

AN ABSTRACT OF THE THESIS OF

Ryan Frier for the Master of Science in Mathematics presented on April 5, 2017

 Title: Wavelet-Based Acoustic Classification of Bird Species

Thesis Chair: Qiang Shi

Abstract approved:__

ABSTRACT

Identifying birds based off their calls is extremely useful in the realm of avian biology,

especially ecology. In this paper we consider the calls of the Whip-poor-will

(Antrostomus vociferus), the Northern Bobwhite (Colinus virginianus), the Barred Owl

(Strix varia), the Eastern Kingbird (Tyrannus tyrannus), and the Common Raven (Corvus

corax), and ways of using automated classifiers to identify the bird species based off

these calls. In this study, we segment the bird calls into syllables. Then we apply

wavelet decomposition to decompose the recordings of the bird calls and extract certain

parameters from the syllables. All of the instances and the parameters were placed in an

Excel file and uploaded into WEKA, a software for classification. We used various

classifiers to classify the different syllables, but Random Tree and Random Forest were

the most successful in our study. Both of the classifiers achieved over 70% accuracy

when classifying species on the data set that contained the various species of birds. This

thesis shows that birds can be classified into their species based off recordings of their

calls with relative accuracy.

Keywords: Bird calls, wavelet transform, Random Forest, Random Tree, classifier.

Wavelet-Based Acoustic Classification of Bird Species

A Thesis

Presented to

The Department of Mathematics and Economics

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Mathematics

By

Ryan Frier

April 2017

ii

Approved by the Department Chair

Committee Member

Committee Member

Committee Member

Committee Member

Approved by the Dean of the Graduate School and Distance Education

iii

Acknowledgements

I would like to thank Dr. Qiang Shi for his guidance in writing this paper, as well

as his time and effort. His help will forever be appreciated. I want to thank the Macaulay

Library at Cornell University for providing me with the recordings which I used in my

study. I also thank Emporia State University for its support during this endeavor. I

would also like to thank my graduate committee, Dr. Hollenbeck, Dr. Jensen, Dr. Shi,

and Dr. Scott, for devoting time and effort into this project.

iv

Table of Contents

Acknowledgements..……………………………………………………………………..iii

Table of Contents…………………………………………………………………………iv

List of Figures……………………………………………………………………………vii

List of Tables……………………………………………………………………………...ix

Chapter

1. Introduction……………………………………………………………………………1

2. Digital Representation of Sound………….…………………………………………..5

3. Fourier Analysis and Spectrum Analysis...………………………….……………….8

3.1. The Complex Numbers and Complex Plane…….…………………………….8

3.2. Fourier Series…………………………………………....…………………..10

3.3. Impulses………………………………………………....…………………..12

3.4. Fourier Transforms and Properties………………………………….……….15

3.5. Linear Time-Invariant Systems……………………………………....……...19

3.6. Convolution…………………………………………….....…………………21

3.7. The Fourier Transform of Sampled Functions……………….....…………....22

3.8. The Sampling Theorem and Aliasing………………….....………………….24

 3.9. Reconstruction from Sampled Data………………….....……………………26

v

 3.10. The Discrete Fourier Transform…………………….....…………………...28

3.11. The Fast Fourier Transform………………………….....…………………..30

3.12. Windowed Short-Time Fourier Transforms………….....………………….35

4. Introducing Filters and Wavelet Transformations…………....………………..…..37

4.1. An Introduction to Filters…………………………….....……………………37

4.2. Expressing Convolution as Matrix Multiplication……....…………………..40

4.3. Orthogonality……………………………………………....………………..45

4.4. Daubechies Wavelet Transformations………………….....…………………47

4.5. The Integral Wavelet Transform………………………….....……………….53

4.6. Wavelet Packet Decomposition………………………….....………......……54

4.7. Comparing the Fourier Transform and Wavelet Transform…….…...……….55

5. Machine Learning and Data Mining………………………….…....……………….59

5.1. Introduction to Data Mining and Machine Learning………………………..59

5.2. Input………………………………………………………....………………61

5.3. Output…………………………………………………….....……………….63

5.4. Trees and Random Forests……………………………….....………………..67

5.5. Combinations, Bagging, and Boosting………………….....………………...69

5.6. Voting and Averaging……………………………………....……………….72

5.7. Credibility…………………………………………………....……………...74

vi

6. Results, Conclusion, and Discussion………………………………………….……..78

6.1. Data Representation, Macaulay Library, and Audacity…………......…….....78

6.2. Wavelet Decomposition and Feature Extractions…………….……………...83

6.3. Classifying Species and Results with Random Forest Classifier…....………86

6.4. Classifying Individuals and Results with Random Forest Classifier…………91

6.5. Discussions and Conclusions……………………………………….....……..92

Bibliography……………………………………………………………………....….....95

vii

List of Figures

Figure 1.1.1: General method……………………………………………………………...1

Figure 2.1.1: A continuous representation of a sound wave……………………………….5

Figure 2.1.2: Discrete representation of Graph 2.1………………………………………..6

Figure 3.2.1: Fourier transform of a piecewise function..….……………………………..12

Figure 3.2.2: Fourier transform of 𝑓(𝑥) = 𝑥….………………………………………….12

Figure 4.3.1: 𝑓(𝑡) = cos(2𝜋𝑡)…………………………………………………………...47

Figure 4.3.2: The Haar transform………………………………………………………...47

Figure 4.6.1: A representation of the WPD process……………………………………...55

Figure 4.7.1: The signal 𝑓(𝑡)…………………………………………………………….57

Figure 4.7.2: The transform of 𝑓(𝑡)……………………………………………………...57

Figure 4.7.3: The signal 𝑔(𝑡)…………………………………………………………….57

Figure 4.7.4: The transform of 𝑔(𝑡)……………………………………………………...57

Figure 5.1.1: WEKA Interface…………………………………………………………...61

Figure 5.3.1: The WEKA Classification Interface……………………………………….65

Figure 5.3.2: The Decision Tree Designed by WEKA…………………………………...65

Figure 6.1.1: An overview of the process used…………………………………………..80

Figure 6.1.2: Roughly 7 minutes of data…………………………………………………82

viii

Figure 6.1.3: Roughly 0.80 seconds of data……………………………………………...82

Figure 6.2.1: The bin example…………………………………………………………...83

Figure 6.3.1: A confusion matrix for the Random Forest…………………………………87

Figure 6.3.2: A confusion matrix for the Random Tree classifier…………………….......88

Figure 6.3.3: Random Tree confusion matrix for 10-fold cross-validation……………….89

Figure 6.3.4: Random Tree confusion matrix for 20-fold cross-validation……………….89

Figure 6.3.5: Random Tree confusion matrix for 40-fold cross-validation………..……...89

Figure 6.3.6: Random Forest confusion matrix for 10-fold cross-validation…………......90

Figure 6.3.7: Random Forest confusion matrix for 20-fold cross-validation…………......91

Figure 6.3.8: Random Forest confusion matrix, 40-fold cross-validation…………..…….91

ix

List of Tables

Table 6.1.1: The geographic information where the recordings took place……....……..80

Table 6.2.1: Example of the Common Raven Data……………………………………...86

Table 6.4.1: The percentage that each classifier classified correctly…………………….92

 1

Chapter 1 Introduction

In the world of biology, knowing which species are present in a given ecosystem

can be extremely beneficial, and in some cases crucial. Knowing the bird species present

in a given habitat can tell us many important things about the area. First and foremost,

knowing the bird species helps us track the extinction of birds. According to the National

Audubon Society [18], roughly 27,000 plant and animal species go extinct each year. For

many of these species, humans are the main factor that drive them to extinction.

Knowing how many species are present in an ecosystem also tells us about the function

of the system. Birds are also “winged sentinels” [18, para 34] of a sort. That is, birds are

bioindicators in the ecosystem. This study will attempt to identify bird species based off

their calls. This study will attempt to identify individual birds based off their calls, also.

However, current methods of determining which birds are present have their

limitations. Current methods of surveying what birds are present involves biologists

identifying the size, shape, posture, the field marks, the habitat, and flight patterns [4].

The reason these may not be especially precise is because multiple birds may have

similar field marks. Also, many birds may live in the same ecosystem.

There have been different mathematical methods used to classify bird sounds.

Selin, Turunen, and Tanttu [16] used algorithms to classify bird species. The general

approach used can be seen in Figure 1.1.1.

Figure 1.1.1: General method.

To begin we took the sound files and segmented them into different files and

stored them. We then transformed the data and extracted various features from the

Segmentation Feature Extraction Classification

 2

different sound files. We then stored the features of each sound file in an Excel

spreadsheet and uploaded the spreadsheet into classifiers. We used different classifiers to

help us classify the different bird species.

Traditional analysis utilizes Fourier transforms. However, since the late 20th

century a new field of mathematics, called wavelets, has been blossoming and may

provide some assistance in that area. Wavelet theory was discovered predominately by

Ingrid Daubechies of Duke University, Stéphane Mallat of Ecole Polytechnique, and Jean

Morlet of Centre International de Rencontres Mathématiques [6].

Selin, Turunen, and Tanttu [16] use Wavelet Packet Decomposition to classify

inharmonic and transient bird sounds efficiently. Learned [9] also discusses the use of

Wavelet Decomposition Packets to detect and classify the sounds generated by the

snapping shrimp and sperm whale clicks.

The aim of this project is to use wavelet theory in conjunction with modern

computer technology to provide evidence that one may classify birds based off their calls.

The birds used in the study are the Eastern Whip-poor-will (Antrostomus vociferus), the

Northern Bobwhite (Colinus virginianus), the Barred Owl (Strix varia), the Eastern

Kingbird (Tyrannus tyrannus), and the Common Raven (Corvus corax). There were five

of each species used, and their calls were provided by the Macaulay Library at the

Cornell Lab of Ornithology [10]. These species were chosen because they represent a

wide range of the various types of vocalizations that birds can produce.

Since this work includes the analysis of digital recordings, a general introduction

to the digital representation of sound will be provided in Chapter 2. Wavelet theory relies

heavily on the work of Joseph Fourier known as Fourier transforms and Fourier series.

 3

Fourier analysis and spectrum analysis will be addressed in Chapter 3. Also impulses,

linear shift-invariant systems, convolution, the Sampling Theorem, aliasing, and how to

use the sampled data will be covered in Chapter 3. Fourier series are composed of

complex numbers. For the reader unfamiliar with complex variables, there is also a short

review of complex variables at the beginning of Chapter 3.

Since this study primarily uses wavelet theory, wavelets will be covered in

Chapter 4, including the definition of lowpass and highpass filters, the integral and

discrete wavelet transform, orthogonal wavelet bases, and how to construct the

Daubechies wavelet filters.

The classification methods will be addressed in Chapter 5. In order to fully

appreciate these methods, an introduction to data mining and classifiers will be provided.

The credibility of these classifiers will also be discussed.

In Chapter 6 the methods and results will be discussed. The methods involved

include the preprocessing and segmentation, wavelet decomposition, texture extraction,

and classification. The results of the different classifiers, as well as the conclusion and

any further discussion of the topic, will be the final topic covered. The classifiers had

varied results when trying to classify species. Only a portion of the possible classifiers

were used in the study. The results had a minimum accuracy of 64.794% and a

maximum of 74.25%. When classifying the bird species, we found that Random Tree

and Random Forest using cross validation were the most successful, which were more

than 70% accurate. When classifying four individuals per species, we conclude that our

method can separate the four Barred Owl individuals into three groups, the Bobwhite

individuals into one group, the Common Raven individuals into three groups, the Eastern

 4

Kingbird individuals into four groups, and the Whip-poor-will individuals into three

groups. That is, when given four individuals of each species, the classifiers were able to

find three Barred Owls, one Bobwhite, three Common Ravens, four Eastern Kingbirds,

and three Whip-poor-wills. It should be noted that because of the segmentation part of

the process, there is only one bird call recognizable in each syllable. Seeing as the

process separated four out of the five bird species into at least three groups, the results,

over all, are considered successful. The results will be covered in full in Chapter 6.

 5

Chapter 2 Digital Representation of Sound

Sound is created by a vibrating object that sends waves through some elastic

medium. Normally this medium is either air or water. Sound is recognized because it

causes a change in pressure relative to the ambient pressure. Since it creates a pressure,

sound can be measured based on its pressure (in Pascals) or based on the wavelengths

emitted from the vibrating object [3]. In this study, a focus will be given to the

wavelengths associated with sound as opposed to the pressure.

It should be noted that sound is a continuous signal, also called an analog signal

(See Figure 2.1.1). In order for a computer to process the sound, a digital representation

of sound is required (See Figure 2.1.2). That is, we need discrete points along the

continuous signal. “The digital representation … consists of a sequence of numeric

values representing the amplitude of the original waveform at discrete, evenly spaced

points in time” [3, p 319].

Figure 2.1.1: A continuous representation of a sound wave

-0.5

0

0.5

1

1.5

2

P
re
ss
u
re

Time

 6

Figure 2.1.2: Discrete representation of Graph 2.1

Digital signals may be obtained by sampling continuous signals. A sample rate is

how often a sample is taken from the signal. For this study, a sampling rate of 44.1 kHz

is used. That means that there are 44,100 samples taken per second. The accuracy of the

digital representation of the sound wave depends on the number of samples taken from

the wave. In order to obtain a fairly accurate digital representation, we must have a

sample rate greater than the Nyquist frequency in order to avoid aliasing, where aliasing

is defined as “the appearance of phantom frequencies as an artifact of inadequate sample

rate” [3, p 321]. According to the Cornell Lab of Ornithology, the Nyquist frequency is

“the highest frequency that can be represented in a digitized signal without aliasing” [3, p

321]. In other words, the Nyquist frequency is the threshold or critical limit that a

frequency can be and still be represented as a digital signal without aliasing. For

instance, if a wave had a frequency of 10 Hz, then the sampling rate must be greater than

20 discrete samples per second. If, in this example, the sampling rate was, say, 5 discrete

samples per second, then there would be aliasing, or “frequencies represented in it that

-0.5

0

0.5

1

1.5

2

P
re
ss
u
re

Time

 7

were not actually present in the original at all” [3, p 321]. A mathematical explanation of

sampling and aliasing can be found in Section 3.8.

In order to acquire a digital signal, the amplitude values also need to be quantized

into discrete values. The accuracy is dependent on the number of bits used in the binary

representation of the data or its bit depth, or “the sample size or number of bits” [3, p

323]. Similar to frequency, more bits in representation mean more discrete levels, which

gives better accuracy. If too few bits are used, noise, known as quantization noise, can

occur [3, p 323]. Quantization noise is typically manifested in a low hiss. By using an

appropriate bit depth, we may avoid some if not all audible quantization noise. In our

study, each sample has a 32-bit depth.

Having a digital representation of sound allows us to apply different discrete

transformations (such as discrete Fourier transform or a wavelet transform) to the sound

and extract features for classification. We will use these features to classify birds based

off these calls. We will introduce Fourier transforms and wave transforms in the next

chapter.

 8

Chapter 3 Fourier Analysis and Spectrum Analysis

Fourier and spectrum analysis are done in the complex plane. Thus, we first

briefly cover the complex numbers and the complex plane. For a complete discussion on

the complex numbers, please refer to [2]. We will then extend the idea of complex

variables and discuss a certain type of series in the complex plane known as the Fourier

series. Afterwards we will discuss impulse, Fourier transform, convolution, the Fourier

transform of sampled functions, the sampling theorem, and how we can reconstruct the

original signal from the sampled data. Gonzales and Wood provide more details on these

ideas in their book [7]. At the end of this chapter a study of the windowed short-time

Fourier transform is covered.

Fourier analysis and spectrum analysis are crucial in the study of wavelets.

Wavelet filters can be characterized in the Fourier domain. In the next chapter, we will

use the ideas of Chapter 3 to help build the theory of wavelets.

Section 3.1 The Complex Numbers and Complex Plane

In order to understand how wavelet theory and sound analysis work, we must

have a decent understanding of how complex variables work.

The complex numbers are defined as a set of coordinates in the complex plane.

We say that a number is a complex number if it can be written as

𝑧 = 𝑥 + 𝑖𝑦,

where x and y are real numbers and 𝑖 = √−1. We can add, subtract, multiply, and divide

complex numbers in a similar manner to how we would with real numbers. If we say that

𝑧 = 𝑥 + 𝑖𝑦 and say that 𝑤 = 𝑎 + 𝑖𝑏, then the following properties hold

𝑧 ± 𝑤 = (𝑥 ± 𝑎) + 𝑖(𝑦 ± 𝑏),

 9

𝑧 ∙ 𝑤 = 𝑎𝑥 − 𝑏𝑦 + 𝑖(𝑥𝑏 + 𝑎𝑦).

If 𝑧 = 𝑥 + 𝑖𝑦, then the conjugate is defined as

𝑧̅ = 𝑥 − 𝑖𝑦.

The idea of division is expressed by the multiplicative inverse. We define the

multiplicative inverse, denoted by 𝑧−1, as

𝑧−1 =
1

𝑧
=

1

𝑥 + 𝑖𝑦
=

1

𝑥 + 𝑖𝑦
∙
𝑥 − 𝑖𝑦

𝑥 − 𝑖𝑦
=

𝑥 − 𝑖𝑦

𝑥2 + 𝑦2
.

In general, we try to avoid leaving an i in the denominator of the expression, so we use

the conjugate to rationalize the expression. This will leave a real value in the

denominator.

Complex numbers can also be represented in exponential form. The exponential

form, or polar form, is a very useful tool in the world of complex variables. To express a

complex number 𝑧 = 𝑥 + 𝑖𝑦 in polar form, we should let 𝑥 = 𝑟𝑐𝑜𝑠(𝜃) and 𝑦 = 𝑟𝑠𝑖𝑛(𝜃).

Then z becomes

𝑧 = 𝑟(cos(𝜃) + 𝑖sin(𝜃)),

where r is the distance from the origin to the point and θ is the angle from the positive

real axis to the point. Through Euler’s formula it can be shown that z becomes

𝑧 = 𝑟𝑒𝑖𝜃.

This identity is very useful throughout complex variables, especially in Fourier series.

An important quality about complex variables is that the rules of exponents used for real-

valued numbers transfer quite seamlessly to complex-valued numbers. That is

𝑒𝑖𝜃1𝑒𝑖𝜃2 = 𝑒𝑖(𝜃1+𝜃2).

Using this idea, it can be seen that

 10

𝑧𝑛 = (𝑟𝑒𝑖𝜃)
𝑛

= 𝑟𝑛𝑒𝑖𝑛𝜃,

where n is an integer.

The general rules for differential calculus still apply for complex variables.

Differentiation leads to the idea of integration. We will use the ideas of differentiation to

help define the idea of integration. To begin, let 𝑤(𝑡) be a complex-valued function

consisting of the two real valued functions 𝑢(𝑡) and 𝑣(𝑡) where 𝑤(𝑡) = 𝑢(𝑡) + 𝑖𝑣(𝑡).

Then the definite integral over 𝑡 ∈ [𝑎, 𝑏] of 𝑤(𝑡) is

∫ 𝑤(𝑡)𝑑𝑡
𝑏

𝑎

= ∫ 𝑢(𝑡)𝑑𝑡
𝑏

𝑎

+ 𝑖 ∫ 𝑣(𝑡)𝑑𝑡
𝑏

𝑎

,

assuming that ∫ 𝑢(𝑡)𝑑𝑡
𝑏

𝑎
 and ∫ 𝑣(𝑡)𝑑𝑡

𝑏

𝑎
 exist.

Major properties of integration transfer over quite smoothly to complex functions.

A more in-depth discussion of complex variables can be found in [2]. These ideas help

with the manipulation of Fourier series, which are discussed in the following section.

