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ABSTRACT 

Identifying birds based off their calls is extremely useful in the realm of avian biology, 

especially ecology.  In this paper we consider the calls of the Whip-poor-will 

(Antrostomus vociferus), the Northern Bobwhite (Colinus virginianus), the Barred Owl 

(Strix varia), the Eastern Kingbird (Tyrannus tyrannus), and the Common Raven (Corvus 

corax), and ways of using automated classifiers to identify the bird species based off 

these calls.  In this study, we segment the bird calls into syllables.  Then we apply 

wavelet decomposition to decompose the recordings of the bird calls and extract certain 

parameters from the syllables.  All of the instances and the parameters were placed in an 

Excel file and uploaded into WEKA, a software for classification.  We used various 

classifiers to classify the different syllables, but Random Tree and Random Forest were 

the most successful in our study.  Both of the classifiers achieved over 70% accuracy 

when classifying species on the data set that contained the various species of birds.  This 

thesis shows that birds can be classified into their species based off recordings of their 

calls with relative accuracy. 
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Chapter 1 Introduction 

In the world of biology, knowing which species are present in a given ecosystem 

can be extremely beneficial, and in some cases crucial.  Knowing the bird species present 

in a given habitat can tell us many important things about the area.  First and foremost, 

knowing the bird species helps us track the extinction of birds.  According to the National 

Audubon Society [18], roughly 27,000 plant and animal species go extinct each year.  For 

many of these species, humans are the main factor that drive them to extinction.  

Knowing how many species are present in an ecosystem also tells us about the function 

of the system.  Birds are also “winged sentinels” [18, para 34] of a sort.  That is, birds are 

bioindicators in the ecosystem.  This study will attempt to identify bird species based off 

their calls.  This study will attempt to identify individual birds based off their calls, also.   

However, current methods of determining which birds are present have their 

limitations.  Current methods of surveying what birds are present involves biologists 

identifying the size, shape, posture, the field marks, the habitat, and flight patterns [4].  

The reason these may not be especially precise is because multiple birds may have 

similar field marks.  Also, many birds may live in the same ecosystem.   

There have been different mathematical methods used to classify bird sounds.  

Selin, Turunen, and Tanttu [16] used algorithms to classify bird species.  The general 

approach used can be seen in Figure 1.1.1.   

   

Figure 1.1.1: General method. 

To begin we took the sound files and segmented them into different files and 

stored them.  We then transformed the data and extracted various features from the 

Segmentation Feature Extraction Classification 



  2 

 

 

different sound files.  We then stored the features of each sound file in an Excel 

spreadsheet and uploaded the spreadsheet into classifiers.  We used different classifiers to 

help us classify the different bird species.   

Traditional analysis utilizes Fourier transforms.  However, since the late 20th 

century a new field of mathematics, called wavelets, has been blossoming and may 

provide some assistance in that area.  Wavelet theory was discovered predominately by 

Ingrid Daubechies of Duke University, Stéphane Mallat of Ecole Polytechnique, and Jean 

Morlet of Centre International de Rencontres Mathématiques [6].   

Selin, Turunen, and Tanttu [16] use Wavelet Packet Decomposition to classify 

inharmonic and transient bird sounds efficiently.  Learned [9] also discusses the use of 

Wavelet Decomposition Packets to detect and classify the sounds generated by the 

snapping shrimp and sperm whale clicks. 

The aim of this project is to use wavelet theory in conjunction with modern 

computer technology to provide evidence that one may classify birds based off their calls.  

The birds used in the study are the Eastern Whip-poor-will (Antrostomus vociferus), the 

Northern Bobwhite (Colinus virginianus), the Barred Owl (Strix varia), the Eastern 

Kingbird (Tyrannus tyrannus), and the Common Raven (Corvus corax).  There were five 

of each species used, and their calls were provided by the Macaulay Library at the 

Cornell Lab of Ornithology [10].  These species were chosen because they represent a 

wide range of the various types of vocalizations that birds can produce. 

Since this work includes the analysis of digital recordings, a general introduction 

to the digital representation of sound will be provided in Chapter 2.  Wavelet theory relies 

heavily on the work of Joseph Fourier known as Fourier transforms and Fourier series.  
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Fourier analysis and spectrum analysis will be addressed in Chapter 3.  Also impulses, 

linear shift-invariant systems, convolution, the Sampling Theorem, aliasing, and how to 

use the sampled data will be covered in Chapter 3.  Fourier series are composed of 

complex numbers. For the reader unfamiliar with complex variables, there is also a short 

review of complex variables at the beginning of Chapter 3. 

Since this study primarily uses wavelet theory, wavelets will be covered in 

Chapter 4, including the definition of lowpass and highpass filters, the integral and 

discrete wavelet transform, orthogonal wavelet bases, and how to construct the 

Daubechies wavelet filters.   

The classification methods will be addressed in Chapter 5.  In order to fully 

appreciate these methods, an introduction to data mining and classifiers will be provided.  

The credibility of these classifiers will also be discussed.   

In Chapter 6 the methods and results will be discussed.  The methods involved 

include the preprocessing and segmentation, wavelet decomposition, texture extraction, 

and classification.  The results of the different classifiers, as well as the conclusion and 

any further discussion of the topic, will be the final topic covered.  The classifiers had 

varied results when trying to classify species.  Only a portion of the possible classifiers 

were used in the study.  The results had a minimum accuracy of 64.794% and a 

maximum of 74.25%.  When classifying the bird species, we found that Random Tree 

and Random Forest using cross validation were the most successful, which were more 

than 70% accurate.  When classifying four individuals per species, we conclude that our 

method can separate the four Barred Owl individuals into three groups, the Bobwhite 

individuals into one group, the Common Raven individuals into three groups, the Eastern 
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Kingbird individuals into four groups, and the Whip-poor-will individuals into three 

groups.  That is, when given four individuals of each species, the classifiers were able to 

find three Barred Owls, one Bobwhite, three Common Ravens, four Eastern Kingbirds, 

and three Whip-poor-wills.  It should be noted that because of the segmentation part of 

the process, there is only one bird call recognizable in each syllable.  Seeing as the 

process separated four out of the five bird species into at least three groups, the results, 

over all, are considered successful.  The results will be covered in full in Chapter 6.   
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Chapter 2 Digital Representation of Sound 

Sound is created by a vibrating object that sends waves through some elastic 

medium.  Normally this medium is either air or water.  Sound is recognized because it 

causes a change in pressure relative to the ambient pressure.  Since it creates a pressure, 

sound can be measured based on its pressure (in Pascals) or based on the wavelengths 

emitted from the vibrating object [3].  In this study, a focus will be given to the 

wavelengths associated with sound as opposed to the pressure.   

It should be noted that sound is a continuous signal, also called an analog signal 

(See Figure 2.1.1).  In order for a computer to process the sound, a digital representation 

of sound is required (See Figure 2.1.2).  That is, we need discrete points along the 

continuous signal.  “The digital representation … consists of a sequence of numeric 

values representing the amplitude of the original waveform at discrete, evenly spaced 

points in time” [3, p 319].   

 

Figure 2.1.1: A continuous representation of a sound wave 

-0.5

0

0.5

1

1.5

2

P
re
ss
u
re

Time



  6 

 

 

 

Figure 2.1.2: Discrete representation of Graph 2.1 

Digital signals may be obtained by sampling continuous signals.  A sample rate is 

how often a sample is taken from the signal.  For this study, a sampling rate of 44.1 kHz 

is used.  That means that there are 44,100 samples taken per second.  The accuracy of the 

digital representation of the sound wave depends on the number of samples taken from 

the wave.  In order to obtain a fairly accurate digital representation, we must have a 

sample rate greater than the Nyquist frequency in order to avoid aliasing, where aliasing 

is defined as “the appearance of phantom frequencies as an artifact of inadequate sample 

rate” [3, p 321].  According to the Cornell Lab of Ornithology, the Nyquist frequency is 

“the highest frequency that can be represented in a digitized signal without aliasing” [3, p 

321].  In other words, the Nyquist frequency is the threshold or critical limit that a 

frequency can be and still be represented as a digital signal without aliasing.  For 

instance, if a wave had a frequency of 10 Hz, then the sampling rate must be greater than 

20 discrete samples per second.  If, in this example, the sampling rate was, say, 5 discrete 

samples per second, then there would be aliasing, or “frequencies represented in it that 
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were not actually present in the original at all” [3, p 321].  A mathematical explanation of 

sampling and aliasing can be found in Section 3.8.   

In order to acquire a digital signal, the amplitude values also need to be quantized 

into discrete values.  The accuracy is dependent on the number of bits used in the binary 

representation of the data or its bit depth, or “the sample size or number of bits” [3, p 

323].  Similar to frequency, more bits in representation mean more discrete levels, which 

gives better accuracy.  If too few bits are used, noise, known as quantization noise, can 

occur [3, p 323].  Quantization noise is typically manifested in a low hiss.  By using an 

appropriate bit depth, we may avoid some if not all audible quantization noise.  In our 

study, each sample has a 32-bit depth.  

Having a digital representation of sound allows us to apply different discrete 

transformations (such as discrete Fourier transform or a wavelet transform) to the sound 

and extract features for classification.  We will use these features to classify birds based 

off these calls.  We will introduce Fourier transforms and wave transforms in the next 

chapter. 
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Chapter 3 Fourier Analysis and Spectrum Analysis 

Fourier and spectrum analysis are done in the complex plane.  Thus, we first 

briefly cover the complex numbers and the complex plane.  For a complete discussion on 

the complex numbers, please refer to [2].  We will then extend the idea of complex 

variables and discuss a certain type of series in the complex plane known as the Fourier 

series.  Afterwards we will discuss impulse, Fourier transform, convolution, the Fourier 

transform of sampled functions, the sampling theorem, and how we can reconstruct the 

original signal from the sampled data.  Gonzales and Wood provide more details on these 

ideas in their book [7].  At the end of this chapter a study of the windowed short-time 

Fourier transform is covered.   

Fourier analysis and spectrum analysis are crucial in the study of wavelets.  

Wavelet filters can be characterized in the Fourier domain.  In the next chapter, we will 

use the ideas of Chapter 3 to help build the theory of wavelets.   

Section 3.1 The Complex Numbers and Complex Plane 

In order to understand how wavelet theory and sound analysis work, we must 

have a decent understanding of how complex variables work.   

The complex numbers are defined as a set of coordinates in the complex plane.  

We say that a number is a complex number if it can be written as 

𝑧 = 𝑥 + 𝑖𝑦, 

where x and y are real numbers and 𝑖 = √−1.  We can add, subtract, multiply, and divide 

complex numbers in a similar manner to how we would with real numbers.  If we say that 

𝑧 = 𝑥 + 𝑖𝑦 and say that 𝑤 = 𝑎 + 𝑖𝑏, then the following properties hold 

𝑧 ± 𝑤 = (𝑥 ± 𝑎) + 𝑖(𝑦 ± 𝑏), 
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𝑧 ∙ 𝑤 = 𝑎𝑥 − 𝑏𝑦 + 𝑖(𝑥𝑏 + 𝑎𝑦). 

If 𝑧 = 𝑥 + 𝑖𝑦, then the conjugate is defined as 

𝑧̅ = 𝑥 − 𝑖𝑦. 

The idea of division is expressed by the multiplicative inverse.  We define the 

multiplicative inverse, denoted by 𝑧−1, as 

𝑧−1 =
1

𝑧
=

1

𝑥 + 𝑖𝑦
=

1

𝑥 + 𝑖𝑦
∙
𝑥 − 𝑖𝑦

𝑥 − 𝑖𝑦
=

𝑥 − 𝑖𝑦

𝑥2 + 𝑦2
. 

In general, we try to avoid leaving an i in the denominator of the expression, so we use 

the conjugate to rationalize the expression.  This will leave a real value in the 

denominator.  

Complex numbers can also be represented in exponential form.  The exponential 

form, or polar form, is a very useful tool in the world of complex variables.  To express a 

complex number 𝑧 = 𝑥 + 𝑖𝑦 in polar form, we should let 𝑥 = 𝑟𝑐𝑜𝑠(𝜃) and 𝑦 = 𝑟𝑠𝑖𝑛(𝜃).   

Then z becomes 

𝑧 = 𝑟(cos(𝜃) + 𝑖sin(𝜃)), 

where r is the distance from the origin to the point and θ is the angle from the positive 

real axis to the point.  Through Euler’s formula it can be shown that z becomes 

𝑧 = 𝑟𝑒𝑖𝜃. 

This identity is very useful throughout complex variables, especially in Fourier series.  

An important quality about complex variables is that the rules of exponents used for real-

valued numbers transfer quite seamlessly to complex-valued numbers.  That is 

𝑒𝑖𝜃1𝑒𝑖𝜃2 = 𝑒𝑖(𝜃1+𝜃2). 

Using this idea, it can be seen that 
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𝑧𝑛 = (𝑟𝑒𝑖𝜃)
𝑛

= 𝑟𝑛𝑒𝑖𝑛𝜃, 

where n is an integer.   

The general rules for differential calculus still apply for complex variables.  

Differentiation leads to the idea of integration.  We will use the ideas of differentiation to 

help define the idea of integration.  To begin, let 𝑤(𝑡) be a complex-valued function 

consisting of the two real valued functions 𝑢(𝑡) and 𝑣(𝑡) where 𝑤(𝑡) = 𝑢(𝑡) + 𝑖𝑣(𝑡).  

Then the definite integral over 𝑡 ∈ [𝑎, 𝑏] of 𝑤(𝑡) is  

∫ 𝑤(𝑡)𝑑𝑡
𝑏

𝑎

= ∫ 𝑢(𝑡)𝑑𝑡
𝑏

𝑎

+ 𝑖 ∫ 𝑣(𝑡)𝑑𝑡
𝑏

𝑎

, 

assuming that ∫ 𝑢(𝑡)𝑑𝑡
𝑏

𝑎
 and ∫ 𝑣(𝑡)𝑑𝑡

𝑏

𝑎
 exist. 

Major properties of integration transfer over quite smoothly to complex functions.  

A more in-depth discussion of complex variables can be found in [2].  These ideas help 

with the manipulation of Fourier series, which are discussed in the following section.   

Section 3.2 Fourier Series 

The principle idea behind Fourier series is that any function of any continuous 

variable t that is periodic and has a period T can be written as the sum of cosines and 

sines.  More precisely, the Fourier series of a function 𝑓(𝑡) with period T is defined as 

𝐹(𝑡) = ∑ 𝑐𝑛𝑒
𝑖2𝜋𝑛

𝑇
𝑡

∞

𝑛=−∞

, 

where 

𝑐𝑛 = ∫ 𝑓(𝑡)𝑒−𝑖2𝜋𝑛/𝑇𝑑𝑡

𝑇
2

−
𝑇
2

. 

When that f  is a 2𝜋-periodic function, the Fourier series 𝐹(𝜔) is  
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𝐹(𝜔) = ∑ 𝑐𝑘𝑒
𝑖𝑘𝜔

∞

𝑘=−∞

, 

where 𝑐𝑛 is defined as 

𝑐𝑘 =
1

2𝜋
∫ 𝑓(𝜔)𝑒−𝑖𝑘𝜔𝑑𝜔

𝜋

−𝜋

, 𝑘 ∈ ℤ. 

 Recall Euler’s Formula 𝑒𝑖𝜃 = cos(𝜃) + 𝑖𝑠𝑖𝑛(𝜃).  We can see 𝑓(𝜔) can be 

recognized as a series of sine and cosine functions.  Fourier series give an approximation 

of the original function.   

For example, consider the piecewise function  

𝑓(𝑥) = {
1, 0 < 𝑥 < 𝜋

−1, −𝜋 < 𝑥 < 0
. 

Using Maple [11] we see that our truncated Fourier series is 

𝐹(𝑢) = ∑ 𝑐𝑘 sin(𝑘𝑥)

𝑢

𝑘=1

, 

where 

𝑐𝑘 = −
−1 + cos(𝜋𝑘)

𝜋𝑘
. 

The graph of the truncated Fourier series as compared with the original function is seen 

in Figure 3.2.1.   

In a similar manner, we can calculate the Fourier transform of the identity 

function  

𝑓(𝑥) = 𝑥, −𝜋 ≤ 𝑥 ≤ 𝜋. 

Here we see that the truncated Fourier transform is 

𝐹(𝑢) = 2 ∑ 𝑐𝑘 sin(𝑘𝑥)

𝑢

𝑘=1

, 
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where 

𝑐𝑘 = −
−sin(𝜋𝑘) + cos(𝜋𝑘) 𝜋𝑘

𝜋𝑘2
. 

To view the graph of the Fourier transform as compared with the original function, view 

Figure 3.2.2. 

 

Figure 3.2.1: Fourier transform of a piecewise function 

 

Figure 3.2.2: Fourier transform of 𝑓(𝑥) = 𝑥 

Section 3.3 Impulses 

When processing a signal, we sometimes need to catch the impulse of the signal 

at a particular time.  For this purpose, we define the impulse function 𝛿(𝑡).  The unit 

impulse, also known as the delta function, is defined as 
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𝛿(𝑡) = {
∞, 𝑡 = 0
0, 𝑡 ≠ 0

. 

Note that this is a generalized function, or a distribution.  This definition also has the 

constraint that  

∫ 𝛿(𝑡)𝑑𝑡
∞

−∞

= 1. 

A way to interpret this is by letting t be time.  Then we have one point where the 

amplitude is infinity (at 𝑡 = 0), that has a duration of 0 units of time (seconds, 

milliseconds, etc.), and the area of this function is 1.  The impulse function has a special 

property known as the sifting property.  The sifting property means that the function has 

the property 

∫ 𝑓(𝑡)𝛿(𝑡)𝑑𝑡
∞

−∞

= 𝑓(0), 

where  𝑓(𝑡) is continuous at 𝑡 = 0.  A more generalized formula for the sifting property 

allows for the impulse to be located at any 𝑡 = 𝑡0, as opposed to just at 𝑡 = 0.  This is 

denoted by 𝛿(𝑡 − 𝑡0) and the sifting property is now expressed by 

∫ 𝑓(𝑡)𝛿(𝑡 − 𝑡0)𝑑𝑡
∞

−∞

= 𝑓(𝑡0). 

For example, if 𝑓(𝑡) = tan(𝑡) and 𝑡0 =
𝜋

4
, then  

∫ 𝑓(𝑡)𝛿 (𝑡 −
𝜋

4
)𝑑𝑡

∞

−∞

= 𝑓 (
𝜋

4
) = tan (

𝜋

4
) = 1. 

The delta function and the sifting property also apply when a discrete variable is being 

used in place of a continuous function.   

The unit discrete impulse 𝛿(𝑥), where x is a discrete variable, works in the same 

manner as 𝛿(𝑡) does where t is a continuous variable.  The discrete impulse is defined in 
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a very similar manner to the continuous impulse.  That is 

𝛿(𝑥) = {
1, 𝑥 = 0
0, 𝑥 ≠ 0

. 

Since the continuous variable satisfies  

∫ 𝛿(𝑡)𝑑𝑡
∞

−∞

= 1, 

the discrete case must satisfy the discrete equivalent to this, which gives us the equation 

∑ 𝛿(𝑥)

∞

𝑥=−∞

= 1. 

𝛿(𝑥) also satisfies the sifting property  

∑ 𝑓(𝑥)𝛿(𝑥)

∞

𝑥=−∞

= 𝑓(0). 

The generalized sifting property for a discrete variable can be derived in a very similar 

manner to that of the generalized sifting property for a continuous variable.  That is 

∑ 𝑓(𝑥)𝛿(𝑥 − 𝑥0)

∞

𝑥=−∞

= 𝑓(𝑥0). 

