction
of another root r' of g(x). Since r and r' are conjugate, F(r) €<= F(r'),
under this isomorphism the elements of F and the coefficients of f(x)
remain fixed. By adjoining all roots of f(x) to both F(r) and F(r'), we
obtain the following: F(r, ayy eees an) <> F(r', By eees an), where a,
is mapped on some aj. Now r is a rational function of By 8oy esey B
since r is a root in K, and this relationship is preserved in an isomor-

paism. Hence r' is also a rational function of Byy eeey & and must

belong to K. We have a contradiction and therefore K must be normal.
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Definition 2.7. If r is a root of an irreducible polynomial f(x)

in F[ﬁ} which has no multiple roots in K, then r is called separable over
K. Likewise f(x) is called separable. If f(x) has multiple roots, then
f(x) and the roots are called inseparable. An algebraic extension K over
F is separable if all the elements of K are separable over K, and any
other extension is inseparable.

Theorem 2.7. Case I. For fields of characteristic zero, all irre-
ducible polynomials in F are separable.

Case II. For fields F of characteristic p, all
irreducible polynomials in F are separable, provided f(x) cannot 5e writ-
ten as a function of x*.

Proof: For any polynomial f(x) to have multiple zeros, f(x) and

f'(x) must have a linear factor in common. Consider an irreducible

n . n
polynomial £(x) = aixl then £'(x) = iag i-l. Now since f£(x) is

irreducible, the grgziest common divisor ;}of(x) and any polynomial of
lower degree must be 1. Hence £'(x) = 0. Now if £'(x) = O for all val-
ues of x, then the coefficients of f'(x) must be zero. Therefore ia, = 0
for all i. If K is of characteristic zero, then the ai = 0 for all i # O.
Therefore f(x) has no multiple roots in K. Now if K has characteristic

p and if ia; = O for all i, then i = O modulo p. Hence if f(x) has mul=-
tiple roots, all terms must vanish except aixi with i = 0. Therefore
£(x) = ag + alxp +a, x S P anxnp. Conversely, if f(x) is in this
form, then -f'(x) = O. Hence we may write f£(x) = g(x*). Note: Usually
in forming a root field extension we consider only irreducible polyno-

mials. This theorem is one of the reasons, since it requires the

polynomials to be irreducible.
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All of the previous work in this paper has been concerned with
fields and field extensions in general. The theorems apply to both finite
and infinite fields. Now let us direct our attention to finite fields.
Perhaps the best way to understand the ideas of field extensions is to
actually write out the addition and multiplication tables of some field
extension. Unfortunately this is impossible in the case of infinite
fields, but it is possible with small finite fields. Before writing out
these tables, some theorems about finite fields and their extensions
should be proved. IMinite fields are often called Galois Fields. First
consider a Galois Field K with q elements. Since K cannot have cﬁaracter-
istic zero, call it p. Now K has a finite number of elements, hence its
basis over the field of integers modulo p is at most n. Let F be this
field of integers wmodulo p. Every eleumeant of K must be of the form
AXy + AKX, +oeee tAX, aiez F. For each a; there are p choices possi-
ble. Hence there must be pn elements in K. Therefore the number of ele=-
ments of a Galois Field is a power of the characteristic p and the
exponent denotes the degree of the field extension K. A Galois Field with
p° elements is denoted by GF(p~). Note: GF(pl) is another name for the
field of integers modulo p.

Theoren 2.8, All Galois Fields with q = P elements are isomor-
phic.

Proof: Omitting the zero element the elements of the Galois Field
form an Abelian group under multiplication, of order q - 1. Hence

=1, af£0. al-a=0. Heace all elements satisfy the equation

o
I

x% - x = 0, Therefore GF(p") arises by the adjunction of all roots of

x* = x = 0, Hence K is uniquely determined, except for isomorphisms.
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This theorem points out an important difference between finite and
infinite fields. In finite fields, if they have the same number of ele-
ments, then“they are isomorphic; however, this is not necessarily true in
infinite fields.

Now it is necessary to show that there does exist a finite field
with pn elements.

Theorem 2.9. There exists for all primes p and all integers n 2> O
a finite field with p~ elements.