Section 3.2 Fourier Series

The principle idea behind Fourier series is that any function of any continuous

variable t that is periodic and has a period T can be written as the sum of cosines and

sines. More precisely, the Fourier series of a function 𝑓(𝑡) with period T is defined as

𝐹(𝑡) = ∑ 𝑐𝑛𝑒
𝑖2𝜋𝑛

𝑇
𝑡

∞

𝑛=−∞

,

where

𝑐𝑛 = ∫ 𝑓(𝑡)𝑒−𝑖2𝜋𝑛/𝑇𝑑𝑡

𝑇
2

−
𝑇
2

.

When that f is a 2𝜋-periodic function, the Fourier series 𝐹(𝜔) is

 11

𝐹(𝜔) = ∑ 𝑐𝑘𝑒
𝑖𝑘𝜔

∞

𝑘=−∞

,

where 𝑐𝑛 is defined as

𝑐𝑘 =
1

2𝜋
∫ 𝑓(𝜔)𝑒−𝑖𝑘𝜔𝑑𝜔

𝜋

−𝜋

, 𝑘 ∈ ℤ.

 Recall Euler’s Formula 𝑒𝑖𝜃 = cos(𝜃) + 𝑖𝑠𝑖𝑛(𝜃). We can see 𝑓(𝜔) can be

recognized as a series of sine and cosine functions. Fourier series give an approximation

of the original function.

For example, consider the piecewise function

𝑓(𝑥) = {
1, 0 < 𝑥 < 𝜋

−1, −𝜋 < 𝑥 < 0
.

Using Maple [11] we see that our truncated Fourier series is

𝐹(𝑢) = ∑ 𝑐𝑘 sin(𝑘𝑥)

𝑢

𝑘=1

,

where

𝑐𝑘 = −
−1 + cos(𝜋𝑘)

𝜋𝑘
.

The graph of the truncated Fourier series as compared with the original function is seen

in Figure 3.2.1.

In a similar manner, we can calculate the Fourier transform of the identity

function

𝑓(𝑥) = 𝑥, −𝜋 ≤ 𝑥 ≤ 𝜋.

Here we see that the truncated Fourier transform is

𝐹(𝑢) = 2 ∑ 𝑐𝑘 sin(𝑘𝑥)

𝑢

𝑘=1

,

 12

where

𝑐𝑘 = −
−sin(𝜋𝑘) + cos(𝜋𝑘) 𝜋𝑘

𝜋𝑘2
.

To view the graph of the Fourier transform as compared with the original function, view

Figure 3.2.2.

Figure 3.2.1: Fourier transform of a piecewise function

Figure 3.2.2: Fourier transform of 𝑓(𝑥) = 𝑥

Section 3.3 Impulses

When processing a signal, we sometimes need to catch the impulse of the signal

at a particular time. For this purpose, we define the impulse function 𝛿(𝑡). The unit

impulse, also known as the delta function, is defined as

 13

𝛿(𝑡) = {
∞, 𝑡 = 0
0, 𝑡 ≠ 0

.

Note that this is a generalized function, or a distribution. This definition also has the

constraint that

∫ 𝛿(𝑡)𝑑𝑡
∞

−∞

= 1.

A way to interpret this is by letting t be time. Then we have one point where the

amplitude is infinity (at 𝑡 = 0), that has a duration of 0 units of time (seconds,

milliseconds, etc.), and the area of this function is 1. The impulse function has a special

property known as the sifting property. The sifting property means that the function has

the property

∫ 𝑓(𝑡)𝛿(𝑡)𝑑𝑡
∞

−∞

= 𝑓(0),

where 𝑓(𝑡) is continuous at 𝑡 = 0. A more generalized formula for the sifting property

allows for the impulse to be located at any 𝑡 = 𝑡0, as opposed to just at 𝑡 = 0. This is

denoted by 𝛿(𝑡 − 𝑡0) and the sifting property is now expressed by

∫ 𝑓(𝑡)𝛿(𝑡 − 𝑡0)𝑑𝑡
∞

−∞

= 𝑓(𝑡0).

For example, if 𝑓(𝑡) = tan(𝑡) and 𝑡0 =
𝜋

4
, then

∫ 𝑓(𝑡)𝛿 (𝑡 −
𝜋

4
)𝑑𝑡

∞

−∞

= 𝑓 (
𝜋

4
) = tan (

𝜋

4
) = 1.

The delta function and the sifting property also apply when a discrete variable is being

used in place of a continuous function.

The unit discrete impulse 𝛿(𝑥), where x is a discrete variable, works in the same

manner as 𝛿(𝑡) does where t is a continuous variable. The discrete impulse is defined in

 14

a very similar manner to the continuous impulse. That is

𝛿(𝑥) = {
1, 𝑥 = 0
0, 𝑥 ≠ 0

.

Since the continuous variable satisfies

∫ 𝛿(𝑡)𝑑𝑡
∞

−∞

= 1,

the discrete case must satisfy the discrete equivalent to this, which gives us the equation

∑ 𝛿(𝑥)

∞

𝑥=−∞

= 1.

𝛿(𝑥) also satisfies the sifting property

∑ 𝑓(𝑥)𝛿(𝑥)

∞

𝑥=−∞

= 𝑓(0).

The generalized sifting property for a discrete variable can be derived in a very similar

manner to that of the generalized sifting property for a continuous variable. That is

∑ 𝑓(𝑥)𝛿(𝑥 − 𝑥0)

∞

𝑥=−∞

= 𝑓(𝑥0).

In a similar manner to the continuous variable, the sifting property gives the value of the

function at the impulse location. However, there is a significant difference between the

continuous variable and the discrete variable. That is, a discrete variable can be an

ordinary function, while a continuous variable cannot. One other consequence of the

impulse and sifting property is the idea of the impulse train. An impulse train is the sum

of infinitely many periodic impulses ∆𝑇 units apart and is defined as

𝑠∆𝑇(𝑡) = ∑ 𝛿(𝑡 − 𝑛∆𝑇)

∞

𝑛=−∞

.

 15

These impulses on the impulse train can be either continuous or discrete. The

idea of the impulse and the impulse train also have certain implications when dealing

with Fourier transform and their properties.

Section 3.4 Fourier Transforms and Properties

The Fourier transform is one of the most important tools in signal processing.

The Fourier transform ℱ{𝑓(𝑡)} of a continuous function 𝑓(𝑡) of the continuous variable t

is defined as

ℱ{𝑓(𝑡)} = ∫ 𝑓(𝑡)𝑒−𝑖2𝜋𝜇𝑡𝑑𝑡
∞

−∞

,

where μ is a continuous variable as well. Since the Fourier transform is an integral with

respect to t, then the resulting function is a continuous function of μ. The variable μ is

often referred to as the variable of frequency. Hence, we also denote ℱ{𝑓(𝑡)} = 𝐹(𝜇).

The inverse transform, denoted by ℱ−1{𝐹(𝜇)}, is

𝑓(𝑡) = ℱ−1{𝐹(𝜇)} = ∫ 𝐹(𝜇)𝑒𝑖2𝜋𝜇𝑡𝑑𝜇
∞

−∞

.

The equations for 𝑓(𝑡) and 𝐹(𝜇) make what are known as a Fourier transform pair. This

is an important consequence because this means that one may recover the original

function from its transform.

For example, if we let 𝑓(𝑡) be a window function

𝑓(𝑡) = {𝐴, if −
𝑊

2
≤ 𝑡 ≤

𝑊

2
0, Otherwise

,

then we can see that the Fourier transform of 𝑓(𝑡) is

𝐹(𝜇) = ∫ 𝑓(𝑡)𝑒−𝑖2𝜋𝜇𝑡𝑑𝑡
∞

−∞

= ∫ 𝐴𝑒−𝑖2𝜋𝜇𝑡𝑑𝑡
𝑊/2

−𝑊/2

=
−𝐴

2𝑖𝜋𝜇
(𝑒−𝑊𝑖𝜋𝜇 − 𝑒𝑊𝑖𝜋𝜇),

 16

where 𝐴 ∈ ℝ, W is the width, and μ is a continuous variable. Recall that μ is a frequency

variable. Thus the Fourier transform is in the frequency domain. It should be noted that

the units of μ are dependent upon the units of the continuous variable t. In general, μ is in

terms of cycles per unit of t.

When one takes the Fourier Transform of the unit impulse located at the origin,

the output is

𝐹(𝜇) = ∫ 𝛿(𝑡)𝑒−𝑖2𝜋𝜇𝑡𝑑𝑡
∞

−∞

= 𝑒−𝑖2𝜋𝜇0 = 𝑒0 = 1.

For a Fourier transform of an impulse where 𝑡 = 𝑡0 the output is

𝐹(𝜇) = ∫ 𝛿(𝑡 − 𝑡0)𝑒
−𝑖2𝜋𝜇𝑡𝑑𝑡

∞

−∞

= 𝑒−𝑖2𝜋𝜇𝑡0

= cos(2𝜋𝜇𝑡0) − 𝑖sin(2𝜋𝜇𝑡0).

Another useful property of the Fourier transform involves the modulus or the

magnitude of the Fourier transform. Using the previous example of the window function,

we get

|𝐹(𝜇)| = 𝐴𝑊 |
sin(𝜋𝜇𝑊)

𝜋𝜇𝑊
| .

|𝐹(𝜇)| is called the Fourier spectrum or the frequency spectrum. Some important

observations of this example are that the zeros of 𝐹(𝜇) and |𝐹(𝜇)| are inversely

proportional to the width W. The heights of the waves decrease the further the function

gets from the origin.

 17

To show an example that will be used later, we will find the Fourier transform of

an impulse train. We will first prove the following property of the Fourier transform (this

proof follows from [7]).

Proposition 3.4.1: If 𝑓(𝑡) has the Fourier transform 𝐹(𝜇), then 𝐹(𝑡) must have the

Fourier transform 𝑓(−𝜇).

Proof: To prove this, we start by stating that, by definition, the Fourier transform of 𝐹(𝑡)

is

𝐹{𝐹(𝑡)} = ∫ 𝐹(𝑡)𝑒−𝑖2𝜋𝜇𝑡𝑑𝑡
∞

−∞

. (3.4.1)

We also know from definition of the inverse Fourier transform that

𝑓(𝑡) = ∫ 𝐹(𝜇)𝑒𝑖2𝜋𝜇𝑡𝑑𝜇
∞

−∞

,

which implies that by replacing μ by 𝑡′ we get

𝑓(𝑡) = ∫ 𝐹(𝑡′)𝑒𝑖2𝜋𝑡′𝑡𝑑𝑡′
∞

−∞

.

Therefore,

𝑓(−𝜇) = ∫ 𝐹(𝑡′)𝑒−𝑖2𝜋𝑡′𝜇𝑑𝑡′
∞

−∞

. (3.4.2)

By comparing equation (3.4.1) and equation (3.4.2) we see that the Fourier transform of

𝐹(𝑡) is equal to 𝑓(−𝜇). ∎

The next property that we will prove is as follows (this proof follows from [7]):

Proposition 3.4.2: The Fourier transform of 𝑒𝑖2𝜋𝑎𝑡 is 𝛿(𝑢 − 𝑎).

Proof: To prove this, we start by stating that it is known that the Fourier transform of

𝛿(𝑡 − 𝑡0) is 𝑒−𝑖2𝜋𝜇𝑡0 . By Proposition 3.4.1 we can see that the Fourier transform of

𝑒−𝑖2𝜋𝑡0𝑡 is 𝛿(−𝜇 − 𝑡0). Let −𝑡0 = 𝑎. We can see that the Fourier transform of 𝑒𝑖2𝜋𝑎𝑡 is

 18

𝛿(−𝜇 + 𝑎). Since 𝛿(−𝜇 + 𝑎) is nonzero only when 𝜇 = 𝑎, then

𝛿(−𝜇 + 𝑎) = 𝛿(𝜇 − 𝑎).

Therefore,

𝐹{𝑒𝑖2𝜋𝑎𝑡} = 𝛿(𝜇 − 𝑎). ∎

A particular example of Proposition 3.4.2 is

𝐹 {𝑒𝑖
2𝜋𝑛
∆𝑇

𝑡} = 𝛿 (𝜇 −
𝑛

∆𝑇
).

Now that we have properties 3.4.1 and 3.4.2, we can prove the Fourier transform

of an impulse train is also an impulse train.

To begin the proof we start by letting

𝑆∆𝑇(𝑡) = ∑ 𝛿(𝑡 − 𝑛∆𝑇)

∞

𝑛=−∞

.

Then by the definition of the Fourier series we see that

𝑆∆𝑇(𝑡) = ∑ 𝑐𝑛𝑒𝑖
2𝜋𝑛
∆𝑇

𝑡

∞

𝑛=−∞

,

where

𝑐𝑛 =
1

∆𝑇
∫ 𝑆∆𝑇(𝑡)𝑒−𝑖

2𝜋𝑛
∆𝑇

𝑡𝑑𝑡
∆𝑇/2

−∆𝑇/2

.

The only nonzero delta function in 𝑆ΔT(𝑡) over [−
Δ𝑇

2
,
Δ𝑇

2
] is 𝛿(𝑡). Therefore

𝑐𝑛 =
1

∆𝑇
∫ 𝛿(𝑡)𝑒−𝑖

2𝜋𝑛
∆𝑇

𝑡𝑑𝑡
∆𝑇/2

−∆𝑇/2

.

Thus

𝑐𝑛 =
1

∆𝑇
𝑒0 =

1

∆𝑇
.

By substituting 𝐶𝑛 =
1

Δ𝑇
 into Fourier series of 𝑆Δ𝑇(𝑡), we get

 19

𝑆∆𝑇(𝑡) =
1

∆𝑇
∑ 𝑒𝑖

2𝜋𝑛
∆𝑇

𝑡

∞

𝑛=−∞

.

Hence

𝐹{𝑆∆𝑇(𝑡)} =
1

∆𝑇
∑ 𝐹 {𝑒𝑖

2𝜋𝑛
∆𝑇

𝑡}

∞

𝑛=−∞

.

Therefore

𝐹{𝑆∆𝑇} =
1

∆𝑇
∑ 𝛿 (𝜇 −

𝑛

∆𝑇
)

∞

𝑛=−∞

.

Thus it can be seen that the Fourier transform of an impulse train is also an

impulse train. If the original impulse train has a period of ∆𝑇, then the Fourier transform

of the impulse train has a period of
1

∆𝑇
. The ideas of the Fourier transform, combined

with the idea of the convolution, discussed in Section 3.6, are needed to build the

Sampling Theorem in Section 3.7.

Section 3.5 Linear Time-Invariant Systems

We will discuss the idea of linear time-invariant (LTI) systems in this section.

We will see that a LTI system will naturally lead to the concept of convolution.

To discuss linear time-invariant systems, we will first define what a system is.

We say a device is a system if it takes some sort of input signal 𝑥(𝑛), processes it, and

provides an output 𝑦(𝑛). 𝑦(𝑛) at any time may depend on all inputs of 𝑥(𝑛). That is, it

depends on …𝑥(𝑛 − 2), 𝑥(𝑛 − 1), 𝑥(𝑛), 𝑥(𝑛 + 1), 𝑥(𝑛 + 2),….

A generic way showing a diagram of a system is

𝑥(𝑛) → [𝑆𝑌𝑆𝑇𝐸𝑀] → 𝑦(𝑛).

This does not mean that the output 𝑦(𝑛) is dependent solely on 𝑥(𝑛). A system is a

 20

beneficial way of displaying real world devices such as population models or business

models.

Expanding upon the idea of a system is the idea of a linear system. If 𝑥1(𝑛) →

[𝑆𝑌𝑆𝑇𝐸𝑀] → 𝑦1(𝑛) and 𝑥2(𝑛) → [𝑆𝑌𝑆𝑇𝐸𝑀] → 𝑦2(𝑛), then a linear system is a system

that has the property (𝑥1(𝑛) + 𝑥2(𝑛)) → [𝑆𝑌𝑆𝑇𝐸𝑀] → (𝑦1(𝑛) + 𝑦2(𝑛)). This is known

as superposition, and is not limited to two inputs. A linear system also has the scaling

property. That is, 𝑎𝑥(𝑛) → [𝑆𝑌𝑆𝑇𝐸𝑀] → 𝑎𝑦(𝑛), where a is a real number.

We define a time-invariant (TI) system by saying that if we delay the input by any

constant T, then the output is delayed by T as well. Consider the system 𝑦(𝑛) =

sin(𝑥(𝑛)). By shifting the value of n, we shift the value of 𝑦(𝑛). That is, by adjusting

𝑥(𝑛), we adjust 𝑦(𝑛).

A linear time-invariant system (LTI) is one that is both a linear system and a time-

invariant system. Suppose ℎ(𝑛) is the response to an impulse 𝛿(𝑛) in a LTI system.

That is

𝛿(𝑛) → [𝐿𝑇𝐼] → ℎ(𝑛). (3.5.1)

Since the LTI system is time-invariant, then using equation (3.5.1) we see that

𝛿(𝑛 − 𝑎) → [𝐿𝑇𝐼] → ℎ(𝑛 − 𝑎), (3.5.2)

for any constant a. Since the LTI system is also linear, using equation (3.5.2) we see that

𝑥(𝑎)𝛿(𝑛 − 𝑎) → [𝐿𝑇𝐼] → 𝑥(𝑎)ℎ(𝑛 − 𝑎), (3.5.3)

for any constant 𝑥(𝑎). Since the LTI system is linear, we know that the LTI system also

has the property of superposition. Thus using the property of superposition we see that

∑ 𝑥(𝑎)𝛿(𝑛 − 𝑎)

∞

𝑎=−∞

→ [𝐿𝑇𝐼] → ∑ 𝑥(𝑎)ℎ(𝑛 − 𝑎)

∞

𝑎=−∞

. (3.5.4)

 21

In other words, a LTI system is completely characterized by its unit response

ℎ(𝑛). See Section 1.2 of [13] for more discussion on linear time-invariant systems. Also

see [13] for more discussion on linear time-invariant systems. We want to point out the

last expression in (3.5.4) is the convolution, which we will continue to discuss in the next

section.

Section 3.6 Convolution

The convolution is an operation that can be defined between either discrete or

continuous functions. The discussion in this section was derived from [6].

In the discrete case, the convolution is an operation that happens between two bi-

infinite series. On page 128 of [6], the convolution is defined as follows: Let h and x be

two bi-infinite sequences. Then the convolution product y of h and x, denoted by 𝒉 ∗ 𝒙,

is the bi-infinite sequence 𝒚 = 𝒉 ∗ 𝒙, whose nth component is given by

𝑦𝑛 = ∑ ℎ𝑘𝑥𝑛−𝑘

∞

𝑘=−∞

.

In a manner of speaking, the convolution involves reversing the order of the second bi-

infinite and shifting it past the first bi-infinite sequence. At each point in the shift a

computation is performed which is the sum of the products. This gives the convolution

of two discrete bi-infinite sequences. However, the convolution of two continuous

functions can also be performed. If 𝑓(𝑡) and 𝑔(𝑡) are two continuous functions of a

single continuous variable t, then the convolution is defined by

𝑓(𝑡) ∗ 𝑔(𝑡) = ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏
∞

−∞

.

where τ is a dummy variable.

 22

When taking the Fourier transform of the convolution, there are two different

cases that amount to the same idea. That is, in both the discrete case and the continuous

case, the results of the Fourier transform of the convolution are equal to the product of

the Fourier transform of the two functions. In other words, let 𝐹(𝜇) the Fourier

transform of 𝑓(𝑡) and let 𝐺(𝜇) be the Fourier transform of 𝑔(𝑡). Then

ℱ{𝑓(𝑡) ∗ 𝑔(𝑡)} = 𝐹(𝜇)𝐺(𝜇).

Since t is generally referred to as the spatial domain and μ is generally referred to as the

frequency domain, then it can be seen that Fourier transform of the convolution of two

functions gives the product of the Fourier transform of the same two functions. The

converse of this is true as well. That is, the product of two Fourier transforms implies

that one can find the convolution of the two base functions by applying the inverse

Fourier transform. This shows that 𝑓(𝑡) ∗ 𝑔(𝑡) and 𝐹(𝜇)𝐺(𝜇) form a Fourier transform

pair.