In a similar manner to the continuous variable, the sifting property gives the value of the 

function at the impulse location.  However, there is a significant difference between the 

continuous variable and the discrete variable.  That is, a discrete variable can be an 

ordinary function, while a continuous variable cannot.  One other consequence of the 

impulse and sifting property is the idea of the impulse train.  An impulse train is the sum 

of infinitely many periodic impulses ∆𝑇 units apart and is defined as 

𝑠∆𝑇(𝑡) = ∑ 𝛿(𝑡 − 𝑛∆𝑇)

∞

𝑛=−∞

.  
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These impulses on the impulse train can be either continuous or discrete.  The 

idea of the impulse and the impulse train also have certain implications when dealing 

with Fourier transform and their properties. 

Section 3.4 Fourier Transforms and Properties 

The Fourier transform is one of the most important tools in signal processing.  

The Fourier transform ℱ{𝑓(𝑡)} of a continuous function 𝑓(𝑡) of the continuous variable t 

is defined as 

ℱ{𝑓(𝑡)} = ∫ 𝑓(𝑡)𝑒−𝑖2𝜋𝜇𝑡𝑑𝑡
∞

−∞

, 

where μ is a continuous variable as well.  Since the Fourier transform is an integral with 

respect to t, then the resulting function is a continuous function of μ.  The variable μ is 

often referred to as the variable of frequency.  Hence, we also denote ℱ{𝑓(𝑡)} = 𝐹(𝜇).  

The inverse transform, denoted by ℱ−1{𝐹(𝜇)}, is 

𝑓(𝑡) = ℱ−1{𝐹(𝜇)} = ∫ 𝐹(𝜇)𝑒𝑖2𝜋𝜇𝑡𝑑𝜇
∞

−∞

. 

The equations for 𝑓(𝑡) and 𝐹(𝜇) make what are known as a Fourier transform pair.  This 

is an important consequence because this means that one may recover the original 

function from its transform. 

For example, if we let 𝑓(𝑡) be a window function 

𝑓(𝑡) = {𝐴, if −
𝑊

2
≤ 𝑡 ≤

𝑊

2
0, Otherwise            

, 

then we can see that the Fourier transform of 𝑓(𝑡) is  

𝐹(𝜇) = ∫ 𝑓(𝑡)𝑒−𝑖2𝜋𝜇𝑡𝑑𝑡
∞

−∞

= ∫ 𝐴𝑒−𝑖2𝜋𝜇𝑡𝑑𝑡
𝑊/2

−𝑊/2

=
−𝐴

2𝑖𝜋𝜇
(𝑒−𝑊𝑖𝜋𝜇 − 𝑒𝑊𝑖𝜋𝜇), 
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where 𝐴 ∈ ℝ, W is the width, and μ is a continuous variable.  Recall that μ is a frequency 

variable.  Thus the Fourier transform is in the frequency domain.  It should be noted that 

the units of μ are dependent upon the units of the continuous variable t.  In general, μ is in 

terms of cycles per unit of t.   

When one takes the Fourier Transform of the unit impulse located at the origin, 

the output is 

𝐹(𝜇) = ∫ 𝛿(𝑡)𝑒−𝑖2𝜋𝜇𝑡𝑑𝑡
∞

−∞

= 𝑒−𝑖2𝜋𝜇0 = 𝑒0 = 1. 

For a Fourier transform of an impulse where 𝑡 = 𝑡0 the output is 

𝐹(𝜇) = ∫ 𝛿(𝑡 − 𝑡0)𝑒
−𝑖2𝜋𝜇𝑡𝑑𝑡

∞

−∞

 

= 𝑒−𝑖2𝜋𝜇𝑡0 

= cos(2𝜋𝜇𝑡0) − 𝑖sin(2𝜋𝜇𝑡0). 

Another useful property of the Fourier transform involves the modulus or the 

magnitude of the Fourier transform.  Using the previous example of the window function, 

we get 

|𝐹(𝜇)| = 𝐴𝑊 |
sin(𝜋𝜇𝑊)

𝜋𝜇𝑊
| . 

|𝐹(𝜇)| is called the Fourier spectrum or the frequency spectrum.  Some important 

observations of this example are that the zeros of 𝐹(𝜇) and |𝐹(𝜇)| are inversely 

proportional to the width W.  The heights of the waves decrease the further the function 

gets from the origin.   
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To show an example that will be used later, we will find the Fourier transform of 

an impulse train.  We will first prove the following property of the Fourier transform (this 

proof follows from [7]).   

Proposition 3.4.1:  If 𝑓(𝑡) has the Fourier transform 𝐹(𝜇), then 𝐹(𝑡) must have the 

Fourier transform 𝑓(−𝜇). 

Proof: To prove this, we start by stating that, by definition, the Fourier transform of 𝐹(𝑡) 

is  

𝐹{𝐹(𝑡)} = ∫ 𝐹(𝑡)𝑒−𝑖2𝜋𝜇𝑡𝑑𝑡
∞

−∞

.                                         (3.4.1) 

We also know from definition of the inverse Fourier transform that 

𝑓(𝑡) = ∫ 𝐹(𝜇)𝑒𝑖2𝜋𝜇𝑡𝑑𝜇
∞

−∞

, 

which implies that by replacing μ by 𝑡′ we get 

𝑓(𝑡) = ∫ 𝐹(𝑡′)𝑒𝑖2𝜋𝑡′𝑡𝑑𝑡′
∞

−∞

. 

Therefore,  

𝑓(−𝜇) = ∫ 𝐹(𝑡′)𝑒−𝑖2𝜋𝑡′𝜇𝑑𝑡′
∞

−∞

.                                         (3.4.2) 

By comparing equation (3.4.1) and equation (3.4.2) we see that the Fourier transform of 

𝐹(𝑡) is equal to 𝑓(−𝜇).                                                                                                      ∎ 

The next property that we will prove is as follows (this proof follows from [7]): 

Proposition 3.4.2:  The Fourier transform of 𝑒𝑖2𝜋𝑎𝑡 is 𝛿(𝑢 − 𝑎). 

Proof: To prove this, we start by stating that it is known that the Fourier transform of 

𝛿(𝑡 − 𝑡0) is 𝑒−𝑖2𝜋𝜇𝑡0 .  By Proposition 3.4.1 we can see that the Fourier transform of 

𝑒−𝑖2𝜋𝑡0𝑡 is 𝛿(−𝜇 − 𝑡0).  Let −𝑡0 = 𝑎.  We can see that the Fourier transform of 𝑒𝑖2𝜋𝑎𝑡 is 
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𝛿(−𝜇 + 𝑎).  Since 𝛿(−𝜇 + 𝑎) is nonzero only when 𝜇 = 𝑎, then  

𝛿(−𝜇 + 𝑎) = 𝛿(𝜇 − 𝑎). 

Therefore, 

𝐹{𝑒𝑖2𝜋𝑎𝑡} = 𝛿(𝜇 − 𝑎).                                                        ∎ 

A particular example of Proposition 3.4.2 is 

𝐹 {𝑒𝑖
2𝜋𝑛
∆𝑇

𝑡} = 𝛿 (𝜇 −
𝑛

∆𝑇
). 

Now that we have properties 3.4.1 and 3.4.2, we can prove the Fourier transform 

of an impulse train is also an impulse train. 

To begin the proof we start by letting 

𝑆∆𝑇(𝑡) = ∑ 𝛿(𝑡 − 𝑛∆𝑇)

∞

𝑛=−∞

. 

Then by the definition of the Fourier series we see that 

𝑆∆𝑇(𝑡) = ∑ 𝑐𝑛𝑒𝑖
2𝜋𝑛
∆𝑇

𝑡

∞

𝑛=−∞

, 

where  

𝑐𝑛 =
1

∆𝑇
∫ 𝑆∆𝑇(𝑡)𝑒−𝑖

2𝜋𝑛
∆𝑇

𝑡𝑑𝑡
∆𝑇/2

−∆𝑇/2

. 

The only nonzero delta function in 𝑆ΔT(𝑡) over [−
Δ𝑇

2
,
Δ𝑇

2
] is 𝛿(𝑡).  Therefore 

𝑐𝑛 =
1

∆𝑇
∫ 𝛿(𝑡)𝑒−𝑖

2𝜋𝑛
∆𝑇

𝑡𝑑𝑡
∆𝑇/2

−∆𝑇/2

. 

Thus 

𝑐𝑛 =
1

∆𝑇
𝑒0 =

1

∆𝑇
. 

By substituting 𝐶𝑛 =
1

Δ𝑇
 into Fourier series of 𝑆Δ𝑇(𝑡), we get 
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𝑆∆𝑇(𝑡) =
1

∆𝑇
∑ 𝑒𝑖

2𝜋𝑛
∆𝑇

𝑡

∞

𝑛=−∞

. 

Hence  

𝐹{𝑆∆𝑇(𝑡)} =
1

∆𝑇
∑ 𝐹 {𝑒𝑖

2𝜋𝑛
∆𝑇

𝑡}

∞

𝑛=−∞

. 

Therefore 

𝐹{𝑆∆𝑇} =
1

∆𝑇
∑ 𝛿 (𝜇 −

𝑛

∆𝑇
)

∞

𝑛=−∞

. 

Thus it can be seen that the Fourier transform of an impulse train is also an 

impulse train.  If the original impulse train has a period of ∆𝑇, then the Fourier transform 

of the impulse train has a period of 
1

∆𝑇
.  The ideas of the Fourier transform, combined 

with the idea of the convolution, discussed in Section 3.6, are needed to build the 

Sampling Theorem in Section 3.7.   

Section 3.5 Linear Time-Invariant Systems 

We will discuss the idea of linear time-invariant (LTI) systems in this section.  

We will see that a LTI system will naturally lead to the concept of convolution. 

To discuss linear time-invariant systems, we will first define what a system is.  

We say a device is a system if it takes some sort of input signal 𝑥(𝑛), processes it, and 

provides an output 𝑦(𝑛).  𝑦(𝑛) at any time may depend on all inputs of 𝑥(𝑛).  That is, it 

depends on …𝑥(𝑛 − 2), 𝑥(𝑛 − 1), 𝑥(𝑛), 𝑥(𝑛 + 1), 𝑥(𝑛 + 2),…. 

A generic way showing a diagram of a system is  

𝑥(𝑛) → [𝑆𝑌𝑆𝑇𝐸𝑀] → 𝑦(𝑛). 

This does not mean that the output 𝑦(𝑛) is dependent solely on 𝑥(𝑛).  A system is a 
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beneficial way of displaying real world devices such as population models or business 

models.   

Expanding upon the idea of a system is the idea of a linear system.  If 𝑥1(𝑛) →

[𝑆𝑌𝑆𝑇𝐸𝑀] → 𝑦1(𝑛) and 𝑥2(𝑛) → [𝑆𝑌𝑆𝑇𝐸𝑀] → 𝑦2(𝑛), then a linear system is a system 

that has the property (𝑥1(𝑛) + 𝑥2(𝑛)) → [𝑆𝑌𝑆𝑇𝐸𝑀] → (𝑦1(𝑛) + 𝑦2(𝑛)).  This is known 

as superposition, and is not limited to two inputs.  A linear system also has the scaling 

property.  That is, 𝑎𝑥(𝑛) → [𝑆𝑌𝑆𝑇𝐸𝑀] → 𝑎𝑦(𝑛), where a is a real number.   

We define a time-invariant (TI) system by saying that if we delay the input by any 

constant T, then the output is delayed by T as well.  Consider the system 𝑦(𝑛) =

sin(𝑥(𝑛)).  By shifting the value of n, we shift the value of 𝑦(𝑛).  That is, by adjusting 

𝑥(𝑛), we adjust 𝑦(𝑛).   

A linear time-invariant system (LTI) is one that is both a linear system and a time-

invariant system.  Suppose ℎ(𝑛) is the response to an impulse 𝛿(𝑛) in a LTI system.  

That is 

𝛿(𝑛) → [𝐿𝑇𝐼] → ℎ(𝑛).                                                          (3.5.1) 

Since the LTI system is time-invariant, then using equation (3.5.1) we see that 

𝛿(𝑛 − 𝑎) → [𝐿𝑇𝐼] → ℎ(𝑛 − 𝑎),                                                  (3.5.2) 

for any constant a.  Since the LTI system is also linear, using equation (3.5.2) we see that  

𝑥(𝑎)𝛿(𝑛 − 𝑎) → [𝐿𝑇𝐼] → 𝑥(𝑎)ℎ(𝑛 − 𝑎),                                         (3.5.3) 

for any constant 𝑥(𝑎).  Since the LTI system is linear, we know that the LTI system also 

has the property of superposition.  Thus using the property of superposition we see that 

∑ 𝑥(𝑎)𝛿(𝑛 − 𝑎)

∞

𝑎=−∞

→ [𝐿𝑇𝐼] → ∑ 𝑥(𝑎)ℎ(𝑛 − 𝑎)

∞

𝑎=−∞

.                              (3.5.4) 
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In other words, a LTI system is completely characterized by its unit response 

ℎ(𝑛).  See Section 1.2 of [13] for more discussion on linear time-invariant systems.  Also 

see [13] for more discussion on linear time-invariant systems.  We want to point out the 

last expression in (3.5.4) is the convolution, which we will continue to discuss in the next 

section.   

Section 3.6 Convolution 

The convolution is an operation that can be defined between either discrete or 

continuous functions.  The discussion in this section was derived from [6]. 

In the discrete case, the convolution is an operation that happens between two bi-

infinite series.  On page 128 of [6], the convolution is defined as follows: Let h and x be 

two bi-infinite sequences.  Then the convolution product y of h and x, denoted by 𝒉 ∗ 𝒙, 

is the bi-infinite sequence 𝒚 = 𝒉 ∗ 𝒙, whose nth component is given by  

𝑦𝑛 = ∑ ℎ𝑘𝑥𝑛−𝑘

∞

𝑘=−∞

. 

In a manner of speaking, the convolution involves reversing the order of the second bi-

infinite and shifting it past the first bi-infinite sequence.  At each point in the shift a 

computation is performed which is the sum of the products.  This gives the convolution 

of two discrete bi-infinite sequences.  However, the convolution of two continuous 

functions can also be performed.  If 𝑓(𝑡) and 𝑔(𝑡) are two continuous functions of a 

single continuous variable t, then the convolution is defined by 

𝑓(𝑡) ∗ 𝑔(𝑡) = ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏
∞

−∞

. 

where τ is a dummy variable.   
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When taking the Fourier transform of the convolution, there are two different 

cases that amount to the same idea.  That is, in both the discrete case and the continuous 

case, the results of the Fourier transform of the convolution are equal to the product of 

the Fourier transform of the two functions.  In other words, let 𝐹(𝜇) the Fourier 

transform of 𝑓(𝑡) and let 𝐺(𝜇) be the Fourier transform of 𝑔(𝑡).  Then 

ℱ{𝑓(𝑡) ∗ 𝑔(𝑡)} = 𝐹(𝜇)𝐺(𝜇). 

Since t is generally referred to as the spatial domain and μ is generally referred to as the 

frequency domain, then it can be seen that Fourier transform of the convolution of two 

functions gives the product of the Fourier transform of the same two functions.  The 

converse of this is true as well.  That is, the product of two Fourier transforms implies 

that one can find the convolution of the two base functions by applying the inverse 

Fourier transform.  This shows that 𝑓(𝑡) ∗ 𝑔(𝑡) and 𝐹(𝜇)𝐺(𝜇) form a Fourier transform 

pair.   

The ideas of the convolution discussed in this section, along with the idea of the 

Fourier transform and its properties discussed in Section 3.4, help us build a process 

which will be used to sample a function.   

Section 3.7 The Fourier Transform of Sampled Functions 

Sampling is a process used to transform continuous functions into discrete values 

so that a computer can process them.  Sampling takes samples at some uniform interval 

∆𝑇 of a continuous function 𝑓(𝑡) of a continuous variable t.   

In order to sample a function we can use a sampling function to take a uniform 

sampling of a continuous function 𝑓(𝑡).  To do this, let the sampling function be an 

impulse train ∆𝑇 units apart.  Hence the sampled function 𝑓(𝑡) is 
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𝑓(𝑡) = 𝑓(𝑡)𝑠∆𝑇(𝑡) 

= ∑ 𝑓(𝑡)𝛿(𝑡 − 𝑛∆𝑇)

∞

𝑛=−∞

. 

It can be shown that the kth value in the sampled sequence can be determined by 

𝑓𝑘 = ∫ 𝑓(𝑡)𝛿(𝑡 − 𝑘∆𝑇)𝑑𝑡
∞

−∞

, 𝑘 ∈ ℤ 

= 𝑓(𝑘∆𝑇), 𝑘 ∈ ℤ. 

Doing this gives equally spaced samples of the function 𝑓(𝑡) that are spaced ∆𝑇 units 

apart. 

Letting 𝐹(𝜇) be the Fourier transform of 𝑓(𝑡), the convolution theorem tells us 

that the Fourier transform �̃�(𝜇) of the sampling function 𝑓(𝑡) is  

�̃�(𝜇) = 𝐹(𝜇) ∗ 𝑆(𝜇), 

where, from Section 3.4,  

𝑆(𝜇) =
1

∆𝑇
∑ 𝛿 (𝜇 −

𝑛

∆𝑇
)

∞

𝑛=−∞

 

is the Fourier transform of the impulse train 𝑠∆𝑇(𝑡).  Using the convolution defined in 

Section 3.6 we see that 

�̃�(𝜇) = 𝐹(𝜇) ∗ 𝑆(𝜇) 

= ∫ 𝐹(𝜏)𝑆(𝜇 − 𝜏)𝑑𝜏
∞

−∞

 

=
1

∆𝑇
∫ 𝐹(𝜏) ∑ 𝛿 (𝜇 − 𝜏 −

𝑛

∆𝑇
)𝑑𝜏

∞

𝑛=−∞

∞

−∞

 

=
1

∆𝑇
∑ ∫ 𝐹(𝜏)𝛿 (𝜇 − 𝜏 −

𝑛

∆𝑇
)𝑑𝜏

∞

−∞

∞

𝑛=−∞
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=
1

∆𝑇
∑ 𝐹 (𝜇 −

𝑛

∆𝑇
)

∞

𝑛=−∞

. 

Hence we find that 

�̃�(𝜇) =
1

∆𝑇
∑ 𝐹 (𝜇 −

𝑛

∆𝑇
)

∞

𝑛=−∞

. 

It can be seen from this that �̃�(𝜇) is periodic and infinite (since �̃�(𝜇) is built from a 

periodic infinite function) as well as translations of the Fourier transform of the original 

function 𝑓(𝑡).  The distance between copies is 
1

∆𝑇
.  It should be noted that the accuracy of 

�̃�(𝜇) depends on 
1

∆𝑇
.  If 

1

∆𝑇
 is too small, just right, or too large, then the function is over-

sampled, critically-sampled, or under-sampled, respectively.  Refer to [7] for more 

discussion on this topic.  This observation leads to the discussion of the Sampling 

Theorem in the next section.   

Section 3.8 The Sampling Theorem and Aliasing 

This section will be devoted to building the Sampling Theorem and ideas 

regarding aliasing.   

A band-limited function 𝑓(𝑡) is a function whose Fourier transform has a value of 

zero outside of a finite interval [−𝜇𝑚𝑎𝑥 , 𝜇𝑚𝑎𝑥].  If a proper sample is taken, then we can 

recover the original function 𝑓(𝑡).  This requires that a copy of 𝐹(𝜇) be isolated from the 

periodic sequence of copies contained in �̃�(𝜇).  Recall that from Section 3.7 we have  

�̃�(𝜇) =
1

∆𝑇
∑ 𝐹 (𝜇 −

𝑛

∆𝑇
)

∞

𝑛=−∞

. 