Proof: Let f be a field with characteristic p. Now form
K= F(al, ceey aq) where q = pn which resolves the polynomial x? - x into
linear factors. Now consider set s = Z 81y eeey aq—g , Where a, is a

9 . x = 0. This set forms a field since x* = x and yq = ¥y, and

root of x
hence (x - y)% = x4 - y9, and also (x/y)? = x/y3, vy £ 0. x% - xis
separable since £'(x) = qxq'l = O modulo p. Therefore K is a field with
pn elements.

Now having a few basic theorems in hand, consider developing the
addition and multiplication tables for several field extensions. First
extend the field GF(2) by the roots of the irreducible polynomial
x2 + X + 1. Consider the equation x2 + X+ 1=0 or x2 =1+ x. Now
if j is a root of this equation, then j2 =1+ j. First write all ration-
al combinations of j and the elements of GF(2). They are of the form
a + bj, where a, v £ GF(2). These elements are O, 1, j, 1 + j.

The addition table is straightforward, but let us develop the
entries in the multiplication table in detail. TFirst of all a field must

be commutative. This means the entries in the table must be symmetric

about the main diagonal. Now to consider the table entry by eantry.
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O must be the zero element so define O * a = O for all a € GF(2%). Also
1 must be the multiplication identity, hence 1 » a = a for all a é;GF(22).
This leaves the problem of defining j + j, j(1 + j), (1 + 3)(1 + 3).
Using the properties of multiplication, these products are j2, J+ j2,
l+2j+ j2 respectively. Using the identity j2§5 1l + J replace j2 in
each obtaining 1 + j, j + (1 + j), 1 + 2j + (1L + j). Now adding where
possible according to the addition table we obtain 1 + j, 1, j. The table
is completed with these elements since each is an element of GF(22). |

Below are the addition and multiplication tables for the Galois

Field GF(22).

+ O 1 b 1+J 0 1 J 1+]
ol o 1 3 1+3 ol o 0 0 0
1 1 0. |1+3 | 3 1| © 1 j 1+
il 3 |3 | o i il o i 1+j 1

1+j0 1+3 | 3 1 0 1+ 0 | 1+j | 1 j

Notice that by Theorem 2.8 we may arrive at this same field by
adjoining all roots of the equation xu - x = 0 over GF(2). By substitut=-
ing the values O, 1, j, 1 + j into this equation, it is easily seen that
these are roots and since the equation is fourth degree these are the
only roots. ' Also notice that the element j generates a cyclic group with
eléments T j2, j3, or by multiplying these out j, 1 + j, 1.

Addition and multiplication tables for the Galois Fields GF(2”)
and GF(32) with generating polynomials x3 + x + 1 and x2 + 2x + 2, respec-

tively, are given on pages 16 and 17.



1l+u

2
u+u

1+u+u2

1l+u

1+u

u+u

l+u+u2

1+u

ar(2”)

GENERATING EQUATION x3 +x+1=0
ADDITION TABLE

0 1 u2 1+u ut+u 1+u+u2 1+u2

0 1 u2 1l+u u+u 1+u+u l+u

1 0 l+u 1+u2 u l+u+u2 u+u2 ua

u 1+u 0 u+u 1 u2 l+u2 1+u+u2

u2 1+u2 u+u o 1+u+u2 u 1+u 1
l+u u 1 l+u+u2 0 l+u2 u2 u+u2
u+u2 l+u+u2 u2 u 1+u 0 1 1l+u
l+u+u2 u+u 1+u2 1+u u2 1 0 u
l+u2 u2 1+u+u2 1 u+u2 1+u u 0

ar(27)
MULTIPLICATION TABLE

0 1 u u2 1+u u+u2 l+u+u2 1+u2

0 0 0] 0 0 0] o) 0

0 1 u u2 1+u u+u l+u+u2 l+u

0 u ua 1l+u u+u l+u+u2 l+u 1

0 u2 1l+u u+u2 1+u+u2 l+u2 1 u

0 1l+u u+u2 l+u+u2 l+u2 1 u u2

0 u+u2 1+u+u2 l+u2 1 u u2 1+u

0 1+u+u2 1+u2 1 u u2 1l+u u+u

0 1+u2 1 u u2 1+u u+u 1+u+u2




GF(3

2)