The ideas of the convolution discussed in this section, along with the idea of the

Fourier transform and its properties discussed in Section 3.4, help us build a process

which will be used to sample a function.

Section 3.7 The Fourier Transform of Sampled Functions

Sampling is a process used to transform continuous functions into discrete values

so that a computer can process them. Sampling takes samples at some uniform interval

∆𝑇 of a continuous function 𝑓(𝑡) of a continuous variable t.

In order to sample a function we can use a sampling function to take a uniform

sampling of a continuous function 𝑓(𝑡). To do this, let the sampling function be an

impulse train ∆𝑇 units apart. Hence the sampled function 𝑓(𝑡) is

 23

𝑓(𝑡) = 𝑓(𝑡)𝑠∆𝑇(𝑡)

= ∑ 𝑓(𝑡)𝛿(𝑡 − 𝑛∆𝑇)

∞

𝑛=−∞

.

It can be shown that the kth value in the sampled sequence can be determined by

𝑓𝑘 = ∫ 𝑓(𝑡)𝛿(𝑡 − 𝑘∆𝑇)𝑑𝑡
∞

−∞

, 𝑘 ∈ ℤ

= 𝑓(𝑘∆𝑇), 𝑘 ∈ ℤ.

Doing this gives equally spaced samples of the function 𝑓(𝑡) that are spaced ∆𝑇 units

apart.

Letting 𝐹(𝜇) be the Fourier transform of 𝑓(𝑡), the convolution theorem tells us

that the Fourier transform 𝐹̃(𝜇) of the sampling function 𝑓(𝑡) is

𝐹̃(𝜇) = 𝐹(𝜇) ∗ 𝑆(𝜇),

where, from Section 3.4,

𝑆(𝜇) =
1

∆𝑇
∑ 𝛿 (𝜇 −

𝑛

∆𝑇
)

∞

𝑛=−∞

is the Fourier transform of the impulse train 𝑠∆𝑇(𝑡). Using the convolution defined in

Section 3.6 we see that

𝐹̃(𝜇) = 𝐹(𝜇) ∗ 𝑆(𝜇)

= ∫ 𝐹(𝜏)𝑆(𝜇 − 𝜏)𝑑𝜏
∞

−∞

=
1

∆𝑇
∫ 𝐹(𝜏) ∑ 𝛿 (𝜇 − 𝜏 −

𝑛

∆𝑇
)𝑑𝜏

∞

𝑛=−∞

∞

−∞

=
1

∆𝑇
∑ ∫ 𝐹(𝜏)𝛿 (𝜇 − 𝜏 −

𝑛

∆𝑇
)𝑑𝜏

∞

−∞

∞

𝑛=−∞

 24

=
1

∆𝑇
∑ 𝐹 (𝜇 −

𝑛

∆𝑇
)

∞

𝑛=−∞

.

Hence we find that

𝐹̃(𝜇) =
1

∆𝑇
∑ 𝐹 (𝜇 −

𝑛

∆𝑇
)

∞

𝑛=−∞

.

It can be seen from this that 𝐹̃(𝜇) is periodic and infinite (since 𝐹̃(𝜇) is built from a

periodic infinite function) as well as translations of the Fourier transform of the original

function 𝑓(𝑡). The distance between copies is
1

∆𝑇
. It should be noted that the accuracy of

𝐹̃(𝜇) depends on
1

∆𝑇
. If

1

∆𝑇
 is too small, just right, or too large, then the function is over-

sampled, critically-sampled, or under-sampled, respectively. Refer to [7] for more

discussion on this topic. This observation leads to the discussion of the Sampling

Theorem in the next section.

Section 3.8 The Sampling Theorem and Aliasing

This section will be devoted to building the Sampling Theorem and ideas

regarding aliasing.

A band-limited function 𝑓(𝑡) is a function whose Fourier transform has a value of

zero outside of a finite interval [−𝜇𝑚𝑎𝑥 , 𝜇𝑚𝑎𝑥]. If a proper sample is taken, then we can

recover the original function 𝑓(𝑡). This requires that a copy of 𝐹(𝜇) be isolated from the

periodic sequence of copies contained in 𝐹̃(𝜇). Recall that from Section 3.7 we have

𝐹̃(𝜇) =
1

∆𝑇
∑ 𝐹 (𝜇 −

𝑛

∆𝑇
)

∞

𝑛=−∞

.

Therefore 𝐹̃(𝜇) is a continuous, periodic function with a period of
1

∆𝑇
. If we can isolate a

 25

complete copy of 𝐹(𝜇) from 𝐹̃(𝜇), we can recover 𝑓(𝑡) by applying inverse Fourier

transform on the copy of 𝐹(𝜇).

Suppose that f is a band-limited function whose Fourier transform is nonzero

between −𝜇𝑚𝑎𝑥 and 𝜇𝑚𝑎𝑥. In order for us to extract a copy of 𝐹(𝜇) from 𝐹̃(𝜇), the

separation between each period must be sufficient. That is, for a given period, a

sufficient separation is assured if

1

∆𝑇
> 2𝜇𝑚𝑎𝑥.

Thus we have the following theorem, the Sampling Theorem:

Theorem 3.8.1. A continuous, band-limited function can be recovered completely from a

set of its samples, if the samples are acquired at a rate exceeding twice the highest

frequency content of the function [7].

That is, if the sample rate is greater than twice the highest frequency content of

the function, then there is no information lost. In other terms, the maximum frequency

that can be acquired is 𝜇𝑚𝑎𝑥 =
1

2∆𝑇
. This is known as the Nyquist rate. It is generally

advised via the sampling theorem that one use a sampling rate greater than the Nyquist

rate. If the sampling rate is below the Nyquist rate, it is called under-sampling.

In order to recover the original function, we can create a function

𝐻(𝜇) = {
∆𝑇, −𝜇𝑚𝑎𝑥 ≤ 𝜇 ≤ 𝜇𝑚𝑎𝑥

0, otherwise
.

If we multiply 𝐹̃(𝜇) by 𝐻(𝜇) we get

𝐹(𝜇) = 𝐻(𝜇)𝐹̃(𝜇).

Thus we can obtain 𝑓(𝑡) by using the inverse Fourier transform discussed in Section 3.4.

 26

Aliasing corresponds with a function that is under-sampled. Not only does under-

sampling cause the periods to overlap, but it is now impossible to isolate a single period

of the Fourier transform, and thus impossible to find the original function. If we were to

try to find the original function using an under-sampled function, then the function

returned would be corrupted. This is known as aliasing. See [7] for more on this topic.

Section 3.9 Reconstruction from Sampled Data

To reconstruct the original function from sets of samples, we only need to

interpolate the data. First we need to prove a property. The proof of this follows from

the discussion in [7].

Proposition 3.9.1. If

𝐻(𝜇) = {∆𝑇, −
1

2∆𝑇
≤ 𝜇 ≤

1

2∆𝑇
0, Otherwise

,

then

ℎ(𝑡) = sinc (
𝑡

∆𝑇
) ,

where

sinc(𝜙) =
sin(𝜙)

𝜙
.

Proof: We start by stating that

ℎ(𝑡) = 𝐹−1{𝐻(𝜇)} = ∫ 𝐻(𝜇)𝑒𝑖2𝜋𝜇𝑡𝑑𝜇
∞

−∞

.

By replacing 𝐻(𝜇) with the conditions of proposition 3.9.1, we see that

ℎ(𝑡) = ∫ ∆𝑇𝑒𝑖2𝜋𝜇𝑡𝑑𝜇

1
2∆𝑇

−
1

2∆𝑇

 27

= [
∆𝑇

𝑖2𝜋𝑡
𝑒𝑖2𝜋𝜇𝑡]

−
1

2∆𝑇

1
2∆𝑇

=
∆𝑇

𝑖2𝜋𝑡
(𝑒

𝑖𝜋𝑡
∆𝑇 − 𝑒−

𝑖𝜋𝑡
∆𝑇)

=
∆𝑇

𝑖2𝜋𝑡
(2𝑖𝑡sin (

𝑖𝜋𝑡

∆𝑇
))

=
∆𝑇

𝜋𝑡
sin (

𝜋𝑡

∆𝑇
)

=
sin (

𝜋𝑡
∆𝑇)

𝜋𝑡
∆𝑇

= sinc (
𝜋𝑡

∆𝑇
).

To reconstruct the function, the use of the convolution theorem from Section 3.6

will be needed. That is

𝑓(𝑡) = ℱ−1{𝐹(𝜇)}

= ℱ−1{𝐻(𝜇)𝐹̃(𝜇)}

= ℎ(𝑡) ∗ 𝑓(𝑡).

Hence

𝑓(𝑡) = ℎ(𝑡) ∗ (𝑓(𝑡)𝑠∆𝑇(𝑡))

= ℎ(𝑡) ∗ ∑ 𝑓(𝑡)𝛿(𝑡 − 𝑛∆𝑇)

∞

𝑛=−∞

= ∑ ℎ(𝑡) ∗ (𝑓(𝑡)𝛿(𝑡 − 𝑛∆𝑇))

∞

𝑛=−∞

= ∑ 𝑓(𝜏)𝛿(𝜏 − 𝑛∆𝑇)ℎ(𝑡 − 𝜏)

∞

𝑛=−∞

 28

= ∑ 𝑓(𝑛∆𝑇)ℎ(𝑡 − 𝑛∆𝑇)

∞

𝑛=−∞

= ∑ 𝑓(𝑛∆𝑇)sinc (
(𝑡 − 𝑛∆𝑇)

∆𝑇
)

∞

𝑛=−∞

,

where the last step is a consequence of proposition 3.9.1. That is, the values of 𝑓(𝑡) that

are between the sample points are interpolations that are created by the sum of the sinc

functions. Since these require an infinite sum, an approximation is generally used in

practice.

Section 3.10 The Discrete Fourier Transform

The discrete Fourier transform is crucial for signal processing. This section will

cover the discrete Fourier transform.

Suppose that 𝒇 = (𝑓0, 𝑓1, … , 𝑓𝑁−1) is a discrete signal. Define the discrete Fourier

transform as

𝐹𝑚 = ∑ 𝑓𝑛𝑒−
2𝑖𝜋𝑚𝑛

𝑀

𝑁−1

𝑛=0

, 𝑚 = 0, 1, … ,𝑀 − 1.

This is the discrete Fourier transform. Also, if we have the set {𝐹𝑚}, we can find 𝑓𝑛 by

using the inverse discrete Fourier transform

𝑓𝑛 =
1

𝑀
∑ 𝐹𝑚𝑒

𝑖2𝜋𝑚𝑛
𝑀

𝑀−1

𝑚=0

, 𝑛 = 0, 1, … , 𝑁 − 1.

By substituting 𝑓𝑛 into the equation for 𝐹𝑚 and vice versa, the equations simplify down to

identities, which means that the equations for 𝑓𝑛 and 𝐹𝑚 form a discrete Fourier transform

pair.

An important implication from these equations is that the inverse Fourier

transform exists for any set of samples with a finite cardinality. Note that neither 𝑓𝑛 nor

 29

𝐹𝑚 depend on the interval of the sample ∆𝑇. Hence, if the sample is finite, discrete, and

taken uniformly, then the discrete Fourier transform pair can be applied.

For example, consider 𝒇 = (𝑓0, 𝑓1, 𝑓2, 𝑓3) = (1, 2, 3, 4). Then we see that

𝐹(0) = ∑ 𝑓(𝑥)

3

𝑥=0

= 𝑓(0) + 𝑓(1) + 𝑓(2) + 𝑓(3)

= 1 + 2 + 3 + 4

= 10

𝐹(1) = ∑ 𝑓(𝑛)𝑒−
𝑖2𝜋(1)𝑛

4

3

𝑛=0

= 𝑓(0) + 𝑓(1)𝑒−
𝑖𝜋
2 + 𝑓(2)𝑒−𝑖𝜋 + 𝑓(3)𝑒−

3𝑖𝜋
2

= 1 + 2(−𝑖) + 3(−1) + 4(𝑖)

= −2 + 2𝑖.

Likewise, we can show that 𝐹(2) = −2 and 𝐹(3) = −2 − 2𝑖.

If we were, instead, given F and we wanted the inverse, then we would follow a

similar method. For example:

𝑓(0) =
1

4
∑ 𝐹(𝜇)𝑒𝑖2𝜋𝜇(0)

3

𝜇=1

=
1

4
∑ 𝐹(𝜇)

3

𝜇=1

=
1

4
(10 − 2 + 2𝑖 − 2 − 2 − 2𝑖)

= 1.

 30

Even though these processes are easy to understand, they can be very

cumbersome when M and N are large. However, the fast Fourier transform tackles that

problem for us. For more on the Fourier transform, refer to [6].

Section 3.11 The Fast Fourier Transform

Implementing the discrete Fourier transform and the inverse discrete Fourier

transform can be extremely time consuming and take an extreme amount of processor

power. There are roughly (𝑀𝑁)2 summations and additions that must be done in these

equations. However, a discovery known as fast Fourier transforms (often denoted FFT)

has allowed for a remarkable reduction in these operations. The fast Fourier transform

allows for a reduction to 𝑀𝑁𝑙𝑜𝑔2(𝑀𝑁) summations and additions. This section is

derived from [7].

The successive-doubling method is the algorithm that allows the fast Fourier

transform to work. One of the requirements for this method is that the number of

samples is a power of 2. For simplicity, when dealing with the fast Fourier transform we

normally express 𝐹(𝑢) by

𝐹(𝑢) = ∑ 𝑓(𝑥)𝑊𝑀
𝑢𝑥

𝑀−1

𝑥=0

, 𝑢 = 0, 1, … , 𝑀 − 1

and

𝑊𝑀 = 𝑒−
𝑖2𝜋
𝑀 ,

where

𝑀 = 2𝑛, 𝑛 = 1, 2, … .

When M is even, M can be written as 𝑀 = 2𝑘, where k is an integer. Recalling that

 31

𝐹(𝑢) = ∑ 𝑓(𝑥)𝑊2𝑘
𝑢𝑥

2𝑘−1

𝑥=0

and the fact that 𝑊2𝑘
2𝑢𝑥 = 𝑊𝑘

𝑢𝑥, it can be seen that

𝐹(𝑢) = ∑ 𝑓(2𝑥)𝑊𝑘
𝑢𝑥 + ∑ 𝑓(2𝑥 + 1)𝑊𝑘

𝑢𝑥𝑊2𝑘
𝑢

𝑘−1

𝑥=0

𝑘−1

𝑥=0

.

Define 𝐹𝑒𝑣𝑒𝑛(𝑢) and 𝐹𝑜𝑑𝑑(𝑢) as

𝐹𝑒𝑣𝑒𝑛(𝑢) = ∑ 𝑓(2𝑥)𝑊𝑘
𝑢𝑥

𝑘−1

𝑥=0

and

𝐹𝑜𝑑𝑑(𝑢) = ∑ 𝑓(2𝑥 + 1)𝑊𝑘
𝑢𝑥

𝑘−1

𝑥=0

,

then one can see that

𝐹(𝑢) = 𝐹𝑒𝑣𝑒𝑛(𝑢) + 𝐹𝑜𝑑𝑑(𝑢)𝑊2𝑘
𝑢 . (3.11.1)

Since 𝑊𝑀
𝑢+𝑀 = 𝑊𝑀

𝑢 and 𝑊2𝑀
𝑢+𝑀 = −𝑊2𝑀

𝑢 , it can also be shown that

𝐹(𝑢 + 𝑘) = 𝐹𝑒𝑣𝑒𝑛(𝑢) − 𝐹𝑜𝑑𝑑(𝑢)𝑊2𝑘
𝑢 . (3.11.2)

The Equations (3.11.1) and (3.11.2) give the possibilities of constructing a

recursion tool algorithm to compute the discrete Fourier transform.

We will use the following example to explain the notations and the process of

FFT. Define a and c as

𝑎 = [𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7]
𝑇 𝑐 = [𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7]

𝑇,

where a is the input and c is the output. When using the discrete Fourier transform we

get:

𝑐0 = 𝑎0 + 𝑎1𝑒
−𝑖2𝜋

0∙1
8 + 𝑎2𝑒

−𝑖2𝜋
0∙2
8 + ⋯+ 𝑎7𝑒

−𝑖2𝜋
0∙7
8

 32

= 𝑎0 + 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 + 𝑎6 + 𝑎7

= (𝑎0 + 𝑎2 + 𝑎4 + 𝑎6) + (𝑎1 + 𝑎3 + 𝑎5 + 𝑎7).

In a similar manner, we can find 𝑐1:

𝑐1 = 𝑎0 + 𝑎1𝑒
−𝑖2𝜋

1∙1
8 + 𝑎2𝑒

−2𝑖𝜋
1∙2
8 + ⋯+ 𝑎7𝑒

−2𝑖𝜋
1∙7
8

= [𝑎0 + 𝑎4𝑒
−𝑖2𝜋

4
8] + [𝑎2 + 𝑎6𝑒

−𝑖2𝜋
4
8] 𝑒−𝑖2𝜋

1
8

+ {[𝑎1 + 𝑎5𝑒
−𝑖2𝜋

4
8] + [𝑎3 + 𝑎7𝑒

−𝑖2𝜋
4
8] 𝑒−𝑖2𝜋

2
8} 𝑒−𝑖2𝜋

1
8.

Likewise, 𝑐2 is:

𝑐2 = 𝑎0 + 𝑎1𝑒
−𝑖2𝜋

2∙1
8 + 𝑎2𝑒

−2𝑖𝜋
2∙2
8 + ⋯+ 𝑎7𝑒

−2𝑖𝜋
2∙7
8

= [𝑎0 + 𝑎4𝑒
−𝑖2𝜋

2∙4
8] + [𝑎2 + 𝑎6𝑒

−𝑖2𝜋
2∙4
8] 𝑒−𝑖2𝜋

2∙2
8

+ {[𝑎1 + 𝑎5𝑒
−𝑖2𝜋

2∙4
8] + [𝑎3 + 𝑎7𝑒

−𝑖2𝜋
2∙4
8] 𝑒−𝑖2𝜋

2∙2
8 } 𝑒−𝑖2𝜋

2
8.

We find 𝑐3 and 𝑐4 the same way:

𝑐3 = 𝑎0 + 𝑎1𝑒
−𝑖2𝜋

3∙1
8 + 𝑎2𝑒

−2𝑖𝜋
3∙2
8 + ⋯+ 𝑎7𝑒

−2𝑖𝜋
3∙7
8

= [𝑎0 + 𝑎4𝑒
−𝑖2𝜋

3∙4
8] + [𝑎2 + 𝑎6𝑒

−𝑖2𝜋
3∙4
8] 𝑒−𝑖2𝜋

3∙2
8

+ {[𝑎1 + 𝑎5𝑒
−𝑖2𝜋

3∙4
8] + [𝑎3 + 𝑎7𝑒

−𝑖2𝜋
3∙4
8] 𝑒−𝑖2𝜋

3∙2
8 } 𝑒−𝑖2𝜋

3
8

𝑐4 = 𝑎0 + 𝑎1𝑒
−𝑖2𝜋

4∙1
8 + 𝑎2𝑒

−2𝑖𝜋
4∙2
8 + ⋯+ 𝑎7𝑒

−2𝑖𝜋
4∙7
8

= [𝑎0 + 𝑎2 + 𝑎4 + 𝑎6] − [𝑎1 + 𝑎3 + 𝑎5 + 𝑎7].