Therefore �̃�(𝜇) is a continuous, periodic function with a period of 
1

∆𝑇
.  If we can isolate a 
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complete copy of 𝐹(𝜇) from �̃�(𝜇), we can recover 𝑓(𝑡) by applying inverse Fourier 

transform on the copy of 𝐹(𝜇).   

Suppose that f is a band-limited function whose Fourier transform is nonzero 

between −𝜇𝑚𝑎𝑥 and 𝜇𝑚𝑎𝑥.  In order for us to extract a copy of 𝐹(𝜇) from �̃�(𝜇), the 

separation between each period must be sufficient.  That is, for a given period, a 

sufficient separation is assured if 

1

∆𝑇
> 2𝜇𝑚𝑎𝑥. 

Thus we have the following theorem, the Sampling Theorem:  

Theorem 3.8.1. A continuous, band-limited function can be recovered completely from a 

set of its samples, if the samples are acquired at a rate exceeding twice the highest 

frequency content of the function [7].   

That is, if the sample rate is greater than twice the highest frequency content of 

the function, then there is no information lost.  In other terms, the maximum frequency 

that can be acquired is 𝜇𝑚𝑎𝑥 =
1

2∆𝑇
.  This is known as the Nyquist rate.  It is generally 

advised via the sampling theorem that one use a sampling rate greater than the Nyquist 

rate.  If the sampling rate is below the Nyquist rate, it is called under-sampling. 

In order to recover the original function, we can create a function  

𝐻(𝜇) = {
∆𝑇, −𝜇𝑚𝑎𝑥 ≤ 𝜇 ≤ 𝜇𝑚𝑎𝑥

0,                        otherwise
. 

If we multiply �̃�(𝜇) by 𝐻(𝜇) we get 

𝐹(𝜇) = 𝐻(𝜇)�̃�(𝜇). 

Thus we can obtain 𝑓(𝑡) by using the inverse Fourier transform discussed in Section 3.4.   
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Aliasing corresponds with a function that is under-sampled.  Not only does under-

sampling cause the periods to overlap, but it is now impossible to isolate a single period 

of the Fourier transform, and thus impossible to find the original function.  If we were to 

try to find the original function using an under-sampled function, then the function 

returned would be corrupted.  This is known as aliasing.  See [7] for more on this topic.   

Section 3.9 Reconstruction from Sampled Data 

To reconstruct the original function from sets of samples, we only need to 

interpolate the data.  First we need to prove a property.  The proof of this follows from 

the discussion in [7].   

Proposition 3.9.1.  If  

𝐻(𝜇) = {∆𝑇, −
1

2∆𝑇
≤ 𝜇 ≤

1

2∆𝑇
0,                     Otherwise

, 

then 

ℎ(𝑡) = sinc (
𝑡

∆𝑇
) , 

where 

sinc(𝜙) =
sin(𝜙)

𝜙
. 

Proof: We start by stating that  

ℎ(𝑡) = 𝐹−1{𝐻(𝜇)} = ∫ 𝐻(𝜇)𝑒𝑖2𝜋𝜇𝑡𝑑𝜇
∞

−∞

. 

By replacing 𝐻(𝜇) with the conditions of proposition 3.9.1, we see that 

ℎ(𝑡) = ∫ ∆𝑇𝑒𝑖2𝜋𝜇𝑡𝑑𝜇

1
2∆𝑇

−
1

2∆𝑇
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= [
∆𝑇

𝑖2𝜋𝑡
𝑒𝑖2𝜋𝜇𝑡]

−
1

2∆𝑇

1
2∆𝑇

 

=
∆𝑇

𝑖2𝜋𝑡
(𝑒

𝑖𝜋𝑡
∆𝑇 − 𝑒−

𝑖𝜋𝑡
∆𝑇 ) 

=
∆𝑇

𝑖2𝜋𝑡
(2𝑖𝑡sin (

𝑖𝜋𝑡

∆𝑇
)) 

=
∆𝑇

𝜋𝑡
sin (

𝜋𝑡

∆𝑇
) 

=
sin (

𝜋𝑡
∆𝑇)

𝜋𝑡
∆𝑇

 

= sinc (
𝜋𝑡

∆𝑇
). 

To reconstruct the function, the use of the convolution theorem from Section 3.6 

will be needed.  That is 

𝑓(𝑡) = ℱ−1{𝐹(𝜇)} 

= ℱ−1{𝐻(𝜇)�̃�(𝜇)} 

= ℎ(𝑡) ∗ 𝑓(𝑡). 

Hence 

𝑓(𝑡) = ℎ(𝑡) ∗ (𝑓(𝑡)𝑠∆𝑇(𝑡)) 

= ℎ(𝑡) ∗ ∑ 𝑓(𝑡)𝛿(𝑡 − 𝑛∆𝑇)

∞

𝑛=−∞

 

= ∑ ℎ(𝑡) ∗ (𝑓(𝑡)𝛿(𝑡 − 𝑛∆𝑇))

∞

𝑛=−∞

 

= ∑ 𝑓(𝜏)𝛿(𝜏 − 𝑛∆𝑇)ℎ(𝑡 − 𝜏)

∞

𝑛=−∞
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= ∑ 𝑓(𝑛∆𝑇)ℎ(𝑡 − 𝑛∆𝑇)

∞

𝑛=−∞

 

= ∑ 𝑓(𝑛∆𝑇)sinc (
(𝑡 − 𝑛∆𝑇)

∆𝑇
)

∞

𝑛=−∞

, 

where the last step is a consequence of proposition 3.9.1.  That is, the values of 𝑓(𝑡) that 

are between the sample points are interpolations that are created by the sum of the sinc 

functions.  Since these require an infinite sum, an approximation is generally used in 

practice. 

Section 3.10 The Discrete Fourier Transform 

The discrete Fourier transform is crucial for signal processing.  This section will 

cover the discrete Fourier transform.   

Suppose that 𝒇 = (𝑓0, 𝑓1, … , 𝑓𝑁−1) is a discrete signal.  Define the discrete Fourier 

transform as  

𝐹𝑚 = ∑ 𝑓𝑛𝑒−
2𝑖𝜋𝑚𝑛

𝑀

𝑁−1

𝑛=0

, 𝑚 = 0, 1, … ,𝑀 − 1. 

This is the discrete Fourier transform.  Also, if we have the set {𝐹𝑚}, we can find 𝑓𝑛 by 

using the inverse discrete Fourier transform  

𝑓𝑛 =
1

𝑀
∑ 𝐹𝑚𝑒

𝑖2𝜋𝑚𝑛
𝑀

𝑀−1

𝑚=0

, 𝑛 = 0, 1, … , 𝑁 − 1. 

By substituting 𝑓𝑛 into the equation for 𝐹𝑚 and vice versa, the equations simplify down to 

identities, which means that the equations for 𝑓𝑛 and 𝐹𝑚 form a discrete Fourier transform 

pair.   

An important implication from these equations is that the inverse Fourier 

transform exists for any set of samples with a finite cardinality.  Note that neither 𝑓𝑛 nor 
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𝐹𝑚 depend on the interval of the sample ∆𝑇.  Hence, if the sample is finite, discrete, and 

taken uniformly, then the discrete Fourier transform pair can be applied.   

For example, consider 𝒇 = (𝑓0, 𝑓1, 𝑓2, 𝑓3) = (1, 2, 3, 4).  Then we see that 

𝐹(0) = ∑ 𝑓(𝑥)

3

𝑥=0

 

= 𝑓(0) + 𝑓(1) + 𝑓(2) + 𝑓(3) 

= 1 + 2 + 3 + 4 

= 10 

𝐹(1) = ∑ 𝑓(𝑛)𝑒−
𝑖2𝜋(1)𝑛

4

3

𝑛=0

 

= 𝑓(0) + 𝑓(1)𝑒−
𝑖𝜋
2 + 𝑓(2)𝑒−𝑖𝜋 + 𝑓(3)𝑒−

3𝑖𝜋
2  

= 1 + 2(−𝑖) + 3(−1) + 4(𝑖) 

= −2 + 2𝑖. 

Likewise, we can show that 𝐹(2) = −2 and 𝐹(3) = −2 − 2𝑖.   

If we were, instead, given F and we wanted the inverse, then we would follow a 

similar method.  For example: 

𝑓(0) =
1

4
∑ 𝐹(𝜇)𝑒𝑖2𝜋𝜇(0)

3

𝜇=1

 

=
1

4
∑ 𝐹(𝜇)

3

𝜇=1

 

=
1

4
(10 − 2 + 2𝑖 − 2 − 2 − 2𝑖) 

= 1. 
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Even though these processes are easy to understand, they can be very 

cumbersome when M and N are large.  However, the fast Fourier transform tackles that 

problem for us.  For more on the Fourier transform, refer to [6].   

Section 3.11 The Fast Fourier Transform 

Implementing the discrete Fourier transform and the inverse discrete Fourier 

transform can be extremely time consuming and take an extreme amount of processor 

power.  There are roughly (𝑀𝑁)2 summations and additions that must be done in these 

equations.  However, a discovery known as fast Fourier transforms (often denoted FFT) 

has allowed for a remarkable reduction in these operations.  The fast Fourier transform 

allows for a reduction to 𝑀𝑁𝑙𝑜𝑔2(𝑀𝑁) summations and additions.  This section is 

derived from [7]. 

The successive-doubling method is the algorithm that allows the fast Fourier 

transform to work.  One of the requirements for this method is that the number of 

samples is a power of 2.  For simplicity, when dealing with the fast Fourier transform we 

normally express 𝐹(𝑢) by  

𝐹(𝑢) = ∑ 𝑓(𝑥)𝑊𝑀
𝑢𝑥

𝑀−1

𝑥=0

, 𝑢 = 0, 1, … , 𝑀 − 1 

and  

𝑊𝑀 = 𝑒−
𝑖2𝜋
𝑀 , 

where  

𝑀 = 2𝑛, 𝑛 = 1, 2, … . 

When M is even, M can be written as 𝑀 = 2𝑘, where k is an integer.  Recalling that  
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𝐹(𝑢) = ∑ 𝑓(𝑥)𝑊2𝑘
𝑢𝑥

2𝑘−1

𝑥=0

 

and the fact that 𝑊2𝑘
2𝑢𝑥 = 𝑊𝑘

𝑢𝑥, it can be seen that 

𝐹(𝑢) = ∑ 𝑓(2𝑥)𝑊𝑘
𝑢𝑥 + ∑ 𝑓(2𝑥 + 1)𝑊𝑘

𝑢𝑥𝑊2𝑘
𝑢

𝑘−1

𝑥=0

𝑘−1

𝑥=0

. 

Define 𝐹𝑒𝑣𝑒𝑛(𝑢) and 𝐹𝑜𝑑𝑑(𝑢) as 

𝐹𝑒𝑣𝑒𝑛(𝑢) = ∑ 𝑓(2𝑥)𝑊𝑘
𝑢𝑥

𝑘−1

𝑥=0

 

and  

𝐹𝑜𝑑𝑑(𝑢) = ∑ 𝑓(2𝑥 + 1)𝑊𝑘
𝑢𝑥

𝑘−1

𝑥=0

, 

then one can see that  

𝐹(𝑢) = 𝐹𝑒𝑣𝑒𝑛(𝑢) + 𝐹𝑜𝑑𝑑(𝑢)𝑊2𝑘
𝑢 .                                   (3.11.1) 

Since 𝑊𝑀
𝑢+𝑀 = 𝑊𝑀

𝑢 and 𝑊2𝑀
𝑢+𝑀 = −𝑊2𝑀

𝑢 , it can also be shown that  

𝐹(𝑢 + 𝑘) = 𝐹𝑒𝑣𝑒𝑛(𝑢) − 𝐹𝑜𝑑𝑑(𝑢)𝑊2𝑘
𝑢 .                               (3.11.2) 

The Equations (3.11.1) and (3.11.2) give the possibilities of constructing a 

recursion tool algorithm to compute the discrete Fourier transform.   

We will use the following example to explain the notations and the process of 

FFT.  Define a and c as  

𝑎 = [𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7]
𝑇  𝑐 = [𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7]

𝑇, 

where a is the input and c is the output.  When using the discrete Fourier transform we 

get: 

𝑐0 = 𝑎0 + 𝑎1𝑒
−𝑖2𝜋

0∙1
8 + 𝑎2𝑒

−𝑖2𝜋
0∙2
8 + ⋯+ 𝑎7𝑒

−𝑖2𝜋
0∙7
8  
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= 𝑎0 + 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 + 𝑎6 + 𝑎7 

= (𝑎0 + 𝑎2 + 𝑎4 + 𝑎6) + (𝑎1 + 𝑎3 + 𝑎5 + 𝑎7). 

In a similar manner, we can find 𝑐1: 

𝑐1 = 𝑎0 + 𝑎1𝑒
−𝑖2𝜋

1∙1
8 + 𝑎2𝑒

−2𝑖𝜋
1∙2
8 + ⋯+ 𝑎7𝑒

−2𝑖𝜋
1∙7
8  

= [𝑎0 + 𝑎4𝑒
−𝑖2𝜋

4
8] + [𝑎2 + 𝑎6𝑒

−𝑖2𝜋
4
8] 𝑒−𝑖2𝜋

1
8

+ {[𝑎1 + 𝑎5𝑒
−𝑖2𝜋

4
8] + [𝑎3 + 𝑎7𝑒

−𝑖2𝜋
4
8] 𝑒−𝑖2𝜋

2
8} 𝑒−𝑖2𝜋

1
8. 

Likewise, 𝑐2 is: 

𝑐2 = 𝑎0 + 𝑎1𝑒
−𝑖2𝜋

2∙1
8 + 𝑎2𝑒

−2𝑖𝜋
2∙2
8 + ⋯+ 𝑎7𝑒

−2𝑖𝜋
2∙7
8  

= [𝑎0 + 𝑎4𝑒
−𝑖2𝜋

2∙4
8 ] + [𝑎2 + 𝑎6𝑒

−𝑖2𝜋
2∙4
8 ] 𝑒−𝑖2𝜋

2∙2
8

+ {[𝑎1 + 𝑎5𝑒
−𝑖2𝜋

2∙4
8 ] + [𝑎3 + 𝑎7𝑒

−𝑖2𝜋
2∙4
8 ] 𝑒−𝑖2𝜋

2∙2
8 } 𝑒−𝑖2𝜋

2
8. 

We find 𝑐3 and 𝑐4 the same way: 

𝑐3 = 𝑎0 + 𝑎1𝑒
−𝑖2𝜋

3∙1
8 + 𝑎2𝑒

−2𝑖𝜋
3∙2
8 + ⋯+ 𝑎7𝑒

−2𝑖𝜋
3∙7
8  

= [𝑎0 + 𝑎4𝑒
−𝑖2𝜋

3∙4
8 ] + [𝑎2 + 𝑎6𝑒

−𝑖2𝜋
3∙4
8 ] 𝑒−𝑖2𝜋

3∙2
8

+ {[𝑎1 + 𝑎5𝑒
−𝑖2𝜋

3∙4
8 ] + [𝑎3 + 𝑎7𝑒

−𝑖2𝜋
3∙4
8 ] 𝑒−𝑖2𝜋

3∙2
8 } 𝑒−𝑖2𝜋

3
8 

𝑐4 = 𝑎0 + 𝑎1𝑒
−𝑖2𝜋

4∙1
8 + 𝑎2𝑒

−2𝑖𝜋
4∙2
8 + ⋯+ 𝑎7𝑒

−2𝑖𝜋
4∙7
8  

= [𝑎0 + 𝑎2 + 𝑎4 + 𝑎6] − [𝑎1 + 𝑎3 + 𝑎5 + 𝑎7]. 

Notice that 𝑐4 and 𝑐0 are very similar.  The only difference is that the sign in the center is 

the opposite.  We see notice a similar a familiarity when finding 𝑐5: 

𝑐5 = 𝑎0 + 𝑎1𝑒
−𝑖2𝜋

5∙1
8 + 𝑎2𝑒

−2𝑖𝜋
5∙2
8 + ⋯+ 𝑎7𝑒

−2𝑖𝜋
5∙7
8  
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= [𝑎0 + 𝑎4𝑒
−𝑖2𝜋

2∙4
8 ] + [𝑎2 + 𝑎6𝑒

−𝑖2𝜋
2∙4
8 ] 𝑒−𝑖2𝜋

2∙2
8

− {[𝑎1 + 𝑎5𝑒
−𝑖2𝜋

2∙4
8 ] + [𝑎3 + 𝑎7𝑒

−𝑖2𝜋
2∙4
8 ] 𝑒−𝑖2𝜋

2∙2
8 } 𝑒−𝑖2𝜋

2
8. 

