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Abstract 

A neural network has been trained to perform the 
difficult task of optimal tuning of a radio frequency 
plasma source. 

Introduction 
Radio frequency plasma generators are one of the 

most common types of plasma source. In RF plasma 
sources, gas is ionized when electrons accelerated in 
the RF electric fields collide with neutral gas atoms. 
In our present device a 10 turn coil wound around the 
plasma serves as antenna when coupled to an RF 
oscillator tuned to a few megahertz frequency, figure 
1 
1. 

The antenna coil L forms a part of a resonant 
circuit which is driven by the crystal controlled RF 
oscillator, figure 2. The matching circuit is adjusted 
by tuning 3 variable capacitors CI, C2, and C3. 
Unfortunately the plasma antenna loading is poorly 
understood and neither analytical nor computational 
models are sufficiently well developed to accurately 
describe and optimize the real resonant circuit. (Petty 
and Smith, 1986.) We turned instead to artificial 
neural networks which are capable of modeling 
complex input-output relationships learned on the 
basis of empirical examples alone. 

Theory1 Methods 
The neural network consists of 3 input units I, 1 

for neutral gas pressure, 1 for RF power, and 1 for RF 
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frequency. These are fully connected to 10 hidden 1 A Wjk= I L(Ci)-Ci) ( 1 ) (1 - I ) 
units. The hidden units are, in turn, fully connected to 1 1 +exp(-hi) 1 +exp(-hi) 
3 output units, one for each tuning capacitor, CI, C2, 
and C3. All variables are normalized so as to fall I +exp(-he) 1 +exp(-he) 
within the unit interval. where L is a constant, typically 0.2. 

For each vector I the hidden unit j receives an The weights are adjusted (corrected) at each 
input: 

I 
calculation step by: 

h j = Z  w d k +  wo (1) new wij = old wij + A wij 

i and produces an output: new Wjk = old Wjk f h Wjk 
vj = 1 (2) and the process is repeated, using the same single I, ! 

I +exp (-hj) i i Ci, vector pair, until Ci7-Ci is smaller than some 
wo is an adjustable bias. i desired error. This whole process is then repeated 
Output unit i then receives: with & additional available training pair (I, Ci?). 

hi = Xwijvj+wo Training on subsequent I, Ci7 data sets reduces the 
and computes the output vector: network's ability to reproduce previous I, Cir pairs. 

I Ci = 1 (4) For this reason, repeated training "passes" are made i 
1 I +exp (-hi) throughout the complete training set until Ci,-Ci is 

acceptably small for &l data sets employed. (The 
The activation function of equation 4 is known acceptable error Ci>-Ct is chosen based on a 

knowledge of the typical experimental accuracy theoreticaliy to make the network a universal 
approximator. The initial values of the weights Wjk I obtainable for Ci)). A separate network i s  trained for 
and wij are random numbers in the range between 0 different fill gases. 
and 1. The feed forward network is shown 
schematically in figure 3 and is trained by the back ResultslDiscussion 

Once trained, the neural network model was then propagation algorithm, the most common sort of 
supervised network training. 7 hidden units are tested by inputting a number of data sets which had 
shown in figure 3. Various numbers have been tried not been employed during the training process. The 

required number of hidden units depends upon the 
complexity of the hnction to be learned. If too few 
hidden units are employed a highly non-linear 
function cannot be learned. If too many hiddens are 
employed the network will not generalize well. No 
theory currently exists with which to determine how 
many hiddens to use. We tried various numbers and 
chose the best network empirically. 

A trained neural networkcan then be used to 
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predict the tuning conditions for optimal source 
operation. Optimal operation is determined by 
maximization of the ion saturation current drawn by 
a Langmuir probe inserted into the plasma. In table 1 
we compare the tuning capacitor values CI, C2, and C3 
suggested by the neural network compared with those 
obtained by careful manual adjustment (requiring 5- 
15 minutes in the laboratory). The neural network 
substantially speeds up the tuning process every time 
the source conditions are changed. 
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Figure 3: Neural network composed of inputs I, 
hidden units h, and outputs, c. 
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Table 1: Tuning conditions found by a human 
operator compared with those predicted by 
the neural network. 

Gas RF RF Neural Hand 
Pressu Freque Powe Network Tuning 
re ncY r Predictio 

n 

N" f P c , c 2  c , c 2  
10" (MHz) (Watt C, 

s) @F) @F) ZF) @F) 
(PF) (PF) 

lom3 9 5 8.5 5.5 8.3 5.5 
2.5 2.0 

10" 9 5 0 2.5 3.5 2.2 3.4 
2.0 2.0 

10" 8 50 9.0 10 9.4 10 
9.5 9.0 