Notice that 𝑐4 and 𝑐0 are very similar. The only difference is that the sign in the center is

the opposite. We see notice a similar a familiarity when finding 𝑐5:

𝑐5 = 𝑎0 + 𝑎1𝑒
−𝑖2𝜋

5∙1
8 + 𝑎2𝑒

−2𝑖𝜋
5∙2
8 + ⋯+ 𝑎7𝑒

−2𝑖𝜋
5∙7
8

 33

= [𝑎0 + 𝑎4𝑒
−𝑖2𝜋

2∙4
8] + [𝑎2 + 𝑎6𝑒

−𝑖2𝜋
2∙4
8] 𝑒−𝑖2𝜋

2∙2
8

− {[𝑎1 + 𝑎5𝑒
−𝑖2𝜋

2∙4
8] + [𝑎3 + 𝑎7𝑒

−𝑖2𝜋
2∙4
8] 𝑒−𝑖2𝜋

2∙2
8 } 𝑒−𝑖2𝜋

2
8.

Notice that 𝑐5 is nearly identical to 𝑐1. A similar pattern arises for 𝑐6 and 𝑐7. That is,

𝑐6 and 𝑐7 are nearly identical to 𝑐2 and 𝑐3. Hence

 𝑐 = [𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7]
𝑇

=

[

[𝑎0 + 𝑎2 + 𝑎4 + 𝑎6] + [𝑎1 + 𝑎3 + 𝑎5 + 𝑎7]

[𝑎0 + 𝑎4𝑒
−𝑖2𝜋

2∙4
8] + [𝑎2 + 𝑎6𝑒

−𝑖2𝜋
2∙4
8] 𝑒−𝑖2𝜋

2∙2
8 + {[𝑎1 + 𝑎5𝑒

−𝑖2𝜋
2∙4
8] + [𝑎3 + 𝑎7𝑒

−𝑖2𝜋
2∙4
8] 𝑒−𝑖2𝜋

2∙2
8 } 𝑒−𝑖2𝜋

2
8

[𝑎0 + 𝑎4𝑒
−𝑖2𝜋

2∙4
8] + [𝑎2 + 𝑎6𝑒

−𝑖2𝜋
2∙4
8] 𝑒−𝑖2𝜋

2∙2
8 + {[𝑎1 + 𝑎5𝑒

−𝑖2𝜋
2∙4
8] + [𝑎3 + 𝑎7𝑒

−𝑖2𝜋
2∙4
8] 𝑒−𝑖2𝜋

2∙2
8 } 𝑒−𝑖2𝜋

2
8

[𝑎0 + 𝑎4𝑒
−𝑖2𝜋

3∙4
8] + [𝑎2 + 𝑎6𝑒

−𝑖2𝜋
3∙4
8] 𝑒−𝑖2𝜋

3∙2
8 + {[𝑎1 + 𝑎5𝑒

−𝑖2𝜋
3∙4
8] + [𝑎3 + 𝑎7𝑒

−𝑖2𝜋
3∙4
8] 𝑒−𝑖2𝜋

3∙2
8 } 𝑒−𝑖2𝜋

3
8

[𝑎0 + 𝑎2 + 𝑎4 + 𝑎6] − [𝑎1 + 𝑎3 + 𝑎5 + 𝑎7]

[𝑎0 + 𝑎4𝑒
−𝑖2𝜋

2∙4
8] + [𝑎2 + 𝑎6𝑒

−𝑖2𝜋
2∙4
8] 𝑒−𝑖2𝜋

2∙2
8 − {[𝑎1 + 𝑎5𝑒

−𝑖2𝜋
2∙4
8] + [𝑎3 + 𝑎7𝑒

−𝑖2𝜋
2∙4
8] 𝑒−𝑖2𝜋

2∙2
8 } 𝑒−𝑖2𝜋

2
8

[𝑎0 + 𝑎4𝑒
−𝑖2𝜋

2∙4
8] + [𝑎2 + 𝑎6𝑒

−𝑖2𝜋
2∙4
8] 𝑒−𝑖2𝜋

2∙2
8 − {[𝑎1 + 𝑎5𝑒

−𝑖2𝜋
2∙4
8] + [𝑎3 + 𝑎7𝑒

−𝑖2𝜋
2∙4
8] 𝑒−𝑖2𝜋

2∙2
8 } 𝑒−𝑖2𝜋

2
8

[𝑎0 + 𝑎4𝑒
−𝑖2𝜋

3∙4
8] + [𝑎2 + 𝑎6𝑒

−𝑖2𝜋
3∙4
8] 𝑒−𝑖2𝜋

3∙2
8 − {[𝑎1 + 𝑎5𝑒

−𝑖2𝜋
3∙4
8] + [𝑎3 + 𝑎7𝑒

−𝑖2𝜋
3∙4
8] 𝑒−𝑖2𝜋

3∙2
8 } 𝑒−𝑖2𝜋

3
8
]

=

[

[𝑎0 + 𝑎4] + [𝑎2 + 𝑎6] + [𝑎1 + 𝑎5] + [𝑎3 + 𝑎7]

[𝑎0 − 𝑎4] + [𝑎2 − 𝑎6]𝑒
−𝑖

2𝜋
4 + {[𝑎1 − 𝑎5] + [𝑎3 − 𝑎7]𝑒

−𝑖
2𝜋
4 } 𝑒−𝑖

2𝜋
8

[𝑎0 + 𝑎4] − [𝑎2 + 𝑎6] + {[𝑎1 + 𝑎5] − [𝑎3 + 𝑎7]}𝑒
−𝑖

2𝜋
4

[𝑎0 − 𝑎4] − [𝑎2 − 𝑎6]𝑒
−𝑖

2𝜋
4 + {[𝑎1 − 𝑎5] − [𝑎3 − 𝑎7]𝑒

−𝑖
2𝜋
4 } 𝑒−𝑖

2𝜋
4

[𝑎0 + 𝑎4] + [𝑎2 + 𝑎6] − {[𝑎1 + 𝑎5] + [𝑎3 + 𝑎7]}

[𝑎0 − 𝑎4] + [𝑎2 − 𝑎6]𝑒
−𝑖

2𝜋
4 − {[𝑎1 − 𝑎5] + [𝑎3 − 𝑎7]𝑒

−𝑖
2𝜋
4 } 𝑒−𝑖

2𝜋
8

[𝑎0 − 𝑎4] − [𝑎2 − 𝑎6] − {[𝑎1 − 𝑎5] − [𝑎3 − 𝑎7]}𝑒
−𝑖

2𝜋
4

[𝑎0 − 𝑎4] − [𝑎2 − 𝑎6]𝑒
−𝑖

2𝜋
4 − {[𝑎1 − 𝑎5] − [𝑎3 − 𝑎7]𝑒

−𝑖
2𝜋
4 } 𝑒−𝑖

2𝜋
4
]

.

Let 𝑤𝑘 = 𝑒
−2𝜋𝑖

𝑘 . Then

𝑤8
0 = 1, 𝑤8

1 = 𝑒−
2𝜋𝑖
8 , 𝑤8

2 = 𝑒−
2𝜋𝑖
8

(2)
, 𝑤8

3 = 𝑒−
2𝜋𝑖
8

(3)

𝑤4
0 = 1, 𝑤4

1 = 𝑒
−2𝜋𝑖

4

 34

𝑤2
0 = 1.

Let 𝑐𝑒𝑒 , 𝑐𝑒𝑜, 𝑐𝑜𝑒, and 𝑐𝑜𝑜 be defined as

𝑐𝑒𝑒 = [
𝑎0 + 𝑎4𝑤2

0

𝑎0 − 𝑎4𝑤2
0], 𝑐𝑒𝑜 = [

𝑎2 + 𝑎6𝑤2
0

𝑎2 − 𝑎6𝑤2
0], 𝑐𝑜𝑒 = [

𝑎1 + 𝑎5𝑤2
0

𝑎1 − 𝑎5𝑤2
0], 𝑐𝑜𝑜 = [

𝑎3 + 𝑎7𝑤2
0

𝑎3 − 𝑎7𝑤2
0] .

Then we can calculate 𝑐𝑒 and 𝑐𝑜

𝑐𝑒 = [
𝑐𝑒𝑒 + 𝑤4 ∙ 𝑐𝑒𝑜

𝑐𝑒𝑒 − 𝑤4 ∙ 𝑐𝑒𝑜
]

=

[

𝑎0 + 𝑤2

0𝑎4 + 𝑤4
0(𝑎2 + 𝑤2

0𝑎6)

𝑎0 − 𝑤2
0𝑎4 + 𝑤4

0(𝑎2 − 𝑤2
0𝑎6)

𝑎0 + 𝑤2
0𝑎4 − 𝑤4

0(𝑎2 + 𝑤2
0𝑎6)

𝑎0 − 𝑤2
0𝑎4 − 𝑤4

0(𝑎2 − 𝑤2
0𝑎6)]

𝑐𝑜 = [
𝑐𝑜𝑒 + 𝑤4 ∙ 𝑐𝑜𝑜

𝑐𝑜𝑒 − 𝑤4 ∙ 𝑐𝑜𝑜
]

=

[

𝑎1 + 𝑤2

0𝑎3 + 𝑤4
0(𝑎3 + 𝑤2

0𝑎7)

𝑎1 − 𝑤2
0𝑎3 + 𝑤4

0(𝑎3 − 𝑤2
0𝑎7)

𝑎1 + 𝑤2
0𝑎3 − 𝑤4

0(𝑎3 + 𝑤2
0𝑎7)

𝑎1 − 𝑤2
0𝑎3 − 𝑤4

0(𝑎3 − 𝑤2
0𝑎7)]

.

From this we can calculate c as

𝑐 = [
𝑐𝑒 + 𝑤8 ∙ 𝑐𝑜

𝑐𝑒 − 𝑤8 ∙ 𝑐𝑜
] = [𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7]

𝑇 .

Hence we can see that

𝑐 =

[

𝑎0 + 𝑤2

0𝑎4 + 𝑤4
0(𝑎2 + 𝑤2

0𝑎6) + 𝑤8
0[𝑎1 + 𝑤2

0𝑎5 + 𝑤4
0(𝑎3 + 𝑤2

0𝑎7)]

𝑎0 − 𝑤2
0𝑎4 + 𝑤4

1(𝑎2 − 𝑤2
0𝑎6) + 𝑤8

1[𝑎1 − 𝑤2
0𝑎5 + 𝑤4

1(𝑎3 − 𝑤2
0𝑎7)]

𝑎0 + 𝑤2
0𝑎4 − 𝑤4

0(𝑎2 + 𝑤2
0𝑎6) + 𝑤8

2[𝑎1 + 𝑤2
0𝑎5 − 𝑤4

0(𝑎3 + 𝑤2
0𝑎7)]

𝑎0 − 𝑤2
0𝑎4 − 𝑤4

1(𝑎2 − 𝑤2
0𝑎6) + 𝑤8

3[𝑎1 − 𝑤2
0𝑎5 − 𝑤4

1(𝑎3 − 𝑤2
0𝑎7)]

𝑎0 + 𝑤2
0𝑎4 + 𝑤4

0(𝑎2 + 𝑤2
0𝑎6) − 𝑤8

0[𝑎1 + 𝑤2
0𝑎5 + 𝑤4

0(𝑎3 + 𝑤2
0𝑎7)]

𝑎0 − 𝑤2
0𝑎4 + 𝑤4

1(𝑎2 − 𝑤2
0𝑎6) − 𝑤8

1[𝑎1 − 𝑤2
0𝑎5 + 𝑤4

1(𝑎3 − 𝑤2
0𝑎7)]

𝑎0 + 𝑤2
0𝑎4 − 𝑤4

0(𝑎2 + 𝑤2
0𝑎6) − 𝑤8

2[𝑎1 + 𝑤2
0𝑎5 − 𝑤4

0(𝑎3 + 𝑤2
0𝑎7)]

𝑎0 − 𝑤2
0𝑎4 − 𝑤4

1(𝑎2 − 𝑤2
0𝑎6) − 𝑤8

3[𝑎1 − 𝑤2
0𝑎5 − 𝑤4

1(𝑎3 − 𝑤2
0𝑎7)]]

.

This is an example of the fast Fourier transform. Notice that the discrete Fourier

transform has 120 calculations while the fast Fourier transform only has 36 calculations.

 35

As the size of the transformed matrix increases, so does the benefit of using the fast

Fourier transform over the discrete Fourier transform. As we can see from the example,

the fast Fourier transform has a computational advantage over the discrete Fourier

transform.

Section 3.12 Windowed Short-Time Fourier Transforms

In many applications of Fourier transforms, we want to know the information

about the frequency and the time. This is why a windowed short-time Fourier transform

is needed. These Fourier transforms are similar to Fourier transforms discussed in

Section 3.4. The only difference is that the interval in which they are studied is reduced.

Refer to [14] to find more on this subject.

We want to obtain information about the frequency and the time. However, since

the Fourier transform requires the entire set of data, we cannot obtain both of these at an

instant. Thus we want our data to be contained in a certain window.

To start the windowed short-time Fourier transform (STFT), we will segment the

signal into smaller parts called windows. Let 𝑔(𝑢) be a window if it is a function that

dissipates outside of a finite interval −𝑇 ≤ 𝑢 ≤ 0. Note that 𝑔(𝑢) can be a complex-

valued function. We also define 𝑓𝑡(𝑢) as

𝑓𝑡(𝑢) ≡ 𝑔̅(𝑢 − 𝑡)𝑓(𝑢).

We see that the support of the function, i.e. the interval over which the function is

nonzero, is [𝑡 − 𝑇, 𝑡]. That implies that f depends only on the values of 𝑓(𝑢) on the

interval 𝑡 − 𝑇 ≤ 𝑢 ≤ 𝑡.

From here we define the windowed short-time Fourier transform as follows:

𝑓(𝜔, 𝑡) = ∫ 𝑒−2𝜋𝑖𝜔𝑢𝑓𝑡(𝑢)𝑑𝑢
∞

−∞

= ∫ 𝑒−2𝜋𝑖𝜔𝑢𝑔̅(𝑢 − 𝑡)𝑓(𝑢)𝑑𝑢
∞

−∞

.

 36

We also know that in the case when 𝑔(𝑢) = 1, then this becomes the ordinary

Fourier transform.

Even though the STFT gives the information of both time and frequency, we can

see it has to use a fixed window length.

 37

Chapter 4 Introducing Filters and Wavelet

Transformations

In this chapter we will explain the connection between convolution and matrix

multiplication, focus on how to construct Haar and Daubechies filters, and Wavelet

Packet Decomposition. An introduction to continuous transforms and a comparison

between Fourier and wavelet transforms are also introduced. These ideas are intertwined

with complex variables and Fourier transforms. The information in this chapter is

derived from [6].

Section 4.1 An Introduction to Filters

We use the ideas of complex variables and linear algebra to build what are known

as highpass and lowpass filters. In general, there are a few different obstacles that need

to be addressed when building wavelet filters, such as orthogonality and invertibility.

To begin, we will start by defining a filter: To filter a signal x through a filter h

we compute y by

𝒚 = 𝒉 ∗ 𝒙.

That is,

𝑦𝑛 = ∑ ℎ𝑘𝑥𝑛−𝑘

∞

𝑘=−∞

.

It should be noted that the way we build our filter h affects how x is influenced, and vice

versa. A basic example of a filter is an averaging filter. Let

𝒙 = (… , 𝑥−2, 𝑥−1, 𝑥0, 𝑥1, 𝑥2, …)

be a sequence of numbers. Let

 38

𝒉 = (ℎ0, ℎ1) = (
1

2
,
1

2
). (4.1.1)

Then

𝒚 = 𝒉 ∗ 𝒙

with

𝑦𝑛 =
𝑥𝑛 + 𝑥𝑛−1

2
.

Then h is an averaging filter, which is sometimes also called a Haar filter. Now we will

define some special types of filters that have certain attributes.

One special kind of filter is known as a causal filter. If h is a filter and ℎ𝑘 = 0 for

all 𝑘 < 0, then h is a causal filter. The averaging filter is a causal filter.

A second kind of special filter is a type of causal filter known as a finite impulse

response (FIR) filter. To define a FIR filter h, we start by letting h be a causal filter and

assuming that L is a positive integer. If ℎ𝑘 = 0 for all 𝑘 > 𝐿 where ℎ0 ≠ 0 and ℎ𝐿 ≠ 0,

then h is a FIR filter and h can be written as

𝒉 = (ℎ0, ℎ1, … , ℎ𝐿).

There are two kinds of FIR filters that will be discussed here, a lowpass filter and a

highpass filter.

Given a filter 𝒉 = (ℎ0, … , ℎ𝐿), consider the Fourier series

𝐻(𝜔) = ∑ ℎ𝑘𝑒𝑖𝑘𝜔

𝐿

𝑘=0

.

We call h a lowpass filter if we obtain the following properties:

|𝐻(0)| = 1, |𝐻(𝜋)| = 0. (4.1.2)

 39

When a lowpass filter is applied on a signal, the lower end of the frequency is preserved

while the upper end of the wave is annihilated.

It is easy to verify that |𝐻(0)| = 1 if and only if

∑ ℎ𝑘

𝐿

𝑘=0

= ±1. (4.1.3)

Similarly, |𝐻(𝜋)| = 0 if and only if

∑(−1)𝑘ℎ𝑘

𝐿

𝑘=0

= 0. (4.1.4)

The filter in equation (4.1.1) is a lowpass filter. To see this we can consider the

properties in equations (4.1.2):

|𝐻(0)| =
1

2
+

1

2
= 1,

|𝐻(𝜋)| =
1

2
−

1

2
= 0.

A highpass filter will preserve the high frequency of a signal and annihilate the lower

frequency.

Given a filter 𝒈 = (𝑔0, … , 𝑔𝐿), consider the Fourier series

𝐺(𝜔) = ∑ 𝑔𝑘𝑒
𝑖𝑘𝜔

𝐿

𝑘=0

.

Then g is a highpass filter if the filter g has the following properties:

|𝐺(0)| = 0, |𝐺(𝜋)| = 1. (4.1.5)

Similar to the lowpass filter, a consequence of these properties is that |𝐺(0)| = 0

if and only if

 40

∑ 𝑔𝑘

𝐿

𝑘=0

= 0 (4.1.6)

and |𝐺(𝜋)| = 1 if and only if

∑(−1)𝑘𝑔𝑘 = ±1

𝐿

𝑘=0

. (4.1.7)

An example of a highpass filter is

𝒈 = (𝑔0, 𝑔1) = (
1

2
,−

1

2
), (4.1.8)

because

|𝐺(0)| =
1

2
−

1

2
= 0,

|𝐺(𝜋)| =
1

2
+

1

2
= 1.

As has been shown, wavelet filters can be expressed as a string of numbers. In

the next section, we will see the convolution can be equivalently represented as a matrix

multiplication. Hence, a filter will correspond to the rows in the matrix.

Section 4.2 Expressing Convolution as Matrix Multiplication

In Section 4.1 we showed that to apply a filter we only need to convolve the

signal with it. However, there are ways in which we can represent the convolution as a

matrix product. That is, we are attempting to rewrite 𝒚 = 𝒉 ∗ 𝒙, where h is a filter and x

is a signal, as 𝒚 = 𝐻𝒙, where H is an infinite matrix.

To begin we will only consider FIR filters. Let ℎ = (ℎ0, … , ℎ𝐿). Recall that a

convolution is a linear operator. If we look at the definition of convolution (Section 3.6),

we see that if x is the signal, h is the filter, and y is the result, then

 41

𝑦𝑛 = ∑ ℎ𝑘𝑥𝑛−𝑘

𝐿

𝑘=0

.

From this we can recognize 𝑦𝑛 as the dot product of the nth row of matrix H and the

vector x. Let us consider the entry 𝑦0, which is computed as

𝑦0 = ∑ ℎ𝑘𝑥−𝑘

𝐿

𝑘=0

.

Similarly,

𝑦1 = ∑ ℎ𝑘𝑥1−𝑘

𝐿

𝑘=0

.