GENERATING EQUATION xa +2x+2=0

ADDITION TABLE

0 u l+u 2+u  1l+2u  2+2u 2u
O’ 0 1 u 1+u 2+u | l+2u | 2+2u 2u
1 1 2 0 l+u 2+u u 2+2u 2u 1+2u
2 2 0 1 2;u u l+u 2u 1+2u | 2+2u
u u 1+u 2+u 2u l+2u| 2+2u| 1 2 0
1+u| 1l+u 2+u u l+2u| 2+2u 2u 2 0 1
2+u|  2+u u l+u 2+2u 2u 1l+2u| O 1 2
1+2u| 1+2u| 2+2u 2u 1 2 0 | 2+u u 1+u
2+2u| 2+2ul 2u 1+2u 2 0 1 u l+u | 2+u
2u 2u | 1+2u | 2+2u 0] 1 2 l+u 2+u u
GF(3°)
MULTIPLICATION TABLE
0 2 u 1l+u 2+u l+2u  2+2u 2u
0 0 0 0 0 0 0 0
1 0 1 2 u 1+u 2+u 1+2u | 2+2u | 2u
2 0 2 1 2u 2+2u | l+2u | 2+u 1l+u u
ul O u 2u 1l+u 1+2u 1 2 2+u 2+2u
1l+u 0 l+u | 2+2u | 1l+2u 2 u 2u 1 2+u
2+tu, 0 2+u | l+2u 1 u 2+2u | l+u 2u 2
1+2u 0 1+2u| 2+u 2 2u l+u 2+2u u 1
2+2u 0 2+2uy; l+u 2+u 1 2u u ) 2 1+2u
2a| © 2u| w 2+2u | 2+u 2 1 E 1+2u

l+u

17
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Since all extensions of finite field may be generated by a single

element, often called a primitive element, consider the conditions under

which a field of characteristic O may be generated by a primitive ele-

ment.

Theorem 2.10, Let F(al, sy ooy an) be a finite algebraic exten-
sion field, and let 859 a3, ceeny B be separable elements. F(al, a2,
ceosy an) is a simple extension, i.e. F(al, By eeen an) = F(9).

Proof: Tirst we prove the theorem for two elements, i.e. that
F(a, b) = F(B). Let f(x) be the irreducible polynomial for a and g(x)
that for b. We take a field Flaj, ayy «eey a,y by, by,

f(x) and g(x) factor completely into linear factors, where a; and b, are

distinct zeros of f(x) and g(x) respectively. Let a; = a and b, = b,

coes bh)in which

Consider ai + ij = al + xbl
e N1
" b. - b b. £ b
J 1 J 1

Hence if j # 1, this has at most one root in F for every i and
every j. Now if we take ¢ different from all of these roots, i.e.
8 = %
SR S for all i and j £ 1

bj - bl

Let @@= a + cbl and by substituting for ay and bl
©= a + ¢b
Then © is an element of F(a, b) and is the required primitive ele-

ment. The element b satisfies the equations g(b) = O and £(© - ¢cb) = 0,

with coefficients in F(6). The polynomials g(x), £f(&@ =~ cx) have only one
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root in common, namely b; for the other roots of g(x) are b,, j # 1 and

J
since G- cbj e a;
(& - cbj) £ZO

Hence g(x) and f(&@- cx) have only one linear factor x - b in common.
The coefficients of this greatest common divisor must lie in F(@), hence
b lies in F(®) from a = © - cb. The same thing follows for a, therefore
F(a, b) = F(©). Hence the theorem is true for n = 2.

Let F(al, By eany an—l) = F(§,

then F(al, By seey B o an) = F(&, an)

and since F@, a_ ) = F(O)

F(O)

F(al, By seey an)

Therefore, by induction every separable finite extension is simple.



CHAPTER IIT
GALOIS GROUPS

This chapter includes the definition of a Galois group. Galois
Theory establishes a relationship between normal field extensions and sub=-
groups of Galois groups. All field extensions in this chapter will be
finite separable extensions.
Theorem 3.l1. All automorphisms of a field K form a group.
Proof: Consider the set A = Z T l T is an automorphism of KS .
Let a, b €K and T € A, then |
(a + B)T = aT + bT
and (ab)T = (aT) (bT) by the defini-
tion of automorphism. The product of any two automorphisms is an auto-
morphism and also the inverse of an automorphism is an automorphism.
Hence these automorphisms form a group.
Let K be an extension of F and consider the set B of automorphisms
yhich leave all elements of F fixed or invariant, i.e. if a € F and T € B,
then aT € F and aT = a. These automorphisms form a subgroup of the group
of all automorphisms of field K.
For example: Consider C = Re(i), where a + bi € C and a, b € Re.
Only two automorphisms will leave the elements of Re invariant. These
are
a+ bi — a+ bi (the identity mapping)

and a+ bi —a =~ bi.