Notice that 𝑐5 is nearly identical to 𝑐1.  A similar pattern arises for 𝑐6 and 𝑐7.  That is, 

𝑐6 and 𝑐7 are nearly identical to 𝑐2 and 𝑐3.  Hence  

                                                          𝑐 = [𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7]
𝑇 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[𝑎0 + 𝑎2 + 𝑎4 + 𝑎6] + [𝑎1 + 𝑎3 + 𝑎5 + 𝑎7]

[𝑎0 + 𝑎4𝑒
−𝑖2𝜋

2∙4
8 ] + [𝑎2 + 𝑎6𝑒

−𝑖2𝜋
2∙4
8 ] 𝑒−𝑖2𝜋

2∙2
8 + {[𝑎1 + 𝑎5𝑒

−𝑖2𝜋
2∙4
8 ] + [𝑎3 + 𝑎7𝑒

−𝑖2𝜋
2∙4
8 ] 𝑒−𝑖2𝜋

2∙2
8 } 𝑒−𝑖2𝜋

2
8

[𝑎0 + 𝑎4𝑒
−𝑖2𝜋

2∙4
8 ] + [𝑎2 + 𝑎6𝑒

−𝑖2𝜋
2∙4
8 ] 𝑒−𝑖2𝜋

2∙2
8 + {[𝑎1 + 𝑎5𝑒

−𝑖2𝜋
2∙4
8 ] + [𝑎3 + 𝑎7𝑒

−𝑖2𝜋
2∙4
8 ] 𝑒−𝑖2𝜋

2∙2
8 } 𝑒−𝑖2𝜋

2
8

[𝑎0 + 𝑎4𝑒
−𝑖2𝜋

3∙4
8 ] + [𝑎2 + 𝑎6𝑒

−𝑖2𝜋
3∙4
8 ] 𝑒−𝑖2𝜋

3∙2
8 + {[𝑎1 + 𝑎5𝑒

−𝑖2𝜋
3∙4
8 ] + [𝑎3 + 𝑎7𝑒

−𝑖2𝜋
3∙4
8 ] 𝑒−𝑖2𝜋

3∙2
8 } 𝑒−𝑖2𝜋

3
8

[𝑎0 + 𝑎2 + 𝑎4 + 𝑎6] − [𝑎1 + 𝑎3 + 𝑎5 + 𝑎7]

[𝑎0 + 𝑎4𝑒
−𝑖2𝜋

2∙4
8 ] + [𝑎2 + 𝑎6𝑒

−𝑖2𝜋
2∙4
8 ] 𝑒−𝑖2𝜋

2∙2
8 − {[𝑎1 + 𝑎5𝑒

−𝑖2𝜋
2∙4
8 ] + [𝑎3 + 𝑎7𝑒

−𝑖2𝜋
2∙4
8 ] 𝑒−𝑖2𝜋

2∙2
8 } 𝑒−𝑖2𝜋

2
8

[𝑎0 + 𝑎4𝑒
−𝑖2𝜋

2∙4
8 ] + [𝑎2 + 𝑎6𝑒

−𝑖2𝜋
2∙4
8 ] 𝑒−𝑖2𝜋

2∙2
8 − {[𝑎1 + 𝑎5𝑒

−𝑖2𝜋
2∙4
8 ] + [𝑎3 + 𝑎7𝑒

−𝑖2𝜋
2∙4
8 ] 𝑒−𝑖2𝜋

2∙2
8 } 𝑒−𝑖2𝜋

2
8

[𝑎0 + 𝑎4𝑒
−𝑖2𝜋

3∙4
8 ] + [𝑎2 + 𝑎6𝑒

−𝑖2𝜋
3∙4
8 ] 𝑒−𝑖2𝜋

3∙2
8 − {[𝑎1 + 𝑎5𝑒

−𝑖2𝜋
3∙4
8 ] + [𝑎3 + 𝑎7𝑒

−𝑖2𝜋
3∙4
8 ] 𝑒−𝑖2𝜋

3∙2
8 } 𝑒−𝑖2𝜋

3
8
]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 

[𝑎0 + 𝑎4] + [𝑎2 + 𝑎6] + [𝑎1 + 𝑎5] + [𝑎3 + 𝑎7]

[𝑎0 − 𝑎4] + [𝑎2 − 𝑎6]𝑒
−𝑖

2𝜋
4 + {[𝑎1 − 𝑎5] + [𝑎3 − 𝑎7]𝑒

−𝑖
2𝜋
4 } 𝑒−𝑖

2𝜋
8

[𝑎0 + 𝑎4] − [𝑎2 + 𝑎6] + {[𝑎1 + 𝑎5] − [𝑎3 + 𝑎7]}𝑒
−𝑖

2𝜋
4

[𝑎0 − 𝑎4] − [𝑎2 − 𝑎6]𝑒
−𝑖

2𝜋
4 + {[𝑎1 − 𝑎5] − [𝑎3 − 𝑎7]𝑒

−𝑖
2𝜋
4 } 𝑒−𝑖

2𝜋
4

[𝑎0 + 𝑎4] + [𝑎2 + 𝑎6] − {[𝑎1 + 𝑎5] + [𝑎3 + 𝑎7]}

[𝑎0 − 𝑎4] + [𝑎2 − 𝑎6]𝑒
−𝑖

2𝜋
4 − {[𝑎1 − 𝑎5] + [𝑎3 − 𝑎7]𝑒

−𝑖
2𝜋
4 } 𝑒−𝑖

2𝜋
8

[𝑎0 − 𝑎4] − [𝑎2 − 𝑎6] − {[𝑎1 − 𝑎5] − [𝑎3 − 𝑎7]}𝑒
−𝑖

2𝜋
4

[𝑎0 − 𝑎4] − [𝑎2 − 𝑎6]𝑒
−𝑖

2𝜋
4 − {[𝑎1 − 𝑎5] − [𝑎3 − 𝑎7]𝑒

−𝑖
2𝜋
4 } 𝑒−𝑖

2𝜋
4
]
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

Let 𝑤𝑘 = 𝑒
−2𝜋𝑖

𝑘 .  Then  

𝑤8
0 = 1, 𝑤8

1 = 𝑒−
2𝜋𝑖
8 , 𝑤8

2 = 𝑒−
2𝜋𝑖
8

(2)
, 𝑤8

3 = 𝑒−
2𝜋𝑖
8

(3)
 

𝑤4
0 = 1, 𝑤4

1 = 𝑒
−2𝜋𝑖

4  
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𝑤2
0 = 1. 

Let 𝑐𝑒𝑒 , 𝑐𝑒𝑜, 𝑐𝑜𝑒, and 𝑐𝑜𝑜 be defined as 

𝑐𝑒𝑒 = [
𝑎0 + 𝑎4𝑤2

0

𝑎0 − 𝑎4𝑤2
0],   𝑐𝑒𝑜 = [

𝑎2 + 𝑎6𝑤2
0

𝑎2 − 𝑎6𝑤2
0],   𝑐𝑜𝑒 = [

𝑎1 + 𝑎5𝑤2
0

𝑎1 − 𝑎5𝑤2
0],   𝑐𝑜𝑜 = [

𝑎3 + 𝑎7𝑤2
0

𝑎3 − 𝑎7𝑤2
0] . 

Then we can calculate 𝑐𝑒 and 𝑐𝑜 

𝑐𝑒 = [
𝑐𝑒𝑒 + 𝑤4 ∙ 𝑐𝑒𝑜

𝑐𝑒𝑒 − 𝑤4 ∙ 𝑐𝑒𝑜
] 

=

[
 
 
 
 
𝑎0 + 𝑤2

0𝑎4 + 𝑤4
0(𝑎2 + 𝑤2

0𝑎6)

𝑎0 − 𝑤2
0𝑎4 + 𝑤4

0(𝑎2 − 𝑤2
0𝑎6)

𝑎0 + 𝑤2
0𝑎4 − 𝑤4

0(𝑎2 + 𝑤2
0𝑎6)

𝑎0 − 𝑤2
0𝑎4 − 𝑤4

0(𝑎2 − 𝑤2
0𝑎6)]

 
 
 
 

 

𝑐𝑜 = [
𝑐𝑜𝑒 + 𝑤4 ∙ 𝑐𝑜𝑜

𝑐𝑜𝑒 − 𝑤4 ∙ 𝑐𝑜𝑜
] 

=

[
 
 
 
 
𝑎1 + 𝑤2

0𝑎3 + 𝑤4
0(𝑎3 + 𝑤2

0𝑎7)

𝑎1 − 𝑤2
0𝑎3 + 𝑤4

0(𝑎3 − 𝑤2
0𝑎7)

𝑎1 + 𝑤2
0𝑎3 − 𝑤4

0(𝑎3 + 𝑤2
0𝑎7)

𝑎1 − 𝑤2
0𝑎3 − 𝑤4

0(𝑎3 − 𝑤2
0𝑎7)]

 
 
 
 

. 

From this we can calculate c as  

𝑐 = [
𝑐𝑒 + 𝑤8 ∙ 𝑐𝑜

𝑐𝑒 − 𝑤8 ∙ 𝑐𝑜
] = [𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7]

𝑇 . 

Hence we can see that  

𝑐 =

[
 
 
 
 
 
 
 
 
 
𝑎0 + 𝑤2

0𝑎4 + 𝑤4
0(𝑎2 + 𝑤2

0𝑎6) + 𝑤8
0[𝑎1 + 𝑤2

0𝑎5 + 𝑤4
0(𝑎3 + 𝑤2

0𝑎7)]

𝑎0 − 𝑤2
0𝑎4 + 𝑤4

1(𝑎2 − 𝑤2
0𝑎6) + 𝑤8

1[𝑎1 − 𝑤2
0𝑎5 + 𝑤4

1(𝑎3 − 𝑤2
0𝑎7)]

𝑎0 + 𝑤2
0𝑎4 − 𝑤4

0(𝑎2 + 𝑤2
0𝑎6) + 𝑤8

2[𝑎1 + 𝑤2
0𝑎5 − 𝑤4

0(𝑎3 + 𝑤2
0𝑎7)]

𝑎0 − 𝑤2
0𝑎4 − 𝑤4

1(𝑎2 − 𝑤2
0𝑎6) + 𝑤8

3[𝑎1 − 𝑤2
0𝑎5 − 𝑤4

1(𝑎3 − 𝑤2
0𝑎7)]

𝑎0 + 𝑤2
0𝑎4 + 𝑤4

0(𝑎2 + 𝑤2
0𝑎6) − 𝑤8

0[𝑎1 + 𝑤2
0𝑎5 + 𝑤4

0(𝑎3 + 𝑤2
0𝑎7)]

𝑎0 − 𝑤2
0𝑎4 + 𝑤4

1(𝑎2 − 𝑤2
0𝑎6) − 𝑤8

1[𝑎1 − 𝑤2
0𝑎5 + 𝑤4

1(𝑎3 − 𝑤2
0𝑎7)]

𝑎0 + 𝑤2
0𝑎4 − 𝑤4

0(𝑎2 + 𝑤2
0𝑎6) − 𝑤8

2[𝑎1 + 𝑤2
0𝑎5 − 𝑤4

0(𝑎3 + 𝑤2
0𝑎7)]

𝑎0 − 𝑤2
0𝑎4 − 𝑤4

1(𝑎2 − 𝑤2
0𝑎6) − 𝑤8

3[𝑎1 − 𝑤2
0𝑎5 − 𝑤4

1(𝑎3 − 𝑤2
0𝑎7)]]

 
 
 
 
 
 
 
 
 

. 

This is an example of the fast Fourier transform.  Notice that the discrete Fourier 

transform has 120 calculations while the fast Fourier transform only has 36 calculations.  
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As the size of the transformed matrix increases, so does the benefit of using the fast 

Fourier transform over the discrete Fourier transform.  As we can see from the example, 

the fast Fourier transform has a computational advantage over the discrete Fourier 

transform.   

Section 3.12 Windowed Short-Time Fourier Transforms 

In many applications of Fourier transforms, we want to know the information 

about the frequency and the time.  This is why a windowed short-time Fourier transform 

is needed.  These Fourier transforms are similar to Fourier transforms discussed in 

Section 3.4.  The only difference is that the interval in which they are studied is reduced.  

Refer to [14] to find more on this subject. 

We want to obtain information about the frequency and the time.  However, since 

the Fourier transform requires the entire set of data, we cannot obtain both of these at an 

instant.  Thus we want our data to be contained in a certain window.   

To start the windowed short-time Fourier transform (STFT), we will segment the 

signal into smaller parts called windows.  Let 𝑔(𝑢) be a window if it is a function that 

dissipates outside of a finite interval −𝑇 ≤ 𝑢 ≤ 0.  Note that 𝑔(𝑢) can be a complex-

valued function.  We also define 𝑓𝑡(𝑢) as 

𝑓𝑡(𝑢) ≡ �̅�(𝑢 − 𝑡)𝑓(𝑢). 

We see that the support of the function, i.e. the interval over which the function is 

nonzero, is [𝑡 − 𝑇, 𝑡].  That implies that f depends only on the values of  𝑓(𝑢) on the 

interval 𝑡 − 𝑇 ≤ 𝑢 ≤ 𝑡.  

From here we define the windowed short-time Fourier transform as follows: 

𝑓(𝜔, 𝑡) = ∫ 𝑒−2𝜋𝑖𝜔𝑢𝑓𝑡(𝑢)𝑑𝑢
∞

−∞

= ∫ 𝑒−2𝜋𝑖𝜔𝑢�̅�(𝑢 − 𝑡)𝑓(𝑢)𝑑𝑢
∞

−∞

. 
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We also know that in the case when 𝑔(𝑢) = 1, then this becomes the ordinary 

Fourier transform.   

Even though the STFT gives the information of both time and frequency, we can 

see it has to use a fixed window length.   
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Chapter 4 Introducing Filters and Wavelet 

Transformations 

In this chapter we will explain the connection between convolution and matrix 

multiplication, focus on how to construct Haar and Daubechies filters, and Wavelet 

Packet Decomposition.  An introduction to continuous transforms and a comparison 

between Fourier and wavelet transforms are also introduced.  These ideas are intertwined 

with complex variables and Fourier transforms.  The information in this chapter is 

derived from [6].   

Section 4.1 An Introduction to Filters 

We use the ideas of complex variables and linear algebra to build what are known 

as highpass and lowpass filters.  In general, there are a few different obstacles that need 

to be addressed when building wavelet filters, such as orthogonality and invertibility.   

To begin, we will start by defining a filter:  To filter a signal x through a filter h 

we compute y by 

𝒚 = 𝒉 ∗ 𝒙. 

That is,  

𝑦𝑛 = ∑ ℎ𝑘𝑥𝑛−𝑘

∞

𝑘=−∞

. 

It should be noted that the way we build our filter h affects how x is influenced, and vice 

versa.  A basic example of a filter is an averaging filter.  Let 

𝒙 = (… , 𝑥−2, 𝑥−1, 𝑥0, 𝑥1, 𝑥2, … ) 

be a sequence of numbers.  Let  
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𝒉 = (ℎ0, ℎ1) = (
1

2
,
1

2
).                                                (4.1.1) 

Then   

𝒚 = 𝒉 ∗ 𝒙 

with 

𝑦𝑛 =
𝑥𝑛 + 𝑥𝑛−1

2
. 

Then h is an averaging filter, which is sometimes also called a Haar filter.  Now we will 

define some special types of filters that have certain attributes.   

One special kind of filter is known as a causal filter.  If h is a filter and ℎ𝑘 = 0 for 

all 𝑘 < 0, then h is a causal filter.  The averaging filter is a causal filter.   

A second kind of special filter is a type of causal filter known as a finite impulse 

response (FIR) filter.  To define a FIR filter h, we start by letting h be a causal filter and 

assuming that L is a positive integer.  If ℎ𝑘 = 0 for all 𝑘 > 𝐿 where ℎ0 ≠ 0 and ℎ𝐿 ≠ 0, 

then h is a FIR filter and h can be written as 

𝒉 = (ℎ0, ℎ1, … , ℎ𝐿). 

There are two kinds of FIR filters that will be discussed here, a lowpass filter and a 

highpass filter.   

Given a filter 𝒉 = (ℎ0, … , ℎ𝐿), consider the Fourier series 

𝐻(𝜔) = ∑ ℎ𝑘𝑒𝑖𝑘𝜔

𝐿

𝑘=0

. 

We call h a lowpass filter if we obtain the following properties: 

|𝐻(0)| = 1, |𝐻(𝜋)| = 0.                                              (4.1.2) 
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When a lowpass filter is applied on a signal, the lower end of the frequency is preserved 

while the upper end of the wave is annihilated.   

It is easy to verify that |𝐻(0)| = 1 if and only if  

∑ ℎ𝑘

𝐿

𝑘=0

= ±1.                                                               (4.1.3) 

Similarly, |𝐻(𝜋)| = 0 if and only if 

∑(−1)𝑘ℎ𝑘

𝐿

𝑘=0

= 0.                                                            (4.1.4) 

The filter in equation (4.1.1) is a lowpass filter.  To see this we can consider the 

properties in equations (4.1.2): 

|𝐻(0)| =
1

2
+

1

2
= 1, 

|𝐻(𝜋)| =
1

2
−

1

2
= 0. 

A highpass filter will preserve the high frequency of a signal and annihilate the lower 

frequency.   

Given a filter 𝒈 = (𝑔0, … , 𝑔𝐿), consider the Fourier series 

𝐺(𝜔) = ∑ 𝑔𝑘𝑒
𝑖𝑘𝜔

𝐿

𝑘=0

. 

Then g is a highpass filter if the filter g  has the following properties: 

|𝐺(0)| = 0, |𝐺(𝜋)| = 1.                                               (4.1.5) 

 

Similar to the lowpass filter, a consequence of these properties is that |𝐺(0)| = 0 

if and only if  
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∑ 𝑔𝑘

𝐿

𝑘=0

= 0                                                                      (4.1.6) 

and |𝐺(𝜋)| = 1 if and only if 

∑(−1)𝑘𝑔𝑘 = ±1

𝐿

𝑘=0

.                                                       (4.1.7) 

An example of a highpass filter is  

𝒈 = (𝑔0, 𝑔1) = (
1

2
,−

1

2
),                                                (4.1.8) 

because 

|𝐺(0)| =
1

2
−

1

2
= 0, 

|𝐺(𝜋)| =
1

2
+

1

2
= 1. 

As has been shown, wavelet filters can be expressed as a string of numbers.  In 

the next section, we will see the convolution can be equivalently represented as a matrix 

multiplication.  Hence, a filter will correspond to the rows in the matrix.   

Section 4.2 Expressing Convolution as Matrix Multiplication 

In Section 4.1 we showed that to apply a filter we only need to convolve the 

signal with it.  However, there are ways in which we can represent the convolution as a 

matrix product.  That is, we are attempting to rewrite 𝒚 = 𝒉 ∗ 𝒙, where h is a filter and x 

is a signal, as 𝒚 = 𝐻𝒙, where H is an infinite matrix.   

To begin we will only consider FIR filters.  Let ℎ = (ℎ0, … , ℎ𝐿).  Recall that a 

convolution is a linear operator.  If we look at the definition of convolution (Section 3.6), 

we see that if x is the signal, h is the filter, and y is the result, then  
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𝑦𝑛 = ∑ ℎ𝑘𝑥𝑛−𝑘

𝐿

𝑘=0

. 

From this we can recognize 𝑦𝑛 as the dot product of the nth row of matrix H and the 

vector x.  Let us consider the entry 𝑦0, which is computed as 

𝑦0 = ∑ ℎ𝑘𝑥−𝑘

𝐿

𝑘=0

. 

Similarly,  

𝑦1 = ∑ ℎ𝑘𝑥1−𝑘

𝐿

𝑘=0

. 

In other words: 

[

⋮
𝑦0

𝑦1

⋮

] = [

⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋯ 0 ℎ𝐿 ⋯ ℎ2 ℎ1 ℎ0 0 ⋯
⋯ 0 0 ℎ𝐿 ⋯ ℎ2 ℎ1 ℎ0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

]

[
 
 
 
 
 
 
 

⋮
𝑥−𝐿

⋮
𝑥−2

𝑥−1

𝑥0

𝑥1

⋮ ]
 
 
 
 
 
 
 

 

If we continue the pattern and stack the rows of h, we can build a matrix.  That is  

𝐻 =

[
 
 
 
 
 
 
⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱⋱
⋯ ℎ𝐿 ℎ𝐿−1 ⋯ ℎ0 0 0 ⋯
⋯ 0 ℎ𝐿 ⋯ ℎ1 ℎ0 0 ⋯
⋯ ⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋯
⋯ 0 0 ⋯ 0 ℎ𝐿 ℎ𝐿−1 ⋯
⋯ 0 0 ⋯ 0 0 ℎ𝐿 ⋯
⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ]

 
 
 
 
 
 

 

with ℎ0 down the main diagonal.  Notice that Hx is equivalent to 𝒉 ∗ 𝒙.   
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Let us consider, for example, the filter in (4.1.1).  This matrix would look like 

𝐻 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯
1

2

1

2
0 0 0 0 ⋯

⋯ 0
1

2

1

2
0 0 0 ⋯

⋯ 0 0
1

2

1

2
0 0 ⋯

⋯ 0 0 0
1

2

1

2
0 ⋯

⋯ 0 0 0 0
1

2

1

2
⋯

⋯ 0 0 0 0 0
1

2
⋯

⋯ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ]
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

As can be seen, this matrix will average the two consecutive values of the vector by 

which it is multiplied.  Now consider the filter in equality (4.1.8).  If we were to put this 

in a matrix, it would be represented as 

𝐺 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ −
1

2

1

2
0 0 0 0 ⋯

⋯ 0 −
1

2

1

2
0 0 0 ⋯

⋯ 0 0 −
1

2

1

2
0 0 ⋯

⋯ 0 0 0 −
1

2

1

2
0 ⋯

⋯ 0 0 0 0 −
1

2

1

2
⋯

⋯ 0 0 0 0 0 −
1

2
⋯

⋯ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱]
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

Matrix H is known as the average matrix, while matrix G is known as the difference 

matrix.  By combining these two matrices together, we get  

[
𝐻
𝐺

] 𝒙 = [
𝐻𝒙
𝐺𝒙

] = [
𝒚
𝒛
],                                                    (4.2.1) 

where y is the average of two consecutive terms and z is the half difference of two 
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consecutive terms.  Notice that H is contructed from a lowpass filter and G is constructed 

from a highpass filter.  Having these two matrices combined will help us when trying to 

recover the original signal.   