In other words:

[

⋮
𝑦0

𝑦1

⋮

] = [

⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋯ 0 ℎ𝐿 ⋯ ℎ2 ℎ1 ℎ0 0 ⋯
⋯ 0 0 ℎ𝐿 ⋯ ℎ2 ℎ1 ℎ0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

]

[

⋮
𝑥−𝐿

⋮
𝑥−2

𝑥−1

𝑥0

𝑥1

⋮]

If we continue the pattern and stack the rows of h, we can build a matrix. That is

𝐻 =

[

⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱⋱
⋯ ℎ𝐿 ℎ𝐿−1 ⋯ ℎ0 0 0 ⋯
⋯ 0 ℎ𝐿 ⋯ ℎ1 ℎ0 0 ⋯
⋯ ⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋯
⋯ 0 0 ⋯ 0 ℎ𝐿 ℎ𝐿−1 ⋯
⋯ 0 0 ⋯ 0 0 ℎ𝐿 ⋯
⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱]

with ℎ0 down the main diagonal. Notice that Hx is equivalent to 𝒉 ∗ 𝒙.

 42

Let us consider, for example, the filter in (4.1.1). This matrix would look like

𝐻 =

[

⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯
1

2

1

2
0 0 0 0 ⋯

⋯ 0
1

2

1

2
0 0 0 ⋯

⋯ 0 0
1

2

1

2
0 0 ⋯

⋯ 0 0 0
1

2

1

2
0 ⋯

⋯ 0 0 0 0
1

2

1

2
⋯

⋯ 0 0 0 0 0
1

2
⋯

⋯ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱]

.

As can be seen, this matrix will average the two consecutive values of the vector by

which it is multiplied. Now consider the filter in equality (4.1.8). If we were to put this

in a matrix, it would be represented as

𝐺 =

[

⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ −
1

2

1

2
0 0 0 0 ⋯

⋯ 0 −
1

2

1

2
0 0 0 ⋯

⋯ 0 0 −
1

2

1

2
0 0 ⋯

⋯ 0 0 0 −
1

2

1

2
0 ⋯

⋯ 0 0 0 0 −
1

2

1

2
⋯

⋯ 0 0 0 0 0 −
1

2
⋯

⋯ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱]

.

Matrix H is known as the average matrix, while matrix G is known as the difference

matrix. By combining these two matrices together, we get

[
𝐻
𝐺

] 𝒙 = [
𝐻𝒙
𝐺𝒙

] = [
𝒚
𝒛
], (4.2.1)

where y is the average of two consecutive terms and z is the half difference of two

 43

consecutive terms. Notice that H is contructed from a lowpass filter and G is constructed

from a highpass filter. Having these two matrices combined will help us when trying to

recover the original signal.

In theory, this matrix should be an infinite dimensional matrix. However, this is

not very practical. Since our input signals are finite, we must truncate this matrix and do

what is known as downsampling.

First we consider (4.2.1) where 𝒙 = (… , 𝑥−2, 𝑥−1, 𝑥0, 𝑥1, 𝑥2, …). Then

[
𝐻
𝐺

]

[

⋮
𝑥−2

𝑥−1

𝑥0

𝑥1

𝑥2

⋮]

=

[

⋮
𝑦−2

𝑦−1

𝑦0

𝑦1

𝑦2

⋮
𝑧−2

𝑧−1

𝑧0

𝑧1

𝑧2

⋮]

,

where y is the average filter and z is the difference filter. That is

𝑦0 =
𝑥1 + 𝑥0

2

𝑦1 =
𝑥2 + 𝑥1

2

⋮

𝑧0 =
𝑥1 − 𝑥0

2

𝑧1 =
𝑥2 − 𝑥1

2

⋮

We are building a matrix that has two different filters that are related. The top portion of

 44

the result, y, gives a rough approximation of x and the bottom portion, z, tells us how far

the value of x is from the approximation. This means that given the output vector, we

can reconstruct the original input vector. For example:

𝑥0 =
𝑥1 + 𝑥0

2
−

𝑥1 − 𝑥0

2
= 𝑦1 − 𝑧1

𝑥1 =
𝑥1 + 𝑥0

2
+

𝑥1 − 𝑥0

2
= 𝑦1 + 𝑧1

𝑥2 =
𝑥3 + 𝑥2

2
−

𝑥3 − 𝑥2

2
= 𝑦3 − 𝑧3

𝑥3 =
𝑥3 + 𝑥2

2
+

𝑥3 − 𝑥2

2
= 𝑦3 + 𝑧3.

Note that 𝑦0, 𝑧0, 𝑦2, and 𝑧2 were not used. Hence we only need every other element of

the output vector (the right-hand side) of (4.2.1). Thus we can shrink, or downsample,

the matrix on the left-hand side of (4.2.1) to

𝐻 =

[

⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯
1

2

1

2
0 0 0 0 ⋯

⋯ 0 0
1

2

1

2
0 0 ⋯

⋯ 0 0 0 0
1

2

1

2
⋯

⋯ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱]

and

𝐺 =

[

⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ −
1

2

1

2
0 0 0 0 ⋯

⋯ 0 0 −
1

2

1

2
0 0 ⋯

⋯ 0 0 0 0 −
1

2

1

2
⋯

⋯ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱]

.

Hence our new matrix [
𝐻
𝐺

] is

 45

[
𝐻
𝐺

] =

[

⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯
1

2

1

2
0 0 0 0 0 0 ⋯

⋯ 0 0
1

2

1

2
0 0 0 0 ⋯

⋯ 0 0 0 0
1

2

1

2
0 0 ⋯

⋯ 0 0 0 0 0 0
1

2

1

2
⋯

⋯ −
1

2

1

2
0 0 0 0 0 0 ⋯

⋯ 0 0 −
1

2

1

2
0 0 0 0 ⋯

⋯ 0 0 0 0 −
1

2

1

2
0 0 ⋯

⋯ 0 0 0 0 0 0 −
1

2

1

2
⋯

⋯ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱]

. (4.2.2)

An important factor of this matrix is that the original input vector can easily be retrieved

from the output vector. We will denote [
𝐻
𝐺

] by 𝑊̃𝑁.

To finish off this matrix, we need to add one more property to it. A key element

is that our matrix needs to be orthogonal.

Section 4.3 Orthogonality

Now that we have seen how a lowpass and a highpass filter can form a wavelet

matrix, we will discuss how to characterize the orthogonality of the filters in this section.

A matrix U is an orthogonal matrix if 𝑈𝑈𝑇 = 𝐼, where I is the identity matrix.

To start, note that

𝑊̃𝑁𝑊̃𝑁
𝑇 =

1

2
𝐼𝑁 ,

where 𝐼𝑁 is the 𝑁 × 𝑁 identity matrix. In order to make 𝑊̃𝑁 orthogonal, we must

multiply 𝑊̃𝑁 by √2. We label this matrix 𝑊𝑁 and it is equal to

𝑊𝑁 = √2𝑊̃𝑁 . (4.3.1)

 46

This specific wavelet transform is known as the Haar wavelet transform and is a filter of

length 2. A useful property is that

𝑊𝑁
𝑇 = 𝑊𝑁

−1. (4.3.2)

Generally, if we use two even length filters 𝒉 = (ℎ0, … , ℎ𝐿) and 𝒈 = (𝑔0, … , 𝑔𝐿)

to form a square matrix W, the orthogonality requirement on W will give

𝑊𝑊𝑇 = 𝐼,

where 𝑊 = [
𝐻
𝐺

]. Hence we see that

[
𝐻
𝐺

] [𝐻𝑇 𝐺𝑇] = [𝐻𝐻𝑇 𝐻𝐺𝑇

𝐺𝐻𝑇 𝐺𝐺𝑇] = 𝐼.

Thus

𝐻𝐻𝑇 = 𝐺𝐺𝑇 = 𝐼, 𝐺𝐻𝑇 = 𝐻𝐺𝑇 = 𝟎,

where I is the identity matrix and 0 is the zero matrix. 𝐻𝐻𝑇 = 𝐼 and 𝐻𝐺𝑇 = 0 imply the

following properties:

∑ ℎ𝑘
2

𝐿

𝑘=0

= 1, (4.3.3)

∑ ℎ𝑘ℎ𝑘−2𝑚 = 0, 𝑚 = 1, 2, … ,
𝐿 − 1

2

𝐿

𝑘=2𝑚

 (4.3.4)

Note that if we define 𝑔𝑘 as

𝑔𝑘 = (−1)𝑘ℎ𝐿−𝑘, (4.3.5)

it is easy to verify that 𝐺𝐺𝑇 = 𝐼,𝐻𝐺𝑇 = 0, and 𝐺𝐻𝑇 = 0. g is also a highpass filter when

h is a lowpass filter.

To see an example of the Haar wavelet transform, consider the function

𝑓(𝑡) = cos(2𝜋𝑡). (4.3.6)

If we plot 200 discrete points of this wave, it looks like Figure 4.3.1.

 47

 Figure 4.3.1: 𝑓(𝑡) = cos(2𝜋𝑡) Figure 4.3.2: The Haar transform

When we apply the Haar wavelet transform we obtain a graph that looks like Figure

4.3.2.

 As can be seen, the first half of the Figure 4.3.2 maintains the shape of the

original function, while the second half of the graph is the difference. From this

information, the original image can be reconstructed. The transformed data also provides

us the ability to send the same data but with less entropy required.

It should be noted that this wavelet transform is built for a discrete case. In

Section 4.5 the idea of the continuous case will be discussed.

Section 4.4 Daubechies Wavelet Transformations

Daubechies Wavelet Transformations are named for the groundbreaking

mathematician, Ingrid Daubechies, who in her 1988 paper [5] discussed a special family

of orthogonal lowpass filters. Daubechies filters are typically used in applications. In

our work, we used a Daubechies filter of length 6 (D6). For the sake of simplifying the

computation, we will explain the process of building a Daubechies filter of length 4 (D4).

The D6 filter is obtained in a similar manner. The method presented here will follow the

method in [6].

 48

Let 𝒉 = (ℎ0, ℎ1, ℎ2, ℎ3) be a lowpass filter and 𝒈 = (𝑔0, 𝑔1, 𝑔2, 𝑔3) be a highpass

filter. Similar to the design of matrix 4.2.1, h and g can form a square matrix 𝑊𝑁 where

N is even. An example of 𝑊8 using h and g is

𝑊8 =

[

ℎ3 ℎ2 ℎ1 ℎ0 0 0 0 0
0 0 ℎ3 ℎ2 ℎ1 ℎ0 0 0
0 0 0 0 ℎ3 ℎ2 ℎ1 ℎ0

ℎ1 ℎ0 0 0 0 0 ℎ3 ℎ2

𝑔3 𝑔2 𝑔1 𝑔0 0 0 0 0
0 0 𝑔3 𝑔2 𝑔1 𝑔0 0 0
0 0 0 0 𝑔3 𝑔2 𝑔1 𝑔0

𝑔1 𝑔0 0 0 0 0 𝑔3 𝑔2]

.

In order to simplify things, we want to replace the terms in g with terms of h by

using the expression 𝑔𝑘 = (−1)𝑘ℎ3−𝑘. The above matrix can be written as

𝑊8 =

[

ℎ3 ℎ2 ℎ1 ℎ0 0 0 0 0
0 0 ℎ3 ℎ2 ℎ1 ℎ0 0 0
0 0 0 0 ℎ3 ℎ2 ℎ1 ℎ0

ℎ1 ℎ0 0 0 0 0 ℎ3 ℎ2

−ℎ0 ℎ1 −ℎ2 ℎ3 0 0 0 0
0 0 −ℎ0 ℎ1 −ℎ2 ℎ3 0 0
0 0 0 0 −ℎ0 ℎ1 −ℎ2 ℎ3

−ℎ2 ℎ3 0 0 0 0 −ℎ0 ℎ1]

.

We would like 𝑊8 to be an orthogonal matrix. That is

𝑊8𝑊8
𝑇 = 𝐼8.

Thus

𝐻𝐻𝑇 = 𝐼4,

which implies that

ℎ0
2 + ℎ1

2 + ℎ2
2 + ℎ3

2 = 1, (4.4.1)

ℎ0ℎ2 + ℎ1ℎ3 = 0. (4.4.2)

We can also use the condition that h is a lowpass filter to give us more parameters. We

can use equation (4.1.2) for these parameters. However, in order to maintain

 49

orthogonality, we need to adjust the equations. Thus in order to maintain orthogonality

we need to adjust (4.1.2). Specifically we need to set 𝐻(0) equal to √2. To show this,

we start by squaring the sum ℎ0 + ⋯+ ℎ3

(∑ ℎ𝑘

3

𝑘=0

)

2

= ℎ0
2 + ℎ1

2 + ℎ2
2 + ℎ3

2 + 2(ℎ0ℎ1 + ℎ0ℎ2 + ℎ0ℎ3 + ℎ1ℎ2 + ℎ1ℎ3 + ℎ2ℎ3).

However, from equation (4.4.1) we see that

(∑ ℎ𝑘

3

𝑘=0

)

2

= 1 + 2(ℎ0ℎ1 + ℎ0ℎ2 + ℎ0ℎ3 + ℎ1ℎ2 + ℎ1ℎ3 + ℎ2ℎ3).

We can also use equation (4.4.2) to see that ℎ0ℎ2 + ℎ1ℎ3 = 0. Hence

(∑ ℎ𝑘

3

𝑘=0

)

2

= 1 + 2(ℎ0ℎ1 + ℎ0ℎ3 + ℎ1ℎ2 + ℎ2ℎ3). (4.4.3)

We also know for equation (4.1.4) that

ℎ0 − ℎ1 + ℎ2 − ℎ3 = 0. (4.4.4)

Squaring (4.4.4) gives

ℎ0
2 + ℎ1

2 + ℎ2
2 + ℎ3

2 − 2(ℎ0ℎ1 − ℎ0ℎ2 + ℎ0ℎ3 + ℎ1ℎ2 − ℎ1ℎ3 + ℎ2ℎ3) = 0. (4.4.5)

Using equations (4.4.1) and (4.4.2) again, we see that

1 − 2(ℎ0ℎ1 + ℎ0ℎ3 + ℎ1ℎ2 + ℎ2ℎ3) = 0. (4.4.6)

If we add equation (4.4.3) and equation (4.4.6) we get

(∑ ℎ𝑘

3

𝑘=0

)

2

= 2,

which implies that

∑ ℎ𝑘

3

𝑘=0

= √2.

 50

Using the fact that ℎ0ℎ2 + ℎ1ℎ3 = 0, we can say that the vectors [ℎ0, ℎ1]
𝑇 and [ℎ2, ℎ3]

𝑇

are orthogonal and thus

[ℎ2, ℎ3]
𝑇 = 𝑐[−ℎ1, ℎ0]

𝑇 . (4.4.7)

where c is an arbitrary nonzero real number. (4.4.7) gives us ℎ2 = −𝑐ℎ1 and ℎ3 = 𝑐ℎ0.

If we use ℎ0
2 + ℎ1

2 + ℎ2
2 + ℎ3

2 = 1 and ℎ2 = −𝑐ℎ1 and ℎ3 = 𝑐ℎ0, we see that

ℎ0
2 + ℎ1

2 =
1

1 + 𝑐2
. (4.4.8)

Also, recall

ℎ0 − ℎ1 + ℎ2 − ℎ3 = 0.

By substituting ℎ2 and ℎ3 we get

ℎ0 − ℎ1 − 𝑐ℎ1 − 𝑐ℎ0 = 0.

Combining like terms we see that

ℎ0(1 − 𝑐) − ℎ1(1 + 𝑐) = 0.

Solving down for ℎ1 we get that

ℎ1 = (
1 − 𝑐

1 + 𝑐
) ℎ0, (4.4.9)

where 𝑐 ≠ −1. Combining (4.4.9) with (4.4.8) we get

ℎ0
2 + (

1 − 𝑐

1 + 𝑐
)
2

ℎ0
2 =

1

1 + 𝑐2
.

By combining like terms we see that

ℎ0
2 (1 + (

1 − 𝑐

1 + 𝑐
)
2

) =
1

1 + 𝑐2
.

In simplifying we get

2ℎ0
2 (

1 + 𝑐2

(1 + 𝑐)2
) =

1

1 + 𝑐2
.

 51

In solving for ℎ0 in terms of the constant c we get

ℎ0 = ±
√2(1 + 𝑐)

2(1 + 𝑐2)
. (4.4.10)

Note that we have two different values for ℎ0. At this point we are able to arbitrarily pick

either the positive or negative root. For now, we will choose the positive root. Using

equation (4.4.9) we find that

ℎ1 = (
1 − 𝑐

1 + 𝑐
) (

√2(1 + 𝑐)

2(1 + 𝑐2)
) .

By combining like terms we find that

ℎ1 =
√2(1 − 𝑐)

2(1 + 𝑐2)
. (4.4.11)

Using equation (4.4.7) we can find ℎ2 and ℎ3:

ℎ2 = −
𝑐√2(1 − 𝑐)

2(1 + 𝑐2)
. (4.4.12)

ℎ3 =
𝑐√2(1 + 𝑐)

2(1 + 𝑐2)
. (4.4.13)

Before we can finish finding the values of the filter h, we need to add an additional

smoothness condition. We ask that

𝐻′(𝜋) = 0. (4.4.14)

Differentiating

𝐻(𝜔) = ℎ0 + ℎ1𝑒
𝑖𝜔 + ℎ2𝑒

2𝑖𝜔 + ℎ3𝑒
3𝑖𝜔

gives

𝐻′(𝜔) = 𝑖ℎ1𝑒
𝑖𝜔 + 2𝑖ℎ2𝑒

2𝑖𝜔 + 3𝑖ℎ3𝑒
3𝑖𝜔 .

Hence 𝐻′(𝜋) = 0 gives us

−𝑖ℎ1 + 2𝑖ℎ2 − 3𝑖ℎ3 = −𝑖(ℎ1 − 2ℎ2 + 3ℎ3) = 0,

 52

which can be simplified to

ℎ1 − 2ℎ2 + 3ℎ3 = 0. (4.4.15)

Equations (4.4.15) and (4.4.7) give

ℎ1 − 2ℎ2 + 3ℎ3 = ℎ1 + 2𝑐ℎ1 + 3𝑐ℎ0 = (1 + 2𝑐)ℎ1 + 3𝑐ℎ0 = 0.

Hence

ℎ1 =
−3𝑐

1 + 2𝑐
ℎ0.

Comparing with equation (4.4.7) we can see that

1 − 𝑐

1 + 𝑐
=

−3𝑐

1 + 2𝑐
.

Now we can finally solve for c:

𝑐 = −2 ± √3. (4.4.16)

Once again, we get to select which value of c we use. If we use the value 𝑐 = −2 + √3,

we can see that

ℎ1 = (
1 − 𝑐

1 + 𝑐
)ℎ0.

Hence

ℎ1 = (
3 − √3

−1 + √3
)ℎ0 = √3h0,

which gives

ℎ0
2 + ℎ1

2 = ℎ0
2 + 3ℎ0

2 = 4ℎ0
2.

Now (4.4.8) and (4.4.16) give us

4ℎ0
2 =

2 + √3

4
,

ℎ0 = ±
1 + √3

4√2
. (4.4.17)

 53

We will assume the positive value of ℎ0. Using this, we can find the remaining values in

the filter h:

ℎ1 =
3 + √3

4√2
, ℎ2 =

3 − √3

4√2
, ℎ3 =

1 − √3

4√2
. (4.4.18)

Thus our filter h is

𝒉 = (
1 + √3

4√2
,
3 + √3

4√2
,
3 − √3

4√2
,
1 − √3

4√2
). (4.4.19)

This set is known as the Daubechies four-term orthogonal filter. This means that our

matrix is

1

4√2

[

𝐴 𝐵 𝐶 𝐷 0 0 0 0
0 0 𝐴 𝐵 𝐶 𝐷 0 0
0 0 0 0 𝐴 𝐵 𝐶 𝐷
𝐶 𝐷 0 0 0 0 𝐴 𝐵

−𝐷 𝐶 −𝐵 𝐴 0 0 0 0
0 0 −𝐷 𝐶 −𝐵 𝐴 0 0
0 0 0 0 −𝐷 𝐶 −𝐵 𝐴

−𝐵 𝐴 0 0 0 0 −𝐷 𝐶]

,

where

𝐴 = 1 − √3, B = 3 − √3, C = 3 + √3, D = 1 + √3.