Call the first automorphism I and the second T, then the

nultiplication table is

I T
I I T
T - T I

Consider the permutations of i and its conjugate. These permuta=-

tions are I: (i)(=i) and T': (i -i). The multiplication table is

e I Tt
I I T
Jig T I

Under the correspondence I <> 1 and T <—> T', these two groups

are isomorphic.

' Theorem 3.2. Any automorphism T of a finite extension K over F
which leaves all elements of F invariant maps each element r, r € K, into

a conjugate rT, rT € K.

Proof: Let F(x) = x~ + b Pas SRR s b. € F. The auto-
: n-1 0" "1

morphism T preserves all rational relations and leaves each element of F

fixed (hence each bi is left fixed).

T e L O D T € DLl €% DR

Hence rT is a root of f£(x), and therefore rT is a conjugate of r.

Definition %.1. Let K be a normal field extension of F and let G

be a group of automorphisms which leaves the elements of ¥ invariani.

Group G is called the Galois group of K over F; by the Galois group of an
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equation f(x) = O, we mean the Galois group of its root field K = F(rl, Ty
ceesy rn).

Hence the above example of an automorphism group is the Galois
group of C over Re or the Galois group of the equation x2 + 1 = 0. Since
the automorphisms which form a Galois group always leave the elements of
F invariant and permute the roots of f(x) = O, the Galois group may be
thought of as a permutation group of the roots of an irreducible polyno-
mial over a field F.

Theorem 3.3. The order of a Galois group is the degree of the
extension K over F. |

Proof: Let the normal field K = F(rl, Toy sees rn) be formed by
the adjunction of the roots of an irreducible polynomial of degree n.
From Theorem 2.10 K = F(9). N&w consider the automorphisms which carry
F(©) into its conjugate fields FQ?i) which leave the elements of F invar-
iant. These n automorppisms form the Galois group of K over F, hence if
n is the order of the Galois group, n = (K/F).

Since the order of the Galois group depends upon the field which
is extended as well as the polynomial, it is necessary to specify both.
Consider the polynomial xa - 2 over the rational numbers. The roots of
x2 - 2 are/2 and ;Af—. Hence the only automorphisms which permutes the

roots are

I: (N2)(~42) and U: (V2 =42). The multiplication table is

. I U
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Note: This group is isomorphic to the Galois group of the equation

x2 + 1 = O over R. In general consider an irreducible polynomial

x2 + ax + b over F. The permutations of the roots would be (c+ V) (c= /)
and (c+4/d c¢-4d) where ¢ = -a and @ = a2 - Ltb, The Galois group of this

equation is also isomorphic to the additive group of the integers modulo 2.

Consider the equation x3 + x2 + X+ 1 =0 over Re. The roots are
qQ, q2, q3 where ql’ = 1. The Galois group of this equation is a cyclic
group of order 3. T: (q q2 q3)/

- 1 ¢ T
1 |1 || 7
| | | 1
T2 'I‘2 1 T

The roots of £ - 5 ¥° 4 6 = 0 over B areVz, =42, V3, -43.
Let I: identity mapping T: (W3 -43) U: (W2 =42)
Vi (2 =42)(/3 -A3)

¢ I T U '
I I T U '
z I v U
U U \'f I T
v v U T I
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Now consider the equation x3 - 2 = O over R. From the example on
page 10 the basis consists of 6 elements and hence the ordef of Galois
group is 6. Since conjugates map onto conjugates, then the mappings must
be aj (x) (ur) (W) ay: (r ) 8 (r wr)
8y’ (vr wor) ag: (r wr wr) ag: (r wr wr)

The multiplication table for this group is

By 8 8 % & %
(%% | 5 | %
ay [ a, & |a5 [ag a5
a; ay |ag | & |ag | & |a
a,+' al+ a5 a6 | a2 83
8.5 a5 a,+ a2 33 | a6
a6 l a6 | 8.3 al* aa l 81 a5 I

xz+ -2=0over Re. I: (z2)(i) T: (r ir)(i) T2: (r -r)(1)
3
T

i (r =ir)(@) U: (o)(i -1) Vi (rdir)(d -i) Wi (r -r)(@ -i)
S: (r -ir)(i =i) The roots are r, =-r, ir, =-ir, where r)+ = 2.