In theory, this matrix should be an infinite dimensional matrix.  However, this is 

not very practical.  Since our input signals are finite, we must truncate this matrix and do 

what is known as downsampling.   

First we consider (4.2.1) where 𝒙 = (… , 𝑥−2, 𝑥−1, 𝑥0, 𝑥1, 𝑥2, … ).  Then 

[
𝐻
𝐺

]

[
 
 
 
 
 
 

⋮
𝑥−2

𝑥−1

𝑥0

𝑥1

𝑥2

⋮ ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 

⋮
𝑦−2

𝑦−1

𝑦0

𝑦1

𝑦2

⋮
𝑧−2

𝑧−1

𝑧0

𝑧1

𝑧2

⋮ ]
 
 
 
 
 
 
 
 
 
 
 
 

, 

where y is the average filter and z is the difference filter.  That is 

𝑦0 =
𝑥1 + 𝑥0

2
 

𝑦1 =
𝑥2 + 𝑥1

2
 

⋮ 

𝑧0 =
𝑥1 − 𝑥0

2
 

𝑧1 =
𝑥2 − 𝑥1

2
 

⋮ 

We are building a matrix that has two different filters that are related.  The top portion of 
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the result, y, gives a rough approximation of x and the bottom portion, z, tells us how far 

the value of x is from the approximation.  This means that given the output vector, we 

can reconstruct the original input vector.  For example: 

𝑥0 =
𝑥1 + 𝑥0

2
−

𝑥1 − 𝑥0

2
= 𝑦1 − 𝑧1 

𝑥1 =
𝑥1 + 𝑥0

2
+

𝑥1 − 𝑥0

2
= 𝑦1 + 𝑧1 

𝑥2 =
𝑥3 + 𝑥2

2
−

𝑥3 − 𝑥2

2
= 𝑦3 − 𝑧3 

𝑥3 =
𝑥3 + 𝑥2

2
+

𝑥3 − 𝑥2

2
= 𝑦3 + 𝑧3. 

Note that 𝑦0, 𝑧0, 𝑦2, and 𝑧2 were not used.  Hence we only need every other element of 

the output vector (the right-hand side) of (4.2.1).  Thus we can shrink, or downsample, 

the matrix on the left-hand side of (4.2.1) to 

𝐻 =

[
 
 
 
 
 
 
 
⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯
1

2

1

2
0 0 0 0 ⋯

⋯ 0 0
1

2

1

2
0 0 ⋯

⋯ 0 0 0 0
1

2

1

2
⋯

⋯ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ]
 
 
 
 
 
 
 

 

and 

𝐺 =

[
 
 
 
 
 
 
 
⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ −
1

2

1

2
0 0 0 0 ⋯

⋯ 0 0 −
1

2

1

2
0 0 ⋯

⋯ 0 0 0 0 −
1

2

1

2
⋯

⋯ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱]
 
 
 
 
 
 
 

. 

Hence our new matrix [
𝐻
𝐺

] is 
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[
𝐻
𝐺

] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯
1

2

1

2
0 0 0 0 0 0 ⋯

⋯ 0 0
1

2

1

2
0 0 0 0 ⋯

⋯ 0 0 0 0
1

2

1

2
0 0 ⋯

⋯ 0 0 0 0 0 0
1

2

1

2
⋯

⋯ −
1

2

1

2
0 0 0 0 0 0 ⋯

⋯ 0 0 −
1

2

1

2
0 0 0 0 ⋯

⋯ 0 0 0 0 −
1

2

1

2
0 0 ⋯

⋯ 0 0 0 0 0 0 −
1

2

1

2
⋯

⋯ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.                        (4.2.2) 

An important factor of this matrix is that the original input vector can easily be retrieved 

from the output vector.  We will denote [
𝐻
𝐺

] by �̃�𝑁.   

To finish off this matrix, we need to add one more property to it.  A key element 

is that our matrix needs to be orthogonal.   

Section 4.3 Orthogonality 

Now that we have seen how a lowpass and a highpass filter can form a wavelet 

matrix, we will discuss how to characterize the orthogonality of the filters in this section.   

A matrix U is an orthogonal matrix if 𝑈𝑈𝑇 = 𝐼, where I is the identity matrix.   

To start, note that 

�̃�𝑁�̃�𝑁
𝑇 =

1

2
𝐼𝑁 , 

where 𝐼𝑁 is the 𝑁 × 𝑁 identity matrix.  In order to make �̃�𝑁 orthogonal, we must 

multiply �̃�𝑁 by √2.  We label this matrix 𝑊𝑁 and it is equal to 

𝑊𝑁 = √2�̃�𝑁 .                                                             (4.3.1) 
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This specific wavelet transform is known as the Haar wavelet transform and is a filter of 

length 2.  A useful property is that 

𝑊𝑁
𝑇 = 𝑊𝑁

−1.                                                                (4.3.2) 

Generally, if we use two even length filters 𝒉 = (ℎ0, … , ℎ𝐿) and 𝒈 = (𝑔0, … , 𝑔𝐿) 

to form a square matrix W, the orthogonality requirement on W will give 

𝑊𝑊𝑇 = 𝐼, 

where 𝑊 = [
𝐻
𝐺

].  Hence we see that  

[
𝐻
𝐺

] [𝐻𝑇 𝐺𝑇] = [𝐻𝐻𝑇 𝐻𝐺𝑇

𝐺𝐻𝑇 𝐺𝐺𝑇] = 𝐼. 

Thus 

𝐻𝐻𝑇 = 𝐺𝐺𝑇 = 𝐼, 𝐺𝐻𝑇 = 𝐻𝐺𝑇 = 𝟎, 

where I is the identity matrix and 0 is the zero matrix. 𝐻𝐻𝑇 = 𝐼 and 𝐻𝐺𝑇 = 0 imply the 

following properties: 

∑ ℎ𝑘
2

𝐿

𝑘=0

= 1,                                                                  (4.3.3) 

∑ ℎ𝑘ℎ𝑘−2𝑚 = 0, 𝑚 = 1, 2, … ,
𝐿 − 1

2

𝐿

𝑘=2𝑚

                               (4.3.4) 

Note that if we define 𝑔𝑘 as  

𝑔𝑘 = (−1)𝑘ℎ𝐿−𝑘,                                                         (4.3.5) 

it is easy to verify that 𝐺𝐺𝑇 = 𝐼,𝐻𝐺𝑇 = 0, and 𝐺𝐻𝑇 = 0.  g is also a highpass filter when 

h is a lowpass filter.   

To see an example of the Haar wavelet transform, consider the function  

𝑓(𝑡) = cos(2𝜋𝑡).                                                         (4.3.6) 

If we plot 200 discrete points of this wave, it looks like Figure 4.3.1. 



 47 

 

 

                

                        Figure 4.3.1: 𝑓(𝑡) = cos(2𝜋𝑡)           Figure 4.3.2: The Haar transform 

When we apply the Haar wavelet transform we obtain a graph that looks like Figure 

4.3.2.   

               As can be seen, the first half of the Figure 4.3.2 maintains the shape of the 

original function, while the second half of the graph is the difference.  From this 

information, the original image can be reconstructed.  The transformed data also provides 

us the ability to send the same data but with less entropy required.   

It should be noted that this wavelet transform is built for a discrete case.  In 

Section 4.5 the idea of the continuous case will be discussed.   

Section 4.4 Daubechies Wavelet Transformations 

Daubechies Wavelet Transformations are named for the groundbreaking 

mathematician, Ingrid Daubechies, who in her 1988 paper [5] discussed a special family 

of orthogonal lowpass filters.  Daubechies filters are typically used in applications.  In 

our work, we used a Daubechies filter of length 6 (D6).  For the sake of simplifying the 

computation, we will explain the process of building a Daubechies filter of length 4 (D4).  

The D6 filter is obtained in a similar manner.  The method presented here will follow the 

method in [6].   
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Let 𝒉 = (ℎ0, ℎ1, ℎ2, ℎ3) be a lowpass filter and 𝒈 = (𝑔0, 𝑔1, 𝑔2, 𝑔3) be a highpass 

filter.  Similar to the design of matrix 4.2.1, h and g can form a square matrix 𝑊𝑁 where 

N is even.  An example of 𝑊8 using h and g is 

𝑊8 =

[
 
 
 
 
 
 
 
ℎ3 ℎ2 ℎ1 ℎ0 0 0 0 0
0 0 ℎ3 ℎ2 ℎ1 ℎ0 0 0
0 0 0 0 ℎ3 ℎ2 ℎ1 ℎ0

ℎ1 ℎ0 0 0 0 0 ℎ3 ℎ2

𝑔3 𝑔2 𝑔1 𝑔0 0 0 0 0
0 0 𝑔3 𝑔2 𝑔1 𝑔0 0 0
0 0 0 0 𝑔3 𝑔2 𝑔1 𝑔0

𝑔1 𝑔0 0 0 0 0 𝑔3 𝑔2]
 
 
 
 
 
 
 

. 

In order to simplify things, we want to replace the terms in g with terms of h by 

using the expression 𝑔𝑘 = (−1)𝑘ℎ3−𝑘.  The above matrix can be written as 

𝑊8 =

[
 
 
 
 
 
 
 
 

ℎ3 ℎ2 ℎ1 ℎ0 0 0 0 0
0 0 ℎ3 ℎ2 ℎ1 ℎ0 0 0
0 0 0 0 ℎ3 ℎ2 ℎ1 ℎ0

ℎ1 ℎ0 0 0 0 0 ℎ3 ℎ2

−ℎ0 ℎ1 −ℎ2 ℎ3 0 0 0 0
0 0 −ℎ0 ℎ1 −ℎ2 ℎ3 0 0
0 0 0 0 −ℎ0 ℎ1 −ℎ2 ℎ3

−ℎ2 ℎ3 0 0 0 0 −ℎ0 ℎ1]
 
 
 
 
 
 
 
 

. 

We would like 𝑊8 to be an orthogonal matrix.  That is 

𝑊8𝑊8
𝑇 = 𝐼8. 

Thus 

𝐻𝐻𝑇 = 𝐼4, 

which implies that 

ℎ0
2 + ℎ1

2 + ℎ2
2 + ℎ3

2 = 1,                                          (4.4.1) 

ℎ0ℎ2 + ℎ1ℎ3 = 0.                                                (4.4.2) 

We can also use the condition that h is a lowpass filter to give us more parameters.  We 

can use equation (4.1.2) for these parameters.  However, in order to maintain 
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orthogonality, we need to adjust the equations.  Thus in order to maintain orthogonality 

we need to adjust (4.1.2).  Specifically we need to set 𝐻(0) equal to √2.  To show this, 

we start by squaring the sum ℎ0 + ⋯+ ℎ3 

(∑ ℎ𝑘

3

𝑘=0

)

2

= ℎ0
2 + ℎ1

2 + ℎ2
2 + ℎ3

2 + 2(ℎ0ℎ1 + ℎ0ℎ2 + ℎ0ℎ3 + ℎ1ℎ2 + ℎ1ℎ3 + ℎ2ℎ3). 

However, from equation (4.4.1) we see that 

(∑ ℎ𝑘

3

𝑘=0

)

2

= 1 + 2(ℎ0ℎ1 + ℎ0ℎ2 + ℎ0ℎ3 + ℎ1ℎ2 + ℎ1ℎ3 + ℎ2ℎ3). 

We can also use equation (4.4.2) to see that ℎ0ℎ2 + ℎ1ℎ3 = 0.  Hence 

(∑ ℎ𝑘

3

𝑘=0

)

2

= 1 + 2(ℎ0ℎ1 + ℎ0ℎ3 + ℎ1ℎ2 + ℎ2ℎ3).                         (4.4.3) 

We also know for equation (4.1.4) that  

ℎ0 − ℎ1 + ℎ2 − ℎ3 = 0.                                                     (4.4.4) 

Squaring (4.4.4) gives  

ℎ0
2 + ℎ1

2 + ℎ2
2 + ℎ3

2 − 2(ℎ0ℎ1 − ℎ0ℎ2 + ℎ0ℎ3 + ℎ1ℎ2 − ℎ1ℎ3 + ℎ2ℎ3) = 0.      (4.4.5) 

Using equations (4.4.1) and (4.4.2) again, we see that 

1 − 2(ℎ0ℎ1 + ℎ0ℎ3 + ℎ1ℎ2 + ℎ2ℎ3) = 0.                             (4.4.6) 

If we add equation (4.4.3) and equation (4.4.6) we get 

(∑ ℎ𝑘

3

𝑘=0

)

2

= 2, 

which implies that 

∑ ℎ𝑘

3

𝑘=0

= √2. 
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Using the fact that ℎ0ℎ2 + ℎ1ℎ3 = 0, we can say that the vectors [ℎ0, ℎ1]
𝑇 and [ℎ2, ℎ3]

𝑇 

are orthogonal and thus 

[ℎ2, ℎ3]
𝑇 = 𝑐[−ℎ1, ℎ0]

𝑇 .                                                (4.4.7) 

where c is an arbitrary nonzero real number.  (4.4.7) gives us ℎ2 = −𝑐ℎ1 and ℎ3 = 𝑐ℎ0.  

If we use ℎ0
2 + ℎ1

2 + ℎ2
2 + ℎ3

2 = 1 and ℎ2 = −𝑐ℎ1 and ℎ3 = 𝑐ℎ0, we see that  

ℎ0
2 + ℎ1

2 =
1

1 + 𝑐2
.                                                      (4.4.8) 

Also, recall 

ℎ0 − ℎ1 + ℎ2 − ℎ3 = 0. 

By substituting ℎ2 and ℎ3 we get 

ℎ0 − ℎ1 − 𝑐ℎ1 − 𝑐ℎ0 = 0. 

Combining like terms we see that 

ℎ0(1 − 𝑐) − ℎ1(1 + 𝑐) = 0. 

Solving down for ℎ1 we get that 

ℎ1 = (
1 − 𝑐

1 + 𝑐
) ℎ0,                                                         (4.4.9) 

where 𝑐 ≠ −1.  Combining (4.4.9) with (4.4.8) we get 

ℎ0
2 + (

1 − 𝑐

1 + 𝑐
)
2

ℎ0
2 =

1

1 + 𝑐2
. 

By combining like terms we see that 

ℎ0
2 (1 + (

1 − 𝑐

1 + 𝑐
)
2

) =
1

1 + 𝑐2
. 

In simplifying we get 

2ℎ0
2 (

1 + 𝑐2

(1 + 𝑐)2
) =

1

1 + 𝑐2
. 
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In solving for ℎ0 in terms of the constant c we get 

ℎ0 = ±
√2(1 + 𝑐)

2(1 + 𝑐2)
.                                                        (4.4.10) 

Note that we have two different values for ℎ0.  At this point we are able to arbitrarily pick 

either the positive or negative root.  For now, we will choose the positive root.  Using 

equation (4.4.9) we find that  

ℎ1 = (
1 − 𝑐

1 + 𝑐
) (

√2(1 + 𝑐)

2(1 + 𝑐2)
) . 

By combining like terms we find that 

ℎ1 =
√2(1 − 𝑐)

2(1 + 𝑐2)
.                                                        (4.4.11) 

Using equation (4.4.7) we can find ℎ2 and ℎ3: 

ℎ2 = −
𝑐√2(1 − 𝑐)

2(1 + 𝑐2)
.                                                     (4.4.12) 

ℎ3 =
𝑐√2(1 + 𝑐)

2(1 + 𝑐2)
.                                                       (4.4.13) 

Before we can finish finding the values of the filter h, we need to add an additional 

smoothness condition.  We ask that 

𝐻′(𝜋) = 0.                                                               (4.4.14) 

Differentiating 

𝐻(𝜔) = ℎ0 + ℎ1𝑒
𝑖𝜔 + ℎ2𝑒

2𝑖𝜔 + ℎ3𝑒
3𝑖𝜔 

gives 

𝐻′(𝜔) = 𝑖ℎ1𝑒
𝑖𝜔 + 2𝑖ℎ2𝑒

2𝑖𝜔 + 3𝑖ℎ3𝑒
3𝑖𝜔 . 

Hence 𝐻′(𝜋) = 0 gives us 

−𝑖ℎ1 + 2𝑖ℎ2 − 3𝑖ℎ3 = −𝑖(ℎ1 − 2ℎ2 + 3ℎ3) = 0, 
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which can be simplified to 

ℎ1 − 2ℎ2 + 3ℎ3 = 0.                                                   (4.4.15) 

Equations (4.4.15) and (4.4.7) give  

ℎ1 − 2ℎ2 + 3ℎ3 = ℎ1 + 2𝑐ℎ1 + 3𝑐ℎ0 = (1 + 2𝑐)ℎ1 + 3𝑐ℎ0 = 0. 

Hence 

ℎ1 =
−3𝑐

1 + 2𝑐
ℎ0. 

Comparing with equation (4.4.7) we can see that  

1 − 𝑐

1 + 𝑐
=

−3𝑐

1 + 2𝑐
. 

Now we can finally solve for c: 

𝑐 = −2 ± √3.                                                     (4.4.16) 

Once again, we get to select which value of c we use.  If we use the value 𝑐 = −2 + √3, 

we can see that  

ℎ1 = (
1 − 𝑐

1 + 𝑐
)ℎ0. 

Hence 

ℎ1 = (
3 − √3

−1 + √3
)ℎ0 = √3h0, 

which gives  

ℎ0
2 + ℎ1

2 = ℎ0
2 + 3ℎ0

2 = 4ℎ0
2. 

Now (4.4.8) and (4.4.16) give us 

4ℎ0
2 =

2 + √3

4
,                                                                       

ℎ0 = ±
1 + √3

4√2
.                                                   (4.4.17) 
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We will assume the positive value of ℎ0.  Using this, we can find the remaining values in 

the filter h: 

ℎ1 =
3 + √3

4√2
, ℎ2 =

3 − √3

4√2
, ℎ3 =

1 − √3

4√2
.                     (4.4.18) 

Thus our filter h is 

𝒉 = (
1 + √3

4√2
,
3 + √3

4√2
,
3 − √3

4√2
,
1 − √3

4√2
).                              (4.4.19) 

This set is known as the Daubechies four-term orthogonal filter.  This means that our 

matrix is 

1

4√2

[
 
 
 
 
 
 
 

𝐴 𝐵 𝐶 𝐷 0 0 0 0
0 0 𝐴 𝐵 𝐶 𝐷 0 0
0 0 0 0 𝐴 𝐵 𝐶 𝐷
𝐶 𝐷 0 0 0 0 𝐴 𝐵

−𝐷 𝐶 −𝐵 𝐴 0 0 0 0
0 0 −𝐷 𝐶 −𝐵 𝐴 0 0
0 0 0 0 −𝐷 𝐶 −𝐵 𝐴

−𝐵 𝐴 0 0 0 0 −𝐷 𝐶]
 
 
 
 
 
 
 

, 

where 

𝐴 = 1 − √3, B = 3 − √3, C = 3 + √3, D = 1 + √3. 

Using this same process, we can find any even-length filter that fits these criteria.  

However, the longer the filter becomes, the more difficult the solutions are to find.  More 

discussion on filters and convolution can be found in [6].   

Section 4.5 The Integral Wavelet Transform 

We start by defining the continuous wavelet transform.  The idea of this process is 

to transform a continuous function into a function of two continuous variables that is 

highly redundant.  This helps us interpret time-frequency analysis.  We define the 

continuous wavelet transform of a continuous, square-integrable function, 𝑓(𝑥), relative 
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to a real-valued wavelet, 𝜓(𝑥), as 

𝑊𝜓(𝑠, 𝜏) = ∫ 𝑓(𝑥)
∞

−∞

𝜓𝑠,𝜏(𝑥)𝑑𝑥, 

where 

𝜓𝑠,𝜏(𝑥) =
1

√𝑠
𝜓 (

𝑥 − 𝜏

𝑠
) , 

s is the scale parameter, and τ is the translation parameter.   