Using this same process, we can find any even-length filter that fits these criteria.

However, the longer the filter becomes, the more difficult the solutions are to find. More

discussion on filters and convolution can be found in [6].

Section 4.5 The Integral Wavelet Transform

We start by defining the continuous wavelet transform. The idea of this process is

to transform a continuous function into a function of two continuous variables that is

highly redundant. This helps us interpret time-frequency analysis. We define the

continuous wavelet transform of a continuous, square-integrable function, 𝑓(𝑥), relative

 54

to a real-valued wavelet, 𝜓(𝑥), as

𝑊𝜓(𝑠, 𝜏) = ∫ 𝑓(𝑥)
∞

−∞

𝜓𝑠,𝜏(𝑥)𝑑𝑥,

where

𝜓𝑠,𝜏(𝑥) =
1

√𝑠
𝜓 (

𝑥 − 𝜏

𝑠
) ,

s is the scale parameter, and τ is the translation parameter.

We define the inverse continuous wavelet transform 𝑓(𝑥)

𝑓(𝑥) =
1

𝐶𝜓
∫ ∫ 𝑊𝜓(𝑠, 𝜏)

𝜓𝑠,𝜏(𝑥)

𝑠2
𝑑𝜏𝑑𝑠

∞

−∞

∞

0

.

Here,

𝐶𝜓 = ∫
|𝛹(𝜇)|2

|𝜇|
𝑑𝜇

∞

−∞

,

and 𝛹(𝜇) is the Fourier transform of 𝜓(𝑥). These equations are reversible so long as

𝐶𝜓 < ∞. Roughly speaking, 1/𝑠 provides the frequency bandwidth and 𝜏 provides

information regarding spatial/temporal localization, which are useful in many

applications. See [7] for more discussion on continuous wavelet transforms.

Section 4.6 Wavelet Packet Decomposition

The process of a Wavelet Packet Decomposition can be described as a coherent

processing step. Here we will follow the approach in [9].

The Wavelet Packet Decomposition is a level-by-level transformation of a signal.

As was discussed in Chapter 3, the transformation is from the time domain to the

frequency domain. Let h and g be a lowpass and a highpass filter, respectively. Define

𝑥 = (𝑥1, … , 𝑥𝑁) as the original signal. If we let 𝑥ℎ denote the signal after being passed

 55

through a lowpass filter h, and if we let 𝑥𝑔 denote the signal after being passed through a

highpass filter g, then we can define 𝑥ℎ and 𝑥𝑔 as

𝑥ℎ(𝑛) = ∑ 𝑥𝑘ℎ2𝑛−𝑘

𝑁

𝑘=1

, 𝑥𝑔(𝑛) = ∑ 𝑥𝑘𝑔2𝑛−𝑘

𝑁

𝑘=1

.

We apply these filters recursively to the signal. At each step or level of the

process we create what is known as a bin vector. Since the vectors are typically chosen

to be powers of 2, we can continue this process until there is 1 element in each bin vector.

To see a visual representation of this, we will start by defining x as the signal 𝒙 =

(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8). Let h be the lowpass filter and let g be the highpass filter.

Also define 𝑥ℎ[𝑛] as the nth component of the lowpass portion and 𝑥𝑔[𝑛] as the nth

component of the highpass portion. We also define 𝑥ℎℎ as h being applied to 𝑥ℎ, 𝑥𝑔ℎ as g

being applied to 𝑥ℎ, and so on. We continue this process as needed. Thus our signal now

looks like Figure 4.6.1.

Figure 4.6.1: A representation of the WPD process

Section 4.7 Comparing the Fourier Transform and Wavelet Transform

𝑥[1] 𝑥[2] 𝑥[3] 𝑥[4] 𝑥[5] 𝑥[6] 𝑥[7] 𝑥[8]

 𝑥ℎ[1] 𝑥ℎ[2] 𝑥ℎ[3] 𝑥ℎ[4] 𝑥𝑔[1] 𝑥𝑔[2] 𝑥𝑔[3] 𝑥𝑔[4]

𝑥ℎℎ[1] 𝑥ℎℎ[2] 𝑥𝑔ℎ[1] 𝑥𝑔ℎ[2] 𝑥ℎ𝑔[1] 𝑥ℎ𝑔[2] 𝑥𝑔𝑔[1] 𝑥𝑔𝑔[2]

𝑥𝑔ℎℎ[1] 𝑥ℎℎℎ[1] 𝑥ℎ𝑔ℎ[1] 𝑥𝑔𝑔ℎ[1] 𝑥ℎℎ𝑔[1] 𝑥𝑔ℎ𝑔[1] 𝑥ℎ𝑔𝑔[1] 𝑥𝑔𝑔𝑔[1]

h h

h h h h g g g g

g g

g h

 56

The Fourier transform and the wavelet transform have similarities and

differences.

To begin, if the signal being obtained is in the time domain, then it will be in the

frequency domain after the Fourier transform has been applied. When we graph the

transformed signal, there is an amplitude at each frequency. For example: if a signal was

sent out that has a frequency of 100 Hz, then the graph would only show one spike at 100

Hz. It should also be noted that there will be a second amplitude, but only because of

symmetry.

We have already mentioned that an inverse of the Fourier transform already

exists. That is, we can have the raw data (in our example the time data) or the

transformed data (the frequency data). However, it is limited in the fact that it cannot

produce both at the same time. If someone wanted both time and frequency information,

then a Fourier transform may not be the transform that he should use. In our example the

Fourier transform would tell us what the frequency was but not when it happened. This

is not a problem if the signal is stationary (that is, if the frequency exists at all times).

However, this is not always the case.

For example: the signal 𝑓(𝑡) = cos(2𝜋𝑡 ∙ 2) + cos(2𝜋𝑡 ∙ 20), as seen in Figure

4.7.1, is a stationary signal and always has the frequencies of 2 Hz and 20 Hz at any

given moment.

 57

 Figure 4.7.1: The signal 𝑓(𝑡) Figure 4.7.2: The Fourier transform of 𝑓(𝑡)

If the Fourier transform of this were to be plotted, then there would be an amplitude at 2

and 20, respectively, on the frequency axis as seen in Figure 4.7.2.

Now consider the piecewise continuous signal

𝑔(𝑡) = {
cos(2𝜋𝑡 ∙ 2) , 0 ≤ 𝑡 < 1/2

cos(2𝜋𝑡 ∙ 20) , 1/2 ≤ 𝑡 < 1

with a graph that can be seen in Figure 4.7.3.

 Figure 4.7.3: The signal 𝑔(𝑡) Figure 4.7.4: The transform of 𝑔(𝑡)

If the Fourier transform were applied to 𝑔(𝑡), then its output would look very similar to

the Fourier transform of 𝑓(𝑡), as can be seen in Figure 4.7.4. However, the frequency of

2 Hz only exists for the time 0 ≤ 𝑡 < 1/2 for 𝑔(𝑡), but it exists everywhere for 𝑓(𝑡).

 58

Likewise, the frequency of 20 Hz only exists for 1/2 ≤ 𝑡 < 1, but it exists everywhere

for 𝑓(𝑡). Hence it would be impossible for the standard Fourier transform to decipher

between the two different signals.

However, a wavelet transform is capable of this. The wavelet transformation

provides its output in time and frequency simultaneously. It should be noted that the

short-time Fourier transform can partially resemble this pattern. The graph will be in

three dimensions with time on one axis, frequency on another, and amplitude on the last.

Thus we can find the time, frequency, and the amplitude simultaneously.

However, the wavelet transform also has a benefit over the short-time Fourier

transform. The short-time Fourier transform has a fixed resolution, while the wavelet

transform has a variable resolution, which is why the wavelet transform is a good tool for

multi-resolution analysis.

Thus we can see that in signal processing, the wavelet transform has a certain

advantage over not only the Fourier transform but also the short-time Fourier transform.

In cases where time and frequency are needed, such as the classification of sound, the

wavelet transform will be more beneficial. [14] has further discussion and more

examples on this topic.

 59

Chapter 5 Machine Learning and Data Mining

In this Chapter we will be discussing data mining and machine learning. We will

introduce the basic concepts in the first section. Then we will explain the input and

output of a learning scheme [17]. In Section 5.4 we will look at decision trees and

Random Forest [1]. Then we will discuss combination methods and how to validate the

data [17].

Section 5.1 Introduction to Data Mining and Machine Learning

Every day we try to make informed decisions based off available information.

For example: while at lunch we might choose our meal based off price, how it tastes, how

healthy it is, and how filling it is. We use this information to make an informed decision.

The more information that we have, the better decision we might be able to make.

In data mining this process is performed by a computer. We define data mining

as the process of discovering patterns in data. However, this process must be either

automatic or semi-automatic. We want the findings to be meaningful and to lead to a

decision. With the proper amount of data, we can make non-trivial predictions on a new

set of data.

We see that data mining involves having our computer learn and make informed

decisions. We define machine learning as a machine changing its behavior in a way that

makes it perform better at a given task in the future.

To start, we let the input be a set of data and the output will be a set of rules. In

this study, the input is a set of attributes attributed to bird calls. In the beginning of the

study we had four attributes that we used: the species of the bird; the maximum energy

(or “the largest average energy value” [16, p 3]); the position (or “the number of the bin

 60

r, in which the maximum energy was located” [16, p 3]); and the spread (or the “sum of

the average energies of those coefficients whose energy exceeded [a] threshold value”

[16, p 3]). Excluding the species of the bird, the other attributes are obtained using

wavelet transforms. However, after collecting data, we found that the position was fairly

consistent throughout almost all of the bird calls tested. Thus we decided that using the

position (as defined earlier) was unnecessary and we only used the maximum energy, the

species, and the spread. We use the maximum energy and the spread to determine the

species of the bird.

The machine learning software used in our study is known as Waikato

Environment for Knowledge Analysis (WEKA) [8]. (The name WEKA is interesting on

two levels because it is not only an acronym, it is the name of a flightless bird

(Gallirallus australis) that is found in New Zealand, the same country that Waikato is

found.) WEKA has many applications, but for our purposes we only used it as a learning

machine. To use WEKA, we stored all of the data in Excel files that were saved in CSV

format.

When running WEKA, a graphical user interface (GUI) appears and presents the

user with four different options: Explorer; Experimenter; KnowledgeFlow; and Simple

CLI. For our studies we only utilized the Explorer. Figure 5.1.1 shows the GUI of the

software.

 61

Figure 5.1.1: WEKA Interface

Section 5.2 Input

Under the Explorer is where we can input our data. In data mining, there are a

few different kinds of input that are possible. The basic forms that the input can be is in

the form of concepts, instances, and attributes. We prepared our input as instances.

Each instance in our study is a bird call and its associated attributes. Every

instance in the data set must have attributes; otherwise, a relationship cannot be

discovered. Attributes are characterizations of instances. For example, let a data set

contain people and the kind of coffee they preferred out of black coffee, cappuccino,

Americano, and decaffeinated coffee. Each person and his/her preferred kind of coffee is

an instance in the study. Sometimes in data mining, the attributes may not apply to all

instances. If one person did not drink coffee, then he/she would not have a preferred kind

of coffee. Hence, the subject would not be able to correctly select between black coffee,

cappuccino, Americano, and decaffeinated coffee. In the coffee example we use what is

known as a nominal value, or a value that represents a category. In this same scenario we

could ask people to rate three different kinds of coffee on a scale of 1 to 3, where 1 is the

best, 2 is the second best, and 3 is the one least preferred. Then what we have will be

ordinal data. For learning machines, ordinal and nominal data is typically used.

 62

We used these instances to try to learn a concept. To learn the concept, data

mining machines have four different styles of learning that it can utilize: classification

learning, association learning, clustering, and numeric prediction. Classification learning

is a learning scheme that takes a set of classified examples, and it uses this set to classify

examples it has not seen. Association learning tries to find any kind of association that

exists, and not only the associations that help make predictions for a particular class

value. Clustering tries to group instances that belong together. Numeric predictions give

us a numeric quantity as opposed to a discrete class. In our study we utilized several

classifiers. More on the process and results of our study will be discussed in Chapter 6.

Classification learning is used primarily when there are distinct different options.

For instance: if someone wanted to buy a car and their options were a truck, an SUV, and

a sedan, then he could use classification learning to help him make his decision.

We also call classification learning supervised learning. This is because

classification learning is given a training set to learn from and the training set already has

the correct classifications. For the car example, the training set may have information

such as “if the person had children, then he did not purchase a truck.” Here the outcome

of the learning algorithm is the class that each instance belongs to. Thus we can see that

classification learning has specified classes.

When there are not specified classes, association learning can be used. A main

difference between association learning and classification learning is that association

learning can predict any attribute, while classification learning is only used to predict the

class. Association learning can also predict more than one attribute at a time. However,

a drawback is that association learning requires more rules than classification learning.

 63

Another learning method that works well when there is no specified class is

clustering. Clustering tries to group instances that fall naturally together. For example:

say everyone in a city was asked what their favorite color is, what their favorite music

genre is, and what their favorite kind of food is. We can then cluster people together with

similar interest. This would be an example of clustering. However, an issue that arises is

that one person may seem to belong to more than one cluster.

Numeric prediction is considered to be a variant of classification learning. The

only difference is that for numeric prediction the outcome is a numeric value, whereas

with classification learning the outcome is any kind of category. When the task is to

predict numeric values, the classification becomes regression and the learned model is a

regression model. If an economist were to use data to decide when to buy and sell stock,

then that would be considered classification learning. If an economist were to predict the

value of a certain stock, then that would be considered numeric prediction.

Section 5.3 Output

As for the output, WEKA can provide decision tables, decision trees,

classification rules, association rules, trees for numeric prediction, and clusters.

Decision tables are the most rudimentary way of representing the output. A

decision table may look something like

Tired? Other obligations? Workout

Yes Yes No

Yes No Yes

No Yes No

No No Yes

 64

In this example, the decision table helps the user decide if he/she should workout or not.

A decision tree typically involves solutions that have a fixed number of

possibilities. Someone may use a decision tree to decide where he/she wants to eat. For

example, if a town has the three restaurants, Taco Tim’s, Famiglia Italia, and Sandwich

Steve’s, then someone could use the following decision tree:

We can use WEKA to create a decision tree for us. Consider the gym example.

By inputting the table into an Excel file, we can upload the file to WEKA and produce a

decision tree. WEKA provides some base rules like in Figure 5.3.1. By right-clicking on

the trees.RandomTree selection on the far left, we have the option to create a decision

tree out of the given data. To see the decision tree for the gym example, refer to Figure

5.3.2. As we can see, the decision depended solely on whether or not there were other

obligations. Decision trees will be further discussed in Section 5.4.

What to eat

Mexican

?

Taco Tim’s Italian?

 Sandwich Steve’s Famiglia Italia

Yes

Yes

No

No

 65

Figure 5.3.1: The WEKA Classification Interface

Figure 5.3.2: The Decision Tree Designed by WEKA

The output for classification learning is very similar to a decision tree. The main

difference is that classification learning uses rules. Generally, classification learning can

be expressed as a decision tree, but it typically has many more steps involved. For

example, let a go to x, b go to y, and c, d, e, f, and g go to z. If we made a decision tree, it

would be considerably longer than creating rules. The only rules we need to make are “if

a, then x,” “if b, then y,” and “if c, d, e, f, or g, then z.” Here we only had three rules to

deal with. This will save computing time. Another reason why rules are more popular

than building a decision tree is that rules can be added anywhere in the process. If we

were to add a step to a tree, we may have to remake the entire tree. The only time that a

 66

rule cannot be added at any arbitrary point in the process is when that rule depends on the

outcome of other rules.

A possibility that arises out of using classification learning is when different rules

lead to different conclusions of the same instance. There is also the possibility of the

instance not being classified at all. These issues cannot arise when using a decision tree.

A possible way around these issues is to make the classes Boolean, or only having two

possible outcomes. This is not always possible in a real world situation.

For numeric predictions we can use the same rules and trees that we have already

discussed. If a tree is used for numeric predictions, then it is called a regression tree.

However, since the numeric predictions involve numbers, we often use regression

equalities to make predictions. It is also possible to combine the regression equations and

the regression trees.

Another possible way to classify data is by using instance-based representation.

That is, we are trying to group instances with similar attributes into the same class. This

process is known as clustering. This method avoids using rules. The new instance is

compared to the other classified instances and, using a distance metric, classifies it with

the instance that is closest to it. This method is called the nearest neighbor method. This

method works very well with numeric data; however, with nominal data it has its

downfalls. For instance, if our set had different kinds of fruits, it would be hard to

determine if an orange was closer to a cantaloupe or a star fruit without converting the

data to some kind of numerical data. Another issue is determining weights for the

distance. That is, determining which attribute is considered more important using this

method.

 67

When using clustering over a classifier, a diagram is used to show how the classes

are divided. In some cases, a single instance can belong to more than one class,

depending on the clustering method used. A common example of this would be a Venn

diagram. In some clustering techniques, a probability that a certain instance is in a

particular class is given instead. In some cases clusters are presented in a hierarchal

structure, where instances in the higher levels are loosely related, while the instances in

the lower levels are more closely related. These are typically referred to as dendrograms.

Section 5.4 Trees and Random Forests

A decision tree contains a set of decisions. These decisions split the results into

different nodes, depending on the decision. This process is continued until a final

decision is reached. The data can lead to one of two options: a leaf node or a non-leaf

node. The non-leaf nodes are associated with a feature test, also known as a split. From

here the data will split into different subsets based off the values of their feature test.

When the data falls on a leaf node, then it is associated with a label. This label will be

given to all instances that arrive at this node. The first node that the user comes to is

known as the root node.

Consider the dinner example from Section 5.3. The nodes “Mexican?” and

“Italian?” are considered to be non-leaf nodes. The remaining nodes, that is, “Taco

Tim’s,” “Famiglia Italia,” and “Sandwich Steve’s”, are considered to be leaf nodes. Here

the node “Mexican?” also happens to be the root node. In Figure 5.3.2 “Other

Obligations” is considered a non-leaf node while “No” and “Yes” are considered leaf

nodes. “Other Obligations” is considered to be the root node, as well.

 68

We say that decision tree learning is a recursive process. At each step the data set

is divided into subsets, depending on the node. The most important part of the decision

tree is how the splits are decided. By having a properly devised decision tree, we can

reduce the entropy of the set where the entropy is defined as

𝐸𝑛𝑡(𝐷) = − ∑ 𝑃(𝑦|𝐷) log 𝑃(𝑦|𝐷)

𝑦∈Υ

where D is the training set and ϓ is the set of all predicted class labels y [19, p 5].

Entropy is a typical characteristic of how much information is in the signal. We also say

that by reducing the entropy, we increase the information gain where the gain is defined

as

𝐺(𝐷;𝐷1, … , 𝐷𝑘) = 𝐸𝑛𝑡(𝐷) − ∑
|𝐷𝑖|

|𝐷|
𝐸𝑛𝑡(𝐷𝑖)

𝑘

𝑖=1

,

where the training set D is divided into k subsets and | ∙ | denotes the size of the data set

[19, p 5]. Thus we want to create a split that reduces the entropy in order to increase the

information gain. See J.R. Quinlan [15] for a specific example.

Some other algorithms use gain ratio [19, p 5] which is defined as

𝑃(𝐷;𝐷1, … , 𝐷𝑘) = 𝐺(𝐷;𝐷1, … , 𝐷𝑘) ∙ (−∑
|𝐷𝑖|

|𝐷|
log

|𝐷𝑖|

|𝐷|

𝑘

𝑖=1

)

−1

Notice that this is variant of the information gain criterion. We select the split that has

the highest gain ratio.