2 PPy oy

1|1l || Ul v

ol o | 2| 2|1 | s| w| Ul vV
2 2 | 1| | vl v s| w
ol 3 1| e | w| s U
vl v | w|viv 1| 1|
v v s ulw | ® 1| 2 1
wl| wl v|s|u | o 1, 1°
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All of the above groups are groups of extensions over infinite
fields. Consider an nt degree irreducible polynomial over GF(p). The
extension field is GF(p") and the Galois group is of order n. It is
formed by the powers of the mapping T: a <%%>ap. Hence the elements of
the group are T, Ta, vesy T where T = 1 since (af)® = 1. Hence the

Galois group of GF(p®) over GF(p) is a cyclic group of order n.



CHAPTER IV
SOLVABILITY OF ALGEBRAIC EQUATIONS

This chapter establishes a relationship between subfields of root
field extensions and subgroups of Galois groups. By the use of this
relationship questions involving subfields may be answered by using group
theory. 1In particular, the question of finding roots of an equation by
radicals is answered.

In the following theorems, G is a Galois group and K is the corre-
sponding root field.

Theorem 4.1, For every intermediate field F', F<£ F'c< K, there
is a subgroup g of G; namely, the set of automorphisms in G which leave
each element of F' fixed.

Proof: Consider the extension K over F! and let g' be the corre-
sponding Galois group. All automorphisms of g leave each element of F!'
fixed. Hence g is the required subgroup of G.

Theorem 4.2. Every intermeaiate field F' is uniquely determined
by the subgroup g of G.

Proof: Consider the images of the elements of K under the auto-
morphisms of g. The only elements left invariant are the elements of F',
Hence F' is uniquely determined.

Theorem 4.3, For every subgroup g of G, there is a field F! which
is 'the set of elements left invariant by the automorphisms of g.

Proof: Let K = F(O) and g be a given subgroup of G with order .
F' is the subfield determined by g, namely the elements of K left invariant

by the automorphisms of g. F' is a field since if a and b are left
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invariant under the automorphisms of g so is a + b, a = b, ab, and a/b,
b £ 0. Also FC F'< K since g is a subgroup of G. The Galois group of
K over F', call it g' and its order m', contains g as a subgroup since
all automorphisms of g leave the elements of F' invariant. Hence
m' > m and (K/F') 2 m, but the degree of the extension K over- F' cannot
be greater than the order of its Galois group. Therefore g' = ge.

Theorem 4.4. The order of g is the degree of K over F', i.e. if
a is the order of g then a = (K/F'), and the index of g in G is the degree
of F' over F, i.e. if b is the index of g in G, then b = (F'/F).

Proof: This follows from Theorem 3.3 and Theorem 4.3.

The above four theorems are often included as one theorem and
called the Fundamental Theorem of Galois Theory. These theorems state
that there is a one-to-one correspondence between the intermediate fields
of a normal extension and the subgroups of the Galois group. One imme=-
diate consequence of thgse theorems is that there are a finite number of
intermediate fields between F and K. This follows from the finite number
of subgroups of a finite group.

Definition 4.1. A group G is solvable if it contains a sequence

of subgroups G = G0 > Gl Dese D Gn = 1, where each is a normal subgroup
of the preceding and Gi-l/Gi is abelian.

Theorem 4.5. The symmetric group Sn‘ n > 4, is not solvable.
(3, p. 438)

Definition 4.2. The extension field K over F is called an extension

by radicals if there exists intermediate fields Fi’ Fc Fl C oo CFh = K,
n

where F, = F, .(u,) and u, is a root of an equation of the form x . a, =

i i-1"71 i i

o, ai e ri-l'
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Definition 4.3. A polynomial f(x) over F is solvable by radicals

if its root field lies in an extension by radicals.

Theorem 4.6. The polynomial f(x) over F is solvable by radicals
if and only if its Galois group G is solvable.