We define the inverse continuous wavelet transform 𝑓(𝑥) 

𝑓(𝑥) =
1

𝐶𝜓
∫ ∫ 𝑊𝜓(𝑠, 𝜏)

𝜓𝑠,𝜏(𝑥)

𝑠2
𝑑𝜏𝑑𝑠

∞

−∞

∞

0

. 

Here,  

𝐶𝜓 = ∫
|𝛹(𝜇)|2

|𝜇|
𝑑𝜇

∞

−∞

, 

and 𝛹(𝜇) is the Fourier transform of 𝜓(𝑥).  These equations are reversible so long as 

𝐶𝜓 < ∞.  Roughly speaking, 1/𝑠 provides the frequency bandwidth and 𝜏 provides 

information regarding spatial/temporal localization, which are useful in many 

applications.  See [7] for more discussion on continuous wavelet transforms. 

Section 4.6 Wavelet Packet Decomposition 

The process of a Wavelet Packet Decomposition can be described as a coherent 

processing step.  Here we will follow the approach in [9].   

The Wavelet Packet Decomposition is a level-by-level transformation of a signal.  

As was discussed in Chapter 3, the transformation is from the time domain to the 

frequency domain.  Let h and g be a lowpass and a highpass filter, respectively.  Define 

𝑥 = (𝑥1, … , 𝑥𝑁) as the original signal.  If we let 𝑥ℎ denote the signal after being passed 
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through a lowpass filter h, and if we let 𝑥𝑔 denote the signal after being passed through a 

highpass filter g, then we can define 𝑥ℎ and 𝑥𝑔 as  

𝑥ℎ(𝑛) = ∑ 𝑥𝑘ℎ2𝑛−𝑘

𝑁

𝑘=1

, 𝑥𝑔(𝑛) = ∑ 𝑥𝑘𝑔2𝑛−𝑘

𝑁

𝑘=1

. 

We apply these filters recursively to the signal.  At each step or level of the 

process we create what is known as a bin vector.  Since the vectors are typically chosen 

to be powers of 2, we can continue this process until there is 1 element in each bin vector.   

To see a visual representation of this, we will start by defining x as the signal 𝒙 =

(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8).  Let h be the lowpass filter and let g be the highpass filter.  

Also define 𝑥ℎ[𝑛] as the nth component of the lowpass portion and 𝑥𝑔[𝑛] as the nth 

component of the highpass portion.  We also define 𝑥ℎℎ as h being applied to 𝑥ℎ, 𝑥𝑔ℎ as g 

being applied to 𝑥ℎ, and so on.  We continue this process as needed.  Thus our signal now 

looks like Figure 4.6.1. 

 

   

 

 

 

 

 

 

Figure 4.6.1:  A representation of the WPD process 

Section 4.7 Comparing the Fourier Transform and Wavelet Transform 

𝑥[1] 𝑥[2]  𝑥[3]  𝑥[4]  𝑥[5]  𝑥[6]  𝑥[7]  𝑥[8] 

   𝑥ℎ[1]  𝑥ℎ[2]  𝑥ℎ[3]  𝑥ℎ[4] 𝑥𝑔[1]  𝑥𝑔[2]  𝑥𝑔[3]  𝑥𝑔[4] 

𝑥ℎℎ[1]  𝑥ℎℎ[2] 𝑥𝑔ℎ[1]  𝑥𝑔ℎ[2] 𝑥ℎ𝑔[1]  𝑥ℎ𝑔[2] 𝑥𝑔𝑔[1]  𝑥𝑔𝑔[2] 

𝑥𝑔ℎℎ[1] 𝑥ℎℎℎ[1] 𝑥ℎ𝑔ℎ[1] 𝑥𝑔𝑔ℎ[1] 𝑥ℎℎ𝑔[1] 𝑥𝑔ℎ𝑔[1] 𝑥ℎ𝑔𝑔[1] 𝑥𝑔𝑔𝑔[1] 

h h 

h h h h g g g g 

g g 

g h 
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The Fourier transform and the wavelet transform have similarities and 

differences.   

To begin, if the signal being obtained is in the time domain, then it will be in the 

frequency domain after the Fourier transform has been applied.  When we graph the 

transformed signal, there is an amplitude at each frequency.  For example: if a signal was 

sent out that has a frequency of 100 Hz, then the graph would only show one spike at 100 

Hz.  It should also be noted that there will be a second amplitude, but only because of 

symmetry. 

We have already mentioned that an inverse of the Fourier transform already 

exists.  That is, we can have the raw data (in our example the time data) or the 

transformed data (the frequency data).  However, it is limited in the fact that it cannot 

produce both at the same time.  If someone wanted both time and frequency information, 

then a Fourier transform may not be the transform that he should use.  In our example the 

Fourier transform would tell us what the frequency was but not when it happened.  This 

is not a problem if the signal is stationary (that is, if the frequency exists at all times).  

However, this is not always the case.   

For example: the signal 𝑓(𝑡) = cos(2𝜋𝑡 ∙ 2) + cos(2𝜋𝑡 ∙ 20), as seen in Figure 

4.7.1, is a stationary signal and always has the frequencies of 2 Hz and 20 Hz at any 

given moment.   
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             Figure 4.7.1: The signal 𝑓(𝑡)              Figure 4.7.2: The Fourier transform of 𝑓(𝑡) 

If the Fourier transform of this were to be plotted, then there would be an amplitude at 2 

and 20, respectively, on the frequency axis as seen in Figure 4.7.2. 

Now consider the piecewise continuous signal 

𝑔(𝑡) = {
cos(2𝜋𝑡 ∙ 2) , 0 ≤ 𝑡 < 1/2

cos(2𝜋𝑡 ∙ 20) ,       1/2 ≤ 𝑡 < 1
 

with a graph that can be seen in Figure 4.7.3. 

   

                                

                 Figure 4.7.3: The signal 𝑔(𝑡)        Figure 4.7.4:  The transform of 𝑔(𝑡) 

If the Fourier transform were applied to 𝑔(𝑡), then its output would look very similar to 

the Fourier transform of 𝑓(𝑡), as can be seen in Figure 4.7.4.  However, the frequency of 

2 Hz only exists for the time 0 ≤ 𝑡 < 1/2 for 𝑔(𝑡), but it exists everywhere for 𝑓(𝑡).  
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Likewise, the frequency of 20 Hz only exists for 1/2 ≤ 𝑡 < 1, but it exists everywhere 

for 𝑓(𝑡).  Hence it would be impossible for the standard Fourier transform to decipher 

between the two different signals. 

However, a wavelet transform is capable of this.  The wavelet transformation 

provides its output in time and frequency simultaneously.  It should be noted that the 

short-time Fourier transform can partially resemble this pattern.  The graph will be in 

three dimensions with time on one axis, frequency on another, and amplitude on the last.  

Thus we can find the time, frequency, and the amplitude simultaneously.   

However, the wavelet transform also has a benefit over the short-time Fourier 

transform.  The short-time Fourier transform has a fixed resolution, while the wavelet 

transform has a variable resolution, which is why the wavelet transform is a good tool for 

multi-resolution analysis.    

Thus we can see that in signal processing, the wavelet transform has a certain 

advantage over not only the Fourier transform but also the short-time Fourier transform.  

In cases where time and frequency are needed, such as the classification of sound, the 

wavelet transform will be more beneficial.  [14] has further discussion and more 

examples on this topic.   
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Chapter 5 Machine Learning and Data Mining 

In this Chapter we will be discussing data mining and machine learning.  We will 

introduce the basic concepts in the first section.  Then we will explain the input and 

output of a learning scheme [17].  In Section 5.4 we will look at decision trees and 

Random Forest [1].  Then we will discuss combination methods and how to validate the 

data [17].   

Section 5.1 Introduction to Data Mining and Machine Learning 

Every day we try to make informed decisions based off available information.  

For example: while at lunch we might choose our meal based off price, how it tastes, how 

healthy it is, and how filling it is.  We use this information to make an informed decision.  

The more information that we have, the better decision we might be able to make. 

In data mining this process is performed by a computer.  We define data mining 

as the process of discovering patterns in data.  However, this process must be either 

automatic or semi-automatic.  We want the findings to be meaningful and to lead to a 

decision.  With the proper amount of data, we can make non-trivial predictions on a new 

set of data.   

We see that data mining involves having our computer learn and make informed 

decisions.  We define machine learning as a machine changing its behavior in a way that 

makes it perform better at a given task in the future.   

To start, we let the input be a set of data and the output will be a set of rules.  In 

this study, the input is a set of attributes attributed to bird calls.  In the beginning of the 

study we had four attributes that we used: the species of the bird; the maximum energy 

(or “the largest average energy value” [16, p 3]); the position (or “the number of the bin 
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r, in which the maximum energy was located” [16, p 3]); and the spread (or the “sum of 

the average energies of those coefficients whose energy exceeded [a] threshold value” 

[16, p 3]).  Excluding the species of the bird, the other attributes are obtained using 

wavelet transforms.  However, after collecting data, we found that the position was fairly 

consistent throughout almost all of the bird calls tested.  Thus we decided that using the 

position (as defined earlier) was unnecessary and we only used the maximum energy, the 

species, and the spread.  We use the maximum energy and the spread to determine the 

species of the bird. 

The machine learning software used in our study is known as Waikato 

Environment for Knowledge Analysis (WEKA) [8].  (The name WEKA is interesting on 

two levels because it is not only an acronym, it is the name of a flightless bird 

(Gallirallus australis) that is found in New Zealand, the same country that Waikato is 

found.)  WEKA has many applications, but for our purposes we only used it as a learning 

machine.  To use WEKA, we stored all of the data in Excel files that were saved in CSV 

format.   

When running WEKA, a graphical user interface (GUI) appears and presents the 

user with four different options: Explorer; Experimenter; KnowledgeFlow; and Simple 

CLI.  For our studies we only utilized the Explorer.  Figure 5.1.1 shows the GUI of the 

software. 
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Figure 5.1.1: WEKA Interface 

Section 5.2 Input 

Under the Explorer is where we can input our data.  In data mining, there are a 

few different kinds of input that are possible.  The basic forms that the input can be is in 

the form of concepts, instances, and attributes.  We prepared our input as instances.   

Each instance in our study is a bird call and its associated attributes.  Every 

instance in the data set must have attributes; otherwise, a relationship cannot be 

discovered.  Attributes are characterizations of instances.  For example, let a data set 

contain people and the kind of coffee they preferred out of black coffee, cappuccino, 

Americano, and decaffeinated coffee.  Each person and his/her preferred kind of coffee is 

an instance in the study.  Sometimes in data mining, the attributes may not apply to all 

instances.  If one person did not drink coffee, then he/she would not have a preferred kind 

of coffee.  Hence, the subject would not be able to correctly select between black coffee, 

cappuccino, Americano, and decaffeinated coffee.  In the coffee example we use what is 

known as a nominal value, or a value that represents a category.  In this same scenario we 

could ask people to rate three different kinds of coffee on a scale of 1 to 3, where 1 is the 

best, 2 is the second best, and 3 is the one least preferred.  Then what we have will be 

ordinal data.  For learning machines, ordinal and nominal data is typically used. 
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We used these instances to try to learn a concept.  To learn the concept, data 

mining machines have four different styles of learning that it can utilize: classification 

learning, association learning, clustering, and numeric prediction.  Classification learning 

is a learning scheme that takes a set of classified examples, and it uses this set to classify 

examples it has not seen.  Association learning tries to find any kind of association that 

exists, and not only the associations that help make predictions for a particular class 

value.  Clustering tries to group instances that belong together.  Numeric predictions give 

us a numeric quantity as opposed to a discrete class.  In our study we utilized several 

classifiers.  More on the process and results of our study will be discussed in Chapter 6. 

Classification learning is used primarily when there are distinct different options.  

For instance: if someone wanted to buy a car and their options were a truck, an SUV, and 

a sedan, then he could use classification learning to help him make his decision. 

We also call classification learning supervised learning.  This is because 

classification learning is given a training set to learn from and the training set already has 

the correct classifications.  For the car example, the training set may have information 

such as “if the person had children, then he did not purchase a truck.”  Here the outcome 

of the learning algorithm is the class that each instance belongs to.  Thus we can see that 

classification learning has specified classes.   

When there are not specified classes, association learning can be used.  A main 

difference between association learning and classification learning is that association 

learning can predict any attribute, while classification learning is only used to predict the 

class.  Association learning can also predict more than one attribute at a time.  However, 

a drawback is that association learning requires more rules than classification learning.   
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Another learning method that works well when there is no specified class is 

clustering.  Clustering tries to group instances that fall naturally together.  For example: 

say everyone in a city was asked what their favorite color is, what their favorite music 

genre is, and what their favorite kind of food is.  We can then cluster people together with 

similar interest.  This would be an example of clustering.  However, an issue that arises is 

that one person may seem to belong to more than one cluster. 

Numeric prediction is considered to be a variant of classification learning.  The 

only difference is that for numeric prediction the outcome is a numeric value, whereas 

with classification learning the outcome is any kind of category.  When the task is to 

predict numeric values, the classification becomes regression and the learned model is a 

regression model.  If an economist were to use data to decide when to buy and sell stock, 

then that would be considered classification learning.  If an economist were to predict the 

value of a certain stock, then that would be considered numeric prediction.   

Section 5.3 Output 

As for the output, WEKA can provide decision tables, decision trees, 

classification rules, association rules, trees for numeric prediction, and clusters.   

Decision tables are the most rudimentary way of representing the output.  A 

decision table may look something like 

Tired? Other obligations? Workout 

Yes Yes No 

Yes No Yes 

No Yes No 

No No Yes 
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In this example, the decision table helps the user decide if he/she should workout or not.   

A decision tree typically involves solutions that have a fixed number of 

possibilities.  Someone may use a decision tree to decide where he/she wants to eat.  For 

example, if a town has the three restaurants, Taco Tim’s, Famiglia Italia, and Sandwich 

Steve’s, then someone could use the following decision tree: 

 

 

 

 

 

 

We can use WEKA to create a decision tree for us.  Consider the gym example.  

By inputting the table into an Excel file, we can upload the file to WEKA and produce a 

decision tree.  WEKA provides some base rules like in Figure 5.3.1.  By right-clicking on 

the trees.RandomTree selection on the far left, we have the option to create a decision 

tree out of the given data.  To see the decision tree for the gym example, refer to Figure 

5.3.2.  As we can see, the decision depended solely on whether or not there were other 

obligations.  Decision trees will be further discussed in Section 5.4.   

What to eat 

Mexican

? 

Taco Tim’s    Italian? 

   Sandwich Steve’s Famiglia Italia 

Yes 

Yes 

No 

No 
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Figure 5.3.1: The WEKA Classification Interface  

 

Figure 5.3.2:  The Decision Tree Designed by WEKA 

The output for classification learning is very similar to a decision tree.  The main 

difference is that classification learning uses rules.  Generally, classification learning can 

be expressed as a decision tree, but it typically has many more steps involved.  For 

example, let a go to x, b go to y, and c, d, e, f, and g go to z.  If we made a decision tree, it 

would be considerably longer than creating rules.  The only rules we need to make are “if 

a, then x,” “if b, then y,” and “if c, d, e, f, or g, then z.”  Here we only had three rules to 

deal with.  This will save computing time.  Another reason why rules are more popular 

than building a decision tree is that rules can be added anywhere in the process.  If we 

were to add a step to a tree, we may have to remake the entire tree.  The only time that a 
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rule cannot be added at any arbitrary point in the process is when that rule depends on the 

outcome of other rules.   

A possibility that arises out of using classification learning is when different rules 

lead to different conclusions of the same instance.  There is also the possibility of the 

instance not being classified at all.  These issues cannot arise when using a decision tree.  

A possible way around these issues is to make the classes Boolean, or only having two 

possible outcomes.  This is not always possible in a real world situation.   

For numeric predictions we can use the same rules and trees that we have already 

discussed.  If a tree is used for numeric predictions, then it is called a regression tree.  

However, since the numeric predictions involve numbers, we often use regression 

equalities to make predictions.  It is also possible to combine the regression equations and 

the regression trees.   

Another possible way to classify data is by using instance-based representation.  

That is, we are trying to group instances with similar attributes into the same class.  This 

process is known as clustering.  This method avoids using rules.  The new instance is 

compared to the other classified instances and, using a distance metric, classifies it with 

the instance that is closest to it.  This method is called the nearest neighbor method.  This 

method works very well with numeric data; however, with nominal data it has its 

downfalls.  For instance, if our set had different kinds of fruits, it would be hard to 

determine if an orange was closer to a cantaloupe or a star fruit without converting the 

data to some kind of numerical data.  Another issue is determining weights for the 

distance.  That is, determining which attribute is considered more important using this 

method.  
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When using clustering over a classifier, a diagram is used to show how the classes 

are divided.  In some cases, a single instance can belong to more than one class, 

depending on the clustering method used.  A common example of this would be a Venn 

diagram.  In some clustering techniques, a probability that a certain instance is in a 

particular class is given instead.  In some cases clusters are presented in a hierarchal 

structure, where instances in the higher levels are loosely related, while the instances in 

the lower levels are more closely related.  These are typically referred to as dendrograms. 

Section 5.4 Trees and Random Forests 

A decision tree contains a set of decisions.  These decisions split the results into 

different nodes, depending on the decision.  This process is continued until a final 

decision is reached.  The data can lead to one of two options: a leaf node or a non-leaf 

node.  The non-leaf nodes are associated with a feature test, also known as a split.  From 

here the data will split into different subsets based off the values of their feature test.  

When the data falls on a leaf node, then it is associated with a label.  This label will be 

given to all instances that arrive at this node.  The first node that the user comes to is 

known as the root node.   

Consider the dinner example from Section 5.3.  The nodes “Mexican?” and 

“Italian?” are considered to be non-leaf nodes.  The remaining nodes, that is, “Taco 

Tim’s,” “Famiglia Italia,” and “Sandwich Steve’s”, are considered to be leaf nodes.  Here 

the node “Mexican?” also happens to be the root node.  In Figure 5.3.2 “Other 

Obligations” is considered a non-leaf node while “No” and “Yes” are considered leaf 

nodes.  “Other Obligations” is considered to be the root node, as well.   



  68 

 

 

We say that decision tree learning is a recursive process.  At each step the data set 

is divided into subsets, depending on the node.  The most important part of the decision 

tree is how the splits are decided.  By having a properly devised decision tree, we can 

reduce the entropy of the set where the entropy is defined as 

𝐸𝑛𝑡(𝐷) = − ∑ 𝑃(𝑦|𝐷) log 𝑃(𝑦|𝐷)

𝑦∈Υ

 

where D is the training set and ϓ is the set of all predicted class labels y [19, p 5].  

Entropy is a typical characteristic of how much information is in the signal.  We also say 

that by reducing the entropy, we increase the information gain where the gain is defined 

as 

𝐺(𝐷;𝐷1, … , 𝐷𝑘) = 𝐸𝑛𝑡(𝐷) − ∑
|𝐷𝑖|

|𝐷|
𝐸𝑛𝑡(𝐷𝑖)

𝑘

𝑖=1

, 

where the training set D is divided into k subsets and | ∙ | denotes the size of the data set 

[19, p 5].  Thus we want to create a split that reduces the entropy in order to increase the 

information gain.  See J.R. Quinlan [15] for a specific example.   