Another decision tree algorithm that is often used is called CART. This algorithm

uses the Gini index [19, p 6] and is

 69

𝐺𝑔𝑖𝑛𝑖(𝐷; 𝐷1, … , 𝐷𝑘) = 𝐼(𝐷) − ∑
|𝐷𝑘|

|𝐷|
𝐼(𝐷𝑘)

𝑘

𝑖=1

,

where 𝐼(𝐷) is defined [19, p 6] as

𝐼(𝐷) = 1 − ∑ 𝑃(𝑦|𝐷)2

𝑦∈Υ

There are cases where there are outliers in the training set. These outliers may

cause the training set to find a “truth” for the set that does not exist. This is known as

overfitting. To avoid this, we use the idea of pruning, or removing branches of the tree

that are caused by outliers or noise in the data set. WEKA can prune the tree beforehand,

known as pre-pruning, or we can prune the tree afterwards, known as post-pruning.

WEKA can do this when we have a data set whose outcome is known.

The process of forming decision trees can help us further understand and utilize

the different methods to ensemble data.

WEKA can increase the accuracy by creating a group of trees, known as forests,

and allowing them to vote for the most popular class. We call using various single

models to get a combined decision an ensemble method. We will introduce it in the next

two sections.

Section 5.5 Combinations, Bagging, and Boosting

Bagging and boosting are different combination methods that can help you reach

a decision based off the available information. They use multiple learners to make a

decision. Bagging gives each data set equal weight, where boosting gives different data

sets different weights.

 70

We will begin with discussing bagging. We will introduce it with an example.

Consider the decision tree in Section 5.3 that was used to decide what restaurant to go to.

Also imagine that we have 9 other decision trees that are built to help us decide what

restaurant to go to. Let each person who is deciding where he wants to eat be an instance.

Allow each decision tree to decide what restaurant each person wants to go to. The

restaurant that receives more votes than any other is the restaurant that is chosen. It is

generally accepted that the more decision trees that are used, the more accurate the

outcome will be, although there do exist theoretical conditions in which adding more

decision trees does not increase the accuracy of the outcome. What has been described

here is considered combining different decision trees.

In a perfect world, we could use an infinite number of training sets that are the

same size to create an infinite number of classifiers. However, we begin to have issues

with this when we put this into practice. That is, we cannot have an infinite number of

test sets, nor can we have an infinite number of classifiers.

This is where bagging is useful (the term bagging is derived from bootstrap

aggregating). Bagging takes a given training set and creates many training sets by

deleting various instances and copying others (to keep the training sets the same size).

We then apply the learning scheme to the given training set, and the classifier that is

chosen votes for the class. Returning to our “which restaurant” decision tree, assume that

we have a total of 10 Italian restaurants from which to choose. By using the bagging

method we will create multiple training sets by sampling a given training set multiple

times, with replacement. Whichever Italian restaurant receives the most votes will then

be the restaurant that will be chosen if they select “yes” when asked if they want Italian

 71

or not. That is, if there are 5 votes for Famiglia Italia and 1 vote for Steve’s Pizzeria,

then the choice at that node will be Famiglia Italia.

Bagging is beneficial because it does not need multiple training sets to come to a

strong conclusion. Bagging only requires one training set, and it samples this training set

multiple times. Bagging tends to produce a model that is better than the models that are

produced with a single training set. Bagging also rarely, if ever, produces a model that is

significantly worse than what a single training set produces. We can also apply bagging

to numerical data, with one slight difference. When applying bagging to numerical data,

we average the outcomes, as opposed to voting on the outcomes. A benefit of bagging is

that it uses the instability of a learning scheme to help make a stronger learning scheme.

If by adding or removing an instance we run the risk of drastically changing the outcome,

then we say that the learning scheme has a high cost. Bagging is a perfect candidate for

learning schemes that have a high cost, or that are cost-sensitive.

The boosting algorithm starts by taking all of the instances in the training data and

giving each one equal weight. It then uses the learning scheme to create a classifier for

the training set, where it then reweights each instances based off the classifier so that

each instance that is correctly classified sees a decrease in weight, and the instances that

are incorrectly classified see an increase in weight. To create a prediction, the boosting

algorithm uses a weighted vote to combine the output of each classifier. Those classifiers

that have a relatively low error are given a higher weight, while those with a relatively

high error are given a lower weight. Therefore, boosting is a sequential method.

Boosting has some similarities and some differences with bagging. Both methods

use voting (or averaging in the case of numerical data) to combine learning models, and

 72

they both only combine models that are of the same type. However, a major difference is

that boosting is iterative. As we described earlier, bagging creates new, independent

models each time. Boosting, on the other hand, creates new models based on the

performance of the previous model. Another major difference between boosting and

bagging is that bagging gives everything an equal weight, whereas boosting weights a

model based on its performance.

Section 5.6 Voting and Averaging

In this section, we will give an introduction on how to combine single learners to

obtain better predictions. The two combination methods that are discussed are the

averaging method and the voting method.

Suppose we obtain some base learners ℎ1, … , ℎ𝑇 from one training data set and

suppose that the output for the learner ℎ𝑖 of the instance x is ℎ𝑖(𝒙). For simple averaging

we combined ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝑇(𝑥) by defining

𝐻(𝒙) =
1

𝑇
∑ℎ𝑖(𝒙)

𝑇

𝑖=1

.

Simple averaging is often used in application due to its simplicity.

Weighted averaging gives certain learners more importance when averaging.

That is, it weighs certain learners. We say that the weighted average is

𝐺(𝒙) = ∑𝑤𝑖ℎ𝑖

𝑇

𝑖=1

(𝑥),

where 𝑤𝑖 is the weight, or importance, assigned to ℎ𝑖. We also limit our weights by

𝑤𝑖 ≥ 0, ∑𝑤𝑖

𝑇

𝑖=1

= 1.

 73

We can see that simple averaging is just a special case of weighted averaging where all

the weights are equal. In practice weighted averaging may not always perform better

than simple averaging.

Voting uses base learners’ votes to determine the final output. For voting, we are

going to assume that we have a set of T individual classifiers {ℎ1, … , ℎ𝑇}. What we are

trying to do is to combine all of our individual classifiers into a set of possible class

labels {𝑐1, … , 𝑐𝑙}, where there are l possible labels. We also assume that the outputs ℎ𝑖

are given as an l-dimensional label vector

𝑉 = [ℎ𝑖
1(𝑥), … , ℎ𝑖

𝑙(𝑥)]
𝑇
.

Here each element ℎ𝑖
𝑗
 is the output of ℎ𝑖 for the class label 𝑐𝑗.

The most popular voting method is known as majority voting. For example,

assume that there are 10 classifiers working to identify a given bird call using arbitrary

into one of the following species: Whip-poor-will; Bobwhite; Common Raven; Barred

Owl; and Eastern Kingbird. Assume that for the first call, call it call A, 2 classifiers

classify it as a Whip-poor-will, 2 classify it as a Common Raven, none classify it as a

Barred Owl, 6 classify it as an Eastern Kingbird, and none classify it as a Bobwhite.

Since the Eastern Kingbird received more than 50% of the votes, then the call is

classified as the Eastern Kingbird. However, if no class (or for this example, no species)

gets more than 50% of the votes, then the bird will be classified as the rejection option.

Assume the rejection option is the Common Raven. Assume that for the second call, call

it call B, 2 classifiers classify it as a Whip-poor-will, 2 classify it as a Common Raven, 2

classify it as a Barred Owl, 4 classify it as an Eastern Kingbird, and none classify it as a

 74

Bobwhite. Notice that none of the classes obtained 5 votes (or 50% of the votes). That

means that call A will be classified as the rejection option, the Common Raven.

Another method of voting that is similar to majority voting is known as plurality

voting. Plurality voting selects the class that gets the most votes, regardless if it obtains

more than 50% of the votes or not. Consider the example given in the previous

paragraph that had 10 classifiers that attempted to classify call B. Again assume that 2

classifiers voted for the Whip-poor-will, 2 classifiers voted for the Common Raven, 2

classifiers voted for the Barred Owl, 4 classifiers voted for the Eastern Kingbird, and

none classified it as the Bobwhite. Since the Eastern Kingbird obtained more votes than

any other class, then the bird call will be classified as an Eastern Kingbird.

Although the methods of averaging and voting are used the most often, there are

other ensemble methods such as stacking or dynamic classifier selection [19].

Section 5.7 Credibility

In order to know the performance of a classifier, we can look at its error rate. We

say that if the classifier predicts the correct class, then it is a success, and if it does not,

then it is an error. We say that the error rate is the total number of errors divided by the

total number of instances. The error rate of a training set is generally not a good indicator

of future performance. This is due to the fact that the classifier is learned from the

training data, thus leading the results to be optimistic.

The solution comes from testing the classifier on another, independent set called

the test set. An important aspect of the test set is that it cannot be used in any way to

create the classifier. This can be done by creating a learning scheme that has two

separate stages: the first stage creates a structure while the second stage optimizes the

 75

parameters involved. Again, two different data sets may be needed in the two different

stages. This creates the need for a total of three data sets in the process: a training set, a

validation set, and a test set. The training set is used to create the classifiers, the

validation set is used to optimize the classifiers, and the test set is used to find the error

rate of the classifiers. These three sets must be pairwise disjoint.

If we have a large data set, there is no problem in creating three sets that are

pairwise disjoint. In general, larger training sets provide better classifiers. However,

there is a limit. If the training set becomes too large, then the returns begin to diminish.

The larger issue comes about when there is not much data from which to pull sets. Since

we need to use some data to test the data, we start by pulling out what we need for a test

set, and we can leave the remainder for training and validating (if need be). The issue is

that in order to determine a good error estimate, we need a fairly large testing set.

However, the larger our testing set is, the smaller our training set (and validating set, if

required) must be.

Another process for smaller sets is known as stratification. We consider this

process when we have a smaller set with which to work. In general, we like to reserve

one-third of the data for testing, while reserving the rest for the training set. In order to

make sure that every class is represented in both the training set and the test set, we use a

procedure known as stratification. Stratification is the process of performing a random

sampling, but ensuring that each class is represented in the random sample. For example,

if a population was 80% A and 20% B, then a sample would be stratified of the sample

also had 80% A and 20% B.

 76

Another way to ensure that every class is represented is by repeating the process

numerous times with different random samples. Other options include making the

training set the test set, and making the test set the training set.

The last method that will be discussed that is used for smaller samples is known

as cross-validation. To begin cross-validation, we start by deciding a number of

partitions into which the sample will be divided. For example, assume we decide to

divide the sample into five partitions. We then use four partitions for training, and one

partition for testing. We then select a different partition for testing and repeat the

process. We do this so that every partition is used exactly once for testing. We find the

error estimate of each partition, and we then average the five error estimates giving us an

overall error estimate. This is known as fivefold cross-validation, and, if it is stratified, it

is known as stratified fivefold cross-validation. The standard number of partitions used

to find the error rate is ten, thus using tenfold cross-validation.

Tests have shown that ten partitions yields the best results and that stratification

slightly improves the results. To improve upon these results, it is common practice to

repeat the tenfold cross-validation ten times, finding the mean of the results. That is,

performing ten tenfold cross-validations and then finding their average.

Another method that is used is known as the leave-one-out method. It is

essentially an n-fold cross-validation, where one instance is removed and then the

classifiers are determined. Then the classifier is tested on the removed instance. This is

repeated for each instance in the sample set. The error estimate is determined by

assigning a value of 0 or 1 for a failure or a success, respectively, for each run of the n-

fold cross-validation. Then the 0s and 1s are averaged to find the overall error estimate.

 77

This procedure is used for two primary reasons. The first of these reasons is that the

largest amount of data possible is used to train the classifiers, thus presumably increasing

the accuracy of the classifier. The second of these reasons is that the procedure is

deterministic. That is, there is no random sampling involved in this procedure.

Drawbacks to this method are that it is extremely taxing, computationally speaking.

However, for small data sets, this is not a problem. Another drawback is that it cannot be

stratified. Since the training set has 𝑛 − 1 instances and the test set only has 1 instance,

then it guarantees that the test set will not contain every possible classification.

The last method discussed here is the bootstrap method. The bootstrap method

involves sampling the data set with replacement to make a training set. We sample a data

set with n instances n times. We then place these samples into a set, call it T. This makes

the training set have n instances, possibly with some repeated elements. Let the original

data set be O, then the test set is 𝐸 = 𝑇\𝑂. We then repeat this numerous times and

average the results to find the overall error estimate.

 78

Chapter 6 Results, Conclusion, and Discussion

In Chapter 6 we will discuss the conclusions that we have reached based off our

findings. In Section 6.1 we will discuss the methods of data representation, the Macaulay

Library [10], and the program Audacity [12]. Section 6.2 discusses feature extraction

using wavelets. Section 6.3 discusses how we classified species, while Section 6.4

discusses how we classified individuals of a given species. Section 6.5 discusses the

overall results and conclusions of the study.

Section 6.1 Data Representation, Macaulay Library, and Audacity

In this section we refer to Audacity [12], which is a free audio editing software.

We also refer to the Macaulay Library [10] that is run by Cornell University. To obtain

recordings for our study, we began by searching the Macaulay Library that is run and

maintained at the Cornell Lab of Ornithology in Ithaca, New York. This library is an

online source that contains thousands of different bird calls that have been obtained over

the past few decades. For our study, we considered five different species of birds: the

Eastern Whip-poor-will (Antrostomus vociferus); the Northern Bobwhite (Colinus

virginianus); the Barred Owl (Strix varia); the Eastern Kingbird (Tyrannus tyrannus);

and the Common Raven (Corvus corax). The recordings of the Eastern Whip-poor-will

were recorded by M. Robbins and M. Medler, the recordings of the Northern Bobwhite

were recorded by M. Robbins, the recordings of the Barred Owl were recorded by N.

Taylor, S. O’Brien, and B. McGuire, the recordings of the Eastern Kingbird were

recorded by M. Robbins, and the recordings of the Common Raven were recorded by M.

Andersen, G. Vyn, and B. McGuire (view Table 6.1.1 for the geographic information).

 79

M. Robbins, M. Medler, and G. Vyn used the NAGRA ARES-BB+ recorder, M.

Andersen used the SOUND DEVICES 744T, B. McGuire used the SOUND DEVICES

702, N. Taylor used the MARANTZ PMD 661 recorder, S. O’Brien used the FOSTEX

FR-2 recorder, and M. Robbins also used the SONY TC-D5 PRO II recorder. In Table

6.1.1 the column labeled “Individuals” refers to the identification number given to the

recording by the Macaulay Library. These calls were recorded in both stereo and mono,

but they were all converted to mono so that Maple could handle the signals. All

recordings were sent as a WAV file. That is, all files were digital signals. There were

four birds of each species, giving us 20 birds in total. These birds were selected because

each individual of each species was from the same general geographic area. This was to

avoid possible regional dialects that the birds may or may not have. These species were

selected so that each vocalization type was represented in the study. The bird recordings

were of birds that were in the same general geographic location. This is to ensure that the

vocalizations of each species were similar in nature. The Whip-poor-will recordings

come from the Kansas/Missouri area, the Northern Bobwhite recordings come from

Missouri, the Barred Owl recordings come from New York, the Eastern Kingbird

recordings come from Missouri, and the Common Raven recordings come from Alaska.

This study only separated birds on the species level, so subspecies were not accounted for

when selecting the recordings. In total, we used 400 “syllables” from the bird recordings.

(Here we use the term syllables to refer to a portion of a bird’s call in a similar manner

that we refer to syllables in human speech. For example: the Northern Bobwhite call

would be divided into two syllables (the “Bob” and the “white”), the Barred Owl call

would be one syllable (the “hoo”), etc.)

 80

Bird Name Individuals Location Recordings Syllables

Whip-poor-will

146826 Missouri 1 21

515817 Kansas 1 21

145359 Missouri 1 21

145378 Missouri 1 21

Northern

Bobwhite

147549 Missouri 1 12

516009 Missouri 1 20

145412 Missouri 1 20

146253 Missouri 1 20

Barred Owl

163907 New York 1 20

173578 New York 1 20

195738 New York 1 20

188896 New York 1 20

Eastern Kingbird

144953 Missouri 1 21

516001 Missouri 1 21

145382 Missouri 1 21

146239 Missouri 1 21

Common Raven

132161 Alaska 1 20

207177 Alaska 1 20

137574 Alaska 1 20

132203 Alaska 1 20

Table 6.1.1: The geographic information where the recordings took place

Our goal is to find classifiers or clusters that can separate birds into species using

only their calls. Our approach is summarized into three steps in Figure 6.1.1.

Preprocessing

Recording Denoise recording (optional) Segmentation

Data Transformation and Feature Extraction

Wavelet/Fourier Transformation Extracting Max Energy, Position, and Spread

Classifiers or Clusters

Random Tree Random Forest AdaBoost

Figure 6.1.1: An overview of the process used

 81

The preprocessing step involved recording the sounds, applying noise reduction,

and the segmentation process. Since the Macaulay Library provided the recordings, it is

unclear as to how the recordings were obtained. Note that if the recording and

segmentation steps are done properly, then noise reduction may not be necessary. The

recordings here were obtained via the Macaulay Library at Cornell University. We

selected the audio recordings that contained minimum noise (i.e. the recordings where the

bird that was being considered was the primary sound in the recording), which allow us

to save work on noise reduction and focus on the second and third steps. These files were

obtained in a WAV format to guarantee that as much information as possible was

obtained. That is, the files were sent in a WAV format since the WAV format saves the

most data out of the given data types.

We then imported the information into Audacity, a software that edits sounds.

Using Audacity we were then able to segment each bird’s calls into syllables. To begin,

we imported the audio file into Audacity. We then were given the file in a sound wave

(see Figure 6.1.2). Here we were presented with a number of options with which to

work. With Audacity we were able to pause, play, stop, rewind, fast forward, and record

new sounds. We highlight an area of the audio file that we want to work with and we cut

and paste it into a new Audacity file. We then export the file with a new name.

When we started working with the recordings, it became apparent that some of the

recordings were in mono, while the rest were in stereo. Using one of the functions of

Audacity we were able to convert the stereo recordings into a mono recording. Not only

did this help keep our data consistent, but the Maple [11] program that we used required

that the sound files be in mono. Audacity allows users to select a part of the recording

 82

they need (see Figures 6.1.3 and 6.1.4). Figures 6.1.3 and 6.1.4 are from a Barred Owl.

The x axis represents time, whereas the y axis represents pressure, or the volume. We use

this feature to select the syllables, which are generally only a small part of the whole

recording. We then saved the files. Another feature of Audacity allows us to decide at

what frequency we would like to save our data. That is, we are able to decide how many

pieces of information we obtain per second. We stored our data at the highest that

Audacity allowed us, 44.1 kHz. That is, 44,100 pieces of information per second.

Figure 6.1.2: Roughly 7 minutes of data

Figure 6.1.3: Roughly 0.80 seconds of data

We then saved each syllable individually. We then linked the location of the

syllable into a Maple program. We used Maple for the data transformation and feature

extraction. In our work, we used the Wavelet Packet Decomposition (WPD) algorithm.

We first needed to make sure that our data set had the correct number of data points.

Since we are going to use the 4th level of the WPD tree, each of our recordings need to

have a number of sample points as a multiple of 16 (that is, 2^4). To do this we

truncated the data to the nearest multiple of 16. Each audio file has thousands, if not tens

 83

of thousands of data points, so truncating at most 15 was not damaging to the study

overall. During this step we also normalize our data. We use the Daubechies wavelet

filter of length 6 (D6) (discussed in Chapter 5) to decompose the sound waves. Thus we

extract the maximum energy, the position, and the spread. These will be further

discussed in Section 6.2.

During the classifier step we consider Random Tree and Random Forest. See

Section 5.4 for more details.

Section 6.2 Wavelet Decomposition and Feature Extractions

In this section we refer to Selin, Turunen, and Tanttu [16] to find what features

are useful. The three features that we used were the maximum energy, the spread, and

the position.