Proof: Assume f(x) is solvable and call K the root field for
f(x), then there is a sequence of fields F CF € ... €F_ vhich contains
K. Xach field Fi is an extension of Fi—l by an n% root of unity. Let H
be the Galois group of Fr over F. To the sequence of field above there

corresponds a sequence of groups H = H O Hl:D ces :>Hr = 1, where each

0]
Hi-l/Hi is a c¢yclic group, since they are the Galois groups which cor=-
responds to an extension field formed by the adjunction of the n® roots
of unity. Hence H is solvable. G is a normal subgréup of H, and H/G is
the group of F'/F, and is therefore the group of the polynomial f(x).
But H/G is a homomorph of the solvable group G and hence is itself solv-
able. (2, p. 61)

Assume group G of f(x) is solvable and F' be the root field. Let
G = GOTD Gljj cee :)Gr = 1 be a sequence of groups, where Gi-l/Gi is an
abelian group. Call the corresponding fields F< F. < ... CZFr, where

1

Fi is a normal extension of Fi—l and formed by the adjunction of n! roots

of unity. Hence F, is a root field of a polynomial of the form S al)
(2 - a2) eee P - ah) so that by forming the successive root fields of

X - & s Fi is an extension of Fi- by radicals from which it follows K

1

is an extension by radicals. (2, p. 61)
By Theorem 4.6 and 4.5 a polynomial which has a Galois group S5

is not solvable. Consider a polynomial F(x) which is decomposed mbdulo Pe

£(x) EERl(x) R2(X) oo Rh(X)' where R, is irreducible modulo p and let the
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degree of Ri be ji. As soon as the degree ji is known, the permutations
of the roots are known. Namely the permutation consists of cycles ji’ i=
1, 2, ¢¢ey he The Galois group G will contain these ji cycles. (7, p. 191)

Example: Consider the equation x5 - x = 1 = O, Decompose it into

(x°

Fx+ L0+ %+ 1) modulo 2 and into X - x = 1 modulo 3, hence
the group contains a cycle of five elements, and a product of a transpo-
sition and a three cycle. These elements yield the symmetric group 85
and hence x5 - x - 1 is not solvable by radicals. (7, p. 191)

Consider the polynomial x5 - px - p (or x5 + px + p), where p is
a prime. Decompose it into (x% + x + l)(x3 + 253 1) modulo 2 ana into
% - px - p modulo p. This also contains cycles (12345) and (12)(345)
and hence is not solvable. ‘

The above examples show equations of the fifth degree which are
not solvable. Now to construct a polymnomial of n¥ degree with a symmet-
ric group, choose a polynomial fl(x) of degree n, irreducible modulo 2,
then a polynomial fE(X) which resolves modulo 3 into an irreducible
factor of degree n -~ 1 and a linear factor, and then a polynomial f3(x)
which resolves into a quadratic and into one or two odd irreducible
factors modulo 5. It is possible to pick all of these polynomials since
there are irreducible polynomial of degree m over GF(p). Now pick

£(x) = 15 fl(x) + 10 fz(x) + 6 f3(x). (7, p. 192) The Galois group of

f(x) is S, and hence is not solvable for n >4,



CHAPTER V
SUMMARY

This thesis presents examples of finite field extensions and many
theorems about these extensions in Chapter I. Chapter II develops the
idea of the Galois group of an equation and also includes several exam-
ples of Galois groups. In the third chapter a relationship is shown
between the subgroups of a Galois group and subfields of normal field
extensions. The fourth chapter uses the relationship developed in chap=-
ter three to show the existence of equations which are not solvaﬁle by
radicalse.

One notable possibility for further study is for the construction

of an equation that has its Galois group isomorphic to a given groupe.
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Theorem A.l. Construct a polynomial which is inseparable.
Proof: Let F be a field with characteristic p, and w an indeter-
mwinate. Now consider the field K = F(w) and the polynomial x* - w = O

in K[x]. Now % - w = 0 is irreducible by Gauss' Lemma. Consider the

l/P)

algebraic extension K(wl/p). x® - w = 0 is now reducible in K(w

l/P)p - w =0,

since (w p

Also since F is of characteristic p, 2* - x =

(z - x/P)P /pyP o,

and hence (z - x

l/P)'

only ome root in K(w

Therefore this polynomial has
but it is of degree p. Hence it is insepara-
ble.

Note: This is one of the few ways to develop an inseparaﬁle poly-

nomial and hence most polynomials are separable.