Some other algorithms use gain ratio [19, p 5] which is defined as 

  

𝑃(𝐷;𝐷1, … , 𝐷𝑘) = 𝐺(𝐷;𝐷1, … , 𝐷𝑘) ∙ (−∑
|𝐷𝑖|

|𝐷|
log

|𝐷𝑖|

|𝐷|
 

𝑘

𝑖=1

)

−1

 

Notice that this is variant of the information gain criterion.  We select the split that has 

the highest gain ratio.   

Another decision tree algorithm that is often used is called CART.  This algorithm 

uses the Gini index [19, p 6] and is 
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𝐺𝑔𝑖𝑛𝑖(𝐷; 𝐷1, … , 𝐷𝑘) = 𝐼(𝐷) − ∑
|𝐷𝑘|

|𝐷|
𝐼(𝐷𝑘)

𝑘

𝑖=1

, 

where 𝐼(𝐷) is defined [19, p 6] as 

𝐼(𝐷) = 1 − ∑ 𝑃(𝑦|𝐷)2

𝑦∈Υ

 

There are cases where there are outliers in the training set.  These outliers may 

cause the training set to find a “truth” for the set that does not exist.  This is known as 

overfitting.  To avoid this, we use the idea of pruning, or removing branches of the tree 

that are caused by outliers or noise in the data set.  WEKA can prune the tree beforehand, 

known as pre-pruning, or we can prune the tree afterwards, known as post-pruning.  

WEKA can do this when we have a data set whose outcome is known.   

The process of forming decision trees can help us further understand and utilize 

the different methods to ensemble data. 

WEKA can increase the accuracy by creating a group of trees, known as forests, 

and allowing them to vote for the most popular class.  We call using various single 

models to get a combined decision an ensemble method.  We will  introduce it in the next 

two sections. 

Section 5.5 Combinations, Bagging, and Boosting 

Bagging and boosting are different combination methods that can help you reach 

a decision based off the available information.  They use multiple learners to make a 

decision.  Bagging gives each data set equal weight, where boosting gives different data 

sets different weights.   
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We will begin with discussing bagging.  We will introduce it with an example.  

Consider the decision tree in Section 5.3 that was used to decide what restaurant to go to.  

Also imagine that we have 9 other decision trees that are built to help us decide what 

restaurant to go to.  Let each person who is deciding where he wants to eat be an instance.  

Allow each decision tree to decide what restaurant each person wants to go to.  The 

restaurant that receives more votes than any other is the restaurant that is chosen.  It is 

generally accepted that the more decision trees that are used, the more accurate the 

outcome will be, although there do exist theoretical conditions in which adding more 

decision trees does not increase the accuracy of the outcome.  What has been described 

here is considered combining different decision trees.   

In a perfect world, we could use an infinite number of training sets that are the 

same size to create an infinite number of classifiers.  However, we begin to have issues 

with this when we put this into practice.  That is, we cannot have an infinite number of 

test sets, nor can we have an infinite number of classifiers.   

This is where bagging is useful (the term bagging is derived from bootstrap 

aggregating).  Bagging takes a given training set and creates many training sets by 

deleting various instances and copying others (to keep the training sets the same size).  

We then apply the learning scheme to the given training set, and the classifier that is 

chosen votes for the class.  Returning to our “which restaurant” decision tree, assume that 

we have a total of 10 Italian restaurants from which to choose.  By using the bagging 

method we will create multiple training sets by sampling a given training set multiple 

times, with replacement.  Whichever Italian restaurant receives the most votes will then 

be the restaurant that will be chosen if they select “yes” when asked if they want Italian 
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or not.  That is, if there are 5 votes for Famiglia Italia and 1 vote for Steve’s Pizzeria, 

then the choice at that node will be Famiglia Italia.   

Bagging is beneficial because it does not need multiple training sets to come to a 

strong conclusion.  Bagging only requires one training set, and it samples this training set 

multiple times.  Bagging tends to produce a model that is better than the models that are 

produced with a single training set.  Bagging also rarely, if ever, produces a model that is 

significantly worse than what a single training set produces.  We can also apply bagging 

to numerical data, with one slight difference.  When applying bagging to numerical data, 

we average the outcomes, as opposed to voting on the outcomes.  A benefit of bagging is 

that it uses the instability of a learning scheme to help make a stronger learning scheme.  

If by adding or removing an instance we run the risk of drastically changing the outcome, 

then we say that the learning scheme has a high cost.  Bagging is a perfect candidate for 

learning schemes that have a high cost, or that are cost-sensitive.   

The boosting algorithm starts by taking all of the instances in the training data and 

giving each one equal weight.  It then uses the learning scheme to create a classifier for 

the training set, where it then reweights each instances based off the classifier so that 

each instance that is correctly classified sees a decrease in weight, and the instances that 

are incorrectly classified see an increase in weight.  To create a prediction, the boosting 

algorithm uses a weighted vote to combine the output of each classifier.  Those classifiers 

that have a relatively low error are given a higher weight, while those with a relatively 

high error are given a lower weight.  Therefore, boosting is a sequential method.   

Boosting has some similarities and some differences with bagging.  Both methods 

use voting (or averaging in the case of numerical data) to combine learning models, and 
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they both only combine models that are of the same type.  However, a major difference is 

that boosting is iterative.  As we described earlier, bagging creates new, independent 

models each time.  Boosting, on the other hand, creates new models based on the 

performance of the previous model.  Another major difference between boosting and 

bagging is that bagging gives everything an equal weight, whereas boosting weights a 

model based on its performance.   

Section 5.6 Voting and Averaging 

In this section, we will give an introduction on how to combine single learners to 

obtain better predictions.  The two combination methods that are discussed are the 

averaging method and the voting method.   

Suppose we obtain some base learners ℎ1, … , ℎ𝑇 from one training data set and 

suppose that the output for the learner ℎ𝑖 of the instance x is ℎ𝑖(𝒙).  For simple averaging 

we combined ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝑇(𝑥) by defining 

𝐻(𝒙) =
1

𝑇
∑ℎ𝑖(𝒙)

𝑇

𝑖=1

. 

Simple averaging is often used in application due to its simplicity. 

Weighted averaging gives certain learners more importance when averaging.  

That is, it weighs certain learners.  We say that the weighted average is 

𝐺(𝒙) = ∑𝑤𝑖ℎ𝑖

𝑇

𝑖=1

(𝑥), 

where 𝑤𝑖 is the weight, or importance, assigned to ℎ𝑖.  We also limit our weights by 

𝑤𝑖 ≥ 0, ∑𝑤𝑖

𝑇

𝑖=1

= 1. 
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We can see that simple averaging is just a special case of weighted averaging where all 

the weights are equal.  In practice weighted averaging may not always perform better 

than simple averaging.   

Voting uses base learners’ votes to determine the final output.  For voting, we are 

going to assume that we have a set of T individual classifiers {ℎ1, … , ℎ𝑇}.  What we are 

trying to do is to combine all of our individual classifiers into a set of possible class 

labels {𝑐1, … , 𝑐𝑙}, where there are l possible labels.  We also assume that the outputs ℎ𝑖 

are given as an l-dimensional label vector  

𝑉 = [ℎ𝑖
1(𝑥), … , ℎ𝑖

𝑙(𝑥)]
𝑇
. 

Here each element ℎ𝑖
𝑗
 is the output of ℎ𝑖 for the class label 𝑐𝑗.   

The most popular voting method is known as majority voting.  For example, 

assume that there are 10 classifiers working to identify a given bird call using arbitrary 

into one of the following species: Whip-poor-will; Bobwhite; Common Raven; Barred 

Owl; and Eastern Kingbird.  Assume that for the first call, call it call A, 2 classifiers 

classify it as a Whip-poor-will, 2 classify it as a Common Raven, none classify it as a 

Barred Owl, 6 classify it as an Eastern Kingbird, and none classify it as a Bobwhite.  

Since the Eastern Kingbird received more than 50% of the votes, then the call is 

classified as the Eastern Kingbird.  However, if no class (or for this example, no species) 

gets more than 50% of the votes, then the bird will be classified as the rejection option.  

Assume the rejection option is the Common Raven.  Assume that for the second call, call 

it call B, 2 classifiers classify it as a Whip-poor-will, 2 classify it as a Common Raven, 2 

classify it as a Barred Owl, 4 classify it as an Eastern Kingbird, and none classify it as a 
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Bobwhite.  Notice that none of the classes obtained 5 votes (or 50% of the votes).  That 

means that call A will be classified as the rejection option, the Common Raven. 

Another method of voting that is similar to majority voting is known as plurality 

voting.  Plurality voting selects the class that gets the most votes, regardless if it obtains 

more than 50% of the votes or not.  Consider the example given in the previous 

paragraph that had 10 classifiers that attempted to classify call B.  Again assume that 2 

classifiers voted for the Whip-poor-will, 2 classifiers voted for the Common Raven, 2 

classifiers voted for the Barred Owl, 4 classifiers voted for the Eastern Kingbird, and 

none classified it as the Bobwhite.  Since the Eastern Kingbird obtained more votes than 

any other class, then the bird call will be classified as an Eastern Kingbird.   

Although the methods of averaging and voting are used the most often, there are 

other ensemble methods such as stacking or dynamic classifier selection [19]. 

Section 5.7 Credibility 

In order to know the performance of a classifier, we can look at its error rate.  We 

say that if the classifier predicts the correct class, then it is a success, and if it does not, 

then it is an error.  We say that the error rate is the total number of errors divided by the 

total number of instances.  The error rate of a training set is generally not a good indicator 

of future performance.  This is due to the fact that the classifier is learned from the 

training data, thus leading the results to be optimistic. 

The solution comes from testing the classifier on another, independent set called 

the test set.  An important aspect of the test set is that it cannot be used in any way to 

create the classifier.  This can be done by creating a learning scheme that has two 

separate stages: the first stage creates a structure while the second stage optimizes the 
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parameters involved.  Again, two different data sets may be needed in the two different 

stages.  This creates the need for a total of three data sets in the process: a training set, a 

validation set, and a test set.  The training set is used to create the classifiers, the 

validation set is used to optimize the classifiers, and the test set is used to find the error 

rate of the classifiers.  These three sets must be pairwise disjoint.   

If we have a large data set, there is no problem in creating three sets that are 

pairwise disjoint.  In general, larger training sets provide better classifiers.  However, 

there is a limit.  If the training set becomes too large, then the returns begin to diminish.  

The larger issue comes about when there is not much data from which to pull sets.  Since 

we need to use some data to test the data, we start by pulling out what we need for a test 

set, and we can leave the remainder for training and validating (if need be).  The issue is 

that in order to determine a good error estimate, we need a fairly large testing set.  

However, the larger our testing set is, the smaller our training set (and validating set, if 

required) must be.   

Another process for smaller sets is known as stratification.  We consider this 

process when we have a smaller set with which to work.  In general, we like to reserve 

one-third of the data for testing, while reserving the rest for the training set.  In order to 

make sure that every class is represented in both the training set and the test set, we use a 

procedure known as stratification.  Stratification is the process of performing a random 

sampling, but ensuring that each class is represented in the random sample.  For example, 

if a population was 80% A and 20% B, then a sample would be stratified of the sample 

also had 80% A and 20% B. 
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Another way to ensure that every class is represented is by repeating the process 

numerous times with different random samples.  Other options include making the 

training set the test set, and making the test set the training set.   

The last method that will be discussed that is used for smaller samples is known 

as cross-validation.  To begin cross-validation, we start by deciding a number of 

partitions into which the sample will be divided.  For example, assume we decide to 

divide the sample into five partitions.  We then use four partitions for training, and one 

partition for testing.  We then select a different partition for testing and repeat the 

process.  We do this so that every partition is used exactly once for testing.  We find the 

error estimate of each partition, and we then average the five error estimates giving us an 

overall error estimate.  This is known as fivefold cross-validation, and, if it is stratified, it 

is known as stratified fivefold cross-validation.  The standard number of partitions used 

to find the error rate is ten, thus using tenfold cross-validation. 

Tests have shown that ten partitions yields the best results and that stratification 

slightly improves the results.  To improve upon these results, it is common practice to 

repeat the tenfold cross-validation ten times, finding the mean of the results.  That is, 

performing ten tenfold cross-validations and then finding their average.   

Another method that is used is known as the leave-one-out method.  It is 

essentially an n-fold cross-validation, where one instance is removed and then the 

classifiers are determined.  Then the classifier is tested on the removed instance.  This is 

repeated for each instance in the sample set.  The error estimate is determined by 

assigning a value of 0 or 1 for a failure or a success, respectively, for each run of the n-

fold cross-validation.  Then the 0s and 1s are averaged to find the overall error estimate.  



  77 

 

 

This procedure is used for two primary reasons.  The first of these reasons is that the 

largest amount of data possible is used to train the classifiers, thus presumably increasing 

the accuracy of the classifier.  The second of these reasons is that the procedure is 

deterministic.  That is, there is no random sampling involved in this procedure.  

Drawbacks to this method are that it is extremely taxing, computationally speaking.  

However, for small data sets, this is not a problem.  Another drawback is that it cannot be 

stratified.  Since the training set has 𝑛 − 1 instances and the test set only has 1 instance, 

then it guarantees that the test set will not contain every possible classification.   

The last method discussed here is the bootstrap method.  The bootstrap method 

involves sampling the data set with replacement to make a training set.  We sample a data 

set with n instances n times.  We then place these samples into a set, call it T.  This makes 

the training set have n instances, possibly with some repeated elements.  Let the original 

data set be O, then the test set is 𝐸 = 𝑇\𝑂.  We then repeat this numerous times and 

average the results to find the overall error estimate.   
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Chapter 6 Results, Conclusion, and Discussion 

In Chapter 6 we will discuss the conclusions that we have reached based off our 

findings.  In Section 6.1 we will discuss the methods of data representation, the Macaulay 

Library [10], and the program Audacity [12].  Section 6.2 discusses feature extraction 

using wavelets.  Section 6.3 discusses how we classified species, while Section 6.4 

discusses how we classified individuals of a given species.  Section 6.5 discusses the 

overall results and conclusions of the study.  

Section 6.1 Data Representation, Macaulay Library, and Audacity 

In this section we refer to Audacity [12], which is a free audio editing software.  

We also refer to the Macaulay Library [10] that is run by Cornell University.  To obtain 

recordings for our study, we began by searching the Macaulay Library that is run and 

maintained at the Cornell Lab of Ornithology in Ithaca, New York.  This library is an 

online source that contains thousands of different bird calls that have been obtained over 

the past few decades.  For our study, we considered five different species of birds: the 

Eastern Whip-poor-will (Antrostomus vociferus); the Northern Bobwhite (Colinus 

virginianus); the Barred Owl (Strix varia); the Eastern Kingbird (Tyrannus tyrannus); 

and the Common Raven (Corvus corax).  The recordings of the Eastern Whip-poor-will 

were recorded by M. Robbins and M. Medler, the recordings of the Northern Bobwhite 

were recorded by M. Robbins, the recordings of the Barred Owl were recorded by N. 

Taylor, S. O’Brien, and B. McGuire, the recordings of the Eastern Kingbird were 

recorded by M. Robbins, and the recordings of the Common Raven were recorded by M. 

Andersen, G. Vyn, and B. McGuire (view Table 6.1.1 for the geographic information).  
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M. Robbins, M. Medler, and G. Vyn used the NAGRA ARES-BB+ recorder, M. 

Andersen used the SOUND DEVICES 744T, B. McGuire used the SOUND DEVICES 

702, N. Taylor used the MARANTZ PMD 661 recorder, S. O’Brien used the FOSTEX 

FR-2 recorder, and M. Robbins also used the SONY TC-D5 PRO II recorder.  In Table 

6.1.1 the column labeled “Individuals” refers to the identification number given to the 

recording by the Macaulay Library.  These calls were recorded in both stereo and mono, 

but they were all converted to mono so that Maple could handle the signals.  All 

recordings were sent as a WAV file.  That is, all files were digital signals.  There were 

four birds of each species, giving us 20 birds in total.  These birds were selected because 

each individual of each species was from the same general geographic area.  This was to 

avoid possible regional dialects that the birds may or may not have.  These species were 

selected so that each vocalization type was represented in the study.  The bird recordings 

were of birds that were in the same general geographic location.  This is to ensure that the 

vocalizations of each species were similar in nature.  The Whip-poor-will recordings 

come from the Kansas/Missouri area, the Northern Bobwhite recordings come from 

Missouri, the Barred Owl recordings come from New York, the Eastern Kingbird 

recordings come from Missouri, and the Common Raven recordings come from Alaska.  

This study only separated birds on the species level, so subspecies were not accounted for 

when selecting the recordings.  In total, we used 400 “syllables” from the bird recordings.  

(Here we use the term syllables to refer to a portion of a bird’s call in a similar manner 

that we refer to syllables in human speech.  For example: the Northern Bobwhite call 

would be divided into two syllables (the “Bob” and the “white”), the Barred Owl call 

would be one syllable (the “hoo”), etc.)   
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Bird Name Individuals Location Recordings Syllables 

Whip-poor-will 

146826 Missouri 1 21 

515817 Kansas 1 21 

145359 Missouri 1 21 

145378 Missouri 1 21 

Northern 

Bobwhite 

147549 Missouri 1 12 

516009 Missouri 1 20 

145412 Missouri 1 20 

146253 Missouri 1 20 

Barred Owl 

163907 New York 1 20 

173578 New York 1 20 

195738 New York 1 20 

188896 New York 1 20 

Eastern Kingbird 

144953 Missouri 1 21 

516001 Missouri 1 21 

145382 Missouri 1 21 

146239 Missouri 1 21 

Common Raven 

132161 Alaska 1 20 

207177 Alaska 1 20 

137574 Alaska 1 20 

132203 Alaska 1 20 

Table 6.1.1: The geographic information where the recordings took place 

 

Our goal is to find classifiers or clusters that can separate birds into species using 

only their calls.  Our approach is summarized into three steps in Figure 6.1.1.   

Preprocessing 

Recording Denoise recording (optional) Segmentation 

 

Data Transformation and Feature Extraction 

Wavelet/Fourier Transformation Extracting Max Energy, Position, and Spread 

 

Classifiers or Clusters 

Random Tree Random Forest AdaBoost 

 

Figure 6.1.1:  An overview of the process used 
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The preprocessing step involved recording the sounds, applying noise reduction, 

and the segmentation process.  Since the Macaulay Library provided the recordings, it is 

unclear as to how the recordings were obtained.  Note that if the recording and 

segmentation steps are done properly, then noise reduction may not be necessary.  The 

recordings here were obtained via the Macaulay Library at Cornell University.  We 

selected the audio recordings that contained minimum noise (i.e. the recordings where the 

bird that was being considered was the primary sound in the recording), which allow us 

to save work on noise reduction and focus on the second and third steps.  These files were 

obtained in a WAV format to guarantee that as much information as possible was 

obtained.  That is, the files were sent in a WAV format since the WAV format saves the 

most data out of the given data types.   

We then imported the information into Audacity, a software that edits sounds.  

Using Audacity we were then able to segment each bird’s calls into syllables.  To begin, 

we imported the audio file into Audacity.  We then were given the file in a sound wave 

(see Figure 6.1.2).  Here we were presented with a number of options with which to 

work.  With Audacity we were able to pause, play, stop, rewind, fast forward, and record 

new sounds.  We highlight an area of the audio file that we want to work with and we cut 

and paste it into a new Audacity file.  We then export the file with a new name. 

When we started working with the recordings, it became apparent that some of the 

recordings were in mono, while the rest were in stereo.  Using one of the functions of 

Audacity we were able to convert the stereo recordings into a mono recording.  Not only 

did this help keep our data consistent, but the Maple [11] program that we used required 

that the sound files be in mono.  Audacity allows users to select a part of the recording 
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they need (see Figures 6.1.3 and 6.1.4).  Figures 6.1.3 and 6.1.4 are from a Barred Owl.  