We begin by defining the bins. In Figure 6.2.1, we apply the wavelet

transformation four times (refer to [9]). Each time we have a sum (S) vector and a

difference (D) vector. In Figure 6.2.1 the bin on the bottom left will be referred to as bin

1, the bin directly to its right will be bin 2, and we continue this process until we reach

the last bin, which in this example is bin 16.

Original

S D

S D S D

S D S D S D S D

S D S D S D S D S D S D S D S D

Figure 6.2.1: The bin example

 84

The maximum energy depends on the bin energy. We define the bin energy with

wavelet coefficients c of bin r as

𝐸𝐵(𝑟) = ∑ 𝑐2(𝑛, 𝑟)

𝑛𝑐

𝑛=1

, 𝑟 = 2, 3, … , 16,

where 𝑛𝑐 is the number of wavelet coefficients in each bin [16]. Note that we omit the

bin 𝑟 = 1. According to Selin, Turunen, and Tanttu [16], this bin contains the noise in

the recording. Thus we do not use it in our study. We then define the average energy

[16] of each bin r as

𝐸𝐵̃(𝑟) =
𝐸𝐵(𝑟)

𝑛𝑐
.

Hence the maximum energy [16] is defined as

𝐸𝑀 = max
2≤𝑟≤16

(𝐸𝐵̃(𝑟)) .

This value finds the maximum energy produced by the sound.

Consider, for example, the vector 𝑉 = [1, 2, 3, … , 64]. After normalizing and

running the WPD four times, we see that our first two bins are

𝑏𝑖𝑛1 = [0.8277909461, 1.778373759, 3.184784592, 2.334050703]

𝑏𝑖𝑛2 = [0.009657704743, 0.5267099362,−0.9221896581, 0.2652781042]

Note that these values have been rounded in order to fit. In all, we have 16 bins with

varying values. After four iterations of the WPD, our 𝑛𝑐 is 4. We only need to count the

number of values in each bin to determine this number. The average bin energy of bins 1

and 2, respectively, are 4.85962416488393 and 0.299580716538431.

The next value found is known as the position. The position, P, refers the bin r in

which the maximum energy was found [16]. According to our calculations, most

 85

instances have a maximum energy in the second bin. Thus we removed this value, given

it would not provide any further insight into the problem.

Finally we calculated the spread. Let q be the number of the sample, r be the bin

number, 𝑇ℎ1(𝑟) = 𝐸̃𝐵(𝑟)/6 be the threshold value, and J be the set of index pairs (𝑞, 𝑟)

such that 𝑐2(𝑞, 𝑟) > 𝑇ℎ1(𝑟). Also, let #𝐽 be the cardinality of the set J. Then we define

the spread [16] to be

𝑆 =
1

#𝐽
∑ 𝑐2(𝑞, 𝑟)

(𝑞,𝑟)∈𝐽

.

Using the same example, we can calculate the spread to be 0.152948311471895.

We wrote a program using the Maple software in order to find the features

mentioned above. After obtaining these features for each call of each bird, we then

organized them into Excel files and saved them in the CSV format. In Table 6.2.1 we

have an example of the Common Raven data. Each row is an instance, or a syllable. The

first column is a name that is used solely to keep track of the individuals. The second

column is the maximum energy. The third column is the position. The fourth column is

the spread. The fifth column is the common name of the bird.

 86

File Name Maximum Energy Position Spread Bird Name

Common Raven a 1 0.179094439 2 0.127335954 Common Raven

Common Raven a 2 0.187008524 2 0.142694617 Common Raven

Common Raven a 3 0.204325899 2 0.144938941 Common Raven

Common Raven a 4 0.157743768 2 0.098308357 Common Raven

Common Raven a 5 0.181794241 2 0.116743861 Common Raven

Common Raven a 6 0.120920788 2 0.074890981 Common Raven

Common Raven a 7 0.251314322 2 0.171162873 Common Raven

Common Raven a 8 0.255887332 2 0.14791002 Common Raven

Common Raven a 9 0.108557857 2 0.076480965 Common Raven

Common Raven a 10 0.24270076 2 0.134252454 Common Raven

Common Raven a 11 0.254711586 2 0.151094424 Common Raven

Common Raven a 12 0.130208515 2 0.108633567 Common Raven

Common Raven a 13 0.203880274 2 0.135682038 Common Raven

Common Raven a 14 0.212800543 2 0.132853468 Common Raven

Common Raven a 15 0.141669149 2 0.136983284 Common Raven

Table 6.2.1: Example of the Common Raven Data

Once the data had been collected from the audio files and put into spread sheets,

we then were able to use machine learning software known as WEKA (discussed in

Section 5.1) in order to determine classifiers and clusters.

Section 6.3 Classifying Species and Results with Random Forest Classifier

In this section and the next section we use the software WEKA (referenced in

Chapter 5). Prior to running the test, we divided the spreadsheet into two different

spreadsheets. In one spreadsheet we randomly put 133 instances (roughly one-third of

the instances) to use for a training set. We placed the remaining 267 instances into

another spreadsheet for testing purposes. We imported the training set in order to create a

classifier, and then we imported the test set to see how proficiently the classifier could

classify the data set.

 87

The Random Forest classifier correctly classified 182 instances and incorrectly

classified 85 instances. This means that the Random Forest classifier was correct roughly

68.15% of the time. Of the 48 Bobwhite syllables in the test set, 20 were classified as

Bobwhites, 0 as Barred Owls, 5 as Common Ravens, 8 as Eastern Kingbirds, and 15 as

Whip-poor-wills. Of the 53 Barred Owl syllables in the test set, 48 were classified as

Barred Owls and 5 were classified as Whip-poor-wills. Of the 53 Common Raven

syllables in the test set, 1 was classified as Barred Owl, 40 were classified as Common

Ravens, 1 was classified as an Eastern Kingbird, and 11 were classified as Whip-poor-

wills. Of the 56 Eastern Kingbird syllables in the test set, 5 were classified as Bobwhites,

0 were classified as Barred Owls, 2 were classified as Common Ravens, 38 were

classified as Eastern Kingbirds, and 11 were classified as Whip-poor-wills. Of the 57

Whip-poor-will syllables in the test set, 4 were classified as Bobwhites, 8 were classified

as Barred Owls, 3 were classified as Common Ravens, 6 were classified as Eastern

Kingbirds, and 36 were classified as Whip-poor-wills. Figure 6.3.1 shows a confusion

matrix that generalizes this data. The matrix presents the data such that the columns are

what the birds were classified as and the rows refer to what the bird actually is. a refers

to Bobwhites, b refers to Barred Owls, c refers to Common Ravens, d refers to Eastern

Kingbirds, and e refers to Whip-poor-wills.

𝑎 𝑏 𝑐 𝑑 𝑒
𝑎 20 0 5 8 15
𝑏 0 48 0 0 5
𝑐 0 1 40 1 11
𝑑 5 0 2 38 11
𝑒 4 8 3 6 36

Figure 6.3.1: A confusion matrix for the Random Forest

 88

The Random Tree classifier performed almost as well as the Random Forest

classifier did. The Random Tree classifier correctly classified 173 instances and

incorrectly classified 94 instances. That means the Random Tree classifier correctly

identified one of the syllables roughly 64.79% of the time. That is, Having 48 Bobwhite

syllables it classified 22 as Bobwhites, 0 as Barred Owls, 5 as Common Ravens, 9 as

Eastern Kingbirds, and 12 as Whip-poor-wills. Out of 53 Barred Owl syllables it

classified 0 as Bobwhites, Common Ravens, or Eastern Kingbirds, 46 as Barred Owls,

and 7 as Whip-poor-wills. Of the 53 Common Raven syllables it classified 0 as

Bobwhites or Barred Owls, 36 as Common Ravens, 3 as Eastern Kingbirds, and 14 as

Whip-poor-wills. Out of the 56 Eastern Kingbird syllables 5 were classified as

Bobwhites, 0 were classified as Common Ravens, 2 were classified as Barred Owls, 38

were classified as Eastern Kingbirds, and 11 were classified as Whip-poor-wills. Out of

the 57 Whip-poor-will syllables, 11 were classified as Bobwhites, 5 were classified as

Barred Owls, 4 were classified as Common Ravens, 6 were classified as Eastern

Kingbirds, and 31 were classified as Whip-poor-wills. Figure 6.3.2 is a confusion matrix

for the Random Tree classifier, similar to that in Figure 6.3.1. The columns are what the

birds were classified as and the rows refer to what the bird actually is. The labels are the

same as those in Figure 6.3.1.

𝑎 𝑏 𝑐 𝑑 𝑒
𝑎 22 0 5 9 12
𝑏 0 46 0 0 7
𝑐 0 0 36 3 14
𝑑 5 0 2 38 11
𝑒 11 5 4 6 31

Figure 6.3.2: A confusion matrix for the Random Tree classifier

 89

We also performed a cross-validation on the entire data set (refer to Section 5.7).

With the cross-validation we ran both the Random Forest and the Random Tree

classifiers. We tested these with 10 fold, 20 fold, and 40 fold. The percentage that was

correctly classified by the cross-validation with Random Tree for the 10 fold, 20 fold, and

40 fold were 70.25% for the 10 fold and the 20 fold, and was 71.25% for the 40 fold.

However, the confusion matrix for each was not the same. The confusion matrix for 10

fold, 20 fold, and 40 fold can be seen in Figures 6.3.3, 6.3.4, and 6.3.5, respectively.

These Figures use the same labels as Figure 6.3.1 and 6.3.2.

𝑎 𝑏 𝑐 𝑑 𝑒
𝑎 40 0 7 10 15
𝑏 0 73 2 0 5
𝑐 5 0 62 3 10
𝑑 5 0 4 64 11
𝑒 19 6 8 9 42

Figure 6.3.3: Random Tree confusion matrix for 10-fold cross-validation

𝑎 𝑏 𝑐 𝑑 𝑒
𝑎 40 0 7 6 19
𝑏 0 72 2 0 6
𝑐 8 0 58 2 12
𝑑 4 0 4 65 11
𝑒 15 7 7 9 46

Figure 6.3.4: Random Tree confusion matrix for 20-fold cross-validation

𝑎 𝑏 𝑐 𝑑 𝑒
𝑎 40 0 7 7 18
𝑏 0 72 2 0 6
𝑐 6 0 60 3 11
𝑑 4 0 4 65 11
𝑒 14 5 8 9 48

Figure 6.3.5: Random Tree confusion matrix for 40-fold cross-validation

 90

We also performed a cross-validation with Random Forest for 10 fold, 20 fold,

and 40 fold. It should be noted that these computing times were notably longer than the

computing times for any other method (these took anywhere from a few seconds to

around 30 seconds, while the others were relatively instant). The percentage of instances

that were correctly classified using cross-validation for the Random Forest classifier for

10 fold, 20 fold, and 40 fold were, respectively, 72.50%, 74.25%, and 73%. The

confusion matrices can be seen in Figures 6.3.6, 6.3.7, and 6.3.8.

Notice that in these confusion matrices, there are relatively large values down the

main diagonal, and relatively small numbers elsewhere. That means that the classifiers

correctly classified the syllable more times than not. When the Bobwhite was

misclassified, it was generally misclassified as a Whip-poor-will. Likewise, when the

Whip-poor-will was misclassified, it was generally misclassified as a Bobwhite. These

error makes sense, when the syllables of the calls are considered. That is, the “bob” of

the Bobwhite’s call is quite similar to the “poor” of the Whip-poor-will’s call.

𝑎 𝑏 𝑐 𝑑 𝑒
𝑎 41 0 8 8 15
𝑏 0 72 1 0 7
𝑐 3 0 68 32 7
𝑑 7 0 4 65 8
𝑒 14 8 8 10 44

Figure 6.3.6: Random Forest confusion matrix for 10-fold cross-validation

𝑎 𝑏 𝑐 𝑑 𝑒
𝑎 41 0 8 6 17
𝑏 0 73 0 0 7
𝑐 2 0 67 3 8
𝑑 5 0 4 66 9
𝑒 11 7 7 9 50

 91

Figure 6.3.7: Random Forest confusion matrix for 20-fold cross-validation

𝑎 𝑏 𝑐 𝑑 𝑒
𝑎 40 0 7 6 19
𝑏 0 72 1 0 7
𝑐 3 0 65 3 9
𝑑 5 0 4 66 9
𝑒 13 6 8 8 49

Figure 6.3.8: Random Forest confusion matrix, 40-fold cross-validation

Section 6.4 Classifying Individuals and Results with Random Forest

Classifier

We also tested to see if using Random Tree, Random Forest, and cross-validation

we could classify individuals of a given species (view Table 6.4.1), as opposed to in

Section 6.3 where we classified the species. This time, instead of manually splitting the

instances into training and testing sets, we used a function in WEKA known as

percentage split. When using percentage split, the user decides what percentage will be

used to train the classifier, and the remainder is used for testing. For classifying

individuals, we will be using 67% of the data to train, and the remaining 33% to test.

These percentages are used for every species. In general, we found that Random Forest

performed as well, if not better than Random Tree, so only the results of the Random

Forest classifier are discussed in here. The results for Random Tree, Random Forest, and

percentage split are presented in Table 6.4.1.

Next we tested the Random Forest classifier on each species. For the Barred Owl,

the classifier correctly classified 69.23% of the instances in the testing set, the same as

the Random Tree classifier. For the Bobwhite, the classifier correctly classified 47.83%

of the instances, the same as the Random Tree classifier. For the Common Raven, the

 92

classifier correctly classified 53.85% of the instances. For the Eastern Kingbird, the

classifier correctly classified 51.85% of the instances in the training set. For the Whip-

poor-will, the classifier correctly classified 51.85% of the instances.

We then tested cross-validation at 10-fold and 20-fold for Random Forest. For

the Barred Owl, the Random Forest with cross-validation correctly classified 74.68% at

10-fold, and 74.68% at 20-fold. For the Bobwhite, 52.11% of the instances were

correctly classified at 10-fold, and 46.48% of the instances were correctly classified at

20-fold. For the Common Raven, 56.96% of the instances were classified correctly at 10-

fold, and 58.22% of the instances were classified correctly at 20-fold. For the Eastern

Kingbird, the classifier correctly classified 61.45% of the instances at 10-fold, and

56.63% of the instances at 20-fold. For the Whip-poor-will, the classifier correctly

classified 57.83% of the instances at 10-fold, and 54.22% of the instances at 20-fold.

 Validation

Barred

Owl Bobwhite

Common

Raven

Eastern

Kingbird

Whip-

Poor-Will

Classifier

Random Tree

10-fold 73.42% 42.25% 55.70% 54.22% 55.42%

20-fold 73.42% 40.85% 55.70% 49.40% 53.01%

Percentage

Split 69.23% 47.83% 50% 48.15% 55.56%

Classifier

Random Forest

10-fold 74.68% 52.11% 56.96% 61.45% 57.83%

20-fold 74.68% 46.48% 58.23% 56.63% 54.22%

Percentage

Split 69.23% 47.83% 53.85% 51.85% 51.85%

Table 6.4.1: The percentage that each classifier classified correctly

Section 6.5 Discussions and Conclusions

Out of all the methods attempted to discern one species from another, the average

amount of instances that were classified correctly was 70.24%, with a minimum of

 93

64.79% and a maximum of 74.25%. Selin, Turunen, and Tanttu [16] found that the SOM

network (self-organizing map, a classifying function) classified 78% of their data

correctly, while the MLP (multilayer perceptron, a classifying function), classified 96%

of the test sounds correctly. The main difference between using the SOM network or the

MLP and our study is that our study focused on using trees, while Selin, Turunen, and

Tanttu used functions. Selin, Turunen, and Tanttu used four features (the maximum

energy, the position, the spread, and the width), and our study only used two features.

When considering classifying individuals, we had varied results. The results for

the Barred Owl were relatively similar to our results for classifying species. However,

the results for the remainder of the species was not as good. There are various

explanations for this. To begin, some species may have several different types of calls

that seem similar to us, but in fact are different calls. Since they seem similar, these

different calls may have been incorrectly used instead of using the same calls. We know

this issue is not an isolated incident, seeing as Selin, Turunen, and Tanttu encountered a

similar issue with the Graylag goose.

Our method has a similar disadvantage to the method used by Selin, Turunen, and

Tanttu. If we were to add a new species to our set, then we would need to retrain the

classifiers to account for the new species.

Based off Selin, Turunen, and Tanttu’s results and conclusions, we say that the

proposed method of classification works well for classifying species. When compared to

Selin, Turunen, and Tanttu, we see that reducing the number of features from four to two

reduces the accuracy, but may save on the computational power needed to find and use

 94

those features. The results in the study are not perfectly accurate, but they are better than

making a random selection.

This work can be applied to bird surveys, ecology, and conservation biology.

Being able to tell what bird species are present in a given ecosystem can tell us about the

extinction rates and the health of the ecosystem.

In the future, we could work to see if adding more parameters helped with the

classification of species and individuals or not. We could also work to see if certain

features work better for classifying species over individuals, or vice versa. Another

future study could work to see if different filters or different decomposition levels help in

the classification process. One final thing that future studies could find is a more

effective way of utilizing clusters in these kinds of projects.

 95

Bibliography

[1] Breiman, Leo. "Random forests." Machine learning 45.1 (2001): 5-32.

[2] Brown, J. W., & Churchill, R. V. (2009). Complex Variables and Applications.

Boston: McGraw-Hill Higher Education.

[3] Charif, R. A. (2010). Raven Pro 1.4 User's Manual. Ithaca, NY: Cornell Lab of

Ornithology.

[4] Cornell University. (n.d.). How to ID Birds. Retrieved from Cornell Lab of

Ornithology: http://www.birds.cornell.edu/AllAboutBirds/birding123/identify/

[5] Daubechies, Ingrid. "Orthonormal bases of compactly supported

wavelets." Communications on pure and applied mathematics 41.7 (1988): 909-996.

[6] Fleet, P. J. (2008). Discrete Wavelet Transforms. Hoboken, New Jersey: John Wiley

& Sons.

[7] Gonzalez, R. C., & Woods, R. E. (2008). Digital Image Processing. Upper Saddle

River, New Jersey: Pearson Prentice Hall.

[8] Hall, Mark, et al. "The WEKA data mining software: an update." ACM SIGKDD

explorations newsletter 11.1 (2009): 10-18.

[9] Learned, R. (1992). A Wavelet Packet Based Transient Signal Classification.

Cambridge, MA Master's Thesis: Massachusetts Institute of Technology.

[10] The Macaulay Library at the Cornell Lab of Ornithology, Ithaca, New York.

[11] Maple (2016). Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.

 96

 [12] Mazzoni, D., and R. Dannenberg. "Audacity [software]. Pittsburg." (2000).

[13] Oppenheim, A. V., & Schafer, R. W. (1975). Digital Signal Processing. Englewood

Cliffs, New Jersey: Prentice-Hall, Inc.

[14] Polikar, R. (2016, August 3). A Wavelet Tutorial: Second Edition. Retrieved from

University of Nevada, Reno:

https://www.cse.unr.edu/~bebis/CS474/Handouts/WaveletTutorial.pdf

[15] Quinlan, J. (1986). Induction of Decision Trees. machine Learning, 81-106.

[16] Selin, Arja, Jari Turunen, and Juha T. Tanttu. "Wavelets in recognition of bird

sounds." EURASIP Journal on Applied Signal Processing 2007.1 (2007): 141-141.

[17] Witten, I. H., & Frank, E. (2000). Data Mining: Practical Machine Learning Tools

and Techniques with Java Implementations. San Francisco, CA: Morgan Kaufmann

Publishers.

[18] Yeoman, B. (2013, April 08). What Do Birds Do For Us? Retrieved from The

National Audubon Society: http://www.audubon.org/news/what-do-birds-do-us

[19] Zhou, Zhi-Hua. Ensemble methods: foundations and algorithms. CRC press, 2012.

	Bibliography