The x axis represents time, whereas the y axis represents pressure, or the volume.  We use 

this feature to select the syllables, which are generally only a small part of the whole 

recording.  We then saved the files.  Another feature of Audacity allows us to decide at 

what frequency we would like to save our data.  That is, we are able to decide how many 

pieces of information we obtain per second.  We stored our data at the highest that 

Audacity allowed us, 44.1 kHz.  That is, 44,100 pieces of information per second.   

 

Figure 6.1.2: Roughly 7 minutes of data 

 

 

Figure 6.1.3: Roughly 0.80 seconds of data 

We then saved each syllable individually.  We then linked the location of the 

syllable into a Maple program.  We used Maple for the data transformation and feature 

extraction.  In our work, we used the Wavelet Packet Decomposition (WPD) algorithm.  

We first needed to make sure that our data set had the correct number of data points.  

Since we are going to use the 4th level of the WPD tree, each of our recordings need to 

have a number of sample points as a multiple of 16 (that is, 2^4).  To do this we 

truncated the data to the nearest multiple of 16.  Each audio file has thousands, if not tens 
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of thousands of data points, so truncating at most 15 was not damaging to the study 

overall.  During this step we also normalize our data.  We use the Daubechies wavelet 

filter of length 6 (D6) (discussed in Chapter 5) to decompose the sound waves.  Thus we 

extract the maximum energy, the position, and the spread.  These will be further 

discussed in Section 6.2.   

During the classifier step we consider Random Tree and Random Forest.  See 

Section 5.4 for more details.   

Section 6.2 Wavelet Decomposition and Feature Extractions 

In this section we refer to Selin, Turunen, and Tanttu [16] to find what features 

are useful.  The three features that we used were the maximum energy, the spread, and 

the position. 

We begin by defining the bins.  In Figure 6.2.1, we apply the wavelet 

transformation four times (refer to [9]).  Each time we have a sum (S) vector and a 

difference (D) vector.  In Figure 6.2.1 the bin on the bottom left will be referred to as bin 

1, the bin directly to its right will be bin 2, and we continue this process until we reach 

the last bin, which in this example is bin 16.   

Original 

S D 

S D S D 

S D S D S D S D 

S D S D S D S D S D S D S D S D 

 

Figure 6.2.1:  The bin example 
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The maximum energy depends on the bin energy.  We define the bin energy with 

wavelet coefficients c of bin r as 

𝐸𝐵(𝑟) = ∑ 𝑐2(𝑛, 𝑟)

𝑛𝑐

𝑛=1

, 𝑟 = 2, 3, … , 16, 

where 𝑛𝑐 is the number of wavelet coefficients in each bin [16].  Note that we omit the 

bin 𝑟 = 1.  According to Selin, Turunen, and Tanttu [16], this bin contains the noise in 

the recording.  Thus we do not use it in our study.  We then define the average energy 

[16] of each bin r as 

𝐸�̃�(𝑟) =
𝐸𝐵(𝑟)

𝑛𝑐
. 

Hence the maximum energy [16] is defined as 

𝐸𝑀 = max
2≤𝑟≤16

(𝐸�̃�(𝑟)) . 

This value finds the maximum energy produced by the sound.   

Consider, for example, the vector 𝑉 = [1, 2, 3, … , 64].  After normalizing and 

running the WPD four times, we see that our first two bins are 

𝑏𝑖𝑛1 = [0.8277909461, 1.778373759, 3.184784592, 2.334050703] 

𝑏𝑖𝑛2 = [0.009657704743, 0.5267099362,−0.9221896581, 0.2652781042] 

Note that these values have been rounded in order to fit.  In all, we have 16 bins with 

varying values.  After four iterations of the WPD, our 𝑛𝑐 is 4.  We only need to count the 

number of values in each bin to determine this number.  The average bin energy of bins 1 

and 2, respectively, are 4.85962416488393 and 0.299580716538431. 

The next value found is known as the position.  The position, P, refers the bin r in 

which the maximum energy was found [16].  According to our calculations, most 
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instances have a maximum energy in the second bin.  Thus we removed this value, given 

it would not provide any further insight into the problem.   

Finally we calculated the spread.  Let q be the number of the sample, r be the bin 

number, 𝑇ℎ1(𝑟) = �̃�𝐵(𝑟)/6 be the threshold value, and J be the set of index pairs (𝑞, 𝑟) 

such that 𝑐2(𝑞, 𝑟) > 𝑇ℎ1(𝑟).  Also, let #𝐽 be the cardinality of the set J.  Then we define 

the spread [16] to be 

𝑆 =
1

#𝐽
∑ 𝑐2(𝑞, 𝑟)

(𝑞,𝑟)∈𝐽

. 

Using the same example, we can calculate the spread to be 0.152948311471895. 

We wrote a program using the Maple software in order to find the features 

mentioned above.  After obtaining these features for each call of each bird, we then 

organized them into Excel files and saved them in the CSV format.  In Table 6.2.1 we 

have an example of the Common Raven data.  Each row is an instance, or a syllable.  The 

first column is a name that is used solely to keep track of the individuals.  The second 

column is the maximum energy.  The third column is the position.  The fourth column is 

the spread.  The fifth column is the common name of the bird.  
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File Name Maximum Energy Position Spread Bird Name 

Common Raven a 1 0.179094439 2 0.127335954 Common Raven 

Common Raven a 2 0.187008524 2 0.142694617 Common Raven 

Common Raven a 3 0.204325899 2 0.144938941 Common Raven 

Common Raven a 4 0.157743768 2 0.098308357 Common Raven 

Common Raven a 5 0.181794241 2 0.116743861 Common Raven 

Common Raven a 6 0.120920788 2 0.074890981 Common Raven 

Common Raven a 7 0.251314322 2 0.171162873 Common Raven 

Common Raven a 8 0.255887332 2 0.14791002 Common Raven 

Common Raven a 9 0.108557857 2 0.076480965 Common Raven 

Common Raven a 10 0.24270076 2 0.134252454 Common Raven 

Common Raven a 11 0.254711586 2 0.151094424 Common Raven 

Common Raven a 12 0.130208515 2 0.108633567 Common Raven 

Common Raven a 13 0.203880274 2 0.135682038 Common Raven 

Common Raven a 14 0.212800543 2 0.132853468 Common Raven 

Common Raven a 15 0.141669149 2 0.136983284 Common Raven 

 

Table 6.2.1: Example of the Common Raven Data 

Once the data had been collected from the audio files and put into spread sheets, 

we then were able to use machine learning software known as WEKA (discussed in 

Section 5.1) in order to determine classifiers and clusters. 

Section 6.3 Classifying Species and Results with Random Forest Classifier 

In this section and the next section we use the software WEKA (referenced in 

Chapter 5).  Prior to running the test, we divided the spreadsheet into two different 

spreadsheets.  In one spreadsheet we randomly put 133 instances (roughly one-third of 

the instances) to use for a training set.  We placed the remaining 267 instances into 

another spreadsheet for testing purposes.  We imported the training set in order to create a 

classifier, and then we imported the test set to see how proficiently the classifier could 

classify the data set. 
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The Random Forest classifier correctly classified 182 instances and incorrectly 

classified 85 instances.  This means that the Random Forest classifier was correct roughly 

68.15% of the time.  Of the 48 Bobwhite syllables in the test set, 20 were classified as 

Bobwhites, 0 as Barred Owls, 5 as Common Ravens, 8 as Eastern Kingbirds, and 15 as 

Whip-poor-wills.  Of the 53 Barred Owl syllables in the test set, 48 were classified as 

Barred Owls and 5 were classified as Whip-poor-wills.  Of the 53 Common Raven 

syllables in the test set, 1 was classified as Barred Owl, 40 were classified as Common 

Ravens, 1 was classified as an Eastern Kingbird, and 11 were classified as Whip-poor-

wills.  Of the 56 Eastern Kingbird syllables in the test set, 5 were classified as Bobwhites, 

0 were classified as Barred Owls, 2 were classified as Common Ravens, 38 were 

classified as Eastern Kingbirds, and 11 were classified as Whip-poor-wills.  Of the 57 

Whip-poor-will syllables in the test set, 4 were classified as Bobwhites, 8 were classified 

as Barred Owls, 3 were classified as Common Ravens, 6 were classified as Eastern 

Kingbirds, and 36 were classified as Whip-poor-wills.  Figure 6.3.1 shows a confusion 

matrix that generalizes this data.  The matrix presents the data such that the columns are 

what the birds were classified as and the rows refer to what the bird actually is.  a refers 

to Bobwhites, b refers to Barred Owls, c refers to Common Ravens, d refers to Eastern 

Kingbirds, and e refers to Whip-poor-wills. 

𝑎 𝑏 𝑐 𝑑 𝑒
𝑎 20 0 5 8 15
𝑏 0 48 0 0 5
𝑐 0 1 40 1 11
𝑑 5 0 2 38 11
𝑒 4 8 3 6 36

 

Figure 6.3.1:  A confusion matrix for the Random Forest 
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The Random Tree classifier performed almost as well as the Random Forest 

classifier did.  The Random Tree classifier correctly classified 173 instances and 

incorrectly classified 94 instances.  That means the Random Tree classifier correctly 

identified one of the syllables roughly 64.79% of the time.  That is, Having 48 Bobwhite 

syllables it classified 22 as Bobwhites, 0 as Barred Owls, 5 as Common Ravens, 9 as 

Eastern Kingbirds, and 12 as Whip-poor-wills.  Out of 53 Barred Owl syllables it 

classified 0 as Bobwhites, Common Ravens, or Eastern Kingbirds, 46 as Barred Owls, 

and 7 as Whip-poor-wills.  Of the 53 Common Raven syllables it classified 0 as 

Bobwhites or Barred Owls, 36 as Common Ravens, 3 as Eastern Kingbirds, and 14 as 

Whip-poor-wills.  Out of the 56 Eastern Kingbird syllables 5 were classified as 

Bobwhites, 0 were classified as Common Ravens, 2 were classified as Barred Owls, 38 

were classified as Eastern Kingbirds, and 11 were classified as Whip-poor-wills.  Out of 

the 57 Whip-poor-will syllables, 11 were classified as Bobwhites, 5 were classified as 

Barred Owls, 4 were classified as Common Ravens, 6 were classified as Eastern 

Kingbirds, and 31 were classified as Whip-poor-wills.  Figure 6.3.2 is a confusion matrix 

for the Random Tree classifier, similar to that in Figure 6.3.1.  The columns are what the 

birds were classified as and the rows refer to what the bird actually is.  The labels are the 

same as those in Figure 6.3.1. 

𝑎 𝑏 𝑐 𝑑 𝑒
𝑎 22 0 5 9 12
𝑏 0 46 0 0 7
𝑐 0 0 36 3 14
𝑑 5 0 2 38 11
𝑒 11 5 4 6 31

 

Figure 6.3.2: A confusion matrix for the Random Tree classifier 
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We also performed a cross-validation on the entire data set (refer to Section 5.7).  

With the cross-validation we ran both the Random Forest and the Random Tree 

classifiers.  We tested these with 10 fold, 20 fold, and 40 fold.  The percentage that was 

correctly classified by the cross-validation with Random Tree for the 10 fold, 20 fold, and 

40 fold were 70.25% for the 10 fold and the 20 fold, and was 71.25% for the 40 fold.  

However, the confusion matrix for each was not the same.  The confusion matrix for 10 

fold, 20 fold, and 40 fold can be seen in Figures 6.3.3, 6.3.4, and 6.3.5, respectively.  

These Figures use the same labels as Figure 6.3.1 and 6.3.2.   

𝑎 𝑏 𝑐 𝑑 𝑒
𝑎 40 0 7 10 15
𝑏 0 73 2 0 5
𝑐 5 0 62 3 10
𝑑 5 0 4 64 11
𝑒 19 6 8 9 42

 

Figure 6.3.3:  Random Tree confusion matrix for 10-fold cross-validation 

𝑎 𝑏 𝑐 𝑑 𝑒
𝑎 40 0 7 6 19
𝑏 0 72 2 0 6
𝑐 8 0 58 2 12
𝑑 4 0 4 65 11
𝑒 15 7 7 9 46

 

Figure 6.3.4:  Random Tree confusion matrix for 20-fold cross-validation 

𝑎 𝑏 𝑐 𝑑 𝑒
𝑎 40 0 7 7 18
𝑏 0 72 2 0 6
𝑐 6 0 60 3 11
𝑑 4 0 4 65 11
𝑒 14 5 8 9 48

 

Figure 6.3.5:  Random Tree confusion matrix for 40-fold cross-validation 
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We also performed a cross-validation with Random Forest for 10 fold, 20 fold, 

and 40 fold.  It should be noted that these computing times were notably longer than the 

computing times for any other method (these took anywhere from a few seconds to 

around 30 seconds, while the others were relatively instant).  The percentage of instances 

that were correctly classified using cross-validation for the Random Forest classifier for 

10 fold, 20 fold, and 40 fold were, respectively, 72.50%, 74.25%, and 73%.  The 

confusion matrices can be seen in Figures 6.3.6, 6.3.7, and 6.3.8. 

Notice that in these confusion matrices, there are relatively large values down the 

main diagonal, and relatively small numbers elsewhere.  That means that the classifiers 

correctly classified the syllable more times than not.  When the Bobwhite was 

misclassified, it was generally misclassified as a Whip-poor-will.  Likewise, when the 

Whip-poor-will was misclassified, it was generally misclassified as a Bobwhite.  These 

error makes sense, when the syllables of the calls are considered.  That is, the “bob” of 

the Bobwhite’s call is quite similar to the “poor” of the Whip-poor-will’s call.   

𝑎 𝑏 𝑐 𝑑 𝑒
𝑎 41 0 8 8 15
𝑏 0 72 1 0 7
𝑐 3 0 68 32 7
𝑑 7 0 4 65 8
𝑒 14 8 8 10 44

 

Figure 6.3.6:  Random Forest confusion matrix for 10-fold cross-validation 

𝑎 𝑏 𝑐 𝑑 𝑒
𝑎 41 0 8 6 17
𝑏 0 73 0 0 7
𝑐 2 0 67 3 8
𝑑 5 0 4 66 9
𝑒 11 7 7 9 50
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Figure 6.3.7:  Random Forest confusion matrix for 20-fold cross-validation 

𝑎 𝑏 𝑐 𝑑 𝑒
𝑎 40 0 7 6 19
𝑏 0 72 1 0 7
𝑐 3 0 65 3 9
𝑑 5 0 4 66 9
𝑒 13 6 8 8 49

 

Figure 6.3.8:  Random Forest confusion matrix, 40-fold cross-validation 

Section 6.4 Classifying Individuals and Results with Random Forest 

Classifier 

We also tested to see if using Random Tree, Random Forest, and cross-validation 

we could classify individuals of a given species (view Table 6.4.1), as opposed to in 

Section 6.3 where we classified the species.  This time, instead of manually splitting the 

instances into training and testing sets, we used a function in WEKA known as 

percentage split.  When using percentage split, the user decides what percentage will be 

used to train the classifier, and the remainder is used for testing.  For classifying 

individuals, we will be using 67% of the data to train, and the remaining 33% to test.  

These percentages are used for every species.  In general, we found that Random Forest 

performed as well, if not better than Random Tree, so only the results of the Random 

Forest classifier are discussed in here.  The results for Random Tree, Random Forest, and 

percentage split are presented in Table 6.4.1.   

Next we tested the Random Forest classifier on each species.  For the Barred Owl, 

the classifier correctly classified 69.23% of the instances in the testing set, the same as 

the Random Tree classifier.  For the Bobwhite, the classifier correctly classified 47.83% 

of the instances, the same as the Random Tree classifier.  For the Common Raven, the 
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classifier correctly classified 53.85% of the instances.  For the Eastern Kingbird, the 

classifier correctly classified 51.85% of the instances in the training set.  For the Whip-

poor-will, the classifier correctly classified 51.85% of the instances.   

We then tested cross-validation at 10-fold and 20-fold for Random Forest.  For 

the Barred Owl, the Random Forest with cross-validation correctly classified 74.68% at 

10-fold, and 74.68% at 20-fold.  For the Bobwhite, 52.11% of the instances were 

correctly classified at 10-fold, and 46.48% of the instances were correctly classified at 

20-fold.  For the Common Raven, 56.96% of the instances were classified correctly at 10-

fold, and 58.22% of the instances were classified correctly at 20-fold.  For the Eastern 

Kingbird, the classifier correctly classified 61.45% of the instances at 10-fold, and 

56.63% of the instances at 20-fold.  For the Whip-poor-will, the classifier correctly 

classified 57.83% of the instances at 10-fold, and 54.22% of the instances at 20-fold.   

 Validation 

Barred 

Owl Bobwhite 

Common 

Raven 

Eastern 

Kingbird 

Whip-

Poor-Will 

Classifier 

Random Tree 

10-fold 73.42% 42.25% 55.70% 54.22% 55.42% 

20-fold 73.42% 40.85% 55.70% 49.40% 53.01% 

Percentage 

Split 69.23% 47.83% 50% 48.15% 55.56% 

Classifier 

Random Forest 

10-fold 74.68% 52.11% 56.96% 61.45% 57.83% 

20-fold 74.68% 46.48% 58.23% 56.63% 54.22% 

Percentage 

Split 69.23% 47.83% 53.85% 51.85% 51.85% 

 

Table 6.4.1: The percentage that each classifier classified correctly 

Section 6.5 Discussions and Conclusions 

Out of all the methods attempted to discern one species from another, the average 

amount of instances that were classified correctly was 70.24%, with a minimum of 
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64.79% and a maximum of 74.25%.  Selin, Turunen, and Tanttu [16] found that the SOM 

network (self-organizing map, a classifying function) classified 78% of their data 

correctly, while the MLP (multilayer perceptron, a classifying function), classified 96% 

of the test sounds correctly.  The main difference between using the SOM network or the 

MLP and our study is that our study focused on using trees, while Selin, Turunen, and 

Tanttu used functions.  Selin, Turunen, and Tanttu used four features (the maximum 

energy, the position, the spread, and the width), and our study only used two features.   

When considering classifying individuals, we had varied results.  The results for 

the Barred Owl were relatively similar to our results for classifying species.  However, 

the results for the remainder of the species was not as good.  There are various 

explanations for this.  To begin, some species may have several different types of calls 

that seem similar to us, but in fact are different calls.  Since they seem similar, these 

different calls may have been incorrectly used instead of using the same calls.  We know 

this issue is not an isolated incident, seeing as Selin, Turunen, and Tanttu encountered a 

similar issue with the Graylag goose.   

Our method has a similar disadvantage to the method used by Selin, Turunen, and 

Tanttu.  If we were to add a new species to our set, then we would need to retrain the 

classifiers to account for the new species.   

Based off Selin, Turunen, and Tanttu’s results and conclusions, we say that the 

proposed method of classification works well for classifying species.  When compared to 

Selin, Turunen, and Tanttu, we see that reducing the number of features from four to two 

reduces the accuracy, but may save on the computational power needed to find and use 
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those features.  The results in the study are not perfectly accurate, but they are better than 

making a random selection. 

This work can be applied to bird surveys, ecology, and conservation biology.  

Being able to tell what bird species are present in a given ecosystem can tell us about the 

extinction rates and the health of the ecosystem.    

In the future, we could work to see if adding more parameters helped with the 

classification of species and individuals or not.  We could also work to see if certain 

features work better for classifying species over individuals, or vice versa.  Another 

future study could work to see if different filters or different decomposition levels help in 

the classification process.  One final thing that future studies could find is a more 

effective way of utilizing clusters in these kinds of projects. 
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